xref: /openbmc/linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "kvm_util_internal.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18 
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN	2
21 
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
23 static void *align(void *x, size_t size)
24 {
25 	size_t mask = size - 1;
26 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 		    "size not a power of 2: %lu", size);
28 	return (void *) (((size_t) x + mask) & ~mask);
29 }
30 
31 /*
32  * Capability
33  *
34  * Input Args:
35  *   cap - Capability
36  *
37  * Output Args: None
38  *
39  * Return:
40  *   On success, the Value corresponding to the capability (KVM_CAP_*)
41  *   specified by the value of cap.  On failure a TEST_ASSERT failure
42  *   is produced.
43  *
44  * Looks up and returns the value corresponding to the capability
45  * (KVM_CAP_*) given by cap.
46  */
47 int kvm_check_cap(long cap)
48 {
49 	int ret;
50 	int kvm_fd;
51 
52 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 	if (kvm_fd < 0)
54 		exit(KSFT_SKIP);
55 
56 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 		"  rc: %i errno: %i", ret, errno);
59 
60 	close(kvm_fd);
61 
62 	return ret;
63 }
64 
65 /* VM Enable Capability
66  *
67  * Input Args:
68  *   vm - Virtual Machine
69  *   cap - Capability
70  *
71  * Output Args: None
72  *
73  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74  *
75  * Enables a capability (KVM_CAP_*) on the VM.
76  */
77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 	int ret;
80 
81 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 		"  rc: %i errno: %i", ret, errno);
84 
85 	return ret;
86 }
87 
88 static void vm_open(struct kvm_vm *vm, int perm)
89 {
90 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 	if (vm->kvm_fd < 0)
92 		exit(KSFT_SKIP);
93 
94 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
95 		print_skip("immediate_exit not available");
96 		exit(KSFT_SKIP);
97 	}
98 
99 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
100 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
101 		"rc: %i errno: %i", vm->fd, errno);
102 }
103 
104 const char * const vm_guest_mode_string[] = {
105 	"PA-bits:52,  VA-bits:48,  4K pages",
106 	"PA-bits:52,  VA-bits:48, 64K pages",
107 	"PA-bits:48,  VA-bits:48,  4K pages",
108 	"PA-bits:48,  VA-bits:48, 64K pages",
109 	"PA-bits:40,  VA-bits:48,  4K pages",
110 	"PA-bits:40,  VA-bits:48, 64K pages",
111 	"PA-bits:ANY, VA-bits:48,  4K pages",
112 };
113 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
114 	       "Missing new mode strings?");
115 
116 struct vm_guest_mode_params {
117 	unsigned int pa_bits;
118 	unsigned int va_bits;
119 	unsigned int page_size;
120 	unsigned int page_shift;
121 };
122 
123 static const struct vm_guest_mode_params vm_guest_mode_params[] = {
124 	{ 52, 48,  0x1000, 12 },
125 	{ 52, 48, 0x10000, 16 },
126 	{ 48, 48,  0x1000, 12 },
127 	{ 48, 48, 0x10000, 16 },
128 	{ 40, 48,  0x1000, 12 },
129 	{ 40, 48, 0x10000, 16 },
130 	{  0,  0,  0x1000, 12 },
131 };
132 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
133 	       "Missing new mode params?");
134 
135 /*
136  * VM Create
137  *
138  * Input Args:
139  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
140  *   phy_pages - Physical memory pages
141  *   perm - permission
142  *
143  * Output Args: None
144  *
145  * Return:
146  *   Pointer to opaque structure that describes the created VM.
147  *
148  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
149  * When phy_pages is non-zero, a memory region of phy_pages physical pages
150  * is created and mapped starting at guest physical address 0.  The file
151  * descriptor to control the created VM is created with the permissions
152  * given by perm (e.g. O_RDWR).
153  */
154 struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
155 {
156 	struct kvm_vm *vm;
157 
158 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
159 		 vm_guest_mode_string(mode), phy_pages, perm);
160 
161 	vm = calloc(1, sizeof(*vm));
162 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
163 
164 	INIT_LIST_HEAD(&vm->vcpus);
165 	INIT_LIST_HEAD(&vm->userspace_mem_regions);
166 
167 	vm->mode = mode;
168 	vm->type = 0;
169 
170 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
171 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
172 	vm->page_size = vm_guest_mode_params[mode].page_size;
173 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
174 
175 	/* Setup mode specific traits. */
176 	switch (vm->mode) {
177 	case VM_MODE_P52V48_4K:
178 		vm->pgtable_levels = 4;
179 		break;
180 	case VM_MODE_P52V48_64K:
181 		vm->pgtable_levels = 3;
182 		break;
183 	case VM_MODE_P48V48_4K:
184 		vm->pgtable_levels = 4;
185 		break;
186 	case VM_MODE_P48V48_64K:
187 		vm->pgtable_levels = 3;
188 		break;
189 	case VM_MODE_P40V48_4K:
190 		vm->pgtable_levels = 4;
191 		break;
192 	case VM_MODE_P40V48_64K:
193 		vm->pgtable_levels = 3;
194 		break;
195 	case VM_MODE_PXXV48_4K:
196 #ifdef __x86_64__
197 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
198 		/*
199 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
200 		 * it doesn't take effect unless a CR4.LA57 is set, which it
201 		 * isn't for this VM_MODE.
202 		 */
203 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
204 			    "Linear address width (%d bits) not supported",
205 			    vm->va_bits);
206 		pr_debug("Guest physical address width detected: %d\n",
207 			 vm->pa_bits);
208 		vm->pgtable_levels = 4;
209 		vm->va_bits = 48;
210 #else
211 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
212 #endif
213 		break;
214 	default:
215 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
216 	}
217 
218 #ifdef __aarch64__
219 	if (vm->pa_bits != 40)
220 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
221 #endif
222 
223 	vm_open(vm, perm);
224 
225 	/* Limit to VA-bit canonical virtual addresses. */
226 	vm->vpages_valid = sparsebit_alloc();
227 	sparsebit_set_num(vm->vpages_valid,
228 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
229 	sparsebit_set_num(vm->vpages_valid,
230 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
231 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
232 
233 	/* Limit physical addresses to PA-bits. */
234 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
235 
236 	/* Allocate and setup memory for guest. */
237 	vm->vpages_mapped = sparsebit_alloc();
238 	if (phy_pages != 0)
239 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
240 					    0, 0, phy_pages, 0);
241 
242 	return vm;
243 }
244 
245 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
246 {
247 	return _vm_create(mode, phy_pages, perm);
248 }
249 
250 /*
251  * VM Restart
252  *
253  * Input Args:
254  *   vm - VM that has been released before
255  *   perm - permission
256  *
257  * Output Args: None
258  *
259  * Reopens the file descriptors associated to the VM and reinstates the
260  * global state, such as the irqchip and the memory regions that are mapped
261  * into the guest.
262  */
263 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
264 {
265 	struct userspace_mem_region *region;
266 
267 	vm_open(vmp, perm);
268 	if (vmp->has_irqchip)
269 		vm_create_irqchip(vmp);
270 
271 	list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
272 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
273 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
274 			    "  rc: %i errno: %i\n"
275 			    "  slot: %u flags: 0x%x\n"
276 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
277 			    ret, errno, region->region.slot,
278 			    region->region.flags,
279 			    region->region.guest_phys_addr,
280 			    region->region.memory_size);
281 	}
282 }
283 
284 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
285 {
286 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
287 	int ret;
288 
289 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
290 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
291 		    __func__, strerror(-ret));
292 }
293 
294 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
295 			    uint64_t first_page, uint32_t num_pages)
296 {
297 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
298 		                            .first_page = first_page,
299 	                                    .num_pages = num_pages };
300 	int ret;
301 
302 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
303 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
304 		    __func__, strerror(-ret));
305 }
306 
307 /*
308  * Userspace Memory Region Find
309  *
310  * Input Args:
311  *   vm - Virtual Machine
312  *   start - Starting VM physical address
313  *   end - Ending VM physical address, inclusive.
314  *
315  * Output Args: None
316  *
317  * Return:
318  *   Pointer to overlapping region, NULL if no such region.
319  *
320  * Searches for a region with any physical memory that overlaps with
321  * any portion of the guest physical addresses from start to end
322  * inclusive.  If multiple overlapping regions exist, a pointer to any
323  * of the regions is returned.  Null is returned only when no overlapping
324  * region exists.
325  */
326 static struct userspace_mem_region *
327 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
328 {
329 	struct userspace_mem_region *region;
330 
331 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
332 		uint64_t existing_start = region->region.guest_phys_addr;
333 		uint64_t existing_end = region->region.guest_phys_addr
334 			+ region->region.memory_size - 1;
335 		if (start <= existing_end && end >= existing_start)
336 			return region;
337 	}
338 
339 	return NULL;
340 }
341 
342 /*
343  * KVM Userspace Memory Region Find
344  *
345  * Input Args:
346  *   vm - Virtual Machine
347  *   start - Starting VM physical address
348  *   end - Ending VM physical address, inclusive.
349  *
350  * Output Args: None
351  *
352  * Return:
353  *   Pointer to overlapping region, NULL if no such region.
354  *
355  * Public interface to userspace_mem_region_find. Allows tests to look up
356  * the memslot datastructure for a given range of guest physical memory.
357  */
358 struct kvm_userspace_memory_region *
359 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
360 				 uint64_t end)
361 {
362 	struct userspace_mem_region *region;
363 
364 	region = userspace_mem_region_find(vm, start, end);
365 	if (!region)
366 		return NULL;
367 
368 	return &region->region;
369 }
370 
371 /*
372  * VCPU Find
373  *
374  * Input Args:
375  *   vm - Virtual Machine
376  *   vcpuid - VCPU ID
377  *
378  * Output Args: None
379  *
380  * Return:
381  *   Pointer to VCPU structure
382  *
383  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
384  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
385  * for the specified vcpuid.
386  */
387 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
388 {
389 	struct vcpu *vcpu;
390 
391 	list_for_each_entry(vcpu, &vm->vcpus, list) {
392 		if (vcpu->id == vcpuid)
393 			return vcpu;
394 	}
395 
396 	return NULL;
397 }
398 
399 /*
400  * VM VCPU Remove
401  *
402  * Input Args:
403  *   vcpu - VCPU to remove
404  *
405  * Output Args: None
406  *
407  * Return: None, TEST_ASSERT failures for all error conditions
408  *
409  * Removes a vCPU from a VM and frees its resources.
410  */
411 static void vm_vcpu_rm(struct vcpu *vcpu)
412 {
413 	int ret;
414 
415 	ret = munmap(vcpu->state, sizeof(*vcpu->state));
416 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
417 		"errno: %i", ret, errno);
418 	close(vcpu->fd);
419 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
420 		"errno: %i", ret, errno);
421 
422 	list_del(&vcpu->list);
423 	free(vcpu);
424 }
425 
426 void kvm_vm_release(struct kvm_vm *vmp)
427 {
428 	struct vcpu *vcpu, *tmp;
429 	int ret;
430 
431 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
432 		vm_vcpu_rm(vcpu);
433 
434 	ret = close(vmp->fd);
435 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
436 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
437 
438 	close(vmp->kvm_fd);
439 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
440 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
441 }
442 
443 static void __vm_mem_region_delete(struct kvm_vm *vm,
444 				   struct userspace_mem_region *region)
445 {
446 	int ret;
447 
448 	list_del(&region->list);
449 
450 	region->region.memory_size = 0;
451 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
452 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
453 		    "rc: %i errno: %i", ret, errno);
454 
455 	sparsebit_free(&region->unused_phy_pages);
456 	ret = munmap(region->mmap_start, region->mmap_size);
457 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
458 
459 	free(region);
460 }
461 
462 /*
463  * Destroys and frees the VM pointed to by vmp.
464  */
465 void kvm_vm_free(struct kvm_vm *vmp)
466 {
467 	struct userspace_mem_region *region, *tmp;
468 
469 	if (vmp == NULL)
470 		return;
471 
472 	/* Free userspace_mem_regions. */
473 	list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
474 		__vm_mem_region_delete(vmp, region);
475 
476 	/* Free sparsebit arrays. */
477 	sparsebit_free(&vmp->vpages_valid);
478 	sparsebit_free(&vmp->vpages_mapped);
479 
480 	kvm_vm_release(vmp);
481 
482 	/* Free the structure describing the VM. */
483 	free(vmp);
484 }
485 
486 /*
487  * Memory Compare, host virtual to guest virtual
488  *
489  * Input Args:
490  *   hva - Starting host virtual address
491  *   vm - Virtual Machine
492  *   gva - Starting guest virtual address
493  *   len - number of bytes to compare
494  *
495  * Output Args: None
496  *
497  * Input/Output Args: None
498  *
499  * Return:
500  *   Returns 0 if the bytes starting at hva for a length of len
501  *   are equal the guest virtual bytes starting at gva.  Returns
502  *   a value < 0, if bytes at hva are less than those at gva.
503  *   Otherwise a value > 0 is returned.
504  *
505  * Compares the bytes starting at the host virtual address hva, for
506  * a length of len, to the guest bytes starting at the guest virtual
507  * address given by gva.
508  */
509 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
510 {
511 	size_t amt;
512 
513 	/*
514 	 * Compare a batch of bytes until either a match is found
515 	 * or all the bytes have been compared.
516 	 */
517 	for (uintptr_t offset = 0; offset < len; offset += amt) {
518 		uintptr_t ptr1 = (uintptr_t)hva + offset;
519 
520 		/*
521 		 * Determine host address for guest virtual address
522 		 * at offset.
523 		 */
524 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
525 
526 		/*
527 		 * Determine amount to compare on this pass.
528 		 * Don't allow the comparsion to cross a page boundary.
529 		 */
530 		amt = len - offset;
531 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
532 			amt = vm->page_size - (ptr1 % vm->page_size);
533 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
534 			amt = vm->page_size - (ptr2 % vm->page_size);
535 
536 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
537 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
538 
539 		/*
540 		 * Perform the comparison.  If there is a difference
541 		 * return that result to the caller, otherwise need
542 		 * to continue on looking for a mismatch.
543 		 */
544 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
545 		if (ret != 0)
546 			return ret;
547 	}
548 
549 	/*
550 	 * No mismatch found.  Let the caller know the two memory
551 	 * areas are equal.
552 	 */
553 	return 0;
554 }
555 
556 /*
557  * VM Userspace Memory Region Add
558  *
559  * Input Args:
560  *   vm - Virtual Machine
561  *   backing_src - Storage source for this region.
562  *                 NULL to use anonymous memory.
563  *   guest_paddr - Starting guest physical address
564  *   slot - KVM region slot
565  *   npages - Number of physical pages
566  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
567  *
568  * Output Args: None
569  *
570  * Return: None
571  *
572  * Allocates a memory area of the number of pages specified by npages
573  * and maps it to the VM specified by vm, at a starting physical address
574  * given by guest_paddr.  The region is created with a KVM region slot
575  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
576  * region is created with the flags given by flags.
577  */
578 void vm_userspace_mem_region_add(struct kvm_vm *vm,
579 	enum vm_mem_backing_src_type src_type,
580 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
581 	uint32_t flags)
582 {
583 	int ret;
584 	struct userspace_mem_region *region;
585 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
586 	size_t alignment;
587 
588 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
589 		"Number of guest pages is not compatible with the host. "
590 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
591 
592 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
593 		"address not on a page boundary.\n"
594 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
595 		guest_paddr, vm->page_size);
596 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
597 		<= vm->max_gfn, "Physical range beyond maximum "
598 		"supported physical address,\n"
599 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
600 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
601 		guest_paddr, npages, vm->max_gfn, vm->page_size);
602 
603 	/*
604 	 * Confirm a mem region with an overlapping address doesn't
605 	 * already exist.
606 	 */
607 	region = (struct userspace_mem_region *) userspace_mem_region_find(
608 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
609 	if (region != NULL)
610 		TEST_FAIL("overlapping userspace_mem_region already "
611 			"exists\n"
612 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
613 			"page_size: 0x%x\n"
614 			"  existing guest_paddr: 0x%lx size: 0x%lx",
615 			guest_paddr, npages, vm->page_size,
616 			(uint64_t) region->region.guest_phys_addr,
617 			(uint64_t) region->region.memory_size);
618 
619 	/* Confirm no region with the requested slot already exists. */
620 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
621 		if (region->region.slot != slot)
622 			continue;
623 
624 		TEST_FAIL("A mem region with the requested slot "
625 			"already exists.\n"
626 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
627 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
628 			slot, guest_paddr, npages,
629 			region->region.slot,
630 			(uint64_t) region->region.guest_phys_addr,
631 			(uint64_t) region->region.memory_size);
632 	}
633 
634 	/* Allocate and initialize new mem region structure. */
635 	region = calloc(1, sizeof(*region));
636 	TEST_ASSERT(region != NULL, "Insufficient Memory");
637 	region->mmap_size = npages * vm->page_size;
638 
639 #ifdef __s390x__
640 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
641 	alignment = 0x100000;
642 #else
643 	alignment = 1;
644 #endif
645 
646 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
647 		alignment = max(huge_page_size, alignment);
648 
649 	/* Add enough memory to align up if necessary */
650 	if (alignment > 1)
651 		region->mmap_size += alignment;
652 
653 	region->mmap_start = mmap(NULL, region->mmap_size,
654 				  PROT_READ | PROT_WRITE,
655 				  MAP_PRIVATE | MAP_ANONYMOUS
656 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
657 				  -1, 0);
658 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
659 		    "test_malloc failed, mmap_start: %p errno: %i",
660 		    region->mmap_start, errno);
661 
662 	/* Align host address */
663 	region->host_mem = align(region->mmap_start, alignment);
664 
665 	/* As needed perform madvise */
666 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
667 		ret = madvise(region->host_mem, npages * vm->page_size,
668 			     src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
669 		TEST_ASSERT(ret == 0, "madvise failed,\n"
670 			    "  addr: %p\n"
671 			    "  length: 0x%lx\n"
672 			    "  src_type: %x",
673 			    region->host_mem, npages * vm->page_size, src_type);
674 	}
675 
676 	region->unused_phy_pages = sparsebit_alloc();
677 	sparsebit_set_num(region->unused_phy_pages,
678 		guest_paddr >> vm->page_shift, npages);
679 	region->region.slot = slot;
680 	region->region.flags = flags;
681 	region->region.guest_phys_addr = guest_paddr;
682 	region->region.memory_size = npages * vm->page_size;
683 	region->region.userspace_addr = (uintptr_t) region->host_mem;
684 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
685 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
686 		"  rc: %i errno: %i\n"
687 		"  slot: %u flags: 0x%x\n"
688 		"  guest_phys_addr: 0x%lx size: 0x%lx",
689 		ret, errno, slot, flags,
690 		guest_paddr, (uint64_t) region->region.memory_size);
691 
692 	/* Add to linked-list of memory regions. */
693 	list_add(&region->list, &vm->userspace_mem_regions);
694 }
695 
696 /*
697  * Memslot to region
698  *
699  * Input Args:
700  *   vm - Virtual Machine
701  *   memslot - KVM memory slot ID
702  *
703  * Output Args: None
704  *
705  * Return:
706  *   Pointer to memory region structure that describe memory region
707  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
708  *   on error (e.g. currently no memory region using memslot as a KVM
709  *   memory slot ID).
710  */
711 struct userspace_mem_region *
712 memslot2region(struct kvm_vm *vm, uint32_t memslot)
713 {
714 	struct userspace_mem_region *region;
715 
716 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
717 		if (region->region.slot == memslot)
718 			return region;
719 	}
720 
721 	fprintf(stderr, "No mem region with the requested slot found,\n"
722 		"  requested slot: %u\n", memslot);
723 	fputs("---- vm dump ----\n", stderr);
724 	vm_dump(stderr, vm, 2);
725 	TEST_FAIL("Mem region not found");
726 	return NULL;
727 }
728 
729 /*
730  * VM Memory Region Flags Set
731  *
732  * Input Args:
733  *   vm - Virtual Machine
734  *   flags - Starting guest physical address
735  *
736  * Output Args: None
737  *
738  * Return: None
739  *
740  * Sets the flags of the memory region specified by the value of slot,
741  * to the values given by flags.
742  */
743 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
744 {
745 	int ret;
746 	struct userspace_mem_region *region;
747 
748 	region = memslot2region(vm, slot);
749 
750 	region->region.flags = flags;
751 
752 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
753 
754 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
755 		"  rc: %i errno: %i slot: %u flags: 0x%x",
756 		ret, errno, slot, flags);
757 }
758 
759 /*
760  * VM Memory Region Move
761  *
762  * Input Args:
763  *   vm - Virtual Machine
764  *   slot - Slot of the memory region to move
765  *   new_gpa - Starting guest physical address
766  *
767  * Output Args: None
768  *
769  * Return: None
770  *
771  * Change the gpa of a memory region.
772  */
773 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
774 {
775 	struct userspace_mem_region *region;
776 	int ret;
777 
778 	region = memslot2region(vm, slot);
779 
780 	region->region.guest_phys_addr = new_gpa;
781 
782 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
783 
784 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
785 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
786 		    ret, errno, slot, new_gpa);
787 }
788 
789 /*
790  * VM Memory Region Delete
791  *
792  * Input Args:
793  *   vm - Virtual Machine
794  *   slot - Slot of the memory region to delete
795  *
796  * Output Args: None
797  *
798  * Return: None
799  *
800  * Delete a memory region.
801  */
802 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
803 {
804 	__vm_mem_region_delete(vm, memslot2region(vm, slot));
805 }
806 
807 /*
808  * VCPU mmap Size
809  *
810  * Input Args: None
811  *
812  * Output Args: None
813  *
814  * Return:
815  *   Size of VCPU state
816  *
817  * Returns the size of the structure pointed to by the return value
818  * of vcpu_state().
819  */
820 static int vcpu_mmap_sz(void)
821 {
822 	int dev_fd, ret;
823 
824 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
825 	if (dev_fd < 0)
826 		exit(KSFT_SKIP);
827 
828 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
829 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
830 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
831 		__func__, ret, errno);
832 
833 	close(dev_fd);
834 
835 	return ret;
836 }
837 
838 /*
839  * VM VCPU Add
840  *
841  * Input Args:
842  *   vm - Virtual Machine
843  *   vcpuid - VCPU ID
844  *
845  * Output Args: None
846  *
847  * Return: None
848  *
849  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
850  * No additional VCPU setup is done.
851  */
852 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
853 {
854 	struct vcpu *vcpu;
855 
856 	/* Confirm a vcpu with the specified id doesn't already exist. */
857 	vcpu = vcpu_find(vm, vcpuid);
858 	if (vcpu != NULL)
859 		TEST_FAIL("vcpu with the specified id "
860 			"already exists,\n"
861 			"  requested vcpuid: %u\n"
862 			"  existing vcpuid: %u state: %p",
863 			vcpuid, vcpu->id, vcpu->state);
864 
865 	/* Allocate and initialize new vcpu structure. */
866 	vcpu = calloc(1, sizeof(*vcpu));
867 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
868 	vcpu->id = vcpuid;
869 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
870 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
871 		vcpu->fd, errno);
872 
873 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
874 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
875 		vcpu_mmap_sz(), sizeof(*vcpu->state));
876 	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
877 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
878 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
879 		"vcpu id: %u errno: %i", vcpuid, errno);
880 
881 	/* Add to linked-list of VCPUs. */
882 	list_add(&vcpu->list, &vm->vcpus);
883 }
884 
885 /*
886  * VM Virtual Address Unused Gap
887  *
888  * Input Args:
889  *   vm - Virtual Machine
890  *   sz - Size (bytes)
891  *   vaddr_min - Minimum Virtual Address
892  *
893  * Output Args: None
894  *
895  * Return:
896  *   Lowest virtual address at or below vaddr_min, with at least
897  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
898  *   size sz is available.
899  *
900  * Within the VM specified by vm, locates the lowest starting virtual
901  * address >= vaddr_min, that has at least sz unallocated bytes.  A
902  * TEST_ASSERT failure occurs for invalid input or no area of at least
903  * sz unallocated bytes >= vaddr_min is available.
904  */
905 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
906 				      vm_vaddr_t vaddr_min)
907 {
908 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
909 
910 	/* Determine lowest permitted virtual page index. */
911 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
912 	if ((pgidx_start * vm->page_size) < vaddr_min)
913 		goto no_va_found;
914 
915 	/* Loop over section with enough valid virtual page indexes. */
916 	if (!sparsebit_is_set_num(vm->vpages_valid,
917 		pgidx_start, pages))
918 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
919 			pgidx_start, pages);
920 	do {
921 		/*
922 		 * Are there enough unused virtual pages available at
923 		 * the currently proposed starting virtual page index.
924 		 * If not, adjust proposed starting index to next
925 		 * possible.
926 		 */
927 		if (sparsebit_is_clear_num(vm->vpages_mapped,
928 			pgidx_start, pages))
929 			goto va_found;
930 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
931 			pgidx_start, pages);
932 		if (pgidx_start == 0)
933 			goto no_va_found;
934 
935 		/*
936 		 * If needed, adjust proposed starting virtual address,
937 		 * to next range of valid virtual addresses.
938 		 */
939 		if (!sparsebit_is_set_num(vm->vpages_valid,
940 			pgidx_start, pages)) {
941 			pgidx_start = sparsebit_next_set_num(
942 				vm->vpages_valid, pgidx_start, pages);
943 			if (pgidx_start == 0)
944 				goto no_va_found;
945 		}
946 	} while (pgidx_start != 0);
947 
948 no_va_found:
949 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
950 
951 	/* NOT REACHED */
952 	return -1;
953 
954 va_found:
955 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
956 		pgidx_start, pages),
957 		"Unexpected, invalid virtual page index range,\n"
958 		"  pgidx_start: 0x%lx\n"
959 		"  pages: 0x%lx",
960 		pgidx_start, pages);
961 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
962 		pgidx_start, pages),
963 		"Unexpected, pages already mapped,\n"
964 		"  pgidx_start: 0x%lx\n"
965 		"  pages: 0x%lx",
966 		pgidx_start, pages);
967 
968 	return pgidx_start * vm->page_size;
969 }
970 
971 /*
972  * VM Virtual Address Allocate
973  *
974  * Input Args:
975  *   vm - Virtual Machine
976  *   sz - Size in bytes
977  *   vaddr_min - Minimum starting virtual address
978  *   data_memslot - Memory region slot for data pages
979  *   pgd_memslot - Memory region slot for new virtual translation tables
980  *
981  * Output Args: None
982  *
983  * Return:
984  *   Starting guest virtual address
985  *
986  * Allocates at least sz bytes within the virtual address space of the vm
987  * given by vm.  The allocated bytes are mapped to a virtual address >=
988  * the address given by vaddr_min.  Note that each allocation uses a
989  * a unique set of pages, with the minimum real allocation being at least
990  * a page.
991  */
992 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
993 			  uint32_t data_memslot, uint32_t pgd_memslot)
994 {
995 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
996 
997 	virt_pgd_alloc(vm, pgd_memslot);
998 
999 	/*
1000 	 * Find an unused range of virtual page addresses of at least
1001 	 * pages in length.
1002 	 */
1003 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1004 
1005 	/* Map the virtual pages. */
1006 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1007 		pages--, vaddr += vm->page_size) {
1008 		vm_paddr_t paddr;
1009 
1010 		paddr = vm_phy_page_alloc(vm,
1011 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
1012 
1013 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1014 
1015 		sparsebit_set(vm->vpages_mapped,
1016 			vaddr >> vm->page_shift);
1017 	}
1018 
1019 	return vaddr_start;
1020 }
1021 
1022 /*
1023  * Map a range of VM virtual address to the VM's physical address
1024  *
1025  * Input Args:
1026  *   vm - Virtual Machine
1027  *   vaddr - Virtuall address to map
1028  *   paddr - VM Physical Address
1029  *   npages - The number of pages to map
1030  *   pgd_memslot - Memory region slot for new virtual translation tables
1031  *
1032  * Output Args: None
1033  *
1034  * Return: None
1035  *
1036  * Within the VM given by @vm, creates a virtual translation for
1037  * @npages starting at @vaddr to the page range starting at @paddr.
1038  */
1039 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1040 	      unsigned int npages, uint32_t pgd_memslot)
1041 {
1042 	size_t page_size = vm->page_size;
1043 	size_t size = npages * page_size;
1044 
1045 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1046 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1047 
1048 	while (npages--) {
1049 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1050 		vaddr += page_size;
1051 		paddr += page_size;
1052 	}
1053 }
1054 
1055 /*
1056  * Address VM Physical to Host Virtual
1057  *
1058  * Input Args:
1059  *   vm - Virtual Machine
1060  *   gpa - VM physical address
1061  *
1062  * Output Args: None
1063  *
1064  * Return:
1065  *   Equivalent host virtual address
1066  *
1067  * Locates the memory region containing the VM physical address given
1068  * by gpa, within the VM given by vm.  When found, the host virtual
1069  * address providing the memory to the vm physical address is returned.
1070  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1071  */
1072 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1073 {
1074 	struct userspace_mem_region *region;
1075 
1076 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1077 		if ((gpa >= region->region.guest_phys_addr)
1078 			&& (gpa <= (region->region.guest_phys_addr
1079 				+ region->region.memory_size - 1)))
1080 			return (void *) ((uintptr_t) region->host_mem
1081 				+ (gpa - region->region.guest_phys_addr));
1082 	}
1083 
1084 	TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1085 	return NULL;
1086 }
1087 
1088 /*
1089  * Address Host Virtual to VM Physical
1090  *
1091  * Input Args:
1092  *   vm - Virtual Machine
1093  *   hva - Host virtual address
1094  *
1095  * Output Args: None
1096  *
1097  * Return:
1098  *   Equivalent VM physical address
1099  *
1100  * Locates the memory region containing the host virtual address given
1101  * by hva, within the VM given by vm.  When found, the equivalent
1102  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1103  * region containing hva exists.
1104  */
1105 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1106 {
1107 	struct userspace_mem_region *region;
1108 
1109 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1110 		if ((hva >= region->host_mem)
1111 			&& (hva <= (region->host_mem
1112 				+ region->region.memory_size - 1)))
1113 			return (vm_paddr_t) ((uintptr_t)
1114 				region->region.guest_phys_addr
1115 				+ (hva - (uintptr_t) region->host_mem));
1116 	}
1117 
1118 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1119 	return -1;
1120 }
1121 
1122 /*
1123  * VM Create IRQ Chip
1124  *
1125  * Input Args:
1126  *   vm - Virtual Machine
1127  *
1128  * Output Args: None
1129  *
1130  * Return: None
1131  *
1132  * Creates an interrupt controller chip for the VM specified by vm.
1133  */
1134 void vm_create_irqchip(struct kvm_vm *vm)
1135 {
1136 	int ret;
1137 
1138 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1139 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1140 		"rc: %i errno: %i", ret, errno);
1141 
1142 	vm->has_irqchip = true;
1143 }
1144 
1145 /*
1146  * VM VCPU State
1147  *
1148  * Input Args:
1149  *   vm - Virtual Machine
1150  *   vcpuid - VCPU ID
1151  *
1152  * Output Args: None
1153  *
1154  * Return:
1155  *   Pointer to structure that describes the state of the VCPU.
1156  *
1157  * Locates and returns a pointer to a structure that describes the
1158  * state of the VCPU with the given vcpuid.
1159  */
1160 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1161 {
1162 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1163 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1164 
1165 	return vcpu->state;
1166 }
1167 
1168 /*
1169  * VM VCPU Run
1170  *
1171  * Input Args:
1172  *   vm - Virtual Machine
1173  *   vcpuid - VCPU ID
1174  *
1175  * Output Args: None
1176  *
1177  * Return: None
1178  *
1179  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1180  * given by vm.
1181  */
1182 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1183 {
1184 	int ret = _vcpu_run(vm, vcpuid);
1185 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1186 		"rc: %i errno: %i", ret, errno);
1187 }
1188 
1189 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1190 {
1191 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1192 	int rc;
1193 
1194 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1195 	do {
1196 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1197 	} while (rc == -1 && errno == EINTR);
1198 	return rc;
1199 }
1200 
1201 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1202 {
1203 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1204 	int ret;
1205 
1206 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1207 
1208 	vcpu->state->immediate_exit = 1;
1209 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1210 	vcpu->state->immediate_exit = 0;
1211 
1212 	TEST_ASSERT(ret == -1 && errno == EINTR,
1213 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1214 		    ret, errno);
1215 }
1216 
1217 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1218 			  struct kvm_guest_debug *debug)
1219 {
1220 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1221 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1222 
1223 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1224 }
1225 
1226 /*
1227  * VM VCPU Set MP State
1228  *
1229  * Input Args:
1230  *   vm - Virtual Machine
1231  *   vcpuid - VCPU ID
1232  *   mp_state - mp_state to be set
1233  *
1234  * Output Args: None
1235  *
1236  * Return: None
1237  *
1238  * Sets the MP state of the VCPU given by vcpuid, to the state given
1239  * by mp_state.
1240  */
1241 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1242 		       struct kvm_mp_state *mp_state)
1243 {
1244 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1245 	int ret;
1246 
1247 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1248 
1249 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1250 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1251 		"rc: %i errno: %i", ret, errno);
1252 }
1253 
1254 /*
1255  * VM VCPU Regs Get
1256  *
1257  * Input Args:
1258  *   vm - Virtual Machine
1259  *   vcpuid - VCPU ID
1260  *
1261  * Output Args:
1262  *   regs - current state of VCPU regs
1263  *
1264  * Return: None
1265  *
1266  * Obtains the current register state for the VCPU specified by vcpuid
1267  * and stores it at the location given by regs.
1268  */
1269 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1270 {
1271 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1272 	int ret;
1273 
1274 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1275 
1276 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1277 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1278 		ret, errno);
1279 }
1280 
1281 /*
1282  * VM VCPU Regs Set
1283  *
1284  * Input Args:
1285  *   vm - Virtual Machine
1286  *   vcpuid - VCPU ID
1287  *   regs - Values to set VCPU regs to
1288  *
1289  * Output Args: None
1290  *
1291  * Return: None
1292  *
1293  * Sets the regs of the VCPU specified by vcpuid to the values
1294  * given by regs.
1295  */
1296 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1297 {
1298 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1299 	int ret;
1300 
1301 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1302 
1303 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1304 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1305 		ret, errno);
1306 }
1307 
1308 #ifdef __KVM_HAVE_VCPU_EVENTS
1309 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1310 		     struct kvm_vcpu_events *events)
1311 {
1312 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1313 	int ret;
1314 
1315 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1316 
1317 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1318 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1319 		ret, errno);
1320 }
1321 
1322 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1323 		     struct kvm_vcpu_events *events)
1324 {
1325 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1326 	int ret;
1327 
1328 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1329 
1330 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1331 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1332 		ret, errno);
1333 }
1334 #endif
1335 
1336 #ifdef __x86_64__
1337 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1338 			   struct kvm_nested_state *state)
1339 {
1340 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1341 	int ret;
1342 
1343 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1344 
1345 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1346 	TEST_ASSERT(ret == 0,
1347 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1348 		ret, errno);
1349 }
1350 
1351 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1352 			  struct kvm_nested_state *state, bool ignore_error)
1353 {
1354 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1355 	int ret;
1356 
1357 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1358 
1359 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1360 	if (!ignore_error) {
1361 		TEST_ASSERT(ret == 0,
1362 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1363 			ret, errno);
1364 	}
1365 
1366 	return ret;
1367 }
1368 #endif
1369 
1370 /*
1371  * VM VCPU System Regs Get
1372  *
1373  * Input Args:
1374  *   vm - Virtual Machine
1375  *   vcpuid - VCPU ID
1376  *
1377  * Output Args:
1378  *   sregs - current state of VCPU system regs
1379  *
1380  * Return: None
1381  *
1382  * Obtains the current system register state for the VCPU specified by
1383  * vcpuid and stores it at the location given by sregs.
1384  */
1385 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1386 {
1387 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1388 	int ret;
1389 
1390 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1391 
1392 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1393 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1394 		ret, errno);
1395 }
1396 
1397 /*
1398  * VM VCPU System Regs Set
1399  *
1400  * Input Args:
1401  *   vm - Virtual Machine
1402  *   vcpuid - VCPU ID
1403  *   sregs - Values to set VCPU system regs to
1404  *
1405  * Output Args: None
1406  *
1407  * Return: None
1408  *
1409  * Sets the system regs of the VCPU specified by vcpuid to the values
1410  * given by sregs.
1411  */
1412 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1413 {
1414 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1415 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1416 		"rc: %i errno: %i", ret, errno);
1417 }
1418 
1419 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1420 {
1421 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1422 
1423 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1424 
1425 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1426 }
1427 
1428 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1429 {
1430 	int ret;
1431 
1432 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1433 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1434 		    ret, errno, strerror(errno));
1435 }
1436 
1437 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1438 {
1439 	int ret;
1440 
1441 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1442 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1443 		    ret, errno, strerror(errno));
1444 }
1445 
1446 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1447 {
1448 	int ret;
1449 
1450 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1451 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1452 		    ret, errno, strerror(errno));
1453 }
1454 
1455 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1456 {
1457 	int ret;
1458 
1459 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1460 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1461 		    ret, errno, strerror(errno));
1462 }
1463 
1464 /*
1465  * VCPU Ioctl
1466  *
1467  * Input Args:
1468  *   vm - Virtual Machine
1469  *   vcpuid - VCPU ID
1470  *   cmd - Ioctl number
1471  *   arg - Argument to pass to the ioctl
1472  *
1473  * Return: None
1474  *
1475  * Issues an arbitrary ioctl on a VCPU fd.
1476  */
1477 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1478 		unsigned long cmd, void *arg)
1479 {
1480 	int ret;
1481 
1482 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1483 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1484 		cmd, ret, errno, strerror(errno));
1485 }
1486 
1487 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1488 		unsigned long cmd, void *arg)
1489 {
1490 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1491 	int ret;
1492 
1493 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1494 
1495 	ret = ioctl(vcpu->fd, cmd, arg);
1496 
1497 	return ret;
1498 }
1499 
1500 /*
1501  * VM Ioctl
1502  *
1503  * Input Args:
1504  *   vm - Virtual Machine
1505  *   cmd - Ioctl number
1506  *   arg - Argument to pass to the ioctl
1507  *
1508  * Return: None
1509  *
1510  * Issues an arbitrary ioctl on a VM fd.
1511  */
1512 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1513 {
1514 	int ret;
1515 
1516 	ret = ioctl(vm->fd, cmd, arg);
1517 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1518 		cmd, ret, errno, strerror(errno));
1519 }
1520 
1521 /*
1522  * VM Dump
1523  *
1524  * Input Args:
1525  *   vm - Virtual Machine
1526  *   indent - Left margin indent amount
1527  *
1528  * Output Args:
1529  *   stream - Output FILE stream
1530  *
1531  * Return: None
1532  *
1533  * Dumps the current state of the VM given by vm, to the FILE stream
1534  * given by stream.
1535  */
1536 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1537 {
1538 	struct userspace_mem_region *region;
1539 	struct vcpu *vcpu;
1540 
1541 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1542 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1543 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1544 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1545 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1546 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1547 			"host_virt: %p\n", indent + 2, "",
1548 			(uint64_t) region->region.guest_phys_addr,
1549 			(uint64_t) region->region.memory_size,
1550 			region->host_mem);
1551 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1552 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1553 	}
1554 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1555 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1556 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1557 		vm->pgd_created);
1558 	if (vm->pgd_created) {
1559 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1560 			indent + 2, "");
1561 		virt_dump(stream, vm, indent + 4);
1562 	}
1563 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1564 	list_for_each_entry(vcpu, &vm->vcpus, list)
1565 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1566 }
1567 
1568 /* Known KVM exit reasons */
1569 static struct exit_reason {
1570 	unsigned int reason;
1571 	const char *name;
1572 } exit_reasons_known[] = {
1573 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1574 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1575 	{KVM_EXIT_IO, "IO"},
1576 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1577 	{KVM_EXIT_DEBUG, "DEBUG"},
1578 	{KVM_EXIT_HLT, "HLT"},
1579 	{KVM_EXIT_MMIO, "MMIO"},
1580 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1581 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1582 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1583 	{KVM_EXIT_INTR, "INTR"},
1584 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1585 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1586 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1587 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1588 	{KVM_EXIT_DCR, "DCR"},
1589 	{KVM_EXIT_NMI, "NMI"},
1590 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1591 	{KVM_EXIT_OSI, "OSI"},
1592 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1593 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1594 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1595 #endif
1596 };
1597 
1598 /*
1599  * Exit Reason String
1600  *
1601  * Input Args:
1602  *   exit_reason - Exit reason
1603  *
1604  * Output Args: None
1605  *
1606  * Return:
1607  *   Constant string pointer describing the exit reason.
1608  *
1609  * Locates and returns a constant string that describes the KVM exit
1610  * reason given by exit_reason.  If no such string is found, a constant
1611  * string of "Unknown" is returned.
1612  */
1613 const char *exit_reason_str(unsigned int exit_reason)
1614 {
1615 	unsigned int n1;
1616 
1617 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1618 		if (exit_reason == exit_reasons_known[n1].reason)
1619 			return exit_reasons_known[n1].name;
1620 	}
1621 
1622 	return "Unknown";
1623 }
1624 
1625 /*
1626  * Physical Contiguous Page Allocator
1627  *
1628  * Input Args:
1629  *   vm - Virtual Machine
1630  *   num - number of pages
1631  *   paddr_min - Physical address minimum
1632  *   memslot - Memory region to allocate page from
1633  *
1634  * Output Args: None
1635  *
1636  * Return:
1637  *   Starting physical address
1638  *
1639  * Within the VM specified by vm, locates a range of available physical
1640  * pages at or above paddr_min. If found, the pages are marked as in use
1641  * and their base address is returned. A TEST_ASSERT failure occurs if
1642  * not enough pages are available at or above paddr_min.
1643  */
1644 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1645 			      vm_paddr_t paddr_min, uint32_t memslot)
1646 {
1647 	struct userspace_mem_region *region;
1648 	sparsebit_idx_t pg, base;
1649 
1650 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1651 
1652 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1653 		"not divisible by page size.\n"
1654 		"  paddr_min: 0x%lx page_size: 0x%x",
1655 		paddr_min, vm->page_size);
1656 
1657 	region = memslot2region(vm, memslot);
1658 	base = pg = paddr_min >> vm->page_shift;
1659 
1660 	do {
1661 		for (; pg < base + num; ++pg) {
1662 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1663 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1664 				break;
1665 			}
1666 		}
1667 	} while (pg && pg != base + num);
1668 
1669 	if (pg == 0) {
1670 		fprintf(stderr, "No guest physical page available, "
1671 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1672 			paddr_min, vm->page_size, memslot);
1673 		fputs("---- vm dump ----\n", stderr);
1674 		vm_dump(stderr, vm, 2);
1675 		abort();
1676 	}
1677 
1678 	for (pg = base; pg < base + num; ++pg)
1679 		sparsebit_clear(region->unused_phy_pages, pg);
1680 
1681 	return base * vm->page_size;
1682 }
1683 
1684 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1685 			     uint32_t memslot)
1686 {
1687 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1688 }
1689 
1690 /*
1691  * Address Guest Virtual to Host Virtual
1692  *
1693  * Input Args:
1694  *   vm - Virtual Machine
1695  *   gva - VM virtual address
1696  *
1697  * Output Args: None
1698  *
1699  * Return:
1700  *   Equivalent host virtual address
1701  */
1702 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1703 {
1704 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1705 }
1706 
1707 /*
1708  * Is Unrestricted Guest
1709  *
1710  * Input Args:
1711  *   vm - Virtual Machine
1712  *
1713  * Output Args: None
1714  *
1715  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1716  *
1717  * Check if the unrestricted guest flag is enabled.
1718  */
1719 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1720 {
1721 	char val = 'N';
1722 	size_t count;
1723 	FILE *f;
1724 
1725 	if (vm == NULL) {
1726 		/* Ensure that the KVM vendor-specific module is loaded. */
1727 		f = fopen(KVM_DEV_PATH, "r");
1728 		TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1729 			    errno);
1730 		fclose(f);
1731 	}
1732 
1733 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1734 	if (f) {
1735 		count = fread(&val, sizeof(char), 1, f);
1736 		TEST_ASSERT(count == 1, "Unable to read from param file.");
1737 		fclose(f);
1738 	}
1739 
1740 	return val == 'Y';
1741 }
1742 
1743 unsigned int vm_get_page_size(struct kvm_vm *vm)
1744 {
1745 	return vm->page_size;
1746 }
1747 
1748 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1749 {
1750 	return vm->page_shift;
1751 }
1752 
1753 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1754 {
1755 	return vm->max_gfn;
1756 }
1757 
1758 int vm_get_fd(struct kvm_vm *vm)
1759 {
1760 	return vm->fd;
1761 }
1762 
1763 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1764 				      unsigned int page_shift,
1765 				      unsigned int new_page_shift,
1766 				      bool ceil)
1767 {
1768 	unsigned int n = 1 << (new_page_shift - page_shift);
1769 
1770 	if (page_shift >= new_page_shift)
1771 		return num_pages * (1 << (page_shift - new_page_shift));
1772 
1773 	return num_pages / n + !!(ceil && num_pages % n);
1774 }
1775 
1776 static inline int getpageshift(void)
1777 {
1778 	return __builtin_ffs(getpagesize()) - 1;
1779 }
1780 
1781 unsigned int
1782 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1783 {
1784 	return vm_calc_num_pages(num_guest_pages,
1785 				 vm_guest_mode_params[mode].page_shift,
1786 				 getpageshift(), true);
1787 }
1788 
1789 unsigned int
1790 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1791 {
1792 	return vm_calc_num_pages(num_host_pages, getpageshift(),
1793 				 vm_guest_mode_params[mode].page_shift, false);
1794 }
1795 
1796 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1797 {
1798 	unsigned int n;
1799 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1800 	return vm_adjust_num_guest_pages(mode, n);
1801 }
1802