1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_PGS_PER_HUGEPG 512
22 #define KVM_UTIL_MIN_PFN	2
23 
24 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
25 static void *align(void *x, size_t size)
26 {
27 	size_t mask = size - 1;
28 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
29 		    "size not a power of 2: %lu", size);
30 	return (void *) (((size_t) x + mask) & ~mask);
31 }
32 
33 /*
34  * Capability
35  *
36  * Input Args:
37  *   cap - Capability
38  *
39  * Output Args: None
40  *
41  * Return:
42  *   On success, the Value corresponding to the capability (KVM_CAP_*)
43  *   specified by the value of cap.  On failure a TEST_ASSERT failure
44  *   is produced.
45  *
46  * Looks up and returns the value corresponding to the capability
47  * (KVM_CAP_*) given by cap.
48  */
49 int kvm_check_cap(long cap)
50 {
51 	int ret;
52 	int kvm_fd;
53 
54 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
55 	if (kvm_fd < 0)
56 		exit(KSFT_SKIP);
57 
58 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
59 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
60 		"  rc: %i errno: %i", ret, errno);
61 
62 	close(kvm_fd);
63 
64 	return ret;
65 }
66 
67 /* VM Enable Capability
68  *
69  * Input Args:
70  *   vm - Virtual Machine
71  *   cap - Capability
72  *
73  * Output Args: None
74  *
75  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
76  *
77  * Enables a capability (KVM_CAP_*) on the VM.
78  */
79 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
80 {
81 	int ret;
82 
83 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
84 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
85 		"  rc: %i errno: %i", ret, errno);
86 
87 	return ret;
88 }
89 
90 /* VCPU Enable Capability
91  *
92  * Input Args:
93  *   vm - Virtual Machine
94  *   vcpu_id - VCPU
95  *   cap - Capability
96  *
97  * Output Args: None
98  *
99  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
100  *
101  * Enables a capability (KVM_CAP_*) on the VCPU.
102  */
103 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
104 		    struct kvm_enable_cap *cap)
105 {
106 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
107 	int r;
108 
109 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
110 
111 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
112 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
113 			"  rc: %i, errno: %i", r, errno);
114 
115 	return r;
116 }
117 
118 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
119 {
120 	struct kvm_enable_cap cap = { 0 };
121 
122 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
123 	cap.args[0] = ring_size;
124 	vm_enable_cap(vm, &cap);
125 	vm->dirty_ring_size = ring_size;
126 }
127 
128 static void vm_open(struct kvm_vm *vm, int perm)
129 {
130 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
131 	if (vm->kvm_fd < 0)
132 		exit(KSFT_SKIP);
133 
134 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
135 		print_skip("immediate_exit not available");
136 		exit(KSFT_SKIP);
137 	}
138 
139 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
140 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
141 		"rc: %i errno: %i", vm->fd, errno);
142 }
143 
144 const char * const vm_guest_mode_string[] = {
145 	"PA-bits:52,  VA-bits:48,  4K pages",
146 	"PA-bits:52,  VA-bits:48, 64K pages",
147 	"PA-bits:48,  VA-bits:48,  4K pages",
148 	"PA-bits:48,  VA-bits:48, 64K pages",
149 	"PA-bits:40,  VA-bits:48,  4K pages",
150 	"PA-bits:40,  VA-bits:48, 64K pages",
151 	"PA-bits:ANY, VA-bits:48,  4K pages",
152 };
153 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
154 	       "Missing new mode strings?");
155 
156 struct vm_guest_mode_params {
157 	unsigned int pa_bits;
158 	unsigned int va_bits;
159 	unsigned int page_size;
160 	unsigned int page_shift;
161 };
162 
163 static const struct vm_guest_mode_params vm_guest_mode_params[] = {
164 	{ 52, 48,  0x1000, 12 },
165 	{ 52, 48, 0x10000, 16 },
166 	{ 48, 48,  0x1000, 12 },
167 	{ 48, 48, 0x10000, 16 },
168 	{ 40, 48,  0x1000, 12 },
169 	{ 40, 48, 0x10000, 16 },
170 	{  0,  0,  0x1000, 12 },
171 };
172 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
173 	       "Missing new mode params?");
174 
175 /*
176  * VM Create
177  *
178  * Input Args:
179  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
180  *   phy_pages - Physical memory pages
181  *   perm - permission
182  *
183  * Output Args: None
184  *
185  * Return:
186  *   Pointer to opaque structure that describes the created VM.
187  *
188  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
189  * When phy_pages is non-zero, a memory region of phy_pages physical pages
190  * is created and mapped starting at guest physical address 0.  The file
191  * descriptor to control the created VM is created with the permissions
192  * given by perm (e.g. O_RDWR).
193  */
194 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
195 {
196 	struct kvm_vm *vm;
197 
198 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
199 		 vm_guest_mode_string(mode), phy_pages, perm);
200 
201 	vm = calloc(1, sizeof(*vm));
202 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
203 
204 	INIT_LIST_HEAD(&vm->vcpus);
205 	INIT_LIST_HEAD(&vm->userspace_mem_regions);
206 
207 	vm->mode = mode;
208 	vm->type = 0;
209 
210 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
211 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
212 	vm->page_size = vm_guest_mode_params[mode].page_size;
213 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
214 
215 	/* Setup mode specific traits. */
216 	switch (vm->mode) {
217 	case VM_MODE_P52V48_4K:
218 		vm->pgtable_levels = 4;
219 		break;
220 	case VM_MODE_P52V48_64K:
221 		vm->pgtable_levels = 3;
222 		break;
223 	case VM_MODE_P48V48_4K:
224 		vm->pgtable_levels = 4;
225 		break;
226 	case VM_MODE_P48V48_64K:
227 		vm->pgtable_levels = 3;
228 		break;
229 	case VM_MODE_P40V48_4K:
230 		vm->pgtable_levels = 4;
231 		break;
232 	case VM_MODE_P40V48_64K:
233 		vm->pgtable_levels = 3;
234 		break;
235 	case VM_MODE_PXXV48_4K:
236 #ifdef __x86_64__
237 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
238 		/*
239 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
240 		 * it doesn't take effect unless a CR4.LA57 is set, which it
241 		 * isn't for this VM_MODE.
242 		 */
243 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
244 			    "Linear address width (%d bits) not supported",
245 			    vm->va_bits);
246 		pr_debug("Guest physical address width detected: %d\n",
247 			 vm->pa_bits);
248 		vm->pgtable_levels = 4;
249 		vm->va_bits = 48;
250 #else
251 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
252 #endif
253 		break;
254 	default:
255 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
256 	}
257 
258 #ifdef __aarch64__
259 	if (vm->pa_bits != 40)
260 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
261 #endif
262 
263 	vm_open(vm, perm);
264 
265 	/* Limit to VA-bit canonical virtual addresses. */
266 	vm->vpages_valid = sparsebit_alloc();
267 	sparsebit_set_num(vm->vpages_valid,
268 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
269 	sparsebit_set_num(vm->vpages_valid,
270 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
271 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
272 
273 	/* Limit physical addresses to PA-bits. */
274 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
275 
276 	/* Allocate and setup memory for guest. */
277 	vm->vpages_mapped = sparsebit_alloc();
278 	if (phy_pages != 0)
279 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
280 					    0, 0, phy_pages, 0);
281 
282 	return vm;
283 }
284 
285 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
286 				    uint64_t extra_mem_pages, uint32_t num_percpu_pages,
287 				    void *guest_code, uint32_t vcpuids[])
288 {
289 	/* The maximum page table size for a memory region will be when the
290 	 * smallest pages are used. Considering each page contains x page
291 	 * table descriptors, the total extra size for page tables (for extra
292 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
293 	 * than N/x*2.
294 	 */
295 	uint64_t vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
296 	uint64_t extra_pg_pages = (extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
297 	uint64_t pages = DEFAULT_GUEST_PHY_PAGES + vcpu_pages + extra_pg_pages;
298 	struct kvm_vm *vm;
299 	int i;
300 
301 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
302 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
303 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
304 
305 	pages = vm_adjust_num_guest_pages(mode, pages);
306 	vm = vm_create(mode, pages, O_RDWR);
307 
308 	kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
309 
310 #ifdef __x86_64__
311 	vm_create_irqchip(vm);
312 #endif
313 
314 	for (i = 0; i < nr_vcpus; ++i) {
315 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
316 
317 		vm_vcpu_add_default(vm, vcpuid, guest_code);
318 
319 #ifdef __x86_64__
320 		vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
321 #endif
322 	}
323 
324 	return vm;
325 }
326 
327 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
328 					    uint32_t num_percpu_pages, void *guest_code,
329 					    uint32_t vcpuids[])
330 {
331 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, extra_mem_pages,
332 				    num_percpu_pages, guest_code, vcpuids);
333 }
334 
335 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
336 				 void *guest_code)
337 {
338 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
339 					    (uint32_t []){ vcpuid });
340 }
341 
342 /*
343  * VM Restart
344  *
345  * Input Args:
346  *   vm - VM that has been released before
347  *   perm - permission
348  *
349  * Output Args: None
350  *
351  * Reopens the file descriptors associated to the VM and reinstates the
352  * global state, such as the irqchip and the memory regions that are mapped
353  * into the guest.
354  */
355 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
356 {
357 	struct userspace_mem_region *region;
358 
359 	vm_open(vmp, perm);
360 	if (vmp->has_irqchip)
361 		vm_create_irqchip(vmp);
362 
363 	list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
364 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
365 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
366 			    "  rc: %i errno: %i\n"
367 			    "  slot: %u flags: 0x%x\n"
368 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
369 			    ret, errno, region->region.slot,
370 			    region->region.flags,
371 			    region->region.guest_phys_addr,
372 			    region->region.memory_size);
373 	}
374 }
375 
376 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
377 {
378 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
379 	int ret;
380 
381 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
382 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
383 		    __func__, strerror(-ret));
384 }
385 
386 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
387 			    uint64_t first_page, uint32_t num_pages)
388 {
389 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
390 		                            .first_page = first_page,
391 	                                    .num_pages = num_pages };
392 	int ret;
393 
394 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
395 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
396 		    __func__, strerror(-ret));
397 }
398 
399 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
400 {
401 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
402 }
403 
404 /*
405  * Userspace Memory Region Find
406  *
407  * Input Args:
408  *   vm - Virtual Machine
409  *   start - Starting VM physical address
410  *   end - Ending VM physical address, inclusive.
411  *
412  * Output Args: None
413  *
414  * Return:
415  *   Pointer to overlapping region, NULL if no such region.
416  *
417  * Searches for a region with any physical memory that overlaps with
418  * any portion of the guest physical addresses from start to end
419  * inclusive.  If multiple overlapping regions exist, a pointer to any
420  * of the regions is returned.  Null is returned only when no overlapping
421  * region exists.
422  */
423 static struct userspace_mem_region *
424 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
425 {
426 	struct userspace_mem_region *region;
427 
428 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
429 		uint64_t existing_start = region->region.guest_phys_addr;
430 		uint64_t existing_end = region->region.guest_phys_addr
431 			+ region->region.memory_size - 1;
432 		if (start <= existing_end && end >= existing_start)
433 			return region;
434 	}
435 
436 	return NULL;
437 }
438 
439 /*
440  * KVM Userspace Memory Region Find
441  *
442  * Input Args:
443  *   vm - Virtual Machine
444  *   start - Starting VM physical address
445  *   end - Ending VM physical address, inclusive.
446  *
447  * Output Args: None
448  *
449  * Return:
450  *   Pointer to overlapping region, NULL if no such region.
451  *
452  * Public interface to userspace_mem_region_find. Allows tests to look up
453  * the memslot datastructure for a given range of guest physical memory.
454  */
455 struct kvm_userspace_memory_region *
456 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
457 				 uint64_t end)
458 {
459 	struct userspace_mem_region *region;
460 
461 	region = userspace_mem_region_find(vm, start, end);
462 	if (!region)
463 		return NULL;
464 
465 	return &region->region;
466 }
467 
468 /*
469  * VCPU Find
470  *
471  * Input Args:
472  *   vm - Virtual Machine
473  *   vcpuid - VCPU ID
474  *
475  * Output Args: None
476  *
477  * Return:
478  *   Pointer to VCPU structure
479  *
480  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
481  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
482  * for the specified vcpuid.
483  */
484 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
485 {
486 	struct vcpu *vcpu;
487 
488 	list_for_each_entry(vcpu, &vm->vcpus, list) {
489 		if (vcpu->id == vcpuid)
490 			return vcpu;
491 	}
492 
493 	return NULL;
494 }
495 
496 /*
497  * VM VCPU Remove
498  *
499  * Input Args:
500  *   vcpu - VCPU to remove
501  *
502  * Output Args: None
503  *
504  * Return: None, TEST_ASSERT failures for all error conditions
505  *
506  * Removes a vCPU from a VM and frees its resources.
507  */
508 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
509 {
510 	int ret;
511 
512 	if (vcpu->dirty_gfns) {
513 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
514 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
515 			    "rc: %i errno: %i", ret, errno);
516 		vcpu->dirty_gfns = NULL;
517 	}
518 
519 	ret = munmap(vcpu->state, sizeof(*vcpu->state));
520 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
521 		"errno: %i", ret, errno);
522 	close(vcpu->fd);
523 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
524 		"errno: %i", ret, errno);
525 
526 	list_del(&vcpu->list);
527 	free(vcpu);
528 }
529 
530 void kvm_vm_release(struct kvm_vm *vmp)
531 {
532 	struct vcpu *vcpu, *tmp;
533 	int ret;
534 
535 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
536 		vm_vcpu_rm(vmp, vcpu);
537 
538 	ret = close(vmp->fd);
539 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
540 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
541 
542 	close(vmp->kvm_fd);
543 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
544 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
545 }
546 
547 static void __vm_mem_region_delete(struct kvm_vm *vm,
548 				   struct userspace_mem_region *region)
549 {
550 	int ret;
551 
552 	list_del(&region->list);
553 
554 	region->region.memory_size = 0;
555 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
556 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
557 		    "rc: %i errno: %i", ret, errno);
558 
559 	sparsebit_free(&region->unused_phy_pages);
560 	ret = munmap(region->mmap_start, region->mmap_size);
561 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
562 
563 	free(region);
564 }
565 
566 /*
567  * Destroys and frees the VM pointed to by vmp.
568  */
569 void kvm_vm_free(struct kvm_vm *vmp)
570 {
571 	struct userspace_mem_region *region, *tmp;
572 
573 	if (vmp == NULL)
574 		return;
575 
576 	/* Free userspace_mem_regions. */
577 	list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
578 		__vm_mem_region_delete(vmp, region);
579 
580 	/* Free sparsebit arrays. */
581 	sparsebit_free(&vmp->vpages_valid);
582 	sparsebit_free(&vmp->vpages_mapped);
583 
584 	kvm_vm_release(vmp);
585 
586 	/* Free the structure describing the VM. */
587 	free(vmp);
588 }
589 
590 /*
591  * Memory Compare, host virtual to guest virtual
592  *
593  * Input Args:
594  *   hva - Starting host virtual address
595  *   vm - Virtual Machine
596  *   gva - Starting guest virtual address
597  *   len - number of bytes to compare
598  *
599  * Output Args: None
600  *
601  * Input/Output Args: None
602  *
603  * Return:
604  *   Returns 0 if the bytes starting at hva for a length of len
605  *   are equal the guest virtual bytes starting at gva.  Returns
606  *   a value < 0, if bytes at hva are less than those at gva.
607  *   Otherwise a value > 0 is returned.
608  *
609  * Compares the bytes starting at the host virtual address hva, for
610  * a length of len, to the guest bytes starting at the guest virtual
611  * address given by gva.
612  */
613 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
614 {
615 	size_t amt;
616 
617 	/*
618 	 * Compare a batch of bytes until either a match is found
619 	 * or all the bytes have been compared.
620 	 */
621 	for (uintptr_t offset = 0; offset < len; offset += amt) {
622 		uintptr_t ptr1 = (uintptr_t)hva + offset;
623 
624 		/*
625 		 * Determine host address for guest virtual address
626 		 * at offset.
627 		 */
628 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
629 
630 		/*
631 		 * Determine amount to compare on this pass.
632 		 * Don't allow the comparsion to cross a page boundary.
633 		 */
634 		amt = len - offset;
635 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
636 			amt = vm->page_size - (ptr1 % vm->page_size);
637 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
638 			amt = vm->page_size - (ptr2 % vm->page_size);
639 
640 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
641 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
642 
643 		/*
644 		 * Perform the comparison.  If there is a difference
645 		 * return that result to the caller, otherwise need
646 		 * to continue on looking for a mismatch.
647 		 */
648 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
649 		if (ret != 0)
650 			return ret;
651 	}
652 
653 	/*
654 	 * No mismatch found.  Let the caller know the two memory
655 	 * areas are equal.
656 	 */
657 	return 0;
658 }
659 
660 /*
661  * VM Userspace Memory Region Add
662  *
663  * Input Args:
664  *   vm - Virtual Machine
665  *   backing_src - Storage source for this region.
666  *                 NULL to use anonymous memory.
667  *   guest_paddr - Starting guest physical address
668  *   slot - KVM region slot
669  *   npages - Number of physical pages
670  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
671  *
672  * Output Args: None
673  *
674  * Return: None
675  *
676  * Allocates a memory area of the number of pages specified by npages
677  * and maps it to the VM specified by vm, at a starting physical address
678  * given by guest_paddr.  The region is created with a KVM region slot
679  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
680  * region is created with the flags given by flags.
681  */
682 void vm_userspace_mem_region_add(struct kvm_vm *vm,
683 	enum vm_mem_backing_src_type src_type,
684 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
685 	uint32_t flags)
686 {
687 	int ret;
688 	struct userspace_mem_region *region;
689 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
690 	size_t alignment;
691 
692 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
693 		"Number of guest pages is not compatible with the host. "
694 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
695 
696 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
697 		"address not on a page boundary.\n"
698 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
699 		guest_paddr, vm->page_size);
700 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
701 		<= vm->max_gfn, "Physical range beyond maximum "
702 		"supported physical address,\n"
703 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
704 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
705 		guest_paddr, npages, vm->max_gfn, vm->page_size);
706 
707 	/*
708 	 * Confirm a mem region with an overlapping address doesn't
709 	 * already exist.
710 	 */
711 	region = (struct userspace_mem_region *) userspace_mem_region_find(
712 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
713 	if (region != NULL)
714 		TEST_FAIL("overlapping userspace_mem_region already "
715 			"exists\n"
716 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
717 			"page_size: 0x%x\n"
718 			"  existing guest_paddr: 0x%lx size: 0x%lx",
719 			guest_paddr, npages, vm->page_size,
720 			(uint64_t) region->region.guest_phys_addr,
721 			(uint64_t) region->region.memory_size);
722 
723 	/* Confirm no region with the requested slot already exists. */
724 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
725 		if (region->region.slot != slot)
726 			continue;
727 
728 		TEST_FAIL("A mem region with the requested slot "
729 			"already exists.\n"
730 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
731 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
732 			slot, guest_paddr, npages,
733 			region->region.slot,
734 			(uint64_t) region->region.guest_phys_addr,
735 			(uint64_t) region->region.memory_size);
736 	}
737 
738 	/* Allocate and initialize new mem region structure. */
739 	region = calloc(1, sizeof(*region));
740 	TEST_ASSERT(region != NULL, "Insufficient Memory");
741 	region->mmap_size = npages * vm->page_size;
742 
743 #ifdef __s390x__
744 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
745 	alignment = 0x100000;
746 #else
747 	alignment = 1;
748 #endif
749 
750 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
751 		alignment = max(huge_page_size, alignment);
752 
753 	/* Add enough memory to align up if necessary */
754 	if (alignment > 1)
755 		region->mmap_size += alignment;
756 
757 	region->mmap_start = mmap(NULL, region->mmap_size,
758 				  PROT_READ | PROT_WRITE,
759 				  MAP_PRIVATE | MAP_ANONYMOUS
760 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
761 				  -1, 0);
762 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
763 		    "test_malloc failed, mmap_start: %p errno: %i",
764 		    region->mmap_start, errno);
765 
766 	/* Align host address */
767 	region->host_mem = align(region->mmap_start, alignment);
768 
769 	/* As needed perform madvise */
770 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
771 		struct stat statbuf;
772 
773 		ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
774 		TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
775 			    "stat /sys/kernel/mm/transparent_hugepage");
776 
777 		TEST_ASSERT(ret == 0 || src_type != VM_MEM_SRC_ANONYMOUS_THP,
778 			    "VM_MEM_SRC_ANONYMOUS_THP requires THP to be configured in the host kernel");
779 
780 		if (ret == 0) {
781 			ret = madvise(region->host_mem, npages * vm->page_size,
782 				      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
783 			TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %x",
784 				    region->host_mem, npages * vm->page_size, src_type);
785 		}
786 	}
787 
788 	region->unused_phy_pages = sparsebit_alloc();
789 	sparsebit_set_num(region->unused_phy_pages,
790 		guest_paddr >> vm->page_shift, npages);
791 	region->region.slot = slot;
792 	region->region.flags = flags;
793 	region->region.guest_phys_addr = guest_paddr;
794 	region->region.memory_size = npages * vm->page_size;
795 	region->region.userspace_addr = (uintptr_t) region->host_mem;
796 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
797 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
798 		"  rc: %i errno: %i\n"
799 		"  slot: %u flags: 0x%x\n"
800 		"  guest_phys_addr: 0x%lx size: 0x%lx",
801 		ret, errno, slot, flags,
802 		guest_paddr, (uint64_t) region->region.memory_size);
803 
804 	/* Add to linked-list of memory regions. */
805 	list_add(&region->list, &vm->userspace_mem_regions);
806 }
807 
808 /*
809  * Memslot to region
810  *
811  * Input Args:
812  *   vm - Virtual Machine
813  *   memslot - KVM memory slot ID
814  *
815  * Output Args: None
816  *
817  * Return:
818  *   Pointer to memory region structure that describe memory region
819  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
820  *   on error (e.g. currently no memory region using memslot as a KVM
821  *   memory slot ID).
822  */
823 struct userspace_mem_region *
824 memslot2region(struct kvm_vm *vm, uint32_t memslot)
825 {
826 	struct userspace_mem_region *region;
827 
828 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
829 		if (region->region.slot == memslot)
830 			return region;
831 	}
832 
833 	fprintf(stderr, "No mem region with the requested slot found,\n"
834 		"  requested slot: %u\n", memslot);
835 	fputs("---- vm dump ----\n", stderr);
836 	vm_dump(stderr, vm, 2);
837 	TEST_FAIL("Mem region not found");
838 	return NULL;
839 }
840 
841 /*
842  * VM Memory Region Flags Set
843  *
844  * Input Args:
845  *   vm - Virtual Machine
846  *   flags - Starting guest physical address
847  *
848  * Output Args: None
849  *
850  * Return: None
851  *
852  * Sets the flags of the memory region specified by the value of slot,
853  * to the values given by flags.
854  */
855 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
856 {
857 	int ret;
858 	struct userspace_mem_region *region;
859 
860 	region = memslot2region(vm, slot);
861 
862 	region->region.flags = flags;
863 
864 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
865 
866 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
867 		"  rc: %i errno: %i slot: %u flags: 0x%x",
868 		ret, errno, slot, flags);
869 }
870 
871 /*
872  * VM Memory Region Move
873  *
874  * Input Args:
875  *   vm - Virtual Machine
876  *   slot - Slot of the memory region to move
877  *   new_gpa - Starting guest physical address
878  *
879  * Output Args: None
880  *
881  * Return: None
882  *
883  * Change the gpa of a memory region.
884  */
885 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
886 {
887 	struct userspace_mem_region *region;
888 	int ret;
889 
890 	region = memslot2region(vm, slot);
891 
892 	region->region.guest_phys_addr = new_gpa;
893 
894 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
895 
896 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
897 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
898 		    ret, errno, slot, new_gpa);
899 }
900 
901 /*
902  * VM Memory Region Delete
903  *
904  * Input Args:
905  *   vm - Virtual Machine
906  *   slot - Slot of the memory region to delete
907  *
908  * Output Args: None
909  *
910  * Return: None
911  *
912  * Delete a memory region.
913  */
914 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
915 {
916 	__vm_mem_region_delete(vm, memslot2region(vm, slot));
917 }
918 
919 /*
920  * VCPU mmap Size
921  *
922  * Input Args: None
923  *
924  * Output Args: None
925  *
926  * Return:
927  *   Size of VCPU state
928  *
929  * Returns the size of the structure pointed to by the return value
930  * of vcpu_state().
931  */
932 static int vcpu_mmap_sz(void)
933 {
934 	int dev_fd, ret;
935 
936 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
937 	if (dev_fd < 0)
938 		exit(KSFT_SKIP);
939 
940 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
941 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
942 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
943 		__func__, ret, errno);
944 
945 	close(dev_fd);
946 
947 	return ret;
948 }
949 
950 /*
951  * VM VCPU Add
952  *
953  * Input Args:
954  *   vm - Virtual Machine
955  *   vcpuid - VCPU ID
956  *
957  * Output Args: None
958  *
959  * Return: None
960  *
961  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
962  * No additional VCPU setup is done.
963  */
964 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
965 {
966 	struct vcpu *vcpu;
967 
968 	/* Confirm a vcpu with the specified id doesn't already exist. */
969 	vcpu = vcpu_find(vm, vcpuid);
970 	if (vcpu != NULL)
971 		TEST_FAIL("vcpu with the specified id "
972 			"already exists,\n"
973 			"  requested vcpuid: %u\n"
974 			"  existing vcpuid: %u state: %p",
975 			vcpuid, vcpu->id, vcpu->state);
976 
977 	/* Allocate and initialize new vcpu structure. */
978 	vcpu = calloc(1, sizeof(*vcpu));
979 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
980 	vcpu->id = vcpuid;
981 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
982 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
983 		vcpu->fd, errno);
984 
985 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
986 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
987 		vcpu_mmap_sz(), sizeof(*vcpu->state));
988 	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
989 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
990 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
991 		"vcpu id: %u errno: %i", vcpuid, errno);
992 
993 	/* Add to linked-list of VCPUs. */
994 	list_add(&vcpu->list, &vm->vcpus);
995 }
996 
997 /*
998  * VM Virtual Address Unused Gap
999  *
1000  * Input Args:
1001  *   vm - Virtual Machine
1002  *   sz - Size (bytes)
1003  *   vaddr_min - Minimum Virtual Address
1004  *
1005  * Output Args: None
1006  *
1007  * Return:
1008  *   Lowest virtual address at or below vaddr_min, with at least
1009  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1010  *   size sz is available.
1011  *
1012  * Within the VM specified by vm, locates the lowest starting virtual
1013  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1014  * TEST_ASSERT failure occurs for invalid input or no area of at least
1015  * sz unallocated bytes >= vaddr_min is available.
1016  */
1017 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1018 				      vm_vaddr_t vaddr_min)
1019 {
1020 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1021 
1022 	/* Determine lowest permitted virtual page index. */
1023 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1024 	if ((pgidx_start * vm->page_size) < vaddr_min)
1025 		goto no_va_found;
1026 
1027 	/* Loop over section with enough valid virtual page indexes. */
1028 	if (!sparsebit_is_set_num(vm->vpages_valid,
1029 		pgidx_start, pages))
1030 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1031 			pgidx_start, pages);
1032 	do {
1033 		/*
1034 		 * Are there enough unused virtual pages available at
1035 		 * the currently proposed starting virtual page index.
1036 		 * If not, adjust proposed starting index to next
1037 		 * possible.
1038 		 */
1039 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1040 			pgidx_start, pages))
1041 			goto va_found;
1042 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1043 			pgidx_start, pages);
1044 		if (pgidx_start == 0)
1045 			goto no_va_found;
1046 
1047 		/*
1048 		 * If needed, adjust proposed starting virtual address,
1049 		 * to next range of valid virtual addresses.
1050 		 */
1051 		if (!sparsebit_is_set_num(vm->vpages_valid,
1052 			pgidx_start, pages)) {
1053 			pgidx_start = sparsebit_next_set_num(
1054 				vm->vpages_valid, pgidx_start, pages);
1055 			if (pgidx_start == 0)
1056 				goto no_va_found;
1057 		}
1058 	} while (pgidx_start != 0);
1059 
1060 no_va_found:
1061 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1062 
1063 	/* NOT REACHED */
1064 	return -1;
1065 
1066 va_found:
1067 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1068 		pgidx_start, pages),
1069 		"Unexpected, invalid virtual page index range,\n"
1070 		"  pgidx_start: 0x%lx\n"
1071 		"  pages: 0x%lx",
1072 		pgidx_start, pages);
1073 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1074 		pgidx_start, pages),
1075 		"Unexpected, pages already mapped,\n"
1076 		"  pgidx_start: 0x%lx\n"
1077 		"  pages: 0x%lx",
1078 		pgidx_start, pages);
1079 
1080 	return pgidx_start * vm->page_size;
1081 }
1082 
1083 /*
1084  * VM Virtual Address Allocate
1085  *
1086  * Input Args:
1087  *   vm - Virtual Machine
1088  *   sz - Size in bytes
1089  *   vaddr_min - Minimum starting virtual address
1090  *   data_memslot - Memory region slot for data pages
1091  *   pgd_memslot - Memory region slot for new virtual translation tables
1092  *
1093  * Output Args: None
1094  *
1095  * Return:
1096  *   Starting guest virtual address
1097  *
1098  * Allocates at least sz bytes within the virtual address space of the vm
1099  * given by vm.  The allocated bytes are mapped to a virtual address >=
1100  * the address given by vaddr_min.  Note that each allocation uses a
1101  * a unique set of pages, with the minimum real allocation being at least
1102  * a page.
1103  */
1104 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1105 			  uint32_t data_memslot, uint32_t pgd_memslot)
1106 {
1107 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1108 
1109 	virt_pgd_alloc(vm, pgd_memslot);
1110 
1111 	/*
1112 	 * Find an unused range of virtual page addresses of at least
1113 	 * pages in length.
1114 	 */
1115 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1116 
1117 	/* Map the virtual pages. */
1118 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1119 		pages--, vaddr += vm->page_size) {
1120 		vm_paddr_t paddr;
1121 
1122 		paddr = vm_phy_page_alloc(vm,
1123 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
1124 
1125 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1126 
1127 		sparsebit_set(vm->vpages_mapped,
1128 			vaddr >> vm->page_shift);
1129 	}
1130 
1131 	return vaddr_start;
1132 }
1133 
1134 /*
1135  * Map a range of VM virtual address to the VM's physical address
1136  *
1137  * Input Args:
1138  *   vm - Virtual Machine
1139  *   vaddr - Virtuall address to map
1140  *   paddr - VM Physical Address
1141  *   npages - The number of pages to map
1142  *   pgd_memslot - Memory region slot for new virtual translation tables
1143  *
1144  * Output Args: None
1145  *
1146  * Return: None
1147  *
1148  * Within the VM given by @vm, creates a virtual translation for
1149  * @npages starting at @vaddr to the page range starting at @paddr.
1150  */
1151 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1152 	      unsigned int npages, uint32_t pgd_memslot)
1153 {
1154 	size_t page_size = vm->page_size;
1155 	size_t size = npages * page_size;
1156 
1157 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1158 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1159 
1160 	while (npages--) {
1161 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1162 		vaddr += page_size;
1163 		paddr += page_size;
1164 	}
1165 }
1166 
1167 /*
1168  * Address VM Physical to Host Virtual
1169  *
1170  * Input Args:
1171  *   vm - Virtual Machine
1172  *   gpa - VM physical address
1173  *
1174  * Output Args: None
1175  *
1176  * Return:
1177  *   Equivalent host virtual address
1178  *
1179  * Locates the memory region containing the VM physical address given
1180  * by gpa, within the VM given by vm.  When found, the host virtual
1181  * address providing the memory to the vm physical address is returned.
1182  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1183  */
1184 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1185 {
1186 	struct userspace_mem_region *region;
1187 
1188 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1189 		if ((gpa >= region->region.guest_phys_addr)
1190 			&& (gpa <= (region->region.guest_phys_addr
1191 				+ region->region.memory_size - 1)))
1192 			return (void *) ((uintptr_t) region->host_mem
1193 				+ (gpa - region->region.guest_phys_addr));
1194 	}
1195 
1196 	TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1197 	return NULL;
1198 }
1199 
1200 /*
1201  * Address Host Virtual to VM Physical
1202  *
1203  * Input Args:
1204  *   vm - Virtual Machine
1205  *   hva - Host virtual address
1206  *
1207  * Output Args: None
1208  *
1209  * Return:
1210  *   Equivalent VM physical address
1211  *
1212  * Locates the memory region containing the host virtual address given
1213  * by hva, within the VM given by vm.  When found, the equivalent
1214  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1215  * region containing hva exists.
1216  */
1217 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1218 {
1219 	struct userspace_mem_region *region;
1220 
1221 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1222 		if ((hva >= region->host_mem)
1223 			&& (hva <= (region->host_mem
1224 				+ region->region.memory_size - 1)))
1225 			return (vm_paddr_t) ((uintptr_t)
1226 				region->region.guest_phys_addr
1227 				+ (hva - (uintptr_t) region->host_mem));
1228 	}
1229 
1230 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1231 	return -1;
1232 }
1233 
1234 /*
1235  * VM Create IRQ Chip
1236  *
1237  * Input Args:
1238  *   vm - Virtual Machine
1239  *
1240  * Output Args: None
1241  *
1242  * Return: None
1243  *
1244  * Creates an interrupt controller chip for the VM specified by vm.
1245  */
1246 void vm_create_irqchip(struct kvm_vm *vm)
1247 {
1248 	int ret;
1249 
1250 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1251 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1252 		"rc: %i errno: %i", ret, errno);
1253 
1254 	vm->has_irqchip = true;
1255 }
1256 
1257 /*
1258  * VM VCPU State
1259  *
1260  * Input Args:
1261  *   vm - Virtual Machine
1262  *   vcpuid - VCPU ID
1263  *
1264  * Output Args: None
1265  *
1266  * Return:
1267  *   Pointer to structure that describes the state of the VCPU.
1268  *
1269  * Locates and returns a pointer to a structure that describes the
1270  * state of the VCPU with the given vcpuid.
1271  */
1272 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1273 {
1274 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1275 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1276 
1277 	return vcpu->state;
1278 }
1279 
1280 /*
1281  * VM VCPU Run
1282  *
1283  * Input Args:
1284  *   vm - Virtual Machine
1285  *   vcpuid - VCPU ID
1286  *
1287  * Output Args: None
1288  *
1289  * Return: None
1290  *
1291  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1292  * given by vm.
1293  */
1294 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1295 {
1296 	int ret = _vcpu_run(vm, vcpuid);
1297 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1298 		"rc: %i errno: %i", ret, errno);
1299 }
1300 
1301 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1302 {
1303 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1304 	int rc;
1305 
1306 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1307 	do {
1308 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1309 	} while (rc == -1 && errno == EINTR);
1310 
1311 	assert_on_unhandled_exception(vm, vcpuid);
1312 
1313 	return rc;
1314 }
1315 
1316 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1317 {
1318 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1319 
1320 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1321 
1322 	return vcpu->fd;
1323 }
1324 
1325 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1326 {
1327 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1328 	int ret;
1329 
1330 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1331 
1332 	vcpu->state->immediate_exit = 1;
1333 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1334 	vcpu->state->immediate_exit = 0;
1335 
1336 	TEST_ASSERT(ret == -1 && errno == EINTR,
1337 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1338 		    ret, errno);
1339 }
1340 
1341 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1342 			  struct kvm_guest_debug *debug)
1343 {
1344 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1345 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1346 
1347 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1348 }
1349 
1350 /*
1351  * VM VCPU Set MP State
1352  *
1353  * Input Args:
1354  *   vm - Virtual Machine
1355  *   vcpuid - VCPU ID
1356  *   mp_state - mp_state to be set
1357  *
1358  * Output Args: None
1359  *
1360  * Return: None
1361  *
1362  * Sets the MP state of the VCPU given by vcpuid, to the state given
1363  * by mp_state.
1364  */
1365 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1366 		       struct kvm_mp_state *mp_state)
1367 {
1368 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1369 	int ret;
1370 
1371 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1372 
1373 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1374 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1375 		"rc: %i errno: %i", ret, errno);
1376 }
1377 
1378 /*
1379  * VM VCPU Get Reg List
1380  *
1381  * Input Args:
1382  *   vm - Virtual Machine
1383  *   vcpuid - VCPU ID
1384  *
1385  * Output Args:
1386  *   None
1387  *
1388  * Return:
1389  *   A pointer to an allocated struct kvm_reg_list
1390  *
1391  * Get the list of guest registers which are supported for
1392  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1393  */
1394 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1395 {
1396 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1397 	int ret;
1398 
1399 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1400 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1401 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1402 	reg_list->n = reg_list_n.n;
1403 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1404 	return reg_list;
1405 }
1406 
1407 /*
1408  * VM VCPU Regs Get
1409  *
1410  * Input Args:
1411  *   vm - Virtual Machine
1412  *   vcpuid - VCPU ID
1413  *
1414  * Output Args:
1415  *   regs - current state of VCPU regs
1416  *
1417  * Return: None
1418  *
1419  * Obtains the current register state for the VCPU specified by vcpuid
1420  * and stores it at the location given by regs.
1421  */
1422 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1423 {
1424 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1425 	int ret;
1426 
1427 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1428 
1429 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1430 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1431 		ret, errno);
1432 }
1433 
1434 /*
1435  * VM VCPU Regs Set
1436  *
1437  * Input Args:
1438  *   vm - Virtual Machine
1439  *   vcpuid - VCPU ID
1440  *   regs - Values to set VCPU regs to
1441  *
1442  * Output Args: None
1443  *
1444  * Return: None
1445  *
1446  * Sets the regs of the VCPU specified by vcpuid to the values
1447  * given by regs.
1448  */
1449 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1450 {
1451 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1452 	int ret;
1453 
1454 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1455 
1456 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1457 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1458 		ret, errno);
1459 }
1460 
1461 #ifdef __KVM_HAVE_VCPU_EVENTS
1462 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1463 		     struct kvm_vcpu_events *events)
1464 {
1465 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1466 	int ret;
1467 
1468 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1469 
1470 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1471 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1472 		ret, errno);
1473 }
1474 
1475 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1476 		     struct kvm_vcpu_events *events)
1477 {
1478 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1479 	int ret;
1480 
1481 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1482 
1483 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1484 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1485 		ret, errno);
1486 }
1487 #endif
1488 
1489 #ifdef __x86_64__
1490 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1491 			   struct kvm_nested_state *state)
1492 {
1493 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1494 	int ret;
1495 
1496 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1497 
1498 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1499 	TEST_ASSERT(ret == 0,
1500 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1501 		ret, errno);
1502 }
1503 
1504 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1505 			  struct kvm_nested_state *state, bool ignore_error)
1506 {
1507 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1508 	int ret;
1509 
1510 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1511 
1512 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1513 	if (!ignore_error) {
1514 		TEST_ASSERT(ret == 0,
1515 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1516 			ret, errno);
1517 	}
1518 
1519 	return ret;
1520 }
1521 #endif
1522 
1523 /*
1524  * VM VCPU System Regs Get
1525  *
1526  * Input Args:
1527  *   vm - Virtual Machine
1528  *   vcpuid - VCPU ID
1529  *
1530  * Output Args:
1531  *   sregs - current state of VCPU system regs
1532  *
1533  * Return: None
1534  *
1535  * Obtains the current system register state for the VCPU specified by
1536  * vcpuid and stores it at the location given by sregs.
1537  */
1538 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1539 {
1540 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1541 	int ret;
1542 
1543 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1544 
1545 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1546 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1547 		ret, errno);
1548 }
1549 
1550 /*
1551  * VM VCPU System Regs Set
1552  *
1553  * Input Args:
1554  *   vm - Virtual Machine
1555  *   vcpuid - VCPU ID
1556  *   sregs - Values to set VCPU system regs to
1557  *
1558  * Output Args: None
1559  *
1560  * Return: None
1561  *
1562  * Sets the system regs of the VCPU specified by vcpuid to the values
1563  * given by sregs.
1564  */
1565 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1566 {
1567 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1568 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1569 		"rc: %i errno: %i", ret, errno);
1570 }
1571 
1572 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1573 {
1574 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1575 
1576 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1577 
1578 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1579 }
1580 
1581 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1582 {
1583 	int ret;
1584 
1585 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1586 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1587 		    ret, errno, strerror(errno));
1588 }
1589 
1590 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1591 {
1592 	int ret;
1593 
1594 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1595 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1596 		    ret, errno, strerror(errno));
1597 }
1598 
1599 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1600 {
1601 	int ret;
1602 
1603 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1604 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1605 		    ret, errno, strerror(errno));
1606 }
1607 
1608 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1609 {
1610 	int ret;
1611 
1612 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1613 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1614 		    ret, errno, strerror(errno));
1615 }
1616 
1617 /*
1618  * VCPU Ioctl
1619  *
1620  * Input Args:
1621  *   vm - Virtual Machine
1622  *   vcpuid - VCPU ID
1623  *   cmd - Ioctl number
1624  *   arg - Argument to pass to the ioctl
1625  *
1626  * Return: None
1627  *
1628  * Issues an arbitrary ioctl on a VCPU fd.
1629  */
1630 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1631 		unsigned long cmd, void *arg)
1632 {
1633 	int ret;
1634 
1635 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1636 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1637 		cmd, ret, errno, strerror(errno));
1638 }
1639 
1640 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1641 		unsigned long cmd, void *arg)
1642 {
1643 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1644 	int ret;
1645 
1646 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1647 
1648 	ret = ioctl(vcpu->fd, cmd, arg);
1649 
1650 	return ret;
1651 }
1652 
1653 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1654 {
1655 	struct vcpu *vcpu;
1656 	uint32_t size = vm->dirty_ring_size;
1657 
1658 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1659 
1660 	vcpu = vcpu_find(vm, vcpuid);
1661 
1662 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1663 
1664 	if (!vcpu->dirty_gfns) {
1665 		void *addr;
1666 
1667 		addr = mmap(NULL, size, PROT_READ,
1668 			    MAP_PRIVATE, vcpu->fd,
1669 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1670 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1671 
1672 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1673 			    MAP_PRIVATE, vcpu->fd,
1674 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1675 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1676 
1677 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1678 			    MAP_SHARED, vcpu->fd,
1679 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1680 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1681 
1682 		vcpu->dirty_gfns = addr;
1683 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1684 	}
1685 
1686 	return vcpu->dirty_gfns;
1687 }
1688 
1689 /*
1690  * VM Ioctl
1691  *
1692  * Input Args:
1693  *   vm - Virtual Machine
1694  *   cmd - Ioctl number
1695  *   arg - Argument to pass to the ioctl
1696  *
1697  * Return: None
1698  *
1699  * Issues an arbitrary ioctl on a VM fd.
1700  */
1701 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1702 {
1703 	int ret;
1704 
1705 	ret = ioctl(vm->fd, cmd, arg);
1706 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1707 		cmd, ret, errno, strerror(errno));
1708 }
1709 
1710 /*
1711  * KVM system ioctl
1712  *
1713  * Input Args:
1714  *   vm - Virtual Machine
1715  *   cmd - Ioctl number
1716  *   arg - Argument to pass to the ioctl
1717  *
1718  * Return: None
1719  *
1720  * Issues an arbitrary ioctl on a KVM fd.
1721  */
1722 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1723 {
1724 	int ret;
1725 
1726 	ret = ioctl(vm->kvm_fd, cmd, arg);
1727 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1728 		cmd, ret, errno, strerror(errno));
1729 }
1730 
1731 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1732 {
1733 	return ioctl(vm->kvm_fd, cmd, arg);
1734 }
1735 
1736 /*
1737  * VM Dump
1738  *
1739  * Input Args:
1740  *   vm - Virtual Machine
1741  *   indent - Left margin indent amount
1742  *
1743  * Output Args:
1744  *   stream - Output FILE stream
1745  *
1746  * Return: None
1747  *
1748  * Dumps the current state of the VM given by vm, to the FILE stream
1749  * given by stream.
1750  */
1751 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1752 {
1753 	struct userspace_mem_region *region;
1754 	struct vcpu *vcpu;
1755 
1756 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1757 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1758 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1759 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1760 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1761 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1762 			"host_virt: %p\n", indent + 2, "",
1763 			(uint64_t) region->region.guest_phys_addr,
1764 			(uint64_t) region->region.memory_size,
1765 			region->host_mem);
1766 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1767 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1768 	}
1769 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1770 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1771 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1772 		vm->pgd_created);
1773 	if (vm->pgd_created) {
1774 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1775 			indent + 2, "");
1776 		virt_dump(stream, vm, indent + 4);
1777 	}
1778 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1779 	list_for_each_entry(vcpu, &vm->vcpus, list)
1780 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1781 }
1782 
1783 /* Known KVM exit reasons */
1784 static struct exit_reason {
1785 	unsigned int reason;
1786 	const char *name;
1787 } exit_reasons_known[] = {
1788 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1789 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1790 	{KVM_EXIT_IO, "IO"},
1791 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1792 	{KVM_EXIT_DEBUG, "DEBUG"},
1793 	{KVM_EXIT_HLT, "HLT"},
1794 	{KVM_EXIT_MMIO, "MMIO"},
1795 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1796 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1797 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1798 	{KVM_EXIT_INTR, "INTR"},
1799 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1800 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1801 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1802 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1803 	{KVM_EXIT_DCR, "DCR"},
1804 	{KVM_EXIT_NMI, "NMI"},
1805 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1806 	{KVM_EXIT_OSI, "OSI"},
1807 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1808 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1809 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1810 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1811 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1812 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1813 #endif
1814 };
1815 
1816 /*
1817  * Exit Reason String
1818  *
1819  * Input Args:
1820  *   exit_reason - Exit reason
1821  *
1822  * Output Args: None
1823  *
1824  * Return:
1825  *   Constant string pointer describing the exit reason.
1826  *
1827  * Locates and returns a constant string that describes the KVM exit
1828  * reason given by exit_reason.  If no such string is found, a constant
1829  * string of "Unknown" is returned.
1830  */
1831 const char *exit_reason_str(unsigned int exit_reason)
1832 {
1833 	unsigned int n1;
1834 
1835 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1836 		if (exit_reason == exit_reasons_known[n1].reason)
1837 			return exit_reasons_known[n1].name;
1838 	}
1839 
1840 	return "Unknown";
1841 }
1842 
1843 /*
1844  * Physical Contiguous Page Allocator
1845  *
1846  * Input Args:
1847  *   vm - Virtual Machine
1848  *   num - number of pages
1849  *   paddr_min - Physical address minimum
1850  *   memslot - Memory region to allocate page from
1851  *
1852  * Output Args: None
1853  *
1854  * Return:
1855  *   Starting physical address
1856  *
1857  * Within the VM specified by vm, locates a range of available physical
1858  * pages at or above paddr_min. If found, the pages are marked as in use
1859  * and their base address is returned. A TEST_ASSERT failure occurs if
1860  * not enough pages are available at or above paddr_min.
1861  */
1862 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1863 			      vm_paddr_t paddr_min, uint32_t memslot)
1864 {
1865 	struct userspace_mem_region *region;
1866 	sparsebit_idx_t pg, base;
1867 
1868 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1869 
1870 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1871 		"not divisible by page size.\n"
1872 		"  paddr_min: 0x%lx page_size: 0x%x",
1873 		paddr_min, vm->page_size);
1874 
1875 	region = memslot2region(vm, memslot);
1876 	base = pg = paddr_min >> vm->page_shift;
1877 
1878 	do {
1879 		for (; pg < base + num; ++pg) {
1880 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1881 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1882 				break;
1883 			}
1884 		}
1885 	} while (pg && pg != base + num);
1886 
1887 	if (pg == 0) {
1888 		fprintf(stderr, "No guest physical page available, "
1889 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1890 			paddr_min, vm->page_size, memslot);
1891 		fputs("---- vm dump ----\n", stderr);
1892 		vm_dump(stderr, vm, 2);
1893 		abort();
1894 	}
1895 
1896 	for (pg = base; pg < base + num; ++pg)
1897 		sparsebit_clear(region->unused_phy_pages, pg);
1898 
1899 	return base * vm->page_size;
1900 }
1901 
1902 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1903 			     uint32_t memslot)
1904 {
1905 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1906 }
1907 
1908 /*
1909  * Address Guest Virtual to Host Virtual
1910  *
1911  * Input Args:
1912  *   vm - Virtual Machine
1913  *   gva - VM virtual address
1914  *
1915  * Output Args: None
1916  *
1917  * Return:
1918  *   Equivalent host virtual address
1919  */
1920 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1921 {
1922 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1923 }
1924 
1925 /*
1926  * Is Unrestricted Guest
1927  *
1928  * Input Args:
1929  *   vm - Virtual Machine
1930  *
1931  * Output Args: None
1932  *
1933  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1934  *
1935  * Check if the unrestricted guest flag is enabled.
1936  */
1937 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1938 {
1939 	char val = 'N';
1940 	size_t count;
1941 	FILE *f;
1942 
1943 	if (vm == NULL) {
1944 		/* Ensure that the KVM vendor-specific module is loaded. */
1945 		f = fopen(KVM_DEV_PATH, "r");
1946 		TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1947 			    errno);
1948 		fclose(f);
1949 	}
1950 
1951 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1952 	if (f) {
1953 		count = fread(&val, sizeof(char), 1, f);
1954 		TEST_ASSERT(count == 1, "Unable to read from param file.");
1955 		fclose(f);
1956 	}
1957 
1958 	return val == 'Y';
1959 }
1960 
1961 unsigned int vm_get_page_size(struct kvm_vm *vm)
1962 {
1963 	return vm->page_size;
1964 }
1965 
1966 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1967 {
1968 	return vm->page_shift;
1969 }
1970 
1971 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1972 {
1973 	return vm->max_gfn;
1974 }
1975 
1976 int vm_get_fd(struct kvm_vm *vm)
1977 {
1978 	return vm->fd;
1979 }
1980 
1981 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1982 				      unsigned int page_shift,
1983 				      unsigned int new_page_shift,
1984 				      bool ceil)
1985 {
1986 	unsigned int n = 1 << (new_page_shift - page_shift);
1987 
1988 	if (page_shift >= new_page_shift)
1989 		return num_pages * (1 << (page_shift - new_page_shift));
1990 
1991 	return num_pages / n + !!(ceil && num_pages % n);
1992 }
1993 
1994 static inline int getpageshift(void)
1995 {
1996 	return __builtin_ffs(getpagesize()) - 1;
1997 }
1998 
1999 unsigned int
2000 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2001 {
2002 	return vm_calc_num_pages(num_guest_pages,
2003 				 vm_guest_mode_params[mode].page_shift,
2004 				 getpageshift(), true);
2005 }
2006 
2007 unsigned int
2008 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2009 {
2010 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2011 				 vm_guest_mode_params[mode].page_shift, false);
2012 }
2013 
2014 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2015 {
2016 	unsigned int n;
2017 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2018 	return vm_adjust_num_guest_pages(mode, n);
2019 }
2020