1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 if (fd < 0) { 31 print_skip("%s not available (errno: %d)", path, errno); 32 exit(KSFT_SKIP); 33 } 34 35 return fd; 36 } 37 38 /* 39 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 40 * 41 * Input Args: 42 * flags - The flags to pass when opening KVM_DEV_PATH. 43 * 44 * Return: 45 * The opened file descriptor of /dev/kvm. 46 */ 47 static int _open_kvm_dev_path_or_exit(int flags) 48 { 49 return open_path_or_exit(KVM_DEV_PATH, flags); 50 } 51 52 int open_kvm_dev_path_or_exit(void) 53 { 54 return _open_kvm_dev_path_or_exit(O_RDONLY); 55 } 56 57 /* 58 * Capability 59 * 60 * Input Args: 61 * cap - Capability 62 * 63 * Output Args: None 64 * 65 * Return: 66 * On success, the Value corresponding to the capability (KVM_CAP_*) 67 * specified by the value of cap. On failure a TEST_ASSERT failure 68 * is produced. 69 * 70 * Looks up and returns the value corresponding to the capability 71 * (KVM_CAP_*) given by cap. 72 */ 73 int kvm_check_cap(long cap) 74 { 75 int ret; 76 int kvm_fd; 77 78 kvm_fd = open_kvm_dev_path_or_exit(); 79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 81 " rc: %i errno: %i", ret, errno); 82 83 close(kvm_fd); 84 85 return ret; 86 } 87 88 /* VM Check Capability 89 * 90 * Input Args: 91 * vm - Virtual Machine 92 * cap - Capability 93 * 94 * Output Args: None 95 * 96 * Return: 97 * On success, the Value corresponding to the capability (KVM_CAP_*) 98 * specified by the value of cap. On failure a TEST_ASSERT failure 99 * is produced. 100 * 101 * Looks up and returns the value corresponding to the capability 102 * (KVM_CAP_*) given by cap. 103 */ 104 int vm_check_cap(struct kvm_vm *vm, long cap) 105 { 106 int ret; 107 108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap); 109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n" 110 " rc: %i errno: %i", ret, errno); 111 112 return ret; 113 } 114 115 /* VM Enable Capability 116 * 117 * Input Args: 118 * vm - Virtual Machine 119 * cap - Capability 120 * 121 * Output Args: None 122 * 123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 124 * 125 * Enables a capability (KVM_CAP_*) on the VM. 126 */ 127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 128 { 129 int ret; 130 131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 133 " rc: %i errno: %i", ret, errno); 134 135 return ret; 136 } 137 138 /* VCPU Enable Capability 139 * 140 * Input Args: 141 * vm - Virtual Machine 142 * vcpu_id - VCPU 143 * cap - Capability 144 * 145 * Output Args: None 146 * 147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 148 * 149 * Enables a capability (KVM_CAP_*) on the VCPU. 150 */ 151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 152 struct kvm_enable_cap *cap) 153 { 154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 155 int r; 156 157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 158 159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 161 " rc: %i, errno: %i", r, errno); 162 163 return r; 164 } 165 166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 167 { 168 struct kvm_enable_cap cap = { 0 }; 169 170 cap.cap = KVM_CAP_DIRTY_LOG_RING; 171 cap.args[0] = ring_size; 172 vm_enable_cap(vm, &cap); 173 vm->dirty_ring_size = ring_size; 174 } 175 176 static void vm_open(struct kvm_vm *vm, int perm) 177 { 178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 179 180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 181 print_skip("immediate_exit not available"); 182 exit(KSFT_SKIP); 183 } 184 185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 187 "rc: %i errno: %i", vm->fd, errno); 188 } 189 190 const char *vm_guest_mode_string(uint32_t i) 191 { 192 static const char * const strings[] = { 193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 208 }; 209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 210 "Missing new mode strings?"); 211 212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 213 214 return strings[i]; 215 } 216 217 const struct vm_guest_mode_params vm_guest_mode_params[] = { 218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 233 }; 234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 235 "Missing new mode params?"); 236 237 /* 238 * VM Create 239 * 240 * Input Args: 241 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 242 * phy_pages - Physical memory pages 243 * perm - permission 244 * 245 * Output Args: None 246 * 247 * Return: 248 * Pointer to opaque structure that describes the created VM. 249 * 250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 251 * When phy_pages is non-zero, a memory region of phy_pages physical pages 252 * is created and mapped starting at guest physical address 0. The file 253 * descriptor to control the created VM is created with the permissions 254 * given by perm (e.g. O_RDWR). 255 */ 256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 257 { 258 struct kvm_vm *vm; 259 260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 261 vm_guest_mode_string(mode), phy_pages, perm); 262 263 vm = calloc(1, sizeof(*vm)); 264 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 265 266 INIT_LIST_HEAD(&vm->vcpus); 267 vm->regions.gpa_tree = RB_ROOT; 268 vm->regions.hva_tree = RB_ROOT; 269 hash_init(vm->regions.slot_hash); 270 271 vm->mode = mode; 272 vm->type = 0; 273 274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 275 vm->va_bits = vm_guest_mode_params[mode].va_bits; 276 vm->page_size = vm_guest_mode_params[mode].page_size; 277 vm->page_shift = vm_guest_mode_params[mode].page_shift; 278 279 /* Setup mode specific traits. */ 280 switch (vm->mode) { 281 case VM_MODE_P52V48_4K: 282 vm->pgtable_levels = 4; 283 break; 284 case VM_MODE_P52V48_64K: 285 vm->pgtable_levels = 3; 286 break; 287 case VM_MODE_P48V48_4K: 288 vm->pgtable_levels = 4; 289 break; 290 case VM_MODE_P48V48_64K: 291 vm->pgtable_levels = 3; 292 break; 293 case VM_MODE_P40V48_4K: 294 case VM_MODE_P36V48_4K: 295 vm->pgtable_levels = 4; 296 break; 297 case VM_MODE_P40V48_64K: 298 case VM_MODE_P36V48_64K: 299 vm->pgtable_levels = 3; 300 break; 301 case VM_MODE_P48V48_16K: 302 case VM_MODE_P40V48_16K: 303 case VM_MODE_P36V48_16K: 304 vm->pgtable_levels = 4; 305 break; 306 case VM_MODE_P36V47_16K: 307 vm->pgtable_levels = 3; 308 break; 309 case VM_MODE_PXXV48_4K: 310 #ifdef __x86_64__ 311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 312 /* 313 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 314 * it doesn't take effect unless a CR4.LA57 is set, which it 315 * isn't for this VM_MODE. 316 */ 317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 318 "Linear address width (%d bits) not supported", 319 vm->va_bits); 320 pr_debug("Guest physical address width detected: %d\n", 321 vm->pa_bits); 322 vm->pgtable_levels = 4; 323 vm->va_bits = 48; 324 #else 325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 326 #endif 327 break; 328 case VM_MODE_P47V64_4K: 329 vm->pgtable_levels = 5; 330 break; 331 case VM_MODE_P44V64_4K: 332 vm->pgtable_levels = 5; 333 break; 334 default: 335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 336 } 337 338 #ifdef __aarch64__ 339 if (vm->pa_bits != 40) 340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 341 #endif 342 343 vm_open(vm, perm); 344 345 /* Limit to VA-bit canonical virtual addresses. */ 346 vm->vpages_valid = sparsebit_alloc(); 347 sparsebit_set_num(vm->vpages_valid, 348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 349 sparsebit_set_num(vm->vpages_valid, 350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 352 353 /* Limit physical addresses to PA-bits. */ 354 vm->max_gfn = vm_compute_max_gfn(vm); 355 356 /* Allocate and setup memory for guest. */ 357 vm->vpages_mapped = sparsebit_alloc(); 358 if (phy_pages != 0) 359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 360 0, 0, phy_pages, 0); 361 362 return vm; 363 } 364 365 /* 366 * VM Create with customized parameters 367 * 368 * Input Args: 369 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 370 * nr_vcpus - VCPU count 371 * slot0_mem_pages - Slot0 physical memory size 372 * extra_mem_pages - Non-slot0 physical memory total size 373 * num_percpu_pages - Per-cpu physical memory pages 374 * guest_code - Guest entry point 375 * vcpuids - VCPU IDs 376 * 377 * Output Args: None 378 * 379 * Return: 380 * Pointer to opaque structure that describes the created VM. 381 * 382 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 383 * with customized slot0 memory size, at least 512 pages currently. 384 * extra_mem_pages is only used to calculate the maximum page table size, 385 * no real memory allocation for non-slot0 memory in this function. 386 */ 387 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 388 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 389 uint32_t num_percpu_pages, void *guest_code, 390 uint32_t vcpuids[]) 391 { 392 uint64_t vcpu_pages, extra_pg_pages, pages; 393 struct kvm_vm *vm; 394 int i; 395 396 /* 397 * Permission needs to be requested before KVM_SET_CPUID2. 398 */ 399 vm_xsave_req_perm(); 400 401 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 402 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 403 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 404 405 /* The maximum page table size for a memory region will be when the 406 * smallest pages are used. Considering each page contains x page 407 * table descriptors, the total extra size for page tables (for extra 408 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 409 * than N/x*2. 410 */ 411 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 412 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 413 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 414 415 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 416 "nr_vcpus = %d too large for host, max-vcpus = %d", 417 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 418 419 pages = vm_adjust_num_guest_pages(mode, pages); 420 vm = vm_create(mode, pages, O_RDWR); 421 422 kvm_vm_elf_load(vm, program_invocation_name); 423 424 #ifdef __x86_64__ 425 vm_create_irqchip(vm); 426 #endif 427 428 for (i = 0; i < nr_vcpus; ++i) { 429 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 430 431 vm_vcpu_add_default(vm, vcpuid, guest_code); 432 } 433 434 return vm; 435 } 436 437 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 438 uint32_t num_percpu_pages, void *guest_code, 439 uint32_t vcpuids[]) 440 { 441 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 442 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 443 } 444 445 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 446 void *guest_code) 447 { 448 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 449 (uint32_t []){ vcpuid }); 450 } 451 452 /* 453 * VM Restart 454 * 455 * Input Args: 456 * vm - VM that has been released before 457 * perm - permission 458 * 459 * Output Args: None 460 * 461 * Reopens the file descriptors associated to the VM and reinstates the 462 * global state, such as the irqchip and the memory regions that are mapped 463 * into the guest. 464 */ 465 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 466 { 467 int ctr; 468 struct userspace_mem_region *region; 469 470 vm_open(vmp, perm); 471 if (vmp->has_irqchip) 472 vm_create_irqchip(vmp); 473 474 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 475 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 476 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 477 " rc: %i errno: %i\n" 478 " slot: %u flags: 0x%x\n" 479 " guest_phys_addr: 0x%llx size: 0x%llx", 480 ret, errno, region->region.slot, 481 region->region.flags, 482 region->region.guest_phys_addr, 483 region->region.memory_size); 484 } 485 } 486 487 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 488 { 489 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 490 int ret; 491 492 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 493 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 494 __func__, strerror(-ret)); 495 } 496 497 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 498 uint64_t first_page, uint32_t num_pages) 499 { 500 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, 501 .first_page = first_page, 502 .num_pages = num_pages }; 503 int ret; 504 505 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 506 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 507 __func__, strerror(-ret)); 508 } 509 510 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 511 { 512 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 513 } 514 515 /* 516 * Userspace Memory Region Find 517 * 518 * Input Args: 519 * vm - Virtual Machine 520 * start - Starting VM physical address 521 * end - Ending VM physical address, inclusive. 522 * 523 * Output Args: None 524 * 525 * Return: 526 * Pointer to overlapping region, NULL if no such region. 527 * 528 * Searches for a region with any physical memory that overlaps with 529 * any portion of the guest physical addresses from start to end 530 * inclusive. If multiple overlapping regions exist, a pointer to any 531 * of the regions is returned. Null is returned only when no overlapping 532 * region exists. 533 */ 534 static struct userspace_mem_region * 535 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 536 { 537 struct rb_node *node; 538 539 for (node = vm->regions.gpa_tree.rb_node; node; ) { 540 struct userspace_mem_region *region = 541 container_of(node, struct userspace_mem_region, gpa_node); 542 uint64_t existing_start = region->region.guest_phys_addr; 543 uint64_t existing_end = region->region.guest_phys_addr 544 + region->region.memory_size - 1; 545 if (start <= existing_end && end >= existing_start) 546 return region; 547 548 if (start < existing_start) 549 node = node->rb_left; 550 else 551 node = node->rb_right; 552 } 553 554 return NULL; 555 } 556 557 /* 558 * KVM Userspace Memory Region Find 559 * 560 * Input Args: 561 * vm - Virtual Machine 562 * start - Starting VM physical address 563 * end - Ending VM physical address, inclusive. 564 * 565 * Output Args: None 566 * 567 * Return: 568 * Pointer to overlapping region, NULL if no such region. 569 * 570 * Public interface to userspace_mem_region_find. Allows tests to look up 571 * the memslot datastructure for a given range of guest physical memory. 572 */ 573 struct kvm_userspace_memory_region * 574 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 575 uint64_t end) 576 { 577 struct userspace_mem_region *region; 578 579 region = userspace_mem_region_find(vm, start, end); 580 if (!region) 581 return NULL; 582 583 return ®ion->region; 584 } 585 586 /* 587 * VCPU Find 588 * 589 * Input Args: 590 * vm - Virtual Machine 591 * vcpuid - VCPU ID 592 * 593 * Output Args: None 594 * 595 * Return: 596 * Pointer to VCPU structure 597 * 598 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 599 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 600 * for the specified vcpuid. 601 */ 602 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 603 { 604 struct vcpu *vcpu; 605 606 list_for_each_entry(vcpu, &vm->vcpus, list) { 607 if (vcpu->id == vcpuid) 608 return vcpu; 609 } 610 611 return NULL; 612 } 613 614 /* 615 * VM VCPU Remove 616 * 617 * Input Args: 618 * vcpu - VCPU to remove 619 * 620 * Output Args: None 621 * 622 * Return: None, TEST_ASSERT failures for all error conditions 623 * 624 * Removes a vCPU from a VM and frees its resources. 625 */ 626 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 627 { 628 int ret; 629 630 if (vcpu->dirty_gfns) { 631 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 632 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 633 "rc: %i errno: %i", ret, errno); 634 vcpu->dirty_gfns = NULL; 635 } 636 637 ret = munmap(vcpu->state, vcpu_mmap_sz()); 638 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 639 "errno: %i", ret, errno); 640 ret = close(vcpu->fd); 641 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 642 "errno: %i", ret, errno); 643 644 list_del(&vcpu->list); 645 free(vcpu); 646 } 647 648 void kvm_vm_release(struct kvm_vm *vmp) 649 { 650 struct vcpu *vcpu, *tmp; 651 int ret; 652 653 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 654 vm_vcpu_rm(vmp, vcpu); 655 656 ret = close(vmp->fd); 657 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 658 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 659 660 ret = close(vmp->kvm_fd); 661 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 662 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 663 } 664 665 static void __vm_mem_region_delete(struct kvm_vm *vm, 666 struct userspace_mem_region *region, 667 bool unlink) 668 { 669 int ret; 670 671 if (unlink) { 672 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 673 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 674 hash_del(®ion->slot_node); 675 } 676 677 region->region.memory_size = 0; 678 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 679 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 680 "rc: %i errno: %i", ret, errno); 681 682 sparsebit_free(®ion->unused_phy_pages); 683 ret = munmap(region->mmap_start, region->mmap_size); 684 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 685 686 free(region); 687 } 688 689 /* 690 * Destroys and frees the VM pointed to by vmp. 691 */ 692 void kvm_vm_free(struct kvm_vm *vmp) 693 { 694 int ctr; 695 struct hlist_node *node; 696 struct userspace_mem_region *region; 697 698 if (vmp == NULL) 699 return; 700 701 /* Free userspace_mem_regions. */ 702 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 703 __vm_mem_region_delete(vmp, region, false); 704 705 /* Free sparsebit arrays. */ 706 sparsebit_free(&vmp->vpages_valid); 707 sparsebit_free(&vmp->vpages_mapped); 708 709 kvm_vm_release(vmp); 710 711 /* Free the structure describing the VM. */ 712 free(vmp); 713 } 714 715 /* 716 * Memory Compare, host virtual to guest virtual 717 * 718 * Input Args: 719 * hva - Starting host virtual address 720 * vm - Virtual Machine 721 * gva - Starting guest virtual address 722 * len - number of bytes to compare 723 * 724 * Output Args: None 725 * 726 * Input/Output Args: None 727 * 728 * Return: 729 * Returns 0 if the bytes starting at hva for a length of len 730 * are equal the guest virtual bytes starting at gva. Returns 731 * a value < 0, if bytes at hva are less than those at gva. 732 * Otherwise a value > 0 is returned. 733 * 734 * Compares the bytes starting at the host virtual address hva, for 735 * a length of len, to the guest bytes starting at the guest virtual 736 * address given by gva. 737 */ 738 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 739 { 740 size_t amt; 741 742 /* 743 * Compare a batch of bytes until either a match is found 744 * or all the bytes have been compared. 745 */ 746 for (uintptr_t offset = 0; offset < len; offset += amt) { 747 uintptr_t ptr1 = (uintptr_t)hva + offset; 748 749 /* 750 * Determine host address for guest virtual address 751 * at offset. 752 */ 753 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 754 755 /* 756 * Determine amount to compare on this pass. 757 * Don't allow the comparsion to cross a page boundary. 758 */ 759 amt = len - offset; 760 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 761 amt = vm->page_size - (ptr1 % vm->page_size); 762 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 763 amt = vm->page_size - (ptr2 % vm->page_size); 764 765 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 766 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 767 768 /* 769 * Perform the comparison. If there is a difference 770 * return that result to the caller, otherwise need 771 * to continue on looking for a mismatch. 772 */ 773 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 774 if (ret != 0) 775 return ret; 776 } 777 778 /* 779 * No mismatch found. Let the caller know the two memory 780 * areas are equal. 781 */ 782 return 0; 783 } 784 785 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 786 struct userspace_mem_region *region) 787 { 788 struct rb_node **cur, *parent; 789 790 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 791 struct userspace_mem_region *cregion; 792 793 cregion = container_of(*cur, typeof(*cregion), gpa_node); 794 parent = *cur; 795 if (region->region.guest_phys_addr < 796 cregion->region.guest_phys_addr) 797 cur = &(*cur)->rb_left; 798 else { 799 TEST_ASSERT(region->region.guest_phys_addr != 800 cregion->region.guest_phys_addr, 801 "Duplicate GPA in region tree"); 802 803 cur = &(*cur)->rb_right; 804 } 805 } 806 807 rb_link_node(®ion->gpa_node, parent, cur); 808 rb_insert_color(®ion->gpa_node, gpa_tree); 809 } 810 811 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 812 struct userspace_mem_region *region) 813 { 814 struct rb_node **cur, *parent; 815 816 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 817 struct userspace_mem_region *cregion; 818 819 cregion = container_of(*cur, typeof(*cregion), hva_node); 820 parent = *cur; 821 if (region->host_mem < cregion->host_mem) 822 cur = &(*cur)->rb_left; 823 else { 824 TEST_ASSERT(region->host_mem != 825 cregion->host_mem, 826 "Duplicate HVA in region tree"); 827 828 cur = &(*cur)->rb_right; 829 } 830 } 831 832 rb_link_node(®ion->hva_node, parent, cur); 833 rb_insert_color(®ion->hva_node, hva_tree); 834 } 835 836 /* 837 * VM Userspace Memory Region Add 838 * 839 * Input Args: 840 * vm - Virtual Machine 841 * src_type - Storage source for this region. 842 * NULL to use anonymous memory. 843 * guest_paddr - Starting guest physical address 844 * slot - KVM region slot 845 * npages - Number of physical pages 846 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 847 * 848 * Output Args: None 849 * 850 * Return: None 851 * 852 * Allocates a memory area of the number of pages specified by npages 853 * and maps it to the VM specified by vm, at a starting physical address 854 * given by guest_paddr. The region is created with a KVM region slot 855 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 856 * region is created with the flags given by flags. 857 */ 858 void vm_userspace_mem_region_add(struct kvm_vm *vm, 859 enum vm_mem_backing_src_type src_type, 860 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 861 uint32_t flags) 862 { 863 int ret; 864 struct userspace_mem_region *region; 865 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 866 size_t alignment; 867 868 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 869 "Number of guest pages is not compatible with the host. " 870 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 871 872 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 873 "address not on a page boundary.\n" 874 " guest_paddr: 0x%lx vm->page_size: 0x%x", 875 guest_paddr, vm->page_size); 876 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 877 <= vm->max_gfn, "Physical range beyond maximum " 878 "supported physical address,\n" 879 " guest_paddr: 0x%lx npages: 0x%lx\n" 880 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 881 guest_paddr, npages, vm->max_gfn, vm->page_size); 882 883 /* 884 * Confirm a mem region with an overlapping address doesn't 885 * already exist. 886 */ 887 region = (struct userspace_mem_region *) userspace_mem_region_find( 888 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 889 if (region != NULL) 890 TEST_FAIL("overlapping userspace_mem_region already " 891 "exists\n" 892 " requested guest_paddr: 0x%lx npages: 0x%lx " 893 "page_size: 0x%x\n" 894 " existing guest_paddr: 0x%lx size: 0x%lx", 895 guest_paddr, npages, vm->page_size, 896 (uint64_t) region->region.guest_phys_addr, 897 (uint64_t) region->region.memory_size); 898 899 /* Confirm no region with the requested slot already exists. */ 900 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 901 slot) { 902 if (region->region.slot != slot) 903 continue; 904 905 TEST_FAIL("A mem region with the requested slot " 906 "already exists.\n" 907 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 908 " existing slot: %u paddr: 0x%lx size: 0x%lx", 909 slot, guest_paddr, npages, 910 region->region.slot, 911 (uint64_t) region->region.guest_phys_addr, 912 (uint64_t) region->region.memory_size); 913 } 914 915 /* Allocate and initialize new mem region structure. */ 916 region = calloc(1, sizeof(*region)); 917 TEST_ASSERT(region != NULL, "Insufficient Memory"); 918 region->mmap_size = npages * vm->page_size; 919 920 #ifdef __s390x__ 921 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 922 alignment = 0x100000; 923 #else 924 alignment = 1; 925 #endif 926 927 /* 928 * When using THP mmap is not guaranteed to returned a hugepage aligned 929 * address so we have to pad the mmap. Padding is not needed for HugeTLB 930 * because mmap will always return an address aligned to the HugeTLB 931 * page size. 932 */ 933 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 934 alignment = max(backing_src_pagesz, alignment); 935 936 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 937 938 /* Add enough memory to align up if necessary */ 939 if (alignment > 1) 940 region->mmap_size += alignment; 941 942 region->fd = -1; 943 if (backing_src_is_shared(src_type)) { 944 int memfd_flags = MFD_CLOEXEC; 945 946 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 947 memfd_flags |= MFD_HUGETLB; 948 949 region->fd = memfd_create("kvm_selftest", memfd_flags); 950 TEST_ASSERT(region->fd != -1, 951 "memfd_create failed, errno: %i", errno); 952 953 ret = ftruncate(region->fd, region->mmap_size); 954 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 955 956 ret = fallocate(region->fd, 957 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 958 region->mmap_size); 959 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 960 } 961 962 region->mmap_start = mmap(NULL, region->mmap_size, 963 PROT_READ | PROT_WRITE, 964 vm_mem_backing_src_alias(src_type)->flag, 965 region->fd, 0); 966 TEST_ASSERT(region->mmap_start != MAP_FAILED, 967 "test_malloc failed, mmap_start: %p errno: %i", 968 region->mmap_start, errno); 969 970 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 971 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 972 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 973 region->mmap_start, backing_src_pagesz); 974 975 /* Align host address */ 976 region->host_mem = align_ptr_up(region->mmap_start, alignment); 977 978 /* As needed perform madvise */ 979 if ((src_type == VM_MEM_SRC_ANONYMOUS || 980 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 981 ret = madvise(region->host_mem, npages * vm->page_size, 982 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 983 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 984 region->host_mem, npages * vm->page_size, 985 vm_mem_backing_src_alias(src_type)->name); 986 } 987 988 region->unused_phy_pages = sparsebit_alloc(); 989 sparsebit_set_num(region->unused_phy_pages, 990 guest_paddr >> vm->page_shift, npages); 991 region->region.slot = slot; 992 region->region.flags = flags; 993 region->region.guest_phys_addr = guest_paddr; 994 region->region.memory_size = npages * vm->page_size; 995 region->region.userspace_addr = (uintptr_t) region->host_mem; 996 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 997 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 998 " rc: %i errno: %i\n" 999 " slot: %u flags: 0x%x\n" 1000 " guest_phys_addr: 0x%lx size: 0x%lx", 1001 ret, errno, slot, flags, 1002 guest_paddr, (uint64_t) region->region.memory_size); 1003 1004 /* Add to quick lookup data structures */ 1005 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1006 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1007 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1008 1009 /* If shared memory, create an alias. */ 1010 if (region->fd >= 0) { 1011 region->mmap_alias = mmap(NULL, region->mmap_size, 1012 PROT_READ | PROT_WRITE, 1013 vm_mem_backing_src_alias(src_type)->flag, 1014 region->fd, 0); 1015 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1016 "mmap of alias failed, errno: %i", errno); 1017 1018 /* Align host alias address */ 1019 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1020 } 1021 } 1022 1023 /* 1024 * Memslot to region 1025 * 1026 * Input Args: 1027 * vm - Virtual Machine 1028 * memslot - KVM memory slot ID 1029 * 1030 * Output Args: None 1031 * 1032 * Return: 1033 * Pointer to memory region structure that describe memory region 1034 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1035 * on error (e.g. currently no memory region using memslot as a KVM 1036 * memory slot ID). 1037 */ 1038 struct userspace_mem_region * 1039 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1040 { 1041 struct userspace_mem_region *region; 1042 1043 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1044 memslot) 1045 if (region->region.slot == memslot) 1046 return region; 1047 1048 fprintf(stderr, "No mem region with the requested slot found,\n" 1049 " requested slot: %u\n", memslot); 1050 fputs("---- vm dump ----\n", stderr); 1051 vm_dump(stderr, vm, 2); 1052 TEST_FAIL("Mem region not found"); 1053 return NULL; 1054 } 1055 1056 /* 1057 * VM Memory Region Flags Set 1058 * 1059 * Input Args: 1060 * vm - Virtual Machine 1061 * flags - Starting guest physical address 1062 * 1063 * Output Args: None 1064 * 1065 * Return: None 1066 * 1067 * Sets the flags of the memory region specified by the value of slot, 1068 * to the values given by flags. 1069 */ 1070 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1071 { 1072 int ret; 1073 struct userspace_mem_region *region; 1074 1075 region = memslot2region(vm, slot); 1076 1077 region->region.flags = flags; 1078 1079 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1080 1081 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1082 " rc: %i errno: %i slot: %u flags: 0x%x", 1083 ret, errno, slot, flags); 1084 } 1085 1086 /* 1087 * VM Memory Region Move 1088 * 1089 * Input Args: 1090 * vm - Virtual Machine 1091 * slot - Slot of the memory region to move 1092 * new_gpa - Starting guest physical address 1093 * 1094 * Output Args: None 1095 * 1096 * Return: None 1097 * 1098 * Change the gpa of a memory region. 1099 */ 1100 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1101 { 1102 struct userspace_mem_region *region; 1103 int ret; 1104 1105 region = memslot2region(vm, slot); 1106 1107 region->region.guest_phys_addr = new_gpa; 1108 1109 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1110 1111 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1112 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1113 ret, errno, slot, new_gpa); 1114 } 1115 1116 /* 1117 * VM Memory Region Delete 1118 * 1119 * Input Args: 1120 * vm - Virtual Machine 1121 * slot - Slot of the memory region to delete 1122 * 1123 * Output Args: None 1124 * 1125 * Return: None 1126 * 1127 * Delete a memory region. 1128 */ 1129 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1130 { 1131 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1132 } 1133 1134 /* 1135 * VCPU mmap Size 1136 * 1137 * Input Args: None 1138 * 1139 * Output Args: None 1140 * 1141 * Return: 1142 * Size of VCPU state 1143 * 1144 * Returns the size of the structure pointed to by the return value 1145 * of vcpu_state(). 1146 */ 1147 static int vcpu_mmap_sz(void) 1148 { 1149 int dev_fd, ret; 1150 1151 dev_fd = open_kvm_dev_path_or_exit(); 1152 1153 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1154 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1155 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1156 __func__, ret, errno); 1157 1158 close(dev_fd); 1159 1160 return ret; 1161 } 1162 1163 /* 1164 * VM VCPU Add 1165 * 1166 * Input Args: 1167 * vm - Virtual Machine 1168 * vcpuid - VCPU ID 1169 * 1170 * Output Args: None 1171 * 1172 * Return: None 1173 * 1174 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1175 * No additional VCPU setup is done. 1176 */ 1177 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1178 { 1179 struct vcpu *vcpu; 1180 1181 /* Confirm a vcpu with the specified id doesn't already exist. */ 1182 vcpu = vcpu_find(vm, vcpuid); 1183 if (vcpu != NULL) 1184 TEST_FAIL("vcpu with the specified id " 1185 "already exists,\n" 1186 " requested vcpuid: %u\n" 1187 " existing vcpuid: %u state: %p", 1188 vcpuid, vcpu->id, vcpu->state); 1189 1190 /* Allocate and initialize new vcpu structure. */ 1191 vcpu = calloc(1, sizeof(*vcpu)); 1192 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1193 vcpu->id = vcpuid; 1194 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1195 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1196 vcpu->fd, errno); 1197 1198 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1199 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1200 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1201 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1202 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1203 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1204 "vcpu id: %u errno: %i", vcpuid, errno); 1205 1206 /* Add to linked-list of VCPUs. */ 1207 list_add(&vcpu->list, &vm->vcpus); 1208 } 1209 1210 /* 1211 * VM Virtual Address Unused Gap 1212 * 1213 * Input Args: 1214 * vm - Virtual Machine 1215 * sz - Size (bytes) 1216 * vaddr_min - Minimum Virtual Address 1217 * 1218 * Output Args: None 1219 * 1220 * Return: 1221 * Lowest virtual address at or below vaddr_min, with at least 1222 * sz unused bytes. TEST_ASSERT failure if no area of at least 1223 * size sz is available. 1224 * 1225 * Within the VM specified by vm, locates the lowest starting virtual 1226 * address >= vaddr_min, that has at least sz unallocated bytes. A 1227 * TEST_ASSERT failure occurs for invalid input or no area of at least 1228 * sz unallocated bytes >= vaddr_min is available. 1229 */ 1230 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1231 vm_vaddr_t vaddr_min) 1232 { 1233 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1234 1235 /* Determine lowest permitted virtual page index. */ 1236 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1237 if ((pgidx_start * vm->page_size) < vaddr_min) 1238 goto no_va_found; 1239 1240 /* Loop over section with enough valid virtual page indexes. */ 1241 if (!sparsebit_is_set_num(vm->vpages_valid, 1242 pgidx_start, pages)) 1243 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1244 pgidx_start, pages); 1245 do { 1246 /* 1247 * Are there enough unused virtual pages available at 1248 * the currently proposed starting virtual page index. 1249 * If not, adjust proposed starting index to next 1250 * possible. 1251 */ 1252 if (sparsebit_is_clear_num(vm->vpages_mapped, 1253 pgidx_start, pages)) 1254 goto va_found; 1255 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1256 pgidx_start, pages); 1257 if (pgidx_start == 0) 1258 goto no_va_found; 1259 1260 /* 1261 * If needed, adjust proposed starting virtual address, 1262 * to next range of valid virtual addresses. 1263 */ 1264 if (!sparsebit_is_set_num(vm->vpages_valid, 1265 pgidx_start, pages)) { 1266 pgidx_start = sparsebit_next_set_num( 1267 vm->vpages_valid, pgidx_start, pages); 1268 if (pgidx_start == 0) 1269 goto no_va_found; 1270 } 1271 } while (pgidx_start != 0); 1272 1273 no_va_found: 1274 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1275 1276 /* NOT REACHED */ 1277 return -1; 1278 1279 va_found: 1280 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1281 pgidx_start, pages), 1282 "Unexpected, invalid virtual page index range,\n" 1283 " pgidx_start: 0x%lx\n" 1284 " pages: 0x%lx", 1285 pgidx_start, pages); 1286 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1287 pgidx_start, pages), 1288 "Unexpected, pages already mapped,\n" 1289 " pgidx_start: 0x%lx\n" 1290 " pages: 0x%lx", 1291 pgidx_start, pages); 1292 1293 return pgidx_start * vm->page_size; 1294 } 1295 1296 /* 1297 * VM Virtual Address Allocate 1298 * 1299 * Input Args: 1300 * vm - Virtual Machine 1301 * sz - Size in bytes 1302 * vaddr_min - Minimum starting virtual address 1303 * data_memslot - Memory region slot for data pages 1304 * pgd_memslot - Memory region slot for new virtual translation tables 1305 * 1306 * Output Args: None 1307 * 1308 * Return: 1309 * Starting guest virtual address 1310 * 1311 * Allocates at least sz bytes within the virtual address space of the vm 1312 * given by vm. The allocated bytes are mapped to a virtual address >= 1313 * the address given by vaddr_min. Note that each allocation uses a 1314 * a unique set of pages, with the minimum real allocation being at least 1315 * a page. 1316 */ 1317 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1318 { 1319 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1320 1321 virt_pgd_alloc(vm); 1322 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1323 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1324 1325 /* 1326 * Find an unused range of virtual page addresses of at least 1327 * pages in length. 1328 */ 1329 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1330 1331 /* Map the virtual pages. */ 1332 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1333 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1334 1335 virt_pg_map(vm, vaddr, paddr); 1336 1337 sparsebit_set(vm->vpages_mapped, 1338 vaddr >> vm->page_shift); 1339 } 1340 1341 return vaddr_start; 1342 } 1343 1344 /* 1345 * VM Virtual Address Allocate Pages 1346 * 1347 * Input Args: 1348 * vm - Virtual Machine 1349 * 1350 * Output Args: None 1351 * 1352 * Return: 1353 * Starting guest virtual address 1354 * 1355 * Allocates at least N system pages worth of bytes within the virtual address 1356 * space of the vm. 1357 */ 1358 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1359 { 1360 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1361 } 1362 1363 /* 1364 * VM Virtual Address Allocate Page 1365 * 1366 * Input Args: 1367 * vm - Virtual Machine 1368 * 1369 * Output Args: None 1370 * 1371 * Return: 1372 * Starting guest virtual address 1373 * 1374 * Allocates at least one system page worth of bytes within the virtual address 1375 * space of the vm. 1376 */ 1377 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1378 { 1379 return vm_vaddr_alloc_pages(vm, 1); 1380 } 1381 1382 /* 1383 * Map a range of VM virtual address to the VM's physical address 1384 * 1385 * Input Args: 1386 * vm - Virtual Machine 1387 * vaddr - Virtuall address to map 1388 * paddr - VM Physical Address 1389 * npages - The number of pages to map 1390 * pgd_memslot - Memory region slot for new virtual translation tables 1391 * 1392 * Output Args: None 1393 * 1394 * Return: None 1395 * 1396 * Within the VM given by @vm, creates a virtual translation for 1397 * @npages starting at @vaddr to the page range starting at @paddr. 1398 */ 1399 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1400 unsigned int npages) 1401 { 1402 size_t page_size = vm->page_size; 1403 size_t size = npages * page_size; 1404 1405 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1406 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1407 1408 while (npages--) { 1409 virt_pg_map(vm, vaddr, paddr); 1410 vaddr += page_size; 1411 paddr += page_size; 1412 } 1413 } 1414 1415 /* 1416 * Address VM Physical to Host Virtual 1417 * 1418 * Input Args: 1419 * vm - Virtual Machine 1420 * gpa - VM physical address 1421 * 1422 * Output Args: None 1423 * 1424 * Return: 1425 * Equivalent host virtual address 1426 * 1427 * Locates the memory region containing the VM physical address given 1428 * by gpa, within the VM given by vm. When found, the host virtual 1429 * address providing the memory to the vm physical address is returned. 1430 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1431 */ 1432 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1433 { 1434 struct userspace_mem_region *region; 1435 1436 region = userspace_mem_region_find(vm, gpa, gpa); 1437 if (!region) { 1438 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1439 return NULL; 1440 } 1441 1442 return (void *)((uintptr_t)region->host_mem 1443 + (gpa - region->region.guest_phys_addr)); 1444 } 1445 1446 /* 1447 * Address Host Virtual to VM Physical 1448 * 1449 * Input Args: 1450 * vm - Virtual Machine 1451 * hva - Host virtual address 1452 * 1453 * Output Args: None 1454 * 1455 * Return: 1456 * Equivalent VM physical address 1457 * 1458 * Locates the memory region containing the host virtual address given 1459 * by hva, within the VM given by vm. When found, the equivalent 1460 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1461 * region containing hva exists. 1462 */ 1463 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1464 { 1465 struct rb_node *node; 1466 1467 for (node = vm->regions.hva_tree.rb_node; node; ) { 1468 struct userspace_mem_region *region = 1469 container_of(node, struct userspace_mem_region, hva_node); 1470 1471 if (hva >= region->host_mem) { 1472 if (hva <= (region->host_mem 1473 + region->region.memory_size - 1)) 1474 return (vm_paddr_t)((uintptr_t) 1475 region->region.guest_phys_addr 1476 + (hva - (uintptr_t)region->host_mem)); 1477 1478 node = node->rb_right; 1479 } else 1480 node = node->rb_left; 1481 } 1482 1483 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1484 return -1; 1485 } 1486 1487 /* 1488 * Address VM physical to Host Virtual *alias*. 1489 * 1490 * Input Args: 1491 * vm - Virtual Machine 1492 * gpa - VM physical address 1493 * 1494 * Output Args: None 1495 * 1496 * Return: 1497 * Equivalent address within the host virtual *alias* area, or NULL 1498 * (without failing the test) if the guest memory is not shared (so 1499 * no alias exists). 1500 * 1501 * When vm_create() and related functions are called with a shared memory 1502 * src_type, we also create a writable, shared alias mapping of the 1503 * underlying guest memory. This allows the host to manipulate guest memory 1504 * without mapping that memory in the guest's address space. And, for 1505 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1506 */ 1507 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1508 { 1509 struct userspace_mem_region *region; 1510 uintptr_t offset; 1511 1512 region = userspace_mem_region_find(vm, gpa, gpa); 1513 if (!region) 1514 return NULL; 1515 1516 if (!region->host_alias) 1517 return NULL; 1518 1519 offset = gpa - region->region.guest_phys_addr; 1520 return (void *) ((uintptr_t) region->host_alias + offset); 1521 } 1522 1523 /* 1524 * VM Create IRQ Chip 1525 * 1526 * Input Args: 1527 * vm - Virtual Machine 1528 * 1529 * Output Args: None 1530 * 1531 * Return: None 1532 * 1533 * Creates an interrupt controller chip for the VM specified by vm. 1534 */ 1535 void vm_create_irqchip(struct kvm_vm *vm) 1536 { 1537 int ret; 1538 1539 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1540 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1541 "rc: %i errno: %i", ret, errno); 1542 1543 vm->has_irqchip = true; 1544 } 1545 1546 /* 1547 * VM VCPU State 1548 * 1549 * Input Args: 1550 * vm - Virtual Machine 1551 * vcpuid - VCPU ID 1552 * 1553 * Output Args: None 1554 * 1555 * Return: 1556 * Pointer to structure that describes the state of the VCPU. 1557 * 1558 * Locates and returns a pointer to a structure that describes the 1559 * state of the VCPU with the given vcpuid. 1560 */ 1561 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1562 { 1563 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1564 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1565 1566 return vcpu->state; 1567 } 1568 1569 /* 1570 * VM VCPU Run 1571 * 1572 * Input Args: 1573 * vm - Virtual Machine 1574 * vcpuid - VCPU ID 1575 * 1576 * Output Args: None 1577 * 1578 * Return: None 1579 * 1580 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1581 * given by vm. 1582 */ 1583 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1584 { 1585 int ret = _vcpu_run(vm, vcpuid); 1586 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1587 "rc: %i errno: %i", ret, errno); 1588 } 1589 1590 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1591 { 1592 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1593 int rc; 1594 1595 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1596 do { 1597 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1598 } while (rc == -1 && errno == EINTR); 1599 1600 assert_on_unhandled_exception(vm, vcpuid); 1601 1602 return rc; 1603 } 1604 1605 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1606 { 1607 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1608 1609 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1610 1611 return vcpu->fd; 1612 } 1613 1614 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1615 { 1616 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1617 int ret; 1618 1619 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1620 1621 vcpu->state->immediate_exit = 1; 1622 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1623 vcpu->state->immediate_exit = 0; 1624 1625 TEST_ASSERT(ret == -1 && errno == EINTR, 1626 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1627 ret, errno); 1628 } 1629 1630 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1631 struct kvm_guest_debug *debug) 1632 { 1633 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1634 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1635 1636 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1637 } 1638 1639 /* 1640 * VM VCPU Set MP State 1641 * 1642 * Input Args: 1643 * vm - Virtual Machine 1644 * vcpuid - VCPU ID 1645 * mp_state - mp_state to be set 1646 * 1647 * Output Args: None 1648 * 1649 * Return: None 1650 * 1651 * Sets the MP state of the VCPU given by vcpuid, to the state given 1652 * by mp_state. 1653 */ 1654 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1655 struct kvm_mp_state *mp_state) 1656 { 1657 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1658 int ret; 1659 1660 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1661 1662 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1663 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1664 "rc: %i errno: %i", ret, errno); 1665 } 1666 1667 /* 1668 * VM VCPU Get Reg List 1669 * 1670 * Input Args: 1671 * vm - Virtual Machine 1672 * vcpuid - VCPU ID 1673 * 1674 * Output Args: 1675 * None 1676 * 1677 * Return: 1678 * A pointer to an allocated struct kvm_reg_list 1679 * 1680 * Get the list of guest registers which are supported for 1681 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1682 */ 1683 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1684 { 1685 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1686 int ret; 1687 1688 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1689 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1690 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1691 reg_list->n = reg_list_n.n; 1692 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1693 return reg_list; 1694 } 1695 1696 /* 1697 * VM VCPU Regs Get 1698 * 1699 * Input Args: 1700 * vm - Virtual Machine 1701 * vcpuid - VCPU ID 1702 * 1703 * Output Args: 1704 * regs - current state of VCPU regs 1705 * 1706 * Return: None 1707 * 1708 * Obtains the current register state for the VCPU specified by vcpuid 1709 * and stores it at the location given by regs. 1710 */ 1711 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1712 { 1713 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1714 int ret; 1715 1716 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1717 1718 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1719 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1720 ret, errno); 1721 } 1722 1723 /* 1724 * VM VCPU Regs Set 1725 * 1726 * Input Args: 1727 * vm - Virtual Machine 1728 * vcpuid - VCPU ID 1729 * regs - Values to set VCPU regs to 1730 * 1731 * Output Args: None 1732 * 1733 * Return: None 1734 * 1735 * Sets the regs of the VCPU specified by vcpuid to the values 1736 * given by regs. 1737 */ 1738 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1739 { 1740 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1741 int ret; 1742 1743 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1744 1745 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1746 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1747 ret, errno); 1748 } 1749 1750 #ifdef __KVM_HAVE_VCPU_EVENTS 1751 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1752 struct kvm_vcpu_events *events) 1753 { 1754 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1755 int ret; 1756 1757 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1758 1759 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1760 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1761 ret, errno); 1762 } 1763 1764 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1765 struct kvm_vcpu_events *events) 1766 { 1767 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1768 int ret; 1769 1770 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1771 1772 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1773 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1774 ret, errno); 1775 } 1776 #endif 1777 1778 #ifdef __x86_64__ 1779 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1780 struct kvm_nested_state *state) 1781 { 1782 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1783 int ret; 1784 1785 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1786 1787 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1788 TEST_ASSERT(ret == 0, 1789 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1790 ret, errno); 1791 } 1792 1793 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1794 struct kvm_nested_state *state, bool ignore_error) 1795 { 1796 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1797 int ret; 1798 1799 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1800 1801 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1802 if (!ignore_error) { 1803 TEST_ASSERT(ret == 0, 1804 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1805 ret, errno); 1806 } 1807 1808 return ret; 1809 } 1810 #endif 1811 1812 /* 1813 * VM VCPU System Regs Get 1814 * 1815 * Input Args: 1816 * vm - Virtual Machine 1817 * vcpuid - VCPU ID 1818 * 1819 * Output Args: 1820 * sregs - current state of VCPU system regs 1821 * 1822 * Return: None 1823 * 1824 * Obtains the current system register state for the VCPU specified by 1825 * vcpuid and stores it at the location given by sregs. 1826 */ 1827 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1828 { 1829 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1830 int ret; 1831 1832 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1833 1834 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1835 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1836 ret, errno); 1837 } 1838 1839 /* 1840 * VM VCPU System Regs Set 1841 * 1842 * Input Args: 1843 * vm - Virtual Machine 1844 * vcpuid - VCPU ID 1845 * sregs - Values to set VCPU system regs to 1846 * 1847 * Output Args: None 1848 * 1849 * Return: None 1850 * 1851 * Sets the system regs of the VCPU specified by vcpuid to the values 1852 * given by sregs. 1853 */ 1854 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1855 { 1856 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1857 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, " 1858 "rc: %i errno: %i", ret, errno); 1859 } 1860 1861 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1862 { 1863 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1864 1865 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1866 1867 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1868 } 1869 1870 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1871 { 1872 int ret; 1873 1874 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1875 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1876 ret, errno, strerror(errno)); 1877 } 1878 1879 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1880 { 1881 int ret; 1882 1883 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1884 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1885 ret, errno, strerror(errno)); 1886 } 1887 1888 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1889 { 1890 int ret; 1891 1892 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1893 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1894 ret, errno, strerror(errno)); 1895 } 1896 1897 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1898 { 1899 int ret; 1900 1901 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1902 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1903 ret, errno, strerror(errno)); 1904 } 1905 1906 /* 1907 * VCPU Ioctl 1908 * 1909 * Input Args: 1910 * vm - Virtual Machine 1911 * vcpuid - VCPU ID 1912 * cmd - Ioctl number 1913 * arg - Argument to pass to the ioctl 1914 * 1915 * Return: None 1916 * 1917 * Issues an arbitrary ioctl on a VCPU fd. 1918 */ 1919 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1920 unsigned long cmd, void *arg) 1921 { 1922 int ret; 1923 1924 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1925 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1926 cmd, ret, errno, strerror(errno)); 1927 } 1928 1929 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1930 unsigned long cmd, void *arg) 1931 { 1932 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1933 int ret; 1934 1935 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1936 1937 ret = ioctl(vcpu->fd, cmd, arg); 1938 1939 return ret; 1940 } 1941 1942 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1943 { 1944 struct vcpu *vcpu; 1945 uint32_t size = vm->dirty_ring_size; 1946 1947 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1948 1949 vcpu = vcpu_find(vm, vcpuid); 1950 1951 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1952 1953 if (!vcpu->dirty_gfns) { 1954 void *addr; 1955 1956 addr = mmap(NULL, size, PROT_READ, 1957 MAP_PRIVATE, vcpu->fd, 1958 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1959 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1960 1961 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1962 MAP_PRIVATE, vcpu->fd, 1963 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1964 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1965 1966 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1967 MAP_SHARED, vcpu->fd, 1968 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1969 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1970 1971 vcpu->dirty_gfns = addr; 1972 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1973 } 1974 1975 return vcpu->dirty_gfns; 1976 } 1977 1978 /* 1979 * VM Ioctl 1980 * 1981 * Input Args: 1982 * vm - Virtual Machine 1983 * cmd - Ioctl number 1984 * arg - Argument to pass to the ioctl 1985 * 1986 * Return: None 1987 * 1988 * Issues an arbitrary ioctl on a VM fd. 1989 */ 1990 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1991 { 1992 int ret; 1993 1994 ret = _vm_ioctl(vm, cmd, arg); 1995 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1996 cmd, ret, errno, strerror(errno)); 1997 } 1998 1999 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2000 { 2001 return ioctl(vm->fd, cmd, arg); 2002 } 2003 2004 /* 2005 * KVM system ioctl 2006 * 2007 * Input Args: 2008 * vm - Virtual Machine 2009 * cmd - Ioctl number 2010 * arg - Argument to pass to the ioctl 2011 * 2012 * Return: None 2013 * 2014 * Issues an arbitrary ioctl on a KVM fd. 2015 */ 2016 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2017 { 2018 int ret; 2019 2020 ret = ioctl(vm->kvm_fd, cmd, arg); 2021 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 2022 cmd, ret, errno, strerror(errno)); 2023 } 2024 2025 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2026 { 2027 return ioctl(vm->kvm_fd, cmd, arg); 2028 } 2029 2030 /* 2031 * Device Ioctl 2032 */ 2033 2034 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2035 { 2036 struct kvm_device_attr attribute = { 2037 .group = group, 2038 .attr = attr, 2039 .flags = 0, 2040 }; 2041 2042 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 2043 } 2044 2045 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2046 { 2047 int ret = _kvm_device_check_attr(dev_fd, group, attr); 2048 2049 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 2050 return ret; 2051 } 2052 2053 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 2054 { 2055 struct kvm_create_device create_dev; 2056 int ret; 2057 2058 create_dev.type = type; 2059 create_dev.fd = -1; 2060 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2061 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2062 *fd = create_dev.fd; 2063 return ret; 2064 } 2065 2066 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2067 { 2068 int fd, ret; 2069 2070 ret = _kvm_create_device(vm, type, test, &fd); 2071 2072 if (!test) { 2073 TEST_ASSERT(!ret, 2074 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2075 return fd; 2076 } 2077 return ret; 2078 } 2079 2080 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2081 void *val, bool write) 2082 { 2083 struct kvm_device_attr kvmattr = { 2084 .group = group, 2085 .attr = attr, 2086 .flags = 0, 2087 .addr = (uintptr_t)val, 2088 }; 2089 int ret; 2090 2091 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2092 &kvmattr); 2093 return ret; 2094 } 2095 2096 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2097 void *val, bool write) 2098 { 2099 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2100 2101 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2102 return ret; 2103 } 2104 2105 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2106 uint64_t attr) 2107 { 2108 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2109 2110 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2111 2112 return _kvm_device_check_attr(vcpu->fd, group, attr); 2113 } 2114 2115 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2116 uint64_t attr) 2117 { 2118 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr); 2119 2120 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2121 return ret; 2122 } 2123 2124 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2125 uint64_t attr, void *val, bool write) 2126 { 2127 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2128 2129 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2130 2131 return _kvm_device_access(vcpu->fd, group, attr, val, write); 2132 } 2133 2134 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2135 uint64_t attr, void *val, bool write) 2136 { 2137 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write); 2138 2139 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2140 return ret; 2141 } 2142 2143 /* 2144 * IRQ related functions. 2145 */ 2146 2147 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2148 { 2149 struct kvm_irq_level irq_level = { 2150 .irq = irq, 2151 .level = level, 2152 }; 2153 2154 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 2155 } 2156 2157 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2158 { 2159 int ret = _kvm_irq_line(vm, irq, level); 2160 2161 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno); 2162 } 2163 2164 struct kvm_irq_routing *kvm_gsi_routing_create(void) 2165 { 2166 struct kvm_irq_routing *routing; 2167 size_t size; 2168 2169 size = sizeof(struct kvm_irq_routing); 2170 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 2171 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 2172 routing = calloc(1, size); 2173 assert(routing); 2174 2175 return routing; 2176 } 2177 2178 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 2179 uint32_t gsi, uint32_t pin) 2180 { 2181 int i; 2182 2183 assert(routing); 2184 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 2185 2186 i = routing->nr; 2187 routing->entries[i].gsi = gsi; 2188 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 2189 routing->entries[i].flags = 0; 2190 routing->entries[i].u.irqchip.irqchip = 0; 2191 routing->entries[i].u.irqchip.pin = pin; 2192 routing->nr++; 2193 } 2194 2195 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2196 { 2197 int ret; 2198 2199 assert(routing); 2200 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing); 2201 free(routing); 2202 2203 return ret; 2204 } 2205 2206 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2207 { 2208 int ret; 2209 2210 ret = _kvm_gsi_routing_write(vm, routing); 2211 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i", 2212 ret, errno); 2213 } 2214 2215 /* 2216 * VM Dump 2217 * 2218 * Input Args: 2219 * vm - Virtual Machine 2220 * indent - Left margin indent amount 2221 * 2222 * Output Args: 2223 * stream - Output FILE stream 2224 * 2225 * Return: None 2226 * 2227 * Dumps the current state of the VM given by vm, to the FILE stream 2228 * given by stream. 2229 */ 2230 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2231 { 2232 int ctr; 2233 struct userspace_mem_region *region; 2234 struct vcpu *vcpu; 2235 2236 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2237 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2238 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2239 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2240 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2241 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2242 "host_virt: %p\n", indent + 2, "", 2243 (uint64_t) region->region.guest_phys_addr, 2244 (uint64_t) region->region.memory_size, 2245 region->host_mem); 2246 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2247 sparsebit_dump(stream, region->unused_phy_pages, 0); 2248 } 2249 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2250 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2251 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2252 vm->pgd_created); 2253 if (vm->pgd_created) { 2254 fprintf(stream, "%*sVirtual Translation Tables:\n", 2255 indent + 2, ""); 2256 virt_dump(stream, vm, indent + 4); 2257 } 2258 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2259 list_for_each_entry(vcpu, &vm->vcpus, list) 2260 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2261 } 2262 2263 /* Known KVM exit reasons */ 2264 static struct exit_reason { 2265 unsigned int reason; 2266 const char *name; 2267 } exit_reasons_known[] = { 2268 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2269 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2270 {KVM_EXIT_IO, "IO"}, 2271 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2272 {KVM_EXIT_DEBUG, "DEBUG"}, 2273 {KVM_EXIT_HLT, "HLT"}, 2274 {KVM_EXIT_MMIO, "MMIO"}, 2275 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2276 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2277 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2278 {KVM_EXIT_INTR, "INTR"}, 2279 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2280 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2281 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2282 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2283 {KVM_EXIT_DCR, "DCR"}, 2284 {KVM_EXIT_NMI, "NMI"}, 2285 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2286 {KVM_EXIT_OSI, "OSI"}, 2287 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2288 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2289 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2290 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2291 {KVM_EXIT_XEN, "XEN"}, 2292 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2293 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2294 #endif 2295 }; 2296 2297 /* 2298 * Exit Reason String 2299 * 2300 * Input Args: 2301 * exit_reason - Exit reason 2302 * 2303 * Output Args: None 2304 * 2305 * Return: 2306 * Constant string pointer describing the exit reason. 2307 * 2308 * Locates and returns a constant string that describes the KVM exit 2309 * reason given by exit_reason. If no such string is found, a constant 2310 * string of "Unknown" is returned. 2311 */ 2312 const char *exit_reason_str(unsigned int exit_reason) 2313 { 2314 unsigned int n1; 2315 2316 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2317 if (exit_reason == exit_reasons_known[n1].reason) 2318 return exit_reasons_known[n1].name; 2319 } 2320 2321 return "Unknown"; 2322 } 2323 2324 /* 2325 * Physical Contiguous Page Allocator 2326 * 2327 * Input Args: 2328 * vm - Virtual Machine 2329 * num - number of pages 2330 * paddr_min - Physical address minimum 2331 * memslot - Memory region to allocate page from 2332 * 2333 * Output Args: None 2334 * 2335 * Return: 2336 * Starting physical address 2337 * 2338 * Within the VM specified by vm, locates a range of available physical 2339 * pages at or above paddr_min. If found, the pages are marked as in use 2340 * and their base address is returned. A TEST_ASSERT failure occurs if 2341 * not enough pages are available at or above paddr_min. 2342 */ 2343 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2344 vm_paddr_t paddr_min, uint32_t memslot) 2345 { 2346 struct userspace_mem_region *region; 2347 sparsebit_idx_t pg, base; 2348 2349 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2350 2351 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2352 "not divisible by page size.\n" 2353 " paddr_min: 0x%lx page_size: 0x%x", 2354 paddr_min, vm->page_size); 2355 2356 region = memslot2region(vm, memslot); 2357 base = pg = paddr_min >> vm->page_shift; 2358 2359 do { 2360 for (; pg < base + num; ++pg) { 2361 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2362 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2363 break; 2364 } 2365 } 2366 } while (pg && pg != base + num); 2367 2368 if (pg == 0) { 2369 fprintf(stderr, "No guest physical page available, " 2370 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2371 paddr_min, vm->page_size, memslot); 2372 fputs("---- vm dump ----\n", stderr); 2373 vm_dump(stderr, vm, 2); 2374 abort(); 2375 } 2376 2377 for (pg = base; pg < base + num; ++pg) 2378 sparsebit_clear(region->unused_phy_pages, pg); 2379 2380 return base * vm->page_size; 2381 } 2382 2383 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2384 uint32_t memslot) 2385 { 2386 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2387 } 2388 2389 /* Arbitrary minimum physical address used for virtual translation tables. */ 2390 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2391 2392 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2393 { 2394 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2395 } 2396 2397 /* 2398 * Address Guest Virtual to Host Virtual 2399 * 2400 * Input Args: 2401 * vm - Virtual Machine 2402 * gva - VM virtual address 2403 * 2404 * Output Args: None 2405 * 2406 * Return: 2407 * Equivalent host virtual address 2408 */ 2409 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2410 { 2411 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2412 } 2413 2414 /* 2415 * Is Unrestricted Guest 2416 * 2417 * Input Args: 2418 * vm - Virtual Machine 2419 * 2420 * Output Args: None 2421 * 2422 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2423 * 2424 * Check if the unrestricted guest flag is enabled. 2425 */ 2426 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2427 { 2428 char val = 'N'; 2429 size_t count; 2430 FILE *f; 2431 2432 if (vm == NULL) { 2433 /* Ensure that the KVM vendor-specific module is loaded. */ 2434 close(open_kvm_dev_path_or_exit()); 2435 } 2436 2437 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2438 if (f) { 2439 count = fread(&val, sizeof(char), 1, f); 2440 TEST_ASSERT(count == 1, "Unable to read from param file."); 2441 fclose(f); 2442 } 2443 2444 return val == 'Y'; 2445 } 2446 2447 unsigned int vm_get_page_size(struct kvm_vm *vm) 2448 { 2449 return vm->page_size; 2450 } 2451 2452 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2453 { 2454 return vm->page_shift; 2455 } 2456 2457 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm) 2458 { 2459 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2460 } 2461 2462 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2463 { 2464 return vm->max_gfn; 2465 } 2466 2467 int vm_get_fd(struct kvm_vm *vm) 2468 { 2469 return vm->fd; 2470 } 2471 2472 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2473 unsigned int page_shift, 2474 unsigned int new_page_shift, 2475 bool ceil) 2476 { 2477 unsigned int n = 1 << (new_page_shift - page_shift); 2478 2479 if (page_shift >= new_page_shift) 2480 return num_pages * (1 << (page_shift - new_page_shift)); 2481 2482 return num_pages / n + !!(ceil && num_pages % n); 2483 } 2484 2485 static inline int getpageshift(void) 2486 { 2487 return __builtin_ffs(getpagesize()) - 1; 2488 } 2489 2490 unsigned int 2491 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2492 { 2493 return vm_calc_num_pages(num_guest_pages, 2494 vm_guest_mode_params[mode].page_shift, 2495 getpageshift(), true); 2496 } 2497 2498 unsigned int 2499 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2500 { 2501 return vm_calc_num_pages(num_host_pages, getpageshift(), 2502 vm_guest_mode_params[mode].page_shift, false); 2503 } 2504 2505 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2506 { 2507 unsigned int n; 2508 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2509 return vm_adjust_num_guest_pages(mode, n); 2510 } 2511 2512 int vm_get_stats_fd(struct kvm_vm *vm) 2513 { 2514 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2515 } 2516 2517 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2518 { 2519 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2520 2521 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2522 } 2523