1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 if (fd < 0) { 31 print_skip("%s not available (errno: %d)", path, errno); 32 exit(KSFT_SKIP); 33 } 34 35 return fd; 36 } 37 38 /* 39 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 40 * 41 * Input Args: 42 * flags - The flags to pass when opening KVM_DEV_PATH. 43 * 44 * Return: 45 * The opened file descriptor of /dev/kvm. 46 */ 47 static int _open_kvm_dev_path_or_exit(int flags) 48 { 49 return open_path_or_exit(KVM_DEV_PATH, flags); 50 } 51 52 int open_kvm_dev_path_or_exit(void) 53 { 54 return _open_kvm_dev_path_or_exit(O_RDONLY); 55 } 56 57 /* 58 * Capability 59 * 60 * Input Args: 61 * cap - Capability 62 * 63 * Output Args: None 64 * 65 * Return: 66 * On success, the Value corresponding to the capability (KVM_CAP_*) 67 * specified by the value of cap. On failure a TEST_ASSERT failure 68 * is produced. 69 * 70 * Looks up and returns the value corresponding to the capability 71 * (KVM_CAP_*) given by cap. 72 */ 73 int kvm_check_cap(long cap) 74 { 75 int ret; 76 int kvm_fd; 77 78 kvm_fd = open_kvm_dev_path_or_exit(); 79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 81 " rc: %i errno: %i", ret, errno); 82 83 close(kvm_fd); 84 85 return ret; 86 } 87 88 /* VM Check Capability 89 * 90 * Input Args: 91 * vm - Virtual Machine 92 * cap - Capability 93 * 94 * Output Args: None 95 * 96 * Return: 97 * On success, the Value corresponding to the capability (KVM_CAP_*) 98 * specified by the value of cap. On failure a TEST_ASSERT failure 99 * is produced. 100 * 101 * Looks up and returns the value corresponding to the capability 102 * (KVM_CAP_*) given by cap. 103 */ 104 int vm_check_cap(struct kvm_vm *vm, long cap) 105 { 106 int ret; 107 108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap); 109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n" 110 " rc: %i errno: %i", ret, errno); 111 112 return ret; 113 } 114 115 /* VM Enable Capability 116 * 117 * Input Args: 118 * vm - Virtual Machine 119 * cap - Capability 120 * 121 * Output Args: None 122 * 123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 124 * 125 * Enables a capability (KVM_CAP_*) on the VM. 126 */ 127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 128 { 129 int ret; 130 131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 133 " rc: %i errno: %i", ret, errno); 134 135 return ret; 136 } 137 138 /* VCPU Enable Capability 139 * 140 * Input Args: 141 * vm - Virtual Machine 142 * vcpu_id - VCPU 143 * cap - Capability 144 * 145 * Output Args: None 146 * 147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 148 * 149 * Enables a capability (KVM_CAP_*) on the VCPU. 150 */ 151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 152 struct kvm_enable_cap *cap) 153 { 154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 155 int r; 156 157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 158 159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 161 " rc: %i, errno: %i", r, errno); 162 163 return r; 164 } 165 166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 167 { 168 struct kvm_enable_cap cap = { 0 }; 169 170 cap.cap = KVM_CAP_DIRTY_LOG_RING; 171 cap.args[0] = ring_size; 172 vm_enable_cap(vm, &cap); 173 vm->dirty_ring_size = ring_size; 174 } 175 176 static void vm_open(struct kvm_vm *vm, int perm) 177 { 178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 179 180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 181 print_skip("immediate_exit not available"); 182 exit(KSFT_SKIP); 183 } 184 185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 187 "rc: %i errno: %i", vm->fd, errno); 188 } 189 190 const char *vm_guest_mode_string(uint32_t i) 191 { 192 static const char * const strings[] = { 193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 208 }; 209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 210 "Missing new mode strings?"); 211 212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 213 214 return strings[i]; 215 } 216 217 const struct vm_guest_mode_params vm_guest_mode_params[] = { 218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 233 }; 234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 235 "Missing new mode params?"); 236 237 /* 238 * VM Create 239 * 240 * Input Args: 241 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 242 * phy_pages - Physical memory pages 243 * perm - permission 244 * 245 * Output Args: None 246 * 247 * Return: 248 * Pointer to opaque structure that describes the created VM. 249 * 250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 251 * When phy_pages is non-zero, a memory region of phy_pages physical pages 252 * is created and mapped starting at guest physical address 0. The file 253 * descriptor to control the created VM is created with the permissions 254 * given by perm (e.g. O_RDWR). 255 */ 256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 257 { 258 struct kvm_vm *vm; 259 260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 261 vm_guest_mode_string(mode), phy_pages, perm); 262 263 vm = calloc(1, sizeof(*vm)); 264 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 265 266 INIT_LIST_HEAD(&vm->vcpus); 267 vm->regions.gpa_tree = RB_ROOT; 268 vm->regions.hva_tree = RB_ROOT; 269 hash_init(vm->regions.slot_hash); 270 271 vm->mode = mode; 272 vm->type = 0; 273 274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 275 vm->va_bits = vm_guest_mode_params[mode].va_bits; 276 vm->page_size = vm_guest_mode_params[mode].page_size; 277 vm->page_shift = vm_guest_mode_params[mode].page_shift; 278 279 /* Setup mode specific traits. */ 280 switch (vm->mode) { 281 case VM_MODE_P52V48_4K: 282 vm->pgtable_levels = 4; 283 break; 284 case VM_MODE_P52V48_64K: 285 vm->pgtable_levels = 3; 286 break; 287 case VM_MODE_P48V48_4K: 288 vm->pgtable_levels = 4; 289 break; 290 case VM_MODE_P48V48_64K: 291 vm->pgtable_levels = 3; 292 break; 293 case VM_MODE_P40V48_4K: 294 case VM_MODE_P36V48_4K: 295 vm->pgtable_levels = 4; 296 break; 297 case VM_MODE_P40V48_64K: 298 case VM_MODE_P36V48_64K: 299 vm->pgtable_levels = 3; 300 break; 301 case VM_MODE_P48V48_16K: 302 case VM_MODE_P40V48_16K: 303 case VM_MODE_P36V48_16K: 304 vm->pgtable_levels = 4; 305 break; 306 case VM_MODE_P36V47_16K: 307 vm->pgtable_levels = 3; 308 break; 309 case VM_MODE_PXXV48_4K: 310 #ifdef __x86_64__ 311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 312 /* 313 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 314 * it doesn't take effect unless a CR4.LA57 is set, which it 315 * isn't for this VM_MODE. 316 */ 317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 318 "Linear address width (%d bits) not supported", 319 vm->va_bits); 320 pr_debug("Guest physical address width detected: %d\n", 321 vm->pa_bits); 322 vm->pgtable_levels = 4; 323 vm->va_bits = 48; 324 #else 325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 326 #endif 327 break; 328 case VM_MODE_P47V64_4K: 329 vm->pgtable_levels = 5; 330 break; 331 case VM_MODE_P44V64_4K: 332 vm->pgtable_levels = 5; 333 break; 334 default: 335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 336 } 337 338 #ifdef __aarch64__ 339 if (vm->pa_bits != 40) 340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 341 #endif 342 343 vm_open(vm, perm); 344 345 /* Limit to VA-bit canonical virtual addresses. */ 346 vm->vpages_valid = sparsebit_alloc(); 347 sparsebit_set_num(vm->vpages_valid, 348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 349 sparsebit_set_num(vm->vpages_valid, 350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 352 353 /* Limit physical addresses to PA-bits. */ 354 vm->max_gfn = vm_compute_max_gfn(vm); 355 356 /* Allocate and setup memory for guest. */ 357 vm->vpages_mapped = sparsebit_alloc(); 358 if (phy_pages != 0) 359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 360 0, 0, phy_pages, 0); 361 362 return vm; 363 } 364 365 /* 366 * VM Create with customized parameters 367 * 368 * Input Args: 369 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 370 * nr_vcpus - VCPU count 371 * slot0_mem_pages - Slot0 physical memory size 372 * extra_mem_pages - Non-slot0 physical memory total size 373 * num_percpu_pages - Per-cpu physical memory pages 374 * guest_code - Guest entry point 375 * vcpuids - VCPU IDs 376 * 377 * Output Args: None 378 * 379 * Return: 380 * Pointer to opaque structure that describes the created VM. 381 * 382 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 383 * with customized slot0 memory size, at least 512 pages currently. 384 * extra_mem_pages is only used to calculate the maximum page table size, 385 * no real memory allocation for non-slot0 memory in this function. 386 */ 387 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 388 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 389 uint32_t num_percpu_pages, void *guest_code, 390 uint32_t vcpuids[]) 391 { 392 uint64_t vcpu_pages, extra_pg_pages, pages; 393 struct kvm_vm *vm; 394 int i; 395 396 #ifdef __x86_64__ 397 /* 398 * Permission needs to be requested before KVM_SET_CPUID2. 399 */ 400 vm_xsave_req_perm(); 401 #endif 402 403 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 404 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 405 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 406 407 /* The maximum page table size for a memory region will be when the 408 * smallest pages are used. Considering each page contains x page 409 * table descriptors, the total extra size for page tables (for extra 410 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 411 * than N/x*2. 412 */ 413 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 414 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 415 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 416 417 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 418 "nr_vcpus = %d too large for host, max-vcpus = %d", 419 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 420 421 pages = vm_adjust_num_guest_pages(mode, pages); 422 vm = vm_create(mode, pages, O_RDWR); 423 424 kvm_vm_elf_load(vm, program_invocation_name); 425 426 #ifdef __x86_64__ 427 vm_create_irqchip(vm); 428 #endif 429 430 for (i = 0; i < nr_vcpus; ++i) { 431 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 432 433 vm_vcpu_add_default(vm, vcpuid, guest_code); 434 } 435 436 return vm; 437 } 438 439 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 440 uint32_t num_percpu_pages, void *guest_code, 441 uint32_t vcpuids[]) 442 { 443 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 444 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 445 } 446 447 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 448 void *guest_code) 449 { 450 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 451 (uint32_t []){ vcpuid }); 452 } 453 454 /* 455 * VM Restart 456 * 457 * Input Args: 458 * vm - VM that has been released before 459 * perm - permission 460 * 461 * Output Args: None 462 * 463 * Reopens the file descriptors associated to the VM and reinstates the 464 * global state, such as the irqchip and the memory regions that are mapped 465 * into the guest. 466 */ 467 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 468 { 469 int ctr; 470 struct userspace_mem_region *region; 471 472 vm_open(vmp, perm); 473 if (vmp->has_irqchip) 474 vm_create_irqchip(vmp); 475 476 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 477 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 478 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 479 " rc: %i errno: %i\n" 480 " slot: %u flags: 0x%x\n" 481 " guest_phys_addr: 0x%llx size: 0x%llx", 482 ret, errno, region->region.slot, 483 region->region.flags, 484 region->region.guest_phys_addr, 485 region->region.memory_size); 486 } 487 } 488 489 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 490 { 491 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 492 int ret; 493 494 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 495 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 496 __func__, strerror(-ret)); 497 } 498 499 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 500 uint64_t first_page, uint32_t num_pages) 501 { 502 struct kvm_clear_dirty_log args = { 503 .dirty_bitmap = log, .slot = slot, 504 .first_page = first_page, 505 .num_pages = num_pages 506 }; 507 int ret; 508 509 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 510 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 511 __func__, strerror(-ret)); 512 } 513 514 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 515 { 516 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 517 } 518 519 /* 520 * Userspace Memory Region Find 521 * 522 * Input Args: 523 * vm - Virtual Machine 524 * start - Starting VM physical address 525 * end - Ending VM physical address, inclusive. 526 * 527 * Output Args: None 528 * 529 * Return: 530 * Pointer to overlapping region, NULL if no such region. 531 * 532 * Searches for a region with any physical memory that overlaps with 533 * any portion of the guest physical addresses from start to end 534 * inclusive. If multiple overlapping regions exist, a pointer to any 535 * of the regions is returned. Null is returned only when no overlapping 536 * region exists. 537 */ 538 static struct userspace_mem_region * 539 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 540 { 541 struct rb_node *node; 542 543 for (node = vm->regions.gpa_tree.rb_node; node; ) { 544 struct userspace_mem_region *region = 545 container_of(node, struct userspace_mem_region, gpa_node); 546 uint64_t existing_start = region->region.guest_phys_addr; 547 uint64_t existing_end = region->region.guest_phys_addr 548 + region->region.memory_size - 1; 549 if (start <= existing_end && end >= existing_start) 550 return region; 551 552 if (start < existing_start) 553 node = node->rb_left; 554 else 555 node = node->rb_right; 556 } 557 558 return NULL; 559 } 560 561 /* 562 * KVM Userspace Memory Region Find 563 * 564 * Input Args: 565 * vm - Virtual Machine 566 * start - Starting VM physical address 567 * end - Ending VM physical address, inclusive. 568 * 569 * Output Args: None 570 * 571 * Return: 572 * Pointer to overlapping region, NULL if no such region. 573 * 574 * Public interface to userspace_mem_region_find. Allows tests to look up 575 * the memslot datastructure for a given range of guest physical memory. 576 */ 577 struct kvm_userspace_memory_region * 578 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 579 uint64_t end) 580 { 581 struct userspace_mem_region *region; 582 583 region = userspace_mem_region_find(vm, start, end); 584 if (!region) 585 return NULL; 586 587 return ®ion->region; 588 } 589 590 /* 591 * VCPU Find 592 * 593 * Input Args: 594 * vm - Virtual Machine 595 * vcpuid - VCPU ID 596 * 597 * Output Args: None 598 * 599 * Return: 600 * Pointer to VCPU structure 601 * 602 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 603 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 604 * for the specified vcpuid. 605 */ 606 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 607 { 608 struct vcpu *vcpu; 609 610 list_for_each_entry(vcpu, &vm->vcpus, list) { 611 if (vcpu->id == vcpuid) 612 return vcpu; 613 } 614 615 return NULL; 616 } 617 618 /* 619 * VM VCPU Remove 620 * 621 * Input Args: 622 * vcpu - VCPU to remove 623 * 624 * Output Args: None 625 * 626 * Return: None, TEST_ASSERT failures for all error conditions 627 * 628 * Removes a vCPU from a VM and frees its resources. 629 */ 630 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 631 { 632 int ret; 633 634 if (vcpu->dirty_gfns) { 635 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 636 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 637 "rc: %i errno: %i", ret, errno); 638 vcpu->dirty_gfns = NULL; 639 } 640 641 ret = munmap(vcpu->state, vcpu_mmap_sz()); 642 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 643 "errno: %i", ret, errno); 644 ret = close(vcpu->fd); 645 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 646 "errno: %i", ret, errno); 647 648 list_del(&vcpu->list); 649 free(vcpu); 650 } 651 652 void kvm_vm_release(struct kvm_vm *vmp) 653 { 654 struct vcpu *vcpu, *tmp; 655 int ret; 656 657 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 658 vm_vcpu_rm(vmp, vcpu); 659 660 ret = close(vmp->fd); 661 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 662 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 663 664 ret = close(vmp->kvm_fd); 665 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 666 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 667 } 668 669 static void __vm_mem_region_delete(struct kvm_vm *vm, 670 struct userspace_mem_region *region, 671 bool unlink) 672 { 673 int ret; 674 675 if (unlink) { 676 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 677 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 678 hash_del(®ion->slot_node); 679 } 680 681 region->region.memory_size = 0; 682 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 683 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 684 "rc: %i errno: %i", ret, errno); 685 686 sparsebit_free(®ion->unused_phy_pages); 687 ret = munmap(region->mmap_start, region->mmap_size); 688 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 689 690 free(region); 691 } 692 693 /* 694 * Destroys and frees the VM pointed to by vmp. 695 */ 696 void kvm_vm_free(struct kvm_vm *vmp) 697 { 698 int ctr; 699 struct hlist_node *node; 700 struct userspace_mem_region *region; 701 702 if (vmp == NULL) 703 return; 704 705 /* Free userspace_mem_regions. */ 706 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 707 __vm_mem_region_delete(vmp, region, false); 708 709 /* Free sparsebit arrays. */ 710 sparsebit_free(&vmp->vpages_valid); 711 sparsebit_free(&vmp->vpages_mapped); 712 713 kvm_vm_release(vmp); 714 715 /* Free the structure describing the VM. */ 716 free(vmp); 717 } 718 719 /* 720 * Memory Compare, host virtual to guest virtual 721 * 722 * Input Args: 723 * hva - Starting host virtual address 724 * vm - Virtual Machine 725 * gva - Starting guest virtual address 726 * len - number of bytes to compare 727 * 728 * Output Args: None 729 * 730 * Input/Output Args: None 731 * 732 * Return: 733 * Returns 0 if the bytes starting at hva for a length of len 734 * are equal the guest virtual bytes starting at gva. Returns 735 * a value < 0, if bytes at hva are less than those at gva. 736 * Otherwise a value > 0 is returned. 737 * 738 * Compares the bytes starting at the host virtual address hva, for 739 * a length of len, to the guest bytes starting at the guest virtual 740 * address given by gva. 741 */ 742 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 743 { 744 size_t amt; 745 746 /* 747 * Compare a batch of bytes until either a match is found 748 * or all the bytes have been compared. 749 */ 750 for (uintptr_t offset = 0; offset < len; offset += amt) { 751 uintptr_t ptr1 = (uintptr_t)hva + offset; 752 753 /* 754 * Determine host address for guest virtual address 755 * at offset. 756 */ 757 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 758 759 /* 760 * Determine amount to compare on this pass. 761 * Don't allow the comparsion to cross a page boundary. 762 */ 763 amt = len - offset; 764 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 765 amt = vm->page_size - (ptr1 % vm->page_size); 766 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 767 amt = vm->page_size - (ptr2 % vm->page_size); 768 769 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 770 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 771 772 /* 773 * Perform the comparison. If there is a difference 774 * return that result to the caller, otherwise need 775 * to continue on looking for a mismatch. 776 */ 777 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 778 if (ret != 0) 779 return ret; 780 } 781 782 /* 783 * No mismatch found. Let the caller know the two memory 784 * areas are equal. 785 */ 786 return 0; 787 } 788 789 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 790 struct userspace_mem_region *region) 791 { 792 struct rb_node **cur, *parent; 793 794 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 795 struct userspace_mem_region *cregion; 796 797 cregion = container_of(*cur, typeof(*cregion), gpa_node); 798 parent = *cur; 799 if (region->region.guest_phys_addr < 800 cregion->region.guest_phys_addr) 801 cur = &(*cur)->rb_left; 802 else { 803 TEST_ASSERT(region->region.guest_phys_addr != 804 cregion->region.guest_phys_addr, 805 "Duplicate GPA in region tree"); 806 807 cur = &(*cur)->rb_right; 808 } 809 } 810 811 rb_link_node(®ion->gpa_node, parent, cur); 812 rb_insert_color(®ion->gpa_node, gpa_tree); 813 } 814 815 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 816 struct userspace_mem_region *region) 817 { 818 struct rb_node **cur, *parent; 819 820 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 821 struct userspace_mem_region *cregion; 822 823 cregion = container_of(*cur, typeof(*cregion), hva_node); 824 parent = *cur; 825 if (region->host_mem < cregion->host_mem) 826 cur = &(*cur)->rb_left; 827 else { 828 TEST_ASSERT(region->host_mem != 829 cregion->host_mem, 830 "Duplicate HVA in region tree"); 831 832 cur = &(*cur)->rb_right; 833 } 834 } 835 836 rb_link_node(®ion->hva_node, parent, cur); 837 rb_insert_color(®ion->hva_node, hva_tree); 838 } 839 840 /* 841 * VM Userspace Memory Region Add 842 * 843 * Input Args: 844 * vm - Virtual Machine 845 * src_type - Storage source for this region. 846 * NULL to use anonymous memory. 847 * guest_paddr - Starting guest physical address 848 * slot - KVM region slot 849 * npages - Number of physical pages 850 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 851 * 852 * Output Args: None 853 * 854 * Return: None 855 * 856 * Allocates a memory area of the number of pages specified by npages 857 * and maps it to the VM specified by vm, at a starting physical address 858 * given by guest_paddr. The region is created with a KVM region slot 859 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 860 * region is created with the flags given by flags. 861 */ 862 void vm_userspace_mem_region_add(struct kvm_vm *vm, 863 enum vm_mem_backing_src_type src_type, 864 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 865 uint32_t flags) 866 { 867 int ret; 868 struct userspace_mem_region *region; 869 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 870 size_t alignment; 871 872 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 873 "Number of guest pages is not compatible with the host. " 874 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 875 876 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 877 "address not on a page boundary.\n" 878 " guest_paddr: 0x%lx vm->page_size: 0x%x", 879 guest_paddr, vm->page_size); 880 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 881 <= vm->max_gfn, "Physical range beyond maximum " 882 "supported physical address,\n" 883 " guest_paddr: 0x%lx npages: 0x%lx\n" 884 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 885 guest_paddr, npages, vm->max_gfn, vm->page_size); 886 887 /* 888 * Confirm a mem region with an overlapping address doesn't 889 * already exist. 890 */ 891 region = (struct userspace_mem_region *) userspace_mem_region_find( 892 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 893 if (region != NULL) 894 TEST_FAIL("overlapping userspace_mem_region already " 895 "exists\n" 896 " requested guest_paddr: 0x%lx npages: 0x%lx " 897 "page_size: 0x%x\n" 898 " existing guest_paddr: 0x%lx size: 0x%lx", 899 guest_paddr, npages, vm->page_size, 900 (uint64_t) region->region.guest_phys_addr, 901 (uint64_t) region->region.memory_size); 902 903 /* Confirm no region with the requested slot already exists. */ 904 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 905 slot) { 906 if (region->region.slot != slot) 907 continue; 908 909 TEST_FAIL("A mem region with the requested slot " 910 "already exists.\n" 911 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 912 " existing slot: %u paddr: 0x%lx size: 0x%lx", 913 slot, guest_paddr, npages, 914 region->region.slot, 915 (uint64_t) region->region.guest_phys_addr, 916 (uint64_t) region->region.memory_size); 917 } 918 919 /* Allocate and initialize new mem region structure. */ 920 region = calloc(1, sizeof(*region)); 921 TEST_ASSERT(region != NULL, "Insufficient Memory"); 922 region->mmap_size = npages * vm->page_size; 923 924 #ifdef __s390x__ 925 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 926 alignment = 0x100000; 927 #else 928 alignment = 1; 929 #endif 930 931 /* 932 * When using THP mmap is not guaranteed to returned a hugepage aligned 933 * address so we have to pad the mmap. Padding is not needed for HugeTLB 934 * because mmap will always return an address aligned to the HugeTLB 935 * page size. 936 */ 937 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 938 alignment = max(backing_src_pagesz, alignment); 939 940 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 941 942 /* Add enough memory to align up if necessary */ 943 if (alignment > 1) 944 region->mmap_size += alignment; 945 946 region->fd = -1; 947 if (backing_src_is_shared(src_type)) { 948 int memfd_flags = MFD_CLOEXEC; 949 950 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 951 memfd_flags |= MFD_HUGETLB; 952 953 region->fd = memfd_create("kvm_selftest", memfd_flags); 954 TEST_ASSERT(region->fd != -1, 955 "memfd_create failed, errno: %i", errno); 956 957 ret = ftruncate(region->fd, region->mmap_size); 958 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 959 960 ret = fallocate(region->fd, 961 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 962 region->mmap_size); 963 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 964 } 965 966 region->mmap_start = mmap(NULL, region->mmap_size, 967 PROT_READ | PROT_WRITE, 968 vm_mem_backing_src_alias(src_type)->flag, 969 region->fd, 0); 970 TEST_ASSERT(region->mmap_start != MAP_FAILED, 971 "test_malloc failed, mmap_start: %p errno: %i", 972 region->mmap_start, errno); 973 974 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 975 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 976 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 977 region->mmap_start, backing_src_pagesz); 978 979 /* Align host address */ 980 region->host_mem = align_ptr_up(region->mmap_start, alignment); 981 982 /* As needed perform madvise */ 983 if ((src_type == VM_MEM_SRC_ANONYMOUS || 984 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 985 ret = madvise(region->host_mem, npages * vm->page_size, 986 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 987 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 988 region->host_mem, npages * vm->page_size, 989 vm_mem_backing_src_alias(src_type)->name); 990 } 991 992 region->unused_phy_pages = sparsebit_alloc(); 993 sparsebit_set_num(region->unused_phy_pages, 994 guest_paddr >> vm->page_shift, npages); 995 region->region.slot = slot; 996 region->region.flags = flags; 997 region->region.guest_phys_addr = guest_paddr; 998 region->region.memory_size = npages * vm->page_size; 999 region->region.userspace_addr = (uintptr_t) region->host_mem; 1000 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1001 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1002 " rc: %i errno: %i\n" 1003 " slot: %u flags: 0x%x\n" 1004 " guest_phys_addr: 0x%lx size: 0x%lx", 1005 ret, errno, slot, flags, 1006 guest_paddr, (uint64_t) region->region.memory_size); 1007 1008 /* Add to quick lookup data structures */ 1009 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1010 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1011 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1012 1013 /* If shared memory, create an alias. */ 1014 if (region->fd >= 0) { 1015 region->mmap_alias = mmap(NULL, region->mmap_size, 1016 PROT_READ | PROT_WRITE, 1017 vm_mem_backing_src_alias(src_type)->flag, 1018 region->fd, 0); 1019 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1020 "mmap of alias failed, errno: %i", errno); 1021 1022 /* Align host alias address */ 1023 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1024 } 1025 } 1026 1027 /* 1028 * Memslot to region 1029 * 1030 * Input Args: 1031 * vm - Virtual Machine 1032 * memslot - KVM memory slot ID 1033 * 1034 * Output Args: None 1035 * 1036 * Return: 1037 * Pointer to memory region structure that describe memory region 1038 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1039 * on error (e.g. currently no memory region using memslot as a KVM 1040 * memory slot ID). 1041 */ 1042 struct userspace_mem_region * 1043 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1044 { 1045 struct userspace_mem_region *region; 1046 1047 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1048 memslot) 1049 if (region->region.slot == memslot) 1050 return region; 1051 1052 fprintf(stderr, "No mem region with the requested slot found,\n" 1053 " requested slot: %u\n", memslot); 1054 fputs("---- vm dump ----\n", stderr); 1055 vm_dump(stderr, vm, 2); 1056 TEST_FAIL("Mem region not found"); 1057 return NULL; 1058 } 1059 1060 /* 1061 * VM Memory Region Flags Set 1062 * 1063 * Input Args: 1064 * vm - Virtual Machine 1065 * flags - Starting guest physical address 1066 * 1067 * Output Args: None 1068 * 1069 * Return: None 1070 * 1071 * Sets the flags of the memory region specified by the value of slot, 1072 * to the values given by flags. 1073 */ 1074 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1075 { 1076 int ret; 1077 struct userspace_mem_region *region; 1078 1079 region = memslot2region(vm, slot); 1080 1081 region->region.flags = flags; 1082 1083 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1084 1085 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1086 " rc: %i errno: %i slot: %u flags: 0x%x", 1087 ret, errno, slot, flags); 1088 } 1089 1090 /* 1091 * VM Memory Region Move 1092 * 1093 * Input Args: 1094 * vm - Virtual Machine 1095 * slot - Slot of the memory region to move 1096 * new_gpa - Starting guest physical address 1097 * 1098 * Output Args: None 1099 * 1100 * Return: None 1101 * 1102 * Change the gpa of a memory region. 1103 */ 1104 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1105 { 1106 struct userspace_mem_region *region; 1107 int ret; 1108 1109 region = memslot2region(vm, slot); 1110 1111 region->region.guest_phys_addr = new_gpa; 1112 1113 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1114 1115 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1116 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1117 ret, errno, slot, new_gpa); 1118 } 1119 1120 /* 1121 * VM Memory Region Delete 1122 * 1123 * Input Args: 1124 * vm - Virtual Machine 1125 * slot - Slot of the memory region to delete 1126 * 1127 * Output Args: None 1128 * 1129 * Return: None 1130 * 1131 * Delete a memory region. 1132 */ 1133 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1134 { 1135 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1136 } 1137 1138 /* 1139 * VCPU mmap Size 1140 * 1141 * Input Args: None 1142 * 1143 * Output Args: None 1144 * 1145 * Return: 1146 * Size of VCPU state 1147 * 1148 * Returns the size of the structure pointed to by the return value 1149 * of vcpu_state(). 1150 */ 1151 static int vcpu_mmap_sz(void) 1152 { 1153 int dev_fd, ret; 1154 1155 dev_fd = open_kvm_dev_path_or_exit(); 1156 1157 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1158 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1159 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1160 __func__, ret, errno); 1161 1162 close(dev_fd); 1163 1164 return ret; 1165 } 1166 1167 /* 1168 * VM VCPU Add 1169 * 1170 * Input Args: 1171 * vm - Virtual Machine 1172 * vcpuid - VCPU ID 1173 * 1174 * Output Args: None 1175 * 1176 * Return: None 1177 * 1178 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1179 * No additional VCPU setup is done. 1180 */ 1181 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1182 { 1183 struct vcpu *vcpu; 1184 1185 /* Confirm a vcpu with the specified id doesn't already exist. */ 1186 vcpu = vcpu_find(vm, vcpuid); 1187 if (vcpu != NULL) 1188 TEST_FAIL("vcpu with the specified id " 1189 "already exists,\n" 1190 " requested vcpuid: %u\n" 1191 " existing vcpuid: %u state: %p", 1192 vcpuid, vcpu->id, vcpu->state); 1193 1194 /* Allocate and initialize new vcpu structure. */ 1195 vcpu = calloc(1, sizeof(*vcpu)); 1196 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1197 vcpu->id = vcpuid; 1198 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1199 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1200 vcpu->fd, errno); 1201 1202 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1203 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1204 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1205 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1206 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1207 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1208 "vcpu id: %u errno: %i", vcpuid, errno); 1209 1210 /* Add to linked-list of VCPUs. */ 1211 list_add(&vcpu->list, &vm->vcpus); 1212 } 1213 1214 /* 1215 * VM Virtual Address Unused Gap 1216 * 1217 * Input Args: 1218 * vm - Virtual Machine 1219 * sz - Size (bytes) 1220 * vaddr_min - Minimum Virtual Address 1221 * 1222 * Output Args: None 1223 * 1224 * Return: 1225 * Lowest virtual address at or below vaddr_min, with at least 1226 * sz unused bytes. TEST_ASSERT failure if no area of at least 1227 * size sz is available. 1228 * 1229 * Within the VM specified by vm, locates the lowest starting virtual 1230 * address >= vaddr_min, that has at least sz unallocated bytes. A 1231 * TEST_ASSERT failure occurs for invalid input or no area of at least 1232 * sz unallocated bytes >= vaddr_min is available. 1233 */ 1234 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1235 vm_vaddr_t vaddr_min) 1236 { 1237 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1238 1239 /* Determine lowest permitted virtual page index. */ 1240 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1241 if ((pgidx_start * vm->page_size) < vaddr_min) 1242 goto no_va_found; 1243 1244 /* Loop over section with enough valid virtual page indexes. */ 1245 if (!sparsebit_is_set_num(vm->vpages_valid, 1246 pgidx_start, pages)) 1247 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1248 pgidx_start, pages); 1249 do { 1250 /* 1251 * Are there enough unused virtual pages available at 1252 * the currently proposed starting virtual page index. 1253 * If not, adjust proposed starting index to next 1254 * possible. 1255 */ 1256 if (sparsebit_is_clear_num(vm->vpages_mapped, 1257 pgidx_start, pages)) 1258 goto va_found; 1259 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1260 pgidx_start, pages); 1261 if (pgidx_start == 0) 1262 goto no_va_found; 1263 1264 /* 1265 * If needed, adjust proposed starting virtual address, 1266 * to next range of valid virtual addresses. 1267 */ 1268 if (!sparsebit_is_set_num(vm->vpages_valid, 1269 pgidx_start, pages)) { 1270 pgidx_start = sparsebit_next_set_num( 1271 vm->vpages_valid, pgidx_start, pages); 1272 if (pgidx_start == 0) 1273 goto no_va_found; 1274 } 1275 } while (pgidx_start != 0); 1276 1277 no_va_found: 1278 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1279 1280 /* NOT REACHED */ 1281 return -1; 1282 1283 va_found: 1284 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1285 pgidx_start, pages), 1286 "Unexpected, invalid virtual page index range,\n" 1287 " pgidx_start: 0x%lx\n" 1288 " pages: 0x%lx", 1289 pgidx_start, pages); 1290 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1291 pgidx_start, pages), 1292 "Unexpected, pages already mapped,\n" 1293 " pgidx_start: 0x%lx\n" 1294 " pages: 0x%lx", 1295 pgidx_start, pages); 1296 1297 return pgidx_start * vm->page_size; 1298 } 1299 1300 /* 1301 * VM Virtual Address Allocate 1302 * 1303 * Input Args: 1304 * vm - Virtual Machine 1305 * sz - Size in bytes 1306 * vaddr_min - Minimum starting virtual address 1307 * data_memslot - Memory region slot for data pages 1308 * pgd_memslot - Memory region slot for new virtual translation tables 1309 * 1310 * Output Args: None 1311 * 1312 * Return: 1313 * Starting guest virtual address 1314 * 1315 * Allocates at least sz bytes within the virtual address space of the vm 1316 * given by vm. The allocated bytes are mapped to a virtual address >= 1317 * the address given by vaddr_min. Note that each allocation uses a 1318 * a unique set of pages, with the minimum real allocation being at least 1319 * a page. 1320 */ 1321 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1322 { 1323 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1324 1325 virt_pgd_alloc(vm); 1326 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1327 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1328 1329 /* 1330 * Find an unused range of virtual page addresses of at least 1331 * pages in length. 1332 */ 1333 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1334 1335 /* Map the virtual pages. */ 1336 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1337 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1338 1339 virt_pg_map(vm, vaddr, paddr); 1340 1341 sparsebit_set(vm->vpages_mapped, 1342 vaddr >> vm->page_shift); 1343 } 1344 1345 return vaddr_start; 1346 } 1347 1348 /* 1349 * VM Virtual Address Allocate Pages 1350 * 1351 * Input Args: 1352 * vm - Virtual Machine 1353 * 1354 * Output Args: None 1355 * 1356 * Return: 1357 * Starting guest virtual address 1358 * 1359 * Allocates at least N system pages worth of bytes within the virtual address 1360 * space of the vm. 1361 */ 1362 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1363 { 1364 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1365 } 1366 1367 /* 1368 * VM Virtual Address Allocate Page 1369 * 1370 * Input Args: 1371 * vm - Virtual Machine 1372 * 1373 * Output Args: None 1374 * 1375 * Return: 1376 * Starting guest virtual address 1377 * 1378 * Allocates at least one system page worth of bytes within the virtual address 1379 * space of the vm. 1380 */ 1381 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1382 { 1383 return vm_vaddr_alloc_pages(vm, 1); 1384 } 1385 1386 /* 1387 * Map a range of VM virtual address to the VM's physical address 1388 * 1389 * Input Args: 1390 * vm - Virtual Machine 1391 * vaddr - Virtuall address to map 1392 * paddr - VM Physical Address 1393 * npages - The number of pages to map 1394 * pgd_memslot - Memory region slot for new virtual translation tables 1395 * 1396 * Output Args: None 1397 * 1398 * Return: None 1399 * 1400 * Within the VM given by @vm, creates a virtual translation for 1401 * @npages starting at @vaddr to the page range starting at @paddr. 1402 */ 1403 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1404 unsigned int npages) 1405 { 1406 size_t page_size = vm->page_size; 1407 size_t size = npages * page_size; 1408 1409 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1410 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1411 1412 while (npages--) { 1413 virt_pg_map(vm, vaddr, paddr); 1414 vaddr += page_size; 1415 paddr += page_size; 1416 } 1417 } 1418 1419 /* 1420 * Address VM Physical to Host Virtual 1421 * 1422 * Input Args: 1423 * vm - Virtual Machine 1424 * gpa - VM physical address 1425 * 1426 * Output Args: None 1427 * 1428 * Return: 1429 * Equivalent host virtual address 1430 * 1431 * Locates the memory region containing the VM physical address given 1432 * by gpa, within the VM given by vm. When found, the host virtual 1433 * address providing the memory to the vm physical address is returned. 1434 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1435 */ 1436 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1437 { 1438 struct userspace_mem_region *region; 1439 1440 region = userspace_mem_region_find(vm, gpa, gpa); 1441 if (!region) { 1442 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1443 return NULL; 1444 } 1445 1446 return (void *)((uintptr_t)region->host_mem 1447 + (gpa - region->region.guest_phys_addr)); 1448 } 1449 1450 /* 1451 * Address Host Virtual to VM Physical 1452 * 1453 * Input Args: 1454 * vm - Virtual Machine 1455 * hva - Host virtual address 1456 * 1457 * Output Args: None 1458 * 1459 * Return: 1460 * Equivalent VM physical address 1461 * 1462 * Locates the memory region containing the host virtual address given 1463 * by hva, within the VM given by vm. When found, the equivalent 1464 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1465 * region containing hva exists. 1466 */ 1467 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1468 { 1469 struct rb_node *node; 1470 1471 for (node = vm->regions.hva_tree.rb_node; node; ) { 1472 struct userspace_mem_region *region = 1473 container_of(node, struct userspace_mem_region, hva_node); 1474 1475 if (hva >= region->host_mem) { 1476 if (hva <= (region->host_mem 1477 + region->region.memory_size - 1)) 1478 return (vm_paddr_t)((uintptr_t) 1479 region->region.guest_phys_addr 1480 + (hva - (uintptr_t)region->host_mem)); 1481 1482 node = node->rb_right; 1483 } else 1484 node = node->rb_left; 1485 } 1486 1487 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1488 return -1; 1489 } 1490 1491 /* 1492 * Address VM physical to Host Virtual *alias*. 1493 * 1494 * Input Args: 1495 * vm - Virtual Machine 1496 * gpa - VM physical address 1497 * 1498 * Output Args: None 1499 * 1500 * Return: 1501 * Equivalent address within the host virtual *alias* area, or NULL 1502 * (without failing the test) if the guest memory is not shared (so 1503 * no alias exists). 1504 * 1505 * When vm_create() and related functions are called with a shared memory 1506 * src_type, we also create a writable, shared alias mapping of the 1507 * underlying guest memory. This allows the host to manipulate guest memory 1508 * without mapping that memory in the guest's address space. And, for 1509 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1510 */ 1511 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1512 { 1513 struct userspace_mem_region *region; 1514 uintptr_t offset; 1515 1516 region = userspace_mem_region_find(vm, gpa, gpa); 1517 if (!region) 1518 return NULL; 1519 1520 if (!region->host_alias) 1521 return NULL; 1522 1523 offset = gpa - region->region.guest_phys_addr; 1524 return (void *) ((uintptr_t) region->host_alias + offset); 1525 } 1526 1527 /* 1528 * VM Create IRQ Chip 1529 * 1530 * Input Args: 1531 * vm - Virtual Machine 1532 * 1533 * Output Args: None 1534 * 1535 * Return: None 1536 * 1537 * Creates an interrupt controller chip for the VM specified by vm. 1538 */ 1539 void vm_create_irqchip(struct kvm_vm *vm) 1540 { 1541 int ret; 1542 1543 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1544 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1545 "rc: %i errno: %i", ret, errno); 1546 1547 vm->has_irqchip = true; 1548 } 1549 1550 /* 1551 * VM VCPU State 1552 * 1553 * Input Args: 1554 * vm - Virtual Machine 1555 * vcpuid - VCPU ID 1556 * 1557 * Output Args: None 1558 * 1559 * Return: 1560 * Pointer to structure that describes the state of the VCPU. 1561 * 1562 * Locates and returns a pointer to a structure that describes the 1563 * state of the VCPU with the given vcpuid. 1564 */ 1565 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1566 { 1567 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1568 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1569 1570 return vcpu->state; 1571 } 1572 1573 /* 1574 * VM VCPU Run 1575 * 1576 * Input Args: 1577 * vm - Virtual Machine 1578 * vcpuid - VCPU ID 1579 * 1580 * Output Args: None 1581 * 1582 * Return: None 1583 * 1584 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1585 * given by vm. 1586 */ 1587 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1588 { 1589 int ret = _vcpu_run(vm, vcpuid); 1590 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1591 "rc: %i errno: %i", ret, errno); 1592 } 1593 1594 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1595 { 1596 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1597 int rc; 1598 1599 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1600 do { 1601 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1602 } while (rc == -1 && errno == EINTR); 1603 1604 assert_on_unhandled_exception(vm, vcpuid); 1605 1606 return rc; 1607 } 1608 1609 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1610 { 1611 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1612 1613 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1614 1615 return vcpu->fd; 1616 } 1617 1618 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1619 { 1620 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1621 int ret; 1622 1623 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1624 1625 vcpu->state->immediate_exit = 1; 1626 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1627 vcpu->state->immediate_exit = 0; 1628 1629 TEST_ASSERT(ret == -1 && errno == EINTR, 1630 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1631 ret, errno); 1632 } 1633 1634 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1635 struct kvm_guest_debug *debug) 1636 { 1637 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1638 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1639 1640 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1641 } 1642 1643 /* 1644 * VM VCPU Set MP State 1645 * 1646 * Input Args: 1647 * vm - Virtual Machine 1648 * vcpuid - VCPU ID 1649 * mp_state - mp_state to be set 1650 * 1651 * Output Args: None 1652 * 1653 * Return: None 1654 * 1655 * Sets the MP state of the VCPU given by vcpuid, to the state given 1656 * by mp_state. 1657 */ 1658 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1659 struct kvm_mp_state *mp_state) 1660 { 1661 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1662 int ret; 1663 1664 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1665 1666 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1667 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1668 "rc: %i errno: %i", ret, errno); 1669 } 1670 1671 /* 1672 * VM VCPU Get Reg List 1673 * 1674 * Input Args: 1675 * vm - Virtual Machine 1676 * vcpuid - VCPU ID 1677 * 1678 * Output Args: 1679 * None 1680 * 1681 * Return: 1682 * A pointer to an allocated struct kvm_reg_list 1683 * 1684 * Get the list of guest registers which are supported for 1685 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1686 */ 1687 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1688 { 1689 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1690 int ret; 1691 1692 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1693 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1694 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1695 reg_list->n = reg_list_n.n; 1696 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1697 return reg_list; 1698 } 1699 1700 /* 1701 * VM VCPU Regs Get 1702 * 1703 * Input Args: 1704 * vm - Virtual Machine 1705 * vcpuid - VCPU ID 1706 * 1707 * Output Args: 1708 * regs - current state of VCPU regs 1709 * 1710 * Return: None 1711 * 1712 * Obtains the current register state for the VCPU specified by vcpuid 1713 * and stores it at the location given by regs. 1714 */ 1715 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1716 { 1717 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1718 int ret; 1719 1720 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1721 1722 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1723 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1724 ret, errno); 1725 } 1726 1727 /* 1728 * VM VCPU Regs Set 1729 * 1730 * Input Args: 1731 * vm - Virtual Machine 1732 * vcpuid - VCPU ID 1733 * regs - Values to set VCPU regs to 1734 * 1735 * Output Args: None 1736 * 1737 * Return: None 1738 * 1739 * Sets the regs of the VCPU specified by vcpuid to the values 1740 * given by regs. 1741 */ 1742 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1743 { 1744 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1745 int ret; 1746 1747 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1748 1749 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1750 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1751 ret, errno); 1752 } 1753 1754 #ifdef __KVM_HAVE_VCPU_EVENTS 1755 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1756 struct kvm_vcpu_events *events) 1757 { 1758 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1759 int ret; 1760 1761 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1762 1763 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1764 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1765 ret, errno); 1766 } 1767 1768 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1769 struct kvm_vcpu_events *events) 1770 { 1771 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1772 int ret; 1773 1774 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1775 1776 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1777 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1778 ret, errno); 1779 } 1780 #endif 1781 1782 #ifdef __x86_64__ 1783 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1784 struct kvm_nested_state *state) 1785 { 1786 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1787 int ret; 1788 1789 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1790 1791 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1792 TEST_ASSERT(ret == 0, 1793 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1794 ret, errno); 1795 } 1796 1797 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1798 struct kvm_nested_state *state, bool ignore_error) 1799 { 1800 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1801 int ret; 1802 1803 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1804 1805 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1806 if (!ignore_error) { 1807 TEST_ASSERT(ret == 0, 1808 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1809 ret, errno); 1810 } 1811 1812 return ret; 1813 } 1814 #endif 1815 1816 /* 1817 * VM VCPU System Regs Get 1818 * 1819 * Input Args: 1820 * vm - Virtual Machine 1821 * vcpuid - VCPU ID 1822 * 1823 * Output Args: 1824 * sregs - current state of VCPU system regs 1825 * 1826 * Return: None 1827 * 1828 * Obtains the current system register state for the VCPU specified by 1829 * vcpuid and stores it at the location given by sregs. 1830 */ 1831 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1832 { 1833 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1834 int ret; 1835 1836 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1837 1838 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1839 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1840 ret, errno); 1841 } 1842 1843 /* 1844 * VM VCPU System Regs Set 1845 * 1846 * Input Args: 1847 * vm - Virtual Machine 1848 * vcpuid - VCPU ID 1849 * sregs - Values to set VCPU system regs to 1850 * 1851 * Output Args: None 1852 * 1853 * Return: None 1854 * 1855 * Sets the system regs of the VCPU specified by vcpuid to the values 1856 * given by sregs. 1857 */ 1858 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1859 { 1860 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1861 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, " 1862 "rc: %i errno: %i", ret, errno); 1863 } 1864 1865 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1866 { 1867 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1868 1869 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1870 1871 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1872 } 1873 1874 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1875 { 1876 int ret; 1877 1878 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1879 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1880 ret, errno, strerror(errno)); 1881 } 1882 1883 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1884 { 1885 int ret; 1886 1887 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1888 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1889 ret, errno, strerror(errno)); 1890 } 1891 1892 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1893 { 1894 int ret; 1895 1896 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1897 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1898 ret, errno, strerror(errno)); 1899 } 1900 1901 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1902 { 1903 int ret; 1904 1905 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1906 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1907 ret, errno, strerror(errno)); 1908 } 1909 1910 /* 1911 * VCPU Ioctl 1912 * 1913 * Input Args: 1914 * vm - Virtual Machine 1915 * vcpuid - VCPU ID 1916 * cmd - Ioctl number 1917 * arg - Argument to pass to the ioctl 1918 * 1919 * Return: None 1920 * 1921 * Issues an arbitrary ioctl on a VCPU fd. 1922 */ 1923 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1924 unsigned long cmd, void *arg) 1925 { 1926 int ret; 1927 1928 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1929 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1930 cmd, ret, errno, strerror(errno)); 1931 } 1932 1933 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1934 unsigned long cmd, void *arg) 1935 { 1936 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1937 int ret; 1938 1939 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1940 1941 ret = ioctl(vcpu->fd, cmd, arg); 1942 1943 return ret; 1944 } 1945 1946 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1947 { 1948 struct vcpu *vcpu; 1949 uint32_t size = vm->dirty_ring_size; 1950 1951 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1952 1953 vcpu = vcpu_find(vm, vcpuid); 1954 1955 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1956 1957 if (!vcpu->dirty_gfns) { 1958 void *addr; 1959 1960 addr = mmap(NULL, size, PROT_READ, 1961 MAP_PRIVATE, vcpu->fd, 1962 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1963 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1964 1965 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1966 MAP_PRIVATE, vcpu->fd, 1967 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1968 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1969 1970 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1971 MAP_SHARED, vcpu->fd, 1972 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1973 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1974 1975 vcpu->dirty_gfns = addr; 1976 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1977 } 1978 1979 return vcpu->dirty_gfns; 1980 } 1981 1982 /* 1983 * VM Ioctl 1984 * 1985 * Input Args: 1986 * vm - Virtual Machine 1987 * cmd - Ioctl number 1988 * arg - Argument to pass to the ioctl 1989 * 1990 * Return: None 1991 * 1992 * Issues an arbitrary ioctl on a VM fd. 1993 */ 1994 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1995 { 1996 int ret; 1997 1998 ret = _vm_ioctl(vm, cmd, arg); 1999 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 2000 cmd, ret, errno, strerror(errno)); 2001 } 2002 2003 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2004 { 2005 return ioctl(vm->fd, cmd, arg); 2006 } 2007 2008 /* 2009 * KVM system ioctl 2010 * 2011 * Input Args: 2012 * vm - Virtual Machine 2013 * cmd - Ioctl number 2014 * arg - Argument to pass to the ioctl 2015 * 2016 * Return: None 2017 * 2018 * Issues an arbitrary ioctl on a KVM fd. 2019 */ 2020 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2021 { 2022 int ret; 2023 2024 ret = ioctl(vm->kvm_fd, cmd, arg); 2025 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 2026 cmd, ret, errno, strerror(errno)); 2027 } 2028 2029 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2030 { 2031 return ioctl(vm->kvm_fd, cmd, arg); 2032 } 2033 2034 /* 2035 * Device Ioctl 2036 */ 2037 2038 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2039 { 2040 struct kvm_device_attr attribute = { 2041 .group = group, 2042 .attr = attr, 2043 .flags = 0, 2044 }; 2045 2046 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 2047 } 2048 2049 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2050 { 2051 int ret = _kvm_device_check_attr(dev_fd, group, attr); 2052 2053 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 2054 return ret; 2055 } 2056 2057 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 2058 { 2059 struct kvm_create_device create_dev; 2060 int ret; 2061 2062 create_dev.type = type; 2063 create_dev.fd = -1; 2064 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2065 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2066 *fd = create_dev.fd; 2067 return ret; 2068 } 2069 2070 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2071 { 2072 int fd, ret; 2073 2074 ret = _kvm_create_device(vm, type, test, &fd); 2075 2076 if (!test) { 2077 TEST_ASSERT(!ret, 2078 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2079 return fd; 2080 } 2081 return ret; 2082 } 2083 2084 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2085 void *val, bool write) 2086 { 2087 struct kvm_device_attr kvmattr = { 2088 .group = group, 2089 .attr = attr, 2090 .flags = 0, 2091 .addr = (uintptr_t)val, 2092 }; 2093 int ret; 2094 2095 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2096 &kvmattr); 2097 return ret; 2098 } 2099 2100 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2101 void *val, bool write) 2102 { 2103 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2104 2105 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2106 return ret; 2107 } 2108 2109 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2110 uint64_t attr) 2111 { 2112 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2113 2114 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2115 2116 return _kvm_device_check_attr(vcpu->fd, group, attr); 2117 } 2118 2119 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2120 uint64_t attr) 2121 { 2122 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr); 2123 2124 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2125 return ret; 2126 } 2127 2128 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2129 uint64_t attr, void *val, bool write) 2130 { 2131 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2132 2133 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2134 2135 return _kvm_device_access(vcpu->fd, group, attr, val, write); 2136 } 2137 2138 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2139 uint64_t attr, void *val, bool write) 2140 { 2141 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write); 2142 2143 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2144 return ret; 2145 } 2146 2147 /* 2148 * IRQ related functions. 2149 */ 2150 2151 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2152 { 2153 struct kvm_irq_level irq_level = { 2154 .irq = irq, 2155 .level = level, 2156 }; 2157 2158 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 2159 } 2160 2161 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2162 { 2163 int ret = _kvm_irq_line(vm, irq, level); 2164 2165 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno); 2166 } 2167 2168 struct kvm_irq_routing *kvm_gsi_routing_create(void) 2169 { 2170 struct kvm_irq_routing *routing; 2171 size_t size; 2172 2173 size = sizeof(struct kvm_irq_routing); 2174 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 2175 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 2176 routing = calloc(1, size); 2177 assert(routing); 2178 2179 return routing; 2180 } 2181 2182 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 2183 uint32_t gsi, uint32_t pin) 2184 { 2185 int i; 2186 2187 assert(routing); 2188 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 2189 2190 i = routing->nr; 2191 routing->entries[i].gsi = gsi; 2192 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 2193 routing->entries[i].flags = 0; 2194 routing->entries[i].u.irqchip.irqchip = 0; 2195 routing->entries[i].u.irqchip.pin = pin; 2196 routing->nr++; 2197 } 2198 2199 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2200 { 2201 int ret; 2202 2203 assert(routing); 2204 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing); 2205 free(routing); 2206 2207 return ret; 2208 } 2209 2210 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2211 { 2212 int ret; 2213 2214 ret = _kvm_gsi_routing_write(vm, routing); 2215 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i", 2216 ret, errno); 2217 } 2218 2219 /* 2220 * VM Dump 2221 * 2222 * Input Args: 2223 * vm - Virtual Machine 2224 * indent - Left margin indent amount 2225 * 2226 * Output Args: 2227 * stream - Output FILE stream 2228 * 2229 * Return: None 2230 * 2231 * Dumps the current state of the VM given by vm, to the FILE stream 2232 * given by stream. 2233 */ 2234 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2235 { 2236 int ctr; 2237 struct userspace_mem_region *region; 2238 struct vcpu *vcpu; 2239 2240 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2241 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2242 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2243 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2244 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2245 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2246 "host_virt: %p\n", indent + 2, "", 2247 (uint64_t) region->region.guest_phys_addr, 2248 (uint64_t) region->region.memory_size, 2249 region->host_mem); 2250 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2251 sparsebit_dump(stream, region->unused_phy_pages, 0); 2252 } 2253 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2254 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2255 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2256 vm->pgd_created); 2257 if (vm->pgd_created) { 2258 fprintf(stream, "%*sVirtual Translation Tables:\n", 2259 indent + 2, ""); 2260 virt_dump(stream, vm, indent + 4); 2261 } 2262 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2263 list_for_each_entry(vcpu, &vm->vcpus, list) 2264 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2265 } 2266 2267 /* Known KVM exit reasons */ 2268 static struct exit_reason { 2269 unsigned int reason; 2270 const char *name; 2271 } exit_reasons_known[] = { 2272 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2273 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2274 {KVM_EXIT_IO, "IO"}, 2275 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2276 {KVM_EXIT_DEBUG, "DEBUG"}, 2277 {KVM_EXIT_HLT, "HLT"}, 2278 {KVM_EXIT_MMIO, "MMIO"}, 2279 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2280 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2281 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2282 {KVM_EXIT_INTR, "INTR"}, 2283 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2284 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2285 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2286 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2287 {KVM_EXIT_DCR, "DCR"}, 2288 {KVM_EXIT_NMI, "NMI"}, 2289 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2290 {KVM_EXIT_OSI, "OSI"}, 2291 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2292 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2293 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2294 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2295 {KVM_EXIT_XEN, "XEN"}, 2296 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2297 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2298 #endif 2299 }; 2300 2301 /* 2302 * Exit Reason String 2303 * 2304 * Input Args: 2305 * exit_reason - Exit reason 2306 * 2307 * Output Args: None 2308 * 2309 * Return: 2310 * Constant string pointer describing the exit reason. 2311 * 2312 * Locates and returns a constant string that describes the KVM exit 2313 * reason given by exit_reason. If no such string is found, a constant 2314 * string of "Unknown" is returned. 2315 */ 2316 const char *exit_reason_str(unsigned int exit_reason) 2317 { 2318 unsigned int n1; 2319 2320 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2321 if (exit_reason == exit_reasons_known[n1].reason) 2322 return exit_reasons_known[n1].name; 2323 } 2324 2325 return "Unknown"; 2326 } 2327 2328 /* 2329 * Physical Contiguous Page Allocator 2330 * 2331 * Input Args: 2332 * vm - Virtual Machine 2333 * num - number of pages 2334 * paddr_min - Physical address minimum 2335 * memslot - Memory region to allocate page from 2336 * 2337 * Output Args: None 2338 * 2339 * Return: 2340 * Starting physical address 2341 * 2342 * Within the VM specified by vm, locates a range of available physical 2343 * pages at or above paddr_min. If found, the pages are marked as in use 2344 * and their base address is returned. A TEST_ASSERT failure occurs if 2345 * not enough pages are available at or above paddr_min. 2346 */ 2347 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2348 vm_paddr_t paddr_min, uint32_t memslot) 2349 { 2350 struct userspace_mem_region *region; 2351 sparsebit_idx_t pg, base; 2352 2353 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2354 2355 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2356 "not divisible by page size.\n" 2357 " paddr_min: 0x%lx page_size: 0x%x", 2358 paddr_min, vm->page_size); 2359 2360 region = memslot2region(vm, memslot); 2361 base = pg = paddr_min >> vm->page_shift; 2362 2363 do { 2364 for (; pg < base + num; ++pg) { 2365 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2366 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2367 break; 2368 } 2369 } 2370 } while (pg && pg != base + num); 2371 2372 if (pg == 0) { 2373 fprintf(stderr, "No guest physical page available, " 2374 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2375 paddr_min, vm->page_size, memslot); 2376 fputs("---- vm dump ----\n", stderr); 2377 vm_dump(stderr, vm, 2); 2378 abort(); 2379 } 2380 2381 for (pg = base; pg < base + num; ++pg) 2382 sparsebit_clear(region->unused_phy_pages, pg); 2383 2384 return base * vm->page_size; 2385 } 2386 2387 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2388 uint32_t memslot) 2389 { 2390 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2391 } 2392 2393 /* Arbitrary minimum physical address used for virtual translation tables. */ 2394 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2395 2396 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2397 { 2398 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2399 } 2400 2401 /* 2402 * Address Guest Virtual to Host Virtual 2403 * 2404 * Input Args: 2405 * vm - Virtual Machine 2406 * gva - VM virtual address 2407 * 2408 * Output Args: None 2409 * 2410 * Return: 2411 * Equivalent host virtual address 2412 */ 2413 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2414 { 2415 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2416 } 2417 2418 /* 2419 * Is Unrestricted Guest 2420 * 2421 * Input Args: 2422 * vm - Virtual Machine 2423 * 2424 * Output Args: None 2425 * 2426 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2427 * 2428 * Check if the unrestricted guest flag is enabled. 2429 */ 2430 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2431 { 2432 char val = 'N'; 2433 size_t count; 2434 FILE *f; 2435 2436 if (vm == NULL) { 2437 /* Ensure that the KVM vendor-specific module is loaded. */ 2438 close(open_kvm_dev_path_or_exit()); 2439 } 2440 2441 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2442 if (f) { 2443 count = fread(&val, sizeof(char), 1, f); 2444 TEST_ASSERT(count == 1, "Unable to read from param file."); 2445 fclose(f); 2446 } 2447 2448 return val == 'Y'; 2449 } 2450 2451 unsigned int vm_get_page_size(struct kvm_vm *vm) 2452 { 2453 return vm->page_size; 2454 } 2455 2456 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2457 { 2458 return vm->page_shift; 2459 } 2460 2461 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm) 2462 { 2463 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2464 } 2465 2466 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2467 { 2468 return vm->max_gfn; 2469 } 2470 2471 int vm_get_fd(struct kvm_vm *vm) 2472 { 2473 return vm->fd; 2474 } 2475 2476 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2477 unsigned int page_shift, 2478 unsigned int new_page_shift, 2479 bool ceil) 2480 { 2481 unsigned int n = 1 << (new_page_shift - page_shift); 2482 2483 if (page_shift >= new_page_shift) 2484 return num_pages * (1 << (page_shift - new_page_shift)); 2485 2486 return num_pages / n + !!(ceil && num_pages % n); 2487 } 2488 2489 static inline int getpageshift(void) 2490 { 2491 return __builtin_ffs(getpagesize()) - 1; 2492 } 2493 2494 unsigned int 2495 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2496 { 2497 return vm_calc_num_pages(num_guest_pages, 2498 vm_guest_mode_params[mode].page_shift, 2499 getpageshift(), true); 2500 } 2501 2502 unsigned int 2503 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2504 { 2505 return vm_calc_num_pages(num_host_pages, getpageshift(), 2506 vm_guest_mode_params[mode].page_shift, false); 2507 } 2508 2509 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2510 { 2511 unsigned int n; 2512 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2513 return vm_adjust_num_guest_pages(mode, n); 2514 } 2515 2516 int vm_get_stats_fd(struct kvm_vm *vm) 2517 { 2518 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2519 } 2520 2521 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2522 { 2523 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2524 2525 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2526 } 2527