xref: /openbmc/linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
26 static void *align(void *x, size_t size)
27 {
28 	size_t mask = size - 1;
29 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
30 		    "size not a power of 2: %lu", size);
31 	return (void *) (((size_t) x + mask) & ~mask);
32 }
33 
34 /*
35  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36  *
37  * Input Args:
38  *   flags - The flags to pass when opening KVM_DEV_PATH.
39  *
40  * Return:
41  *   The opened file descriptor of /dev/kvm.
42  */
43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 	int fd;
46 
47 	fd = open(KVM_DEV_PATH, flags);
48 	if (fd < 0) {
49 		print_skip("%s not available, is KVM loaded? (errno: %d)",
50 			   KVM_DEV_PATH, errno);
51 		exit(KSFT_SKIP);
52 	}
53 
54 	return fd;
55 }
56 
57 int open_kvm_dev_path_or_exit(void)
58 {
59 	return _open_kvm_dev_path_or_exit(O_RDONLY);
60 }
61 
62 /*
63  * Capability
64  *
65  * Input Args:
66  *   cap - Capability
67  *
68  * Output Args: None
69  *
70  * Return:
71  *   On success, the Value corresponding to the capability (KVM_CAP_*)
72  *   specified by the value of cap.  On failure a TEST_ASSERT failure
73  *   is produced.
74  *
75  * Looks up and returns the value corresponding to the capability
76  * (KVM_CAP_*) given by cap.
77  */
78 int kvm_check_cap(long cap)
79 {
80 	int ret;
81 	int kvm_fd;
82 
83 	kvm_fd = open_kvm_dev_path_or_exit();
84 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
85 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
86 		"  rc: %i errno: %i", ret, errno);
87 
88 	close(kvm_fd);
89 
90 	return ret;
91 }
92 
93 /* VM Enable Capability
94  *
95  * Input Args:
96  *   vm - Virtual Machine
97  *   cap - Capability
98  *
99  * Output Args: None
100  *
101  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
102  *
103  * Enables a capability (KVM_CAP_*) on the VM.
104  */
105 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
106 {
107 	int ret;
108 
109 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
110 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
111 		"  rc: %i errno: %i", ret, errno);
112 
113 	return ret;
114 }
115 
116 /* VCPU Enable Capability
117  *
118  * Input Args:
119  *   vm - Virtual Machine
120  *   vcpu_id - VCPU
121  *   cap - Capability
122  *
123  * Output Args: None
124  *
125  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
126  *
127  * Enables a capability (KVM_CAP_*) on the VCPU.
128  */
129 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
130 		    struct kvm_enable_cap *cap)
131 {
132 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
133 	int r;
134 
135 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
136 
137 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
138 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
139 			"  rc: %i, errno: %i", r, errno);
140 
141 	return r;
142 }
143 
144 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
145 {
146 	struct kvm_enable_cap cap = { 0 };
147 
148 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
149 	cap.args[0] = ring_size;
150 	vm_enable_cap(vm, &cap);
151 	vm->dirty_ring_size = ring_size;
152 }
153 
154 static void vm_open(struct kvm_vm *vm, int perm)
155 {
156 	vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
157 
158 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
159 		print_skip("immediate_exit not available");
160 		exit(KSFT_SKIP);
161 	}
162 
163 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
164 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
165 		"rc: %i errno: %i", vm->fd, errno);
166 }
167 
168 const char *vm_guest_mode_string(uint32_t i)
169 {
170 	static const char * const strings[] = {
171 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
172 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
173 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
174 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
175 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
176 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
177 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
178 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
179 	};
180 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
181 		       "Missing new mode strings?");
182 
183 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
184 
185 	return strings[i];
186 }
187 
188 const struct vm_guest_mode_params vm_guest_mode_params[] = {
189 	{ 52, 48,  0x1000, 12 },
190 	{ 52, 48, 0x10000, 16 },
191 	{ 48, 48,  0x1000, 12 },
192 	{ 48, 48, 0x10000, 16 },
193 	{ 40, 48,  0x1000, 12 },
194 	{ 40, 48, 0x10000, 16 },
195 	{  0,  0,  0x1000, 12 },
196 	{ 47, 64,  0x1000, 12 },
197 };
198 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
199 	       "Missing new mode params?");
200 
201 /*
202  * VM Create
203  *
204  * Input Args:
205  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
206  *   phy_pages - Physical memory pages
207  *   perm - permission
208  *
209  * Output Args: None
210  *
211  * Return:
212  *   Pointer to opaque structure that describes the created VM.
213  *
214  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
215  * When phy_pages is non-zero, a memory region of phy_pages physical pages
216  * is created and mapped starting at guest physical address 0.  The file
217  * descriptor to control the created VM is created with the permissions
218  * given by perm (e.g. O_RDWR).
219  */
220 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
221 {
222 	struct kvm_vm *vm;
223 
224 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
225 		 vm_guest_mode_string(mode), phy_pages, perm);
226 
227 	vm = calloc(1, sizeof(*vm));
228 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
229 
230 	INIT_LIST_HEAD(&vm->vcpus);
231 	vm->regions.gpa_tree = RB_ROOT;
232 	vm->regions.hva_tree = RB_ROOT;
233 	hash_init(vm->regions.slot_hash);
234 
235 	vm->mode = mode;
236 	vm->type = 0;
237 
238 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
239 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
240 	vm->page_size = vm_guest_mode_params[mode].page_size;
241 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
242 
243 	/* Setup mode specific traits. */
244 	switch (vm->mode) {
245 	case VM_MODE_P52V48_4K:
246 		vm->pgtable_levels = 4;
247 		break;
248 	case VM_MODE_P52V48_64K:
249 		vm->pgtable_levels = 3;
250 		break;
251 	case VM_MODE_P48V48_4K:
252 		vm->pgtable_levels = 4;
253 		break;
254 	case VM_MODE_P48V48_64K:
255 		vm->pgtable_levels = 3;
256 		break;
257 	case VM_MODE_P40V48_4K:
258 		vm->pgtable_levels = 4;
259 		break;
260 	case VM_MODE_P40V48_64K:
261 		vm->pgtable_levels = 3;
262 		break;
263 	case VM_MODE_PXXV48_4K:
264 #ifdef __x86_64__
265 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
266 		/*
267 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
268 		 * it doesn't take effect unless a CR4.LA57 is set, which it
269 		 * isn't for this VM_MODE.
270 		 */
271 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
272 			    "Linear address width (%d bits) not supported",
273 			    vm->va_bits);
274 		pr_debug("Guest physical address width detected: %d\n",
275 			 vm->pa_bits);
276 		vm->pgtable_levels = 4;
277 		vm->va_bits = 48;
278 #else
279 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
280 #endif
281 		break;
282 	case VM_MODE_P47V64_4K:
283 		vm->pgtable_levels = 5;
284 		break;
285 	default:
286 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
287 	}
288 
289 #ifdef __aarch64__
290 	if (vm->pa_bits != 40)
291 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
292 #endif
293 
294 	vm_open(vm, perm);
295 
296 	/* Limit to VA-bit canonical virtual addresses. */
297 	vm->vpages_valid = sparsebit_alloc();
298 	sparsebit_set_num(vm->vpages_valid,
299 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
300 	sparsebit_set_num(vm->vpages_valid,
301 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
302 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
303 
304 	/* Limit physical addresses to PA-bits. */
305 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
306 
307 	/* Allocate and setup memory for guest. */
308 	vm->vpages_mapped = sparsebit_alloc();
309 	if (phy_pages != 0)
310 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
311 					    0, 0, phy_pages, 0);
312 
313 	return vm;
314 }
315 
316 /*
317  * VM Create with customized parameters
318  *
319  * Input Args:
320  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
321  *   nr_vcpus - VCPU count
322  *   slot0_mem_pages - Slot0 physical memory size
323  *   extra_mem_pages - Non-slot0 physical memory total size
324  *   num_percpu_pages - Per-cpu physical memory pages
325  *   guest_code - Guest entry point
326  *   vcpuids - VCPU IDs
327  *
328  * Output Args: None
329  *
330  * Return:
331  *   Pointer to opaque structure that describes the created VM.
332  *
333  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
334  * with customized slot0 memory size, at least 512 pages currently.
335  * extra_mem_pages is only used to calculate the maximum page table size,
336  * no real memory allocation for non-slot0 memory in this function.
337  */
338 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
339 				    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
340 				    uint32_t num_percpu_pages, void *guest_code,
341 				    uint32_t vcpuids[])
342 {
343 	uint64_t vcpu_pages, extra_pg_pages, pages;
344 	struct kvm_vm *vm;
345 	int i;
346 
347 	/* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
348 	if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
349 		slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
350 
351 	/* The maximum page table size for a memory region will be when the
352 	 * smallest pages are used. Considering each page contains x page
353 	 * table descriptors, the total extra size for page tables (for extra
354 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
355 	 * than N/x*2.
356 	 */
357 	vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
358 	extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
359 	pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
360 
361 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
362 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
363 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
364 
365 	pages = vm_adjust_num_guest_pages(mode, pages);
366 	vm = vm_create(mode, pages, O_RDWR);
367 
368 	kvm_vm_elf_load(vm, program_invocation_name);
369 
370 #ifdef __x86_64__
371 	vm_create_irqchip(vm);
372 #endif
373 
374 	for (i = 0; i < nr_vcpus; ++i) {
375 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
376 
377 		vm_vcpu_add_default(vm, vcpuid, guest_code);
378 	}
379 
380 	return vm;
381 }
382 
383 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
384 					    uint32_t num_percpu_pages, void *guest_code,
385 					    uint32_t vcpuids[])
386 {
387 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
388 				    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
389 }
390 
391 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
392 				 void *guest_code)
393 {
394 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
395 					    (uint32_t []){ vcpuid });
396 }
397 
398 /*
399  * VM Restart
400  *
401  * Input Args:
402  *   vm - VM that has been released before
403  *   perm - permission
404  *
405  * Output Args: None
406  *
407  * Reopens the file descriptors associated to the VM and reinstates the
408  * global state, such as the irqchip and the memory regions that are mapped
409  * into the guest.
410  */
411 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
412 {
413 	int ctr;
414 	struct userspace_mem_region *region;
415 
416 	vm_open(vmp, perm);
417 	if (vmp->has_irqchip)
418 		vm_create_irqchip(vmp);
419 
420 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
421 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
422 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
423 			    "  rc: %i errno: %i\n"
424 			    "  slot: %u flags: 0x%x\n"
425 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
426 			    ret, errno, region->region.slot,
427 			    region->region.flags,
428 			    region->region.guest_phys_addr,
429 			    region->region.memory_size);
430 	}
431 }
432 
433 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
434 {
435 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
436 	int ret;
437 
438 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
439 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
440 		    __func__, strerror(-ret));
441 }
442 
443 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
444 			    uint64_t first_page, uint32_t num_pages)
445 {
446 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
447 		                            .first_page = first_page,
448 	                                    .num_pages = num_pages };
449 	int ret;
450 
451 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
452 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
453 		    __func__, strerror(-ret));
454 }
455 
456 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
457 {
458 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
459 }
460 
461 /*
462  * Userspace Memory Region Find
463  *
464  * Input Args:
465  *   vm - Virtual Machine
466  *   start - Starting VM physical address
467  *   end - Ending VM physical address, inclusive.
468  *
469  * Output Args: None
470  *
471  * Return:
472  *   Pointer to overlapping region, NULL if no such region.
473  *
474  * Searches for a region with any physical memory that overlaps with
475  * any portion of the guest physical addresses from start to end
476  * inclusive.  If multiple overlapping regions exist, a pointer to any
477  * of the regions is returned.  Null is returned only when no overlapping
478  * region exists.
479  */
480 static struct userspace_mem_region *
481 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
482 {
483 	struct rb_node *node;
484 
485 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
486 		struct userspace_mem_region *region =
487 			container_of(node, struct userspace_mem_region, gpa_node);
488 		uint64_t existing_start = region->region.guest_phys_addr;
489 		uint64_t existing_end = region->region.guest_phys_addr
490 			+ region->region.memory_size - 1;
491 		if (start <= existing_end && end >= existing_start)
492 			return region;
493 
494 		if (start < existing_start)
495 			node = node->rb_left;
496 		else
497 			node = node->rb_right;
498 	}
499 
500 	return NULL;
501 }
502 
503 /*
504  * KVM Userspace Memory Region Find
505  *
506  * Input Args:
507  *   vm - Virtual Machine
508  *   start - Starting VM physical address
509  *   end - Ending VM physical address, inclusive.
510  *
511  * Output Args: None
512  *
513  * Return:
514  *   Pointer to overlapping region, NULL if no such region.
515  *
516  * Public interface to userspace_mem_region_find. Allows tests to look up
517  * the memslot datastructure for a given range of guest physical memory.
518  */
519 struct kvm_userspace_memory_region *
520 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
521 				 uint64_t end)
522 {
523 	struct userspace_mem_region *region;
524 
525 	region = userspace_mem_region_find(vm, start, end);
526 	if (!region)
527 		return NULL;
528 
529 	return &region->region;
530 }
531 
532 /*
533  * VCPU Find
534  *
535  * Input Args:
536  *   vm - Virtual Machine
537  *   vcpuid - VCPU ID
538  *
539  * Output Args: None
540  *
541  * Return:
542  *   Pointer to VCPU structure
543  *
544  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
545  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
546  * for the specified vcpuid.
547  */
548 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
549 {
550 	struct vcpu *vcpu;
551 
552 	list_for_each_entry(vcpu, &vm->vcpus, list) {
553 		if (vcpu->id == vcpuid)
554 			return vcpu;
555 	}
556 
557 	return NULL;
558 }
559 
560 /*
561  * VM VCPU Remove
562  *
563  * Input Args:
564  *   vcpu - VCPU to remove
565  *
566  * Output Args: None
567  *
568  * Return: None, TEST_ASSERT failures for all error conditions
569  *
570  * Removes a vCPU from a VM and frees its resources.
571  */
572 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
573 {
574 	int ret;
575 
576 	if (vcpu->dirty_gfns) {
577 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
578 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
579 			    "rc: %i errno: %i", ret, errno);
580 		vcpu->dirty_gfns = NULL;
581 	}
582 
583 	ret = munmap(vcpu->state, vcpu_mmap_sz());
584 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
585 		"errno: %i", ret, errno);
586 	ret = close(vcpu->fd);
587 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
588 		"errno: %i", ret, errno);
589 
590 	list_del(&vcpu->list);
591 	free(vcpu);
592 }
593 
594 void kvm_vm_release(struct kvm_vm *vmp)
595 {
596 	struct vcpu *vcpu, *tmp;
597 	int ret;
598 
599 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
600 		vm_vcpu_rm(vmp, vcpu);
601 
602 	ret = close(vmp->fd);
603 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
604 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
605 
606 	ret = close(vmp->kvm_fd);
607 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
608 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
609 }
610 
611 static void __vm_mem_region_delete(struct kvm_vm *vm,
612 				   struct userspace_mem_region *region,
613 				   bool unlink)
614 {
615 	int ret;
616 
617 	if (unlink) {
618 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
619 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
620 		hash_del(&region->slot_node);
621 	}
622 
623 	region->region.memory_size = 0;
624 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
625 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
626 		    "rc: %i errno: %i", ret, errno);
627 
628 	sparsebit_free(&region->unused_phy_pages);
629 	ret = munmap(region->mmap_start, region->mmap_size);
630 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
631 
632 	free(region);
633 }
634 
635 /*
636  * Destroys and frees the VM pointed to by vmp.
637  */
638 void kvm_vm_free(struct kvm_vm *vmp)
639 {
640 	int ctr;
641 	struct hlist_node *node;
642 	struct userspace_mem_region *region;
643 
644 	if (vmp == NULL)
645 		return;
646 
647 	/* Free userspace_mem_regions. */
648 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
649 		__vm_mem_region_delete(vmp, region, false);
650 
651 	/* Free sparsebit arrays. */
652 	sparsebit_free(&vmp->vpages_valid);
653 	sparsebit_free(&vmp->vpages_mapped);
654 
655 	kvm_vm_release(vmp);
656 
657 	/* Free the structure describing the VM. */
658 	free(vmp);
659 }
660 
661 /*
662  * Memory Compare, host virtual to guest virtual
663  *
664  * Input Args:
665  *   hva - Starting host virtual address
666  *   vm - Virtual Machine
667  *   gva - Starting guest virtual address
668  *   len - number of bytes to compare
669  *
670  * Output Args: None
671  *
672  * Input/Output Args: None
673  *
674  * Return:
675  *   Returns 0 if the bytes starting at hva for a length of len
676  *   are equal the guest virtual bytes starting at gva.  Returns
677  *   a value < 0, if bytes at hva are less than those at gva.
678  *   Otherwise a value > 0 is returned.
679  *
680  * Compares the bytes starting at the host virtual address hva, for
681  * a length of len, to the guest bytes starting at the guest virtual
682  * address given by gva.
683  */
684 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
685 {
686 	size_t amt;
687 
688 	/*
689 	 * Compare a batch of bytes until either a match is found
690 	 * or all the bytes have been compared.
691 	 */
692 	for (uintptr_t offset = 0; offset < len; offset += amt) {
693 		uintptr_t ptr1 = (uintptr_t)hva + offset;
694 
695 		/*
696 		 * Determine host address for guest virtual address
697 		 * at offset.
698 		 */
699 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
700 
701 		/*
702 		 * Determine amount to compare on this pass.
703 		 * Don't allow the comparsion to cross a page boundary.
704 		 */
705 		amt = len - offset;
706 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
707 			amt = vm->page_size - (ptr1 % vm->page_size);
708 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
709 			amt = vm->page_size - (ptr2 % vm->page_size);
710 
711 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
712 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
713 
714 		/*
715 		 * Perform the comparison.  If there is a difference
716 		 * return that result to the caller, otherwise need
717 		 * to continue on looking for a mismatch.
718 		 */
719 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
720 		if (ret != 0)
721 			return ret;
722 	}
723 
724 	/*
725 	 * No mismatch found.  Let the caller know the two memory
726 	 * areas are equal.
727 	 */
728 	return 0;
729 }
730 
731 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
732 					       struct userspace_mem_region *region)
733 {
734 	struct rb_node **cur, *parent;
735 
736 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
737 		struct userspace_mem_region *cregion;
738 
739 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
740 		parent = *cur;
741 		if (region->region.guest_phys_addr <
742 		    cregion->region.guest_phys_addr)
743 			cur = &(*cur)->rb_left;
744 		else {
745 			TEST_ASSERT(region->region.guest_phys_addr !=
746 				    cregion->region.guest_phys_addr,
747 				    "Duplicate GPA in region tree");
748 
749 			cur = &(*cur)->rb_right;
750 		}
751 	}
752 
753 	rb_link_node(&region->gpa_node, parent, cur);
754 	rb_insert_color(&region->gpa_node, gpa_tree);
755 }
756 
757 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
758 					       struct userspace_mem_region *region)
759 {
760 	struct rb_node **cur, *parent;
761 
762 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
763 		struct userspace_mem_region *cregion;
764 
765 		cregion = container_of(*cur, typeof(*cregion), hva_node);
766 		parent = *cur;
767 		if (region->host_mem < cregion->host_mem)
768 			cur = &(*cur)->rb_left;
769 		else {
770 			TEST_ASSERT(region->host_mem !=
771 				    cregion->host_mem,
772 				    "Duplicate HVA in region tree");
773 
774 			cur = &(*cur)->rb_right;
775 		}
776 	}
777 
778 	rb_link_node(&region->hva_node, parent, cur);
779 	rb_insert_color(&region->hva_node, hva_tree);
780 }
781 
782 /*
783  * VM Userspace Memory Region Add
784  *
785  * Input Args:
786  *   vm - Virtual Machine
787  *   src_type - Storage source for this region.
788  *              NULL to use anonymous memory.
789  *   guest_paddr - Starting guest physical address
790  *   slot - KVM region slot
791  *   npages - Number of physical pages
792  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
793  *
794  * Output Args: None
795  *
796  * Return: None
797  *
798  * Allocates a memory area of the number of pages specified by npages
799  * and maps it to the VM specified by vm, at a starting physical address
800  * given by guest_paddr.  The region is created with a KVM region slot
801  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
802  * region is created with the flags given by flags.
803  */
804 void vm_userspace_mem_region_add(struct kvm_vm *vm,
805 	enum vm_mem_backing_src_type src_type,
806 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
807 	uint32_t flags)
808 {
809 	int ret;
810 	struct userspace_mem_region *region;
811 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
812 	size_t alignment;
813 
814 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
815 		"Number of guest pages is not compatible with the host. "
816 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
817 
818 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
819 		"address not on a page boundary.\n"
820 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
821 		guest_paddr, vm->page_size);
822 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
823 		<= vm->max_gfn, "Physical range beyond maximum "
824 		"supported physical address,\n"
825 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
826 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
827 		guest_paddr, npages, vm->max_gfn, vm->page_size);
828 
829 	/*
830 	 * Confirm a mem region with an overlapping address doesn't
831 	 * already exist.
832 	 */
833 	region = (struct userspace_mem_region *) userspace_mem_region_find(
834 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
835 	if (region != NULL)
836 		TEST_FAIL("overlapping userspace_mem_region already "
837 			"exists\n"
838 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
839 			"page_size: 0x%x\n"
840 			"  existing guest_paddr: 0x%lx size: 0x%lx",
841 			guest_paddr, npages, vm->page_size,
842 			(uint64_t) region->region.guest_phys_addr,
843 			(uint64_t) region->region.memory_size);
844 
845 	/* Confirm no region with the requested slot already exists. */
846 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
847 			       slot) {
848 		if (region->region.slot != slot)
849 			continue;
850 
851 		TEST_FAIL("A mem region with the requested slot "
852 			"already exists.\n"
853 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
854 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
855 			slot, guest_paddr, npages,
856 			region->region.slot,
857 			(uint64_t) region->region.guest_phys_addr,
858 			(uint64_t) region->region.memory_size);
859 	}
860 
861 	/* Allocate and initialize new mem region structure. */
862 	region = calloc(1, sizeof(*region));
863 	TEST_ASSERT(region != NULL, "Insufficient Memory");
864 	region->mmap_size = npages * vm->page_size;
865 
866 #ifdef __s390x__
867 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
868 	alignment = 0x100000;
869 #else
870 	alignment = 1;
871 #endif
872 
873 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
874 		alignment = max(backing_src_pagesz, alignment);
875 
876 	/* Add enough memory to align up if necessary */
877 	if (alignment > 1)
878 		region->mmap_size += alignment;
879 
880 	region->fd = -1;
881 	if (backing_src_is_shared(src_type)) {
882 		int memfd_flags = MFD_CLOEXEC;
883 
884 		if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
885 			memfd_flags |= MFD_HUGETLB;
886 
887 		region->fd = memfd_create("kvm_selftest", memfd_flags);
888 		TEST_ASSERT(region->fd != -1,
889 			    "memfd_create failed, errno: %i", errno);
890 
891 		ret = ftruncate(region->fd, region->mmap_size);
892 		TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
893 
894 		ret = fallocate(region->fd,
895 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
896 				region->mmap_size);
897 		TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
898 	}
899 
900 	region->mmap_start = mmap(NULL, region->mmap_size,
901 				  PROT_READ | PROT_WRITE,
902 				  vm_mem_backing_src_alias(src_type)->flag,
903 				  region->fd, 0);
904 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
905 		    "test_malloc failed, mmap_start: %p errno: %i",
906 		    region->mmap_start, errno);
907 
908 	/* Align host address */
909 	region->host_mem = align(region->mmap_start, alignment);
910 
911 	/* As needed perform madvise */
912 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
913 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
914 		ret = madvise(region->host_mem, npages * vm->page_size,
915 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
916 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
917 			    region->host_mem, npages * vm->page_size,
918 			    vm_mem_backing_src_alias(src_type)->name);
919 	}
920 
921 	region->unused_phy_pages = sparsebit_alloc();
922 	sparsebit_set_num(region->unused_phy_pages,
923 		guest_paddr >> vm->page_shift, npages);
924 	region->region.slot = slot;
925 	region->region.flags = flags;
926 	region->region.guest_phys_addr = guest_paddr;
927 	region->region.memory_size = npages * vm->page_size;
928 	region->region.userspace_addr = (uintptr_t) region->host_mem;
929 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
930 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
931 		"  rc: %i errno: %i\n"
932 		"  slot: %u flags: 0x%x\n"
933 		"  guest_phys_addr: 0x%lx size: 0x%lx",
934 		ret, errno, slot, flags,
935 		guest_paddr, (uint64_t) region->region.memory_size);
936 
937 	/* Add to quick lookup data structures */
938 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
939 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
940 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
941 
942 	/* If shared memory, create an alias. */
943 	if (region->fd >= 0) {
944 		region->mmap_alias = mmap(NULL, region->mmap_size,
945 					  PROT_READ | PROT_WRITE,
946 					  vm_mem_backing_src_alias(src_type)->flag,
947 					  region->fd, 0);
948 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
949 			    "mmap of alias failed, errno: %i", errno);
950 
951 		/* Align host alias address */
952 		region->host_alias = align(region->mmap_alias, alignment);
953 	}
954 }
955 
956 /*
957  * Memslot to region
958  *
959  * Input Args:
960  *   vm - Virtual Machine
961  *   memslot - KVM memory slot ID
962  *
963  * Output Args: None
964  *
965  * Return:
966  *   Pointer to memory region structure that describe memory region
967  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
968  *   on error (e.g. currently no memory region using memslot as a KVM
969  *   memory slot ID).
970  */
971 struct userspace_mem_region *
972 memslot2region(struct kvm_vm *vm, uint32_t memslot)
973 {
974 	struct userspace_mem_region *region;
975 
976 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
977 			       memslot)
978 		if (region->region.slot == memslot)
979 			return region;
980 
981 	fprintf(stderr, "No mem region with the requested slot found,\n"
982 		"  requested slot: %u\n", memslot);
983 	fputs("---- vm dump ----\n", stderr);
984 	vm_dump(stderr, vm, 2);
985 	TEST_FAIL("Mem region not found");
986 	return NULL;
987 }
988 
989 /*
990  * VM Memory Region Flags Set
991  *
992  * Input Args:
993  *   vm - Virtual Machine
994  *   flags - Starting guest physical address
995  *
996  * Output Args: None
997  *
998  * Return: None
999  *
1000  * Sets the flags of the memory region specified by the value of slot,
1001  * to the values given by flags.
1002  */
1003 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1004 {
1005 	int ret;
1006 	struct userspace_mem_region *region;
1007 
1008 	region = memslot2region(vm, slot);
1009 
1010 	region->region.flags = flags;
1011 
1012 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1013 
1014 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1015 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1016 		ret, errno, slot, flags);
1017 }
1018 
1019 /*
1020  * VM Memory Region Move
1021  *
1022  * Input Args:
1023  *   vm - Virtual Machine
1024  *   slot - Slot of the memory region to move
1025  *   new_gpa - Starting guest physical address
1026  *
1027  * Output Args: None
1028  *
1029  * Return: None
1030  *
1031  * Change the gpa of a memory region.
1032  */
1033 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1034 {
1035 	struct userspace_mem_region *region;
1036 	int ret;
1037 
1038 	region = memslot2region(vm, slot);
1039 
1040 	region->region.guest_phys_addr = new_gpa;
1041 
1042 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1043 
1044 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1045 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1046 		    ret, errno, slot, new_gpa);
1047 }
1048 
1049 /*
1050  * VM Memory Region Delete
1051  *
1052  * Input Args:
1053  *   vm - Virtual Machine
1054  *   slot - Slot of the memory region to delete
1055  *
1056  * Output Args: None
1057  *
1058  * Return: None
1059  *
1060  * Delete a memory region.
1061  */
1062 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1063 {
1064 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1065 }
1066 
1067 /*
1068  * VCPU mmap Size
1069  *
1070  * Input Args: None
1071  *
1072  * Output Args: None
1073  *
1074  * Return:
1075  *   Size of VCPU state
1076  *
1077  * Returns the size of the structure pointed to by the return value
1078  * of vcpu_state().
1079  */
1080 static int vcpu_mmap_sz(void)
1081 {
1082 	int dev_fd, ret;
1083 
1084 	dev_fd = open_kvm_dev_path_or_exit();
1085 
1086 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1087 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1088 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1089 		__func__, ret, errno);
1090 
1091 	close(dev_fd);
1092 
1093 	return ret;
1094 }
1095 
1096 /*
1097  * VM VCPU Add
1098  *
1099  * Input Args:
1100  *   vm - Virtual Machine
1101  *   vcpuid - VCPU ID
1102  *
1103  * Output Args: None
1104  *
1105  * Return: None
1106  *
1107  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1108  * No additional VCPU setup is done.
1109  */
1110 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1111 {
1112 	struct vcpu *vcpu;
1113 
1114 	/* Confirm a vcpu with the specified id doesn't already exist. */
1115 	vcpu = vcpu_find(vm, vcpuid);
1116 	if (vcpu != NULL)
1117 		TEST_FAIL("vcpu with the specified id "
1118 			"already exists,\n"
1119 			"  requested vcpuid: %u\n"
1120 			"  existing vcpuid: %u state: %p",
1121 			vcpuid, vcpu->id, vcpu->state);
1122 
1123 	/* Allocate and initialize new vcpu structure. */
1124 	vcpu = calloc(1, sizeof(*vcpu));
1125 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1126 	vcpu->id = vcpuid;
1127 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1128 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1129 		vcpu->fd, errno);
1130 
1131 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1132 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1133 		vcpu_mmap_sz(), sizeof(*vcpu->state));
1134 	vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1135 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1136 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1137 		"vcpu id: %u errno: %i", vcpuid, errno);
1138 
1139 	/* Add to linked-list of VCPUs. */
1140 	list_add(&vcpu->list, &vm->vcpus);
1141 }
1142 
1143 /*
1144  * VM Virtual Address Unused Gap
1145  *
1146  * Input Args:
1147  *   vm - Virtual Machine
1148  *   sz - Size (bytes)
1149  *   vaddr_min - Minimum Virtual Address
1150  *
1151  * Output Args: None
1152  *
1153  * Return:
1154  *   Lowest virtual address at or below vaddr_min, with at least
1155  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1156  *   size sz is available.
1157  *
1158  * Within the VM specified by vm, locates the lowest starting virtual
1159  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1160  * TEST_ASSERT failure occurs for invalid input or no area of at least
1161  * sz unallocated bytes >= vaddr_min is available.
1162  */
1163 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1164 				      vm_vaddr_t vaddr_min)
1165 {
1166 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1167 
1168 	/* Determine lowest permitted virtual page index. */
1169 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1170 	if ((pgidx_start * vm->page_size) < vaddr_min)
1171 		goto no_va_found;
1172 
1173 	/* Loop over section with enough valid virtual page indexes. */
1174 	if (!sparsebit_is_set_num(vm->vpages_valid,
1175 		pgidx_start, pages))
1176 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1177 			pgidx_start, pages);
1178 	do {
1179 		/*
1180 		 * Are there enough unused virtual pages available at
1181 		 * the currently proposed starting virtual page index.
1182 		 * If not, adjust proposed starting index to next
1183 		 * possible.
1184 		 */
1185 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1186 			pgidx_start, pages))
1187 			goto va_found;
1188 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1189 			pgidx_start, pages);
1190 		if (pgidx_start == 0)
1191 			goto no_va_found;
1192 
1193 		/*
1194 		 * If needed, adjust proposed starting virtual address,
1195 		 * to next range of valid virtual addresses.
1196 		 */
1197 		if (!sparsebit_is_set_num(vm->vpages_valid,
1198 			pgidx_start, pages)) {
1199 			pgidx_start = sparsebit_next_set_num(
1200 				vm->vpages_valid, pgidx_start, pages);
1201 			if (pgidx_start == 0)
1202 				goto no_va_found;
1203 		}
1204 	} while (pgidx_start != 0);
1205 
1206 no_va_found:
1207 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1208 
1209 	/* NOT REACHED */
1210 	return -1;
1211 
1212 va_found:
1213 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1214 		pgidx_start, pages),
1215 		"Unexpected, invalid virtual page index range,\n"
1216 		"  pgidx_start: 0x%lx\n"
1217 		"  pages: 0x%lx",
1218 		pgidx_start, pages);
1219 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1220 		pgidx_start, pages),
1221 		"Unexpected, pages already mapped,\n"
1222 		"  pgidx_start: 0x%lx\n"
1223 		"  pages: 0x%lx",
1224 		pgidx_start, pages);
1225 
1226 	return pgidx_start * vm->page_size;
1227 }
1228 
1229 /*
1230  * VM Virtual Address Allocate
1231  *
1232  * Input Args:
1233  *   vm - Virtual Machine
1234  *   sz - Size in bytes
1235  *   vaddr_min - Minimum starting virtual address
1236  *   data_memslot - Memory region slot for data pages
1237  *   pgd_memslot - Memory region slot for new virtual translation tables
1238  *
1239  * Output Args: None
1240  *
1241  * Return:
1242  *   Starting guest virtual address
1243  *
1244  * Allocates at least sz bytes within the virtual address space of the vm
1245  * given by vm.  The allocated bytes are mapped to a virtual address >=
1246  * the address given by vaddr_min.  Note that each allocation uses a
1247  * a unique set of pages, with the minimum real allocation being at least
1248  * a page.
1249  */
1250 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1251 {
1252 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1253 
1254 	virt_pgd_alloc(vm);
1255 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1256 					      KVM_UTIL_MIN_PFN * vm->page_size, 0);
1257 
1258 	/*
1259 	 * Find an unused range of virtual page addresses of at least
1260 	 * pages in length.
1261 	 */
1262 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1263 
1264 	/* Map the virtual pages. */
1265 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1266 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1267 
1268 		virt_pg_map(vm, vaddr, paddr);
1269 
1270 		sparsebit_set(vm->vpages_mapped,
1271 			vaddr >> vm->page_shift);
1272 	}
1273 
1274 	return vaddr_start;
1275 }
1276 
1277 /*
1278  * VM Virtual Address Allocate Pages
1279  *
1280  * Input Args:
1281  *   vm - Virtual Machine
1282  *
1283  * Output Args: None
1284  *
1285  * Return:
1286  *   Starting guest virtual address
1287  *
1288  * Allocates at least N system pages worth of bytes within the virtual address
1289  * space of the vm.
1290  */
1291 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1292 {
1293 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1294 }
1295 
1296 /*
1297  * VM Virtual Address Allocate Page
1298  *
1299  * Input Args:
1300  *   vm - Virtual Machine
1301  *
1302  * Output Args: None
1303  *
1304  * Return:
1305  *   Starting guest virtual address
1306  *
1307  * Allocates at least one system page worth of bytes within the virtual address
1308  * space of the vm.
1309  */
1310 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1311 {
1312 	return vm_vaddr_alloc_pages(vm, 1);
1313 }
1314 
1315 /*
1316  * Map a range of VM virtual address to the VM's physical address
1317  *
1318  * Input Args:
1319  *   vm - Virtual Machine
1320  *   vaddr - Virtuall address to map
1321  *   paddr - VM Physical Address
1322  *   npages - The number of pages to map
1323  *   pgd_memslot - Memory region slot for new virtual translation tables
1324  *
1325  * Output Args: None
1326  *
1327  * Return: None
1328  *
1329  * Within the VM given by @vm, creates a virtual translation for
1330  * @npages starting at @vaddr to the page range starting at @paddr.
1331  */
1332 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1333 	      unsigned int npages)
1334 {
1335 	size_t page_size = vm->page_size;
1336 	size_t size = npages * page_size;
1337 
1338 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1339 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1340 
1341 	while (npages--) {
1342 		virt_pg_map(vm, vaddr, paddr);
1343 		vaddr += page_size;
1344 		paddr += page_size;
1345 	}
1346 }
1347 
1348 /*
1349  * Address VM Physical to Host Virtual
1350  *
1351  * Input Args:
1352  *   vm - Virtual Machine
1353  *   gpa - VM physical address
1354  *
1355  * Output Args: None
1356  *
1357  * Return:
1358  *   Equivalent host virtual address
1359  *
1360  * Locates the memory region containing the VM physical address given
1361  * by gpa, within the VM given by vm.  When found, the host virtual
1362  * address providing the memory to the vm physical address is returned.
1363  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1364  */
1365 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1366 {
1367 	struct userspace_mem_region *region;
1368 
1369 	region = userspace_mem_region_find(vm, gpa, gpa);
1370 	if (!region) {
1371 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1372 		return NULL;
1373 	}
1374 
1375 	return (void *)((uintptr_t)region->host_mem
1376 		+ (gpa - region->region.guest_phys_addr));
1377 }
1378 
1379 /*
1380  * Address Host Virtual to VM Physical
1381  *
1382  * Input Args:
1383  *   vm - Virtual Machine
1384  *   hva - Host virtual address
1385  *
1386  * Output Args: None
1387  *
1388  * Return:
1389  *   Equivalent VM physical address
1390  *
1391  * Locates the memory region containing the host virtual address given
1392  * by hva, within the VM given by vm.  When found, the equivalent
1393  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1394  * region containing hva exists.
1395  */
1396 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1397 {
1398 	struct rb_node *node;
1399 
1400 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1401 		struct userspace_mem_region *region =
1402 			container_of(node, struct userspace_mem_region, hva_node);
1403 
1404 		if (hva >= region->host_mem) {
1405 			if (hva <= (region->host_mem
1406 				+ region->region.memory_size - 1))
1407 				return (vm_paddr_t)((uintptr_t)
1408 					region->region.guest_phys_addr
1409 					+ (hva - (uintptr_t)region->host_mem));
1410 
1411 			node = node->rb_right;
1412 		} else
1413 			node = node->rb_left;
1414 	}
1415 
1416 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1417 	return -1;
1418 }
1419 
1420 /*
1421  * Address VM physical to Host Virtual *alias*.
1422  *
1423  * Input Args:
1424  *   vm - Virtual Machine
1425  *   gpa - VM physical address
1426  *
1427  * Output Args: None
1428  *
1429  * Return:
1430  *   Equivalent address within the host virtual *alias* area, or NULL
1431  *   (without failing the test) if the guest memory is not shared (so
1432  *   no alias exists).
1433  *
1434  * When vm_create() and related functions are called with a shared memory
1435  * src_type, we also create a writable, shared alias mapping of the
1436  * underlying guest memory. This allows the host to manipulate guest memory
1437  * without mapping that memory in the guest's address space. And, for
1438  * userfaultfd-based demand paging, we can do so without triggering userfaults.
1439  */
1440 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1441 {
1442 	struct userspace_mem_region *region;
1443 	uintptr_t offset;
1444 
1445 	region = userspace_mem_region_find(vm, gpa, gpa);
1446 	if (!region)
1447 		return NULL;
1448 
1449 	if (!region->host_alias)
1450 		return NULL;
1451 
1452 	offset = gpa - region->region.guest_phys_addr;
1453 	return (void *) ((uintptr_t) region->host_alias + offset);
1454 }
1455 
1456 /*
1457  * VM Create IRQ Chip
1458  *
1459  * Input Args:
1460  *   vm - Virtual Machine
1461  *
1462  * Output Args: None
1463  *
1464  * Return: None
1465  *
1466  * Creates an interrupt controller chip for the VM specified by vm.
1467  */
1468 void vm_create_irqchip(struct kvm_vm *vm)
1469 {
1470 	int ret;
1471 
1472 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1473 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1474 		"rc: %i errno: %i", ret, errno);
1475 
1476 	vm->has_irqchip = true;
1477 }
1478 
1479 /*
1480  * VM VCPU State
1481  *
1482  * Input Args:
1483  *   vm - Virtual Machine
1484  *   vcpuid - VCPU ID
1485  *
1486  * Output Args: None
1487  *
1488  * Return:
1489  *   Pointer to structure that describes the state of the VCPU.
1490  *
1491  * Locates and returns a pointer to a structure that describes the
1492  * state of the VCPU with the given vcpuid.
1493  */
1494 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1495 {
1496 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1497 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1498 
1499 	return vcpu->state;
1500 }
1501 
1502 /*
1503  * VM VCPU Run
1504  *
1505  * Input Args:
1506  *   vm - Virtual Machine
1507  *   vcpuid - VCPU ID
1508  *
1509  * Output Args: None
1510  *
1511  * Return: None
1512  *
1513  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1514  * given by vm.
1515  */
1516 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1517 {
1518 	int ret = _vcpu_run(vm, vcpuid);
1519 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1520 		"rc: %i errno: %i", ret, errno);
1521 }
1522 
1523 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1524 {
1525 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1526 	int rc;
1527 
1528 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1529 	do {
1530 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1531 	} while (rc == -1 && errno == EINTR);
1532 
1533 	assert_on_unhandled_exception(vm, vcpuid);
1534 
1535 	return rc;
1536 }
1537 
1538 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1539 {
1540 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1541 
1542 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1543 
1544 	return vcpu->fd;
1545 }
1546 
1547 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1548 {
1549 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1550 	int ret;
1551 
1552 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1553 
1554 	vcpu->state->immediate_exit = 1;
1555 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1556 	vcpu->state->immediate_exit = 0;
1557 
1558 	TEST_ASSERT(ret == -1 && errno == EINTR,
1559 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1560 		    ret, errno);
1561 }
1562 
1563 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1564 			  struct kvm_guest_debug *debug)
1565 {
1566 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1567 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1568 
1569 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1570 }
1571 
1572 /*
1573  * VM VCPU Set MP State
1574  *
1575  * Input Args:
1576  *   vm - Virtual Machine
1577  *   vcpuid - VCPU ID
1578  *   mp_state - mp_state to be set
1579  *
1580  * Output Args: None
1581  *
1582  * Return: None
1583  *
1584  * Sets the MP state of the VCPU given by vcpuid, to the state given
1585  * by mp_state.
1586  */
1587 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1588 		       struct kvm_mp_state *mp_state)
1589 {
1590 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1591 	int ret;
1592 
1593 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1594 
1595 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1596 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1597 		"rc: %i errno: %i", ret, errno);
1598 }
1599 
1600 /*
1601  * VM VCPU Get Reg List
1602  *
1603  * Input Args:
1604  *   vm - Virtual Machine
1605  *   vcpuid - VCPU ID
1606  *
1607  * Output Args:
1608  *   None
1609  *
1610  * Return:
1611  *   A pointer to an allocated struct kvm_reg_list
1612  *
1613  * Get the list of guest registers which are supported for
1614  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1615  */
1616 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1617 {
1618 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1619 	int ret;
1620 
1621 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1622 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1623 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1624 	reg_list->n = reg_list_n.n;
1625 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1626 	return reg_list;
1627 }
1628 
1629 /*
1630  * VM VCPU Regs Get
1631  *
1632  * Input Args:
1633  *   vm - Virtual Machine
1634  *   vcpuid - VCPU ID
1635  *
1636  * Output Args:
1637  *   regs - current state of VCPU regs
1638  *
1639  * Return: None
1640  *
1641  * Obtains the current register state for the VCPU specified by vcpuid
1642  * and stores it at the location given by regs.
1643  */
1644 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1645 {
1646 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1647 	int ret;
1648 
1649 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1650 
1651 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1652 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1653 		ret, errno);
1654 }
1655 
1656 /*
1657  * VM VCPU Regs Set
1658  *
1659  * Input Args:
1660  *   vm - Virtual Machine
1661  *   vcpuid - VCPU ID
1662  *   regs - Values to set VCPU regs to
1663  *
1664  * Output Args: None
1665  *
1666  * Return: None
1667  *
1668  * Sets the regs of the VCPU specified by vcpuid to the values
1669  * given by regs.
1670  */
1671 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1672 {
1673 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1674 	int ret;
1675 
1676 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1677 
1678 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1679 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1680 		ret, errno);
1681 }
1682 
1683 #ifdef __KVM_HAVE_VCPU_EVENTS
1684 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1685 		     struct kvm_vcpu_events *events)
1686 {
1687 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1688 	int ret;
1689 
1690 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1691 
1692 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1693 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1694 		ret, errno);
1695 }
1696 
1697 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1698 		     struct kvm_vcpu_events *events)
1699 {
1700 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1701 	int ret;
1702 
1703 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1704 
1705 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1706 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1707 		ret, errno);
1708 }
1709 #endif
1710 
1711 #ifdef __x86_64__
1712 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1713 			   struct kvm_nested_state *state)
1714 {
1715 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1716 	int ret;
1717 
1718 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1719 
1720 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1721 	TEST_ASSERT(ret == 0,
1722 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1723 		ret, errno);
1724 }
1725 
1726 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1727 			  struct kvm_nested_state *state, bool ignore_error)
1728 {
1729 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1730 	int ret;
1731 
1732 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1733 
1734 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1735 	if (!ignore_error) {
1736 		TEST_ASSERT(ret == 0,
1737 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1738 			ret, errno);
1739 	}
1740 
1741 	return ret;
1742 }
1743 #endif
1744 
1745 /*
1746  * VM VCPU System Regs Get
1747  *
1748  * Input Args:
1749  *   vm - Virtual Machine
1750  *   vcpuid - VCPU ID
1751  *
1752  * Output Args:
1753  *   sregs - current state of VCPU system regs
1754  *
1755  * Return: None
1756  *
1757  * Obtains the current system register state for the VCPU specified by
1758  * vcpuid and stores it at the location given by sregs.
1759  */
1760 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1761 {
1762 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1763 	int ret;
1764 
1765 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1766 
1767 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1768 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1769 		ret, errno);
1770 }
1771 
1772 /*
1773  * VM VCPU System Regs Set
1774  *
1775  * Input Args:
1776  *   vm - Virtual Machine
1777  *   vcpuid - VCPU ID
1778  *   sregs - Values to set VCPU system regs to
1779  *
1780  * Output Args: None
1781  *
1782  * Return: None
1783  *
1784  * Sets the system regs of the VCPU specified by vcpuid to the values
1785  * given by sregs.
1786  */
1787 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1788 {
1789 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1790 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1791 		"rc: %i errno: %i", ret, errno);
1792 }
1793 
1794 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1795 {
1796 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1797 
1798 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1799 
1800 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1801 }
1802 
1803 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1804 {
1805 	int ret;
1806 
1807 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1808 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1809 		    ret, errno, strerror(errno));
1810 }
1811 
1812 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1813 {
1814 	int ret;
1815 
1816 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1817 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1818 		    ret, errno, strerror(errno));
1819 }
1820 
1821 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1822 {
1823 	int ret;
1824 
1825 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1826 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1827 		    ret, errno, strerror(errno));
1828 }
1829 
1830 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1831 {
1832 	int ret;
1833 
1834 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1835 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1836 		    ret, errno, strerror(errno));
1837 }
1838 
1839 /*
1840  * VCPU Ioctl
1841  *
1842  * Input Args:
1843  *   vm - Virtual Machine
1844  *   vcpuid - VCPU ID
1845  *   cmd - Ioctl number
1846  *   arg - Argument to pass to the ioctl
1847  *
1848  * Return: None
1849  *
1850  * Issues an arbitrary ioctl on a VCPU fd.
1851  */
1852 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1853 		unsigned long cmd, void *arg)
1854 {
1855 	int ret;
1856 
1857 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1858 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1859 		cmd, ret, errno, strerror(errno));
1860 }
1861 
1862 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1863 		unsigned long cmd, void *arg)
1864 {
1865 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1866 	int ret;
1867 
1868 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1869 
1870 	ret = ioctl(vcpu->fd, cmd, arg);
1871 
1872 	return ret;
1873 }
1874 
1875 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1876 {
1877 	struct vcpu *vcpu;
1878 	uint32_t size = vm->dirty_ring_size;
1879 
1880 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1881 
1882 	vcpu = vcpu_find(vm, vcpuid);
1883 
1884 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1885 
1886 	if (!vcpu->dirty_gfns) {
1887 		void *addr;
1888 
1889 		addr = mmap(NULL, size, PROT_READ,
1890 			    MAP_PRIVATE, vcpu->fd,
1891 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1892 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1893 
1894 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1895 			    MAP_PRIVATE, vcpu->fd,
1896 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1897 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1898 
1899 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1900 			    MAP_SHARED, vcpu->fd,
1901 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1902 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1903 
1904 		vcpu->dirty_gfns = addr;
1905 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1906 	}
1907 
1908 	return vcpu->dirty_gfns;
1909 }
1910 
1911 /*
1912  * VM Ioctl
1913  *
1914  * Input Args:
1915  *   vm - Virtual Machine
1916  *   cmd - Ioctl number
1917  *   arg - Argument to pass to the ioctl
1918  *
1919  * Return: None
1920  *
1921  * Issues an arbitrary ioctl on a VM fd.
1922  */
1923 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1924 {
1925 	int ret;
1926 
1927 	ret = _vm_ioctl(vm, cmd, arg);
1928 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1929 		cmd, ret, errno, strerror(errno));
1930 }
1931 
1932 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1933 {
1934 	return ioctl(vm->fd, cmd, arg);
1935 }
1936 
1937 /*
1938  * KVM system ioctl
1939  *
1940  * Input Args:
1941  *   vm - Virtual Machine
1942  *   cmd - Ioctl number
1943  *   arg - Argument to pass to the ioctl
1944  *
1945  * Return: None
1946  *
1947  * Issues an arbitrary ioctl on a KVM fd.
1948  */
1949 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1950 {
1951 	int ret;
1952 
1953 	ret = ioctl(vm->kvm_fd, cmd, arg);
1954 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1955 		cmd, ret, errno, strerror(errno));
1956 }
1957 
1958 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1959 {
1960 	return ioctl(vm->kvm_fd, cmd, arg);
1961 }
1962 
1963 /*
1964  * Device Ioctl
1965  */
1966 
1967 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1968 {
1969 	struct kvm_device_attr attribute = {
1970 		.group = group,
1971 		.attr = attr,
1972 		.flags = 0,
1973 	};
1974 
1975 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1976 }
1977 
1978 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1979 {
1980 	int ret = _kvm_device_check_attr(dev_fd, group, attr);
1981 
1982 	TEST_ASSERT(ret >= 0, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
1983 	return ret;
1984 }
1985 
1986 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
1987 {
1988 	struct kvm_create_device create_dev;
1989 	int ret;
1990 
1991 	create_dev.type = type;
1992 	create_dev.fd = -1;
1993 	create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
1994 	ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
1995 	*fd = create_dev.fd;
1996 	return ret;
1997 }
1998 
1999 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2000 {
2001 	int fd, ret;
2002 
2003 	ret = _kvm_create_device(vm, type, test, &fd);
2004 
2005 	if (!test) {
2006 		TEST_ASSERT(ret >= 0,
2007 			    "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2008 		return fd;
2009 	}
2010 	return ret;
2011 }
2012 
2013 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2014 		      void *val, bool write)
2015 {
2016 	struct kvm_device_attr kvmattr = {
2017 		.group = group,
2018 		.attr = attr,
2019 		.flags = 0,
2020 		.addr = (uintptr_t)val,
2021 	};
2022 	int ret;
2023 
2024 	ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2025 		    &kvmattr);
2026 	return ret;
2027 }
2028 
2029 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2030 		      void *val, bool write)
2031 {
2032 	int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2033 
2034 	TEST_ASSERT(ret >= 0, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2035 	return ret;
2036 }
2037 
2038 /*
2039  * VM Dump
2040  *
2041  * Input Args:
2042  *   vm - Virtual Machine
2043  *   indent - Left margin indent amount
2044  *
2045  * Output Args:
2046  *   stream - Output FILE stream
2047  *
2048  * Return: None
2049  *
2050  * Dumps the current state of the VM given by vm, to the FILE stream
2051  * given by stream.
2052  */
2053 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2054 {
2055 	int ctr;
2056 	struct userspace_mem_region *region;
2057 	struct vcpu *vcpu;
2058 
2059 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2060 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2061 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2062 	fprintf(stream, "%*sMem Regions:\n", indent, "");
2063 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2064 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2065 			"host_virt: %p\n", indent + 2, "",
2066 			(uint64_t) region->region.guest_phys_addr,
2067 			(uint64_t) region->region.memory_size,
2068 			region->host_mem);
2069 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2070 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2071 	}
2072 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2073 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2074 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2075 		vm->pgd_created);
2076 	if (vm->pgd_created) {
2077 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2078 			indent + 2, "");
2079 		virt_dump(stream, vm, indent + 4);
2080 	}
2081 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2082 	list_for_each_entry(vcpu, &vm->vcpus, list)
2083 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
2084 }
2085 
2086 /* Known KVM exit reasons */
2087 static struct exit_reason {
2088 	unsigned int reason;
2089 	const char *name;
2090 } exit_reasons_known[] = {
2091 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
2092 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
2093 	{KVM_EXIT_IO, "IO"},
2094 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
2095 	{KVM_EXIT_DEBUG, "DEBUG"},
2096 	{KVM_EXIT_HLT, "HLT"},
2097 	{KVM_EXIT_MMIO, "MMIO"},
2098 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2099 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2100 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2101 	{KVM_EXIT_INTR, "INTR"},
2102 	{KVM_EXIT_SET_TPR, "SET_TPR"},
2103 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2104 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2105 	{KVM_EXIT_S390_RESET, "S390_RESET"},
2106 	{KVM_EXIT_DCR, "DCR"},
2107 	{KVM_EXIT_NMI, "NMI"},
2108 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2109 	{KVM_EXIT_OSI, "OSI"},
2110 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2111 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2112 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
2113 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
2114 	{KVM_EXIT_XEN, "XEN"},
2115 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2116 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2117 #endif
2118 };
2119 
2120 /*
2121  * Exit Reason String
2122  *
2123  * Input Args:
2124  *   exit_reason - Exit reason
2125  *
2126  * Output Args: None
2127  *
2128  * Return:
2129  *   Constant string pointer describing the exit reason.
2130  *
2131  * Locates and returns a constant string that describes the KVM exit
2132  * reason given by exit_reason.  If no such string is found, a constant
2133  * string of "Unknown" is returned.
2134  */
2135 const char *exit_reason_str(unsigned int exit_reason)
2136 {
2137 	unsigned int n1;
2138 
2139 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2140 		if (exit_reason == exit_reasons_known[n1].reason)
2141 			return exit_reasons_known[n1].name;
2142 	}
2143 
2144 	return "Unknown";
2145 }
2146 
2147 /*
2148  * Physical Contiguous Page Allocator
2149  *
2150  * Input Args:
2151  *   vm - Virtual Machine
2152  *   num - number of pages
2153  *   paddr_min - Physical address minimum
2154  *   memslot - Memory region to allocate page from
2155  *
2156  * Output Args: None
2157  *
2158  * Return:
2159  *   Starting physical address
2160  *
2161  * Within the VM specified by vm, locates a range of available physical
2162  * pages at or above paddr_min. If found, the pages are marked as in use
2163  * and their base address is returned. A TEST_ASSERT failure occurs if
2164  * not enough pages are available at or above paddr_min.
2165  */
2166 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2167 			      vm_paddr_t paddr_min, uint32_t memslot)
2168 {
2169 	struct userspace_mem_region *region;
2170 	sparsebit_idx_t pg, base;
2171 
2172 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2173 
2174 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2175 		"not divisible by page size.\n"
2176 		"  paddr_min: 0x%lx page_size: 0x%x",
2177 		paddr_min, vm->page_size);
2178 
2179 	region = memslot2region(vm, memslot);
2180 	base = pg = paddr_min >> vm->page_shift;
2181 
2182 	do {
2183 		for (; pg < base + num; ++pg) {
2184 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2185 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2186 				break;
2187 			}
2188 		}
2189 	} while (pg && pg != base + num);
2190 
2191 	if (pg == 0) {
2192 		fprintf(stderr, "No guest physical page available, "
2193 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2194 			paddr_min, vm->page_size, memslot);
2195 		fputs("---- vm dump ----\n", stderr);
2196 		vm_dump(stderr, vm, 2);
2197 		abort();
2198 	}
2199 
2200 	for (pg = base; pg < base + num; ++pg)
2201 		sparsebit_clear(region->unused_phy_pages, pg);
2202 
2203 	return base * vm->page_size;
2204 }
2205 
2206 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2207 			     uint32_t memslot)
2208 {
2209 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2210 }
2211 
2212 /* Arbitrary minimum physical address used for virtual translation tables. */
2213 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2214 
2215 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2216 {
2217 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2218 }
2219 
2220 /*
2221  * Address Guest Virtual to Host Virtual
2222  *
2223  * Input Args:
2224  *   vm - Virtual Machine
2225  *   gva - VM virtual address
2226  *
2227  * Output Args: None
2228  *
2229  * Return:
2230  *   Equivalent host virtual address
2231  */
2232 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2233 {
2234 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2235 }
2236 
2237 /*
2238  * Is Unrestricted Guest
2239  *
2240  * Input Args:
2241  *   vm - Virtual Machine
2242  *
2243  * Output Args: None
2244  *
2245  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2246  *
2247  * Check if the unrestricted guest flag is enabled.
2248  */
2249 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2250 {
2251 	char val = 'N';
2252 	size_t count;
2253 	FILE *f;
2254 
2255 	if (vm == NULL) {
2256 		/* Ensure that the KVM vendor-specific module is loaded. */
2257 		close(open_kvm_dev_path_or_exit());
2258 	}
2259 
2260 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2261 	if (f) {
2262 		count = fread(&val, sizeof(char), 1, f);
2263 		TEST_ASSERT(count == 1, "Unable to read from param file.");
2264 		fclose(f);
2265 	}
2266 
2267 	return val == 'Y';
2268 }
2269 
2270 unsigned int vm_get_page_size(struct kvm_vm *vm)
2271 {
2272 	return vm->page_size;
2273 }
2274 
2275 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2276 {
2277 	return vm->page_shift;
2278 }
2279 
2280 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2281 {
2282 	return vm->max_gfn;
2283 }
2284 
2285 int vm_get_fd(struct kvm_vm *vm)
2286 {
2287 	return vm->fd;
2288 }
2289 
2290 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2291 				      unsigned int page_shift,
2292 				      unsigned int new_page_shift,
2293 				      bool ceil)
2294 {
2295 	unsigned int n = 1 << (new_page_shift - page_shift);
2296 
2297 	if (page_shift >= new_page_shift)
2298 		return num_pages * (1 << (page_shift - new_page_shift));
2299 
2300 	return num_pages / n + !!(ceil && num_pages % n);
2301 }
2302 
2303 static inline int getpageshift(void)
2304 {
2305 	return __builtin_ffs(getpagesize()) - 1;
2306 }
2307 
2308 unsigned int
2309 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2310 {
2311 	return vm_calc_num_pages(num_guest_pages,
2312 				 vm_guest_mode_params[mode].page_shift,
2313 				 getpageshift(), true);
2314 }
2315 
2316 unsigned int
2317 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2318 {
2319 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2320 				 vm_guest_mode_params[mode].page_shift, false);
2321 }
2322 
2323 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2324 {
2325 	unsigned int n;
2326 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2327 	return vm_adjust_num_guest_pages(mode, n);
2328 }
2329 
2330 int vm_get_stats_fd(struct kvm_vm *vm)
2331 {
2332 	return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2333 }
2334 
2335 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2336 {
2337 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2338 
2339 	return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2340 }
2341