xref: /openbmc/linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/stringify.h>
19 
20 #include "../kvm_util.h"
21 
22 #define NMI_VECTOR		0x02
23 
24 #define X86_EFLAGS_FIXED	 (1u << 1)
25 
26 #define X86_CR4_VME		(1ul << 0)
27 #define X86_CR4_PVI		(1ul << 1)
28 #define X86_CR4_TSD		(1ul << 2)
29 #define X86_CR4_DE		(1ul << 3)
30 #define X86_CR4_PSE		(1ul << 4)
31 #define X86_CR4_PAE		(1ul << 5)
32 #define X86_CR4_MCE		(1ul << 6)
33 #define X86_CR4_PGE		(1ul << 7)
34 #define X86_CR4_PCE		(1ul << 8)
35 #define X86_CR4_OSFXSR		(1ul << 9)
36 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
37 #define X86_CR4_UMIP		(1ul << 11)
38 #define X86_CR4_LA57		(1ul << 12)
39 #define X86_CR4_VMXE		(1ul << 13)
40 #define X86_CR4_SMXE		(1ul << 14)
41 #define X86_CR4_FSGSBASE	(1ul << 16)
42 #define X86_CR4_PCIDE		(1ul << 17)
43 #define X86_CR4_OSXSAVE		(1ul << 18)
44 #define X86_CR4_SMEP		(1ul << 20)
45 #define X86_CR4_SMAP		(1ul << 21)
46 #define X86_CR4_PKE		(1ul << 22)
47 
48 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
49 enum cpuid_output_regs {
50 	KVM_CPUID_EAX,
51 	KVM_CPUID_EBX,
52 	KVM_CPUID_ECX,
53 	KVM_CPUID_EDX
54 };
55 
56 /*
57  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
58  * passed by value with no overhead.
59  */
60 struct kvm_x86_cpu_feature {
61 	u32	function;
62 	u16	index;
63 	u8	reg;
64 	u8	bit;
65 };
66 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
67 ({										\
68 	struct kvm_x86_cpu_feature feature = {					\
69 		.function = fn,							\
70 		.index = idx,							\
71 		.reg = KVM_CPUID_##gpr,						\
72 		.bit = __bit,							\
73 	};									\
74 										\
75 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
76 			  (fn & 0xc0000000) == 0x40000000 ||			\
77 			  (fn & 0xc0000000) == 0x80000000 ||			\
78 			  (fn & 0xc0000000) == 0xc0000000);			\
79 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
80 	feature;								\
81 })
82 
83 /*
84  * Basic Leafs, a.k.a. Intel defined
85  */
86 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
87 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
88 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
89 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
90 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
91 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
92 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
93 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
94 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
95 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
96 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
97 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
98 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
99 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
100 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
101 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
102 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
103 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
104 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
105 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
106 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
107 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
108 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
109 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
110 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
111 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
112 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
113 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
114 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
115 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
116 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
117 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
118 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
119 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
120 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
121 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
122 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
123 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
124 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
125 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
126 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
127 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
128 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
129 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
130 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
131 
132 /*
133  * Extended Leafs, a.k.a. AMD defined
134  */
135 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
136 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
137 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
138 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
139 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
140 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
141 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
142 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
143 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
144 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
145 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
146 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
147 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
148 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
149 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
150 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
151 
152 /*
153  * KVM defined paravirt features.
154  */
155 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
156 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
157 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
158 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
159 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
160 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
161 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
162 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
163 /* Bit 8 apparently isn't used?!?! */
164 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
165 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
166 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
167 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
168 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
169 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
170 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
171 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
172 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
173 
174 /*
175  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
176  * value/property as opposed to a single-bit feature.  Again, pack the info
177  * into a 64-bit value to pass by value with no overhead.
178  */
179 struct kvm_x86_cpu_property {
180 	u32	function;
181 	u8	index;
182 	u8	reg;
183 	u8	lo_bit;
184 	u8	hi_bit;
185 };
186 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
187 ({										\
188 	struct kvm_x86_cpu_property property = {				\
189 		.function = fn,							\
190 		.index = idx,							\
191 		.reg = KVM_CPUID_##gpr,						\
192 		.lo_bit = low_bit,						\
193 		.hi_bit = high_bit,						\
194 	};									\
195 										\
196 	kvm_static_assert(low_bit < high_bit);					\
197 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
198 			  (fn & 0xc0000000) == 0x40000000 ||			\
199 			  (fn & 0xc0000000) == 0x80000000 ||			\
200 			  (fn & 0xc0000000) == 0xc0000000);			\
201 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
202 	property;								\
203 })
204 
205 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
206 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
207 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
208 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
209 
210 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
211 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
212 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
213 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
214 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
215 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
216 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
217 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
218 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
219 
220 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
221 
222 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
223 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
224 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
225 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
226 
227 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
228 
229 /*
230  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
231  * that indicates the feature is _not_ supported, and a property that states
232  * the length of the bit mask of unsupported features.  A feature is supported
233  * if the size of the bit mask is larger than the "unavailable" bit, and said
234  * bit is not set.
235  *
236  * Wrap the "unavailable" feature to simplify checking whether or not a given
237  * architectural event is supported.
238  */
239 struct kvm_x86_pmu_feature {
240 	struct kvm_x86_cpu_feature anti_feature;
241 };
242 #define	KVM_X86_PMU_FEATURE(name, __bit)					\
243 ({										\
244 	struct kvm_x86_pmu_feature feature = {					\
245 		.anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),	\
246 	};									\
247 										\
248 	feature;								\
249 })
250 
251 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED	KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
252 
253 static inline unsigned int x86_family(unsigned int eax)
254 {
255 	unsigned int x86;
256 
257 	x86 = (eax >> 8) & 0xf;
258 
259 	if (x86 == 0xf)
260 		x86 += (eax >> 20) & 0xff;
261 
262 	return x86;
263 }
264 
265 static inline unsigned int x86_model(unsigned int eax)
266 {
267 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
268 }
269 
270 /* Page table bitfield declarations */
271 #define PTE_PRESENT_MASK        BIT_ULL(0)
272 #define PTE_WRITABLE_MASK       BIT_ULL(1)
273 #define PTE_USER_MASK           BIT_ULL(2)
274 #define PTE_ACCESSED_MASK       BIT_ULL(5)
275 #define PTE_DIRTY_MASK          BIT_ULL(6)
276 #define PTE_LARGE_MASK          BIT_ULL(7)
277 #define PTE_GLOBAL_MASK         BIT_ULL(8)
278 #define PTE_NX_MASK             BIT_ULL(63)
279 
280 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
281 
282 #define PAGE_SHIFT		12
283 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
284 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
285 
286 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
287 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
288 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
289 
290 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
291 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
292 
293 /* General Registers in 64-Bit Mode */
294 struct gpr64_regs {
295 	u64 rax;
296 	u64 rcx;
297 	u64 rdx;
298 	u64 rbx;
299 	u64 rsp;
300 	u64 rbp;
301 	u64 rsi;
302 	u64 rdi;
303 	u64 r8;
304 	u64 r9;
305 	u64 r10;
306 	u64 r11;
307 	u64 r12;
308 	u64 r13;
309 	u64 r14;
310 	u64 r15;
311 };
312 
313 struct desc64 {
314 	uint16_t limit0;
315 	uint16_t base0;
316 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
317 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
318 	uint32_t base3;
319 	uint32_t zero1;
320 } __attribute__((packed));
321 
322 struct desc_ptr {
323 	uint16_t size;
324 	uint64_t address;
325 } __attribute__((packed));
326 
327 struct kvm_x86_state {
328 	struct kvm_xsave *xsave;
329 	struct kvm_vcpu_events events;
330 	struct kvm_mp_state mp_state;
331 	struct kvm_regs regs;
332 	struct kvm_xcrs xcrs;
333 	struct kvm_sregs sregs;
334 	struct kvm_debugregs debugregs;
335 	union {
336 		struct kvm_nested_state nested;
337 		char nested_[16384];
338 	};
339 	struct kvm_msrs msrs;
340 };
341 
342 static inline uint64_t get_desc64_base(const struct desc64 *desc)
343 {
344 	return ((uint64_t)desc->base3 << 32) |
345 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
346 }
347 
348 static inline uint64_t rdtsc(void)
349 {
350 	uint32_t eax, edx;
351 	uint64_t tsc_val;
352 	/*
353 	 * The lfence is to wait (on Intel CPUs) until all previous
354 	 * instructions have been executed. If software requires RDTSC to be
355 	 * executed prior to execution of any subsequent instruction, it can
356 	 * execute LFENCE immediately after RDTSC
357 	 */
358 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
359 	tsc_val = ((uint64_t)edx) << 32 | eax;
360 	return tsc_val;
361 }
362 
363 static inline uint64_t rdtscp(uint32_t *aux)
364 {
365 	uint32_t eax, edx;
366 
367 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
368 	return ((uint64_t)edx) << 32 | eax;
369 }
370 
371 static inline uint64_t rdmsr(uint32_t msr)
372 {
373 	uint32_t a, d;
374 
375 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
376 
377 	return a | ((uint64_t) d << 32);
378 }
379 
380 static inline void wrmsr(uint32_t msr, uint64_t value)
381 {
382 	uint32_t a = value;
383 	uint32_t d = value >> 32;
384 
385 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
386 }
387 
388 
389 static inline uint16_t inw(uint16_t port)
390 {
391 	uint16_t tmp;
392 
393 	__asm__ __volatile__("in %%dx, %%ax"
394 		: /* output */ "=a" (tmp)
395 		: /* input */ "d" (port));
396 
397 	return tmp;
398 }
399 
400 static inline uint16_t get_es(void)
401 {
402 	uint16_t es;
403 
404 	__asm__ __volatile__("mov %%es, %[es]"
405 			     : /* output */ [es]"=rm"(es));
406 	return es;
407 }
408 
409 static inline uint16_t get_cs(void)
410 {
411 	uint16_t cs;
412 
413 	__asm__ __volatile__("mov %%cs, %[cs]"
414 			     : /* output */ [cs]"=rm"(cs));
415 	return cs;
416 }
417 
418 static inline uint16_t get_ss(void)
419 {
420 	uint16_t ss;
421 
422 	__asm__ __volatile__("mov %%ss, %[ss]"
423 			     : /* output */ [ss]"=rm"(ss));
424 	return ss;
425 }
426 
427 static inline uint16_t get_ds(void)
428 {
429 	uint16_t ds;
430 
431 	__asm__ __volatile__("mov %%ds, %[ds]"
432 			     : /* output */ [ds]"=rm"(ds));
433 	return ds;
434 }
435 
436 static inline uint16_t get_fs(void)
437 {
438 	uint16_t fs;
439 
440 	__asm__ __volatile__("mov %%fs, %[fs]"
441 			     : /* output */ [fs]"=rm"(fs));
442 	return fs;
443 }
444 
445 static inline uint16_t get_gs(void)
446 {
447 	uint16_t gs;
448 
449 	__asm__ __volatile__("mov %%gs, %[gs]"
450 			     : /* output */ [gs]"=rm"(gs));
451 	return gs;
452 }
453 
454 static inline uint16_t get_tr(void)
455 {
456 	uint16_t tr;
457 
458 	__asm__ __volatile__("str %[tr]"
459 			     : /* output */ [tr]"=rm"(tr));
460 	return tr;
461 }
462 
463 static inline uint64_t get_cr0(void)
464 {
465 	uint64_t cr0;
466 
467 	__asm__ __volatile__("mov %%cr0, %[cr0]"
468 			     : /* output */ [cr0]"=r"(cr0));
469 	return cr0;
470 }
471 
472 static inline uint64_t get_cr3(void)
473 {
474 	uint64_t cr3;
475 
476 	__asm__ __volatile__("mov %%cr3, %[cr3]"
477 			     : /* output */ [cr3]"=r"(cr3));
478 	return cr3;
479 }
480 
481 static inline uint64_t get_cr4(void)
482 {
483 	uint64_t cr4;
484 
485 	__asm__ __volatile__("mov %%cr4, %[cr4]"
486 			     : /* output */ [cr4]"=r"(cr4));
487 	return cr4;
488 }
489 
490 static inline void set_cr4(uint64_t val)
491 {
492 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
493 }
494 
495 static inline struct desc_ptr get_gdt(void)
496 {
497 	struct desc_ptr gdt;
498 	__asm__ __volatile__("sgdt %[gdt]"
499 			     : /* output */ [gdt]"=m"(gdt));
500 	return gdt;
501 }
502 
503 static inline struct desc_ptr get_idt(void)
504 {
505 	struct desc_ptr idt;
506 	__asm__ __volatile__("sidt %[idt]"
507 			     : /* output */ [idt]"=m"(idt));
508 	return idt;
509 }
510 
511 static inline void outl(uint16_t port, uint32_t value)
512 {
513 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
514 }
515 
516 static inline void __cpuid(uint32_t function, uint32_t index,
517 			   uint32_t *eax, uint32_t *ebx,
518 			   uint32_t *ecx, uint32_t *edx)
519 {
520 	*eax = function;
521 	*ecx = index;
522 
523 	asm volatile("cpuid"
524 	    : "=a" (*eax),
525 	      "=b" (*ebx),
526 	      "=c" (*ecx),
527 	      "=d" (*edx)
528 	    : "0" (*eax), "2" (*ecx)
529 	    : "memory");
530 }
531 
532 static inline void cpuid(uint32_t function,
533 			 uint32_t *eax, uint32_t *ebx,
534 			 uint32_t *ecx, uint32_t *edx)
535 {
536 	return __cpuid(function, 0, eax, ebx, ecx, edx);
537 }
538 
539 static inline uint32_t this_cpu_fms(void)
540 {
541 	uint32_t eax, ebx, ecx, edx;
542 
543 	cpuid(1, &eax, &ebx, &ecx, &edx);
544 	return eax;
545 }
546 
547 static inline uint32_t this_cpu_family(void)
548 {
549 	return x86_family(this_cpu_fms());
550 }
551 
552 static inline uint32_t this_cpu_model(void)
553 {
554 	return x86_model(this_cpu_fms());
555 }
556 
557 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
558 				      uint8_t reg, uint8_t lo, uint8_t hi)
559 {
560 	uint32_t gprs[4];
561 
562 	__cpuid(function, index,
563 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
564 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
565 
566 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
567 }
568 
569 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
570 {
571 	return __this_cpu_has(feature.function, feature.index,
572 			      feature.reg, feature.bit, feature.bit);
573 }
574 
575 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
576 {
577 	return __this_cpu_has(property.function, property.index,
578 			      property.reg, property.lo_bit, property.hi_bit);
579 }
580 
581 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
582 {
583 	uint32_t max_leaf;
584 
585 	switch (property.function & 0xc0000000) {
586 	case 0:
587 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
588 		break;
589 	case 0x40000000:
590 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
591 		break;
592 	case 0x80000000:
593 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
594 		break;
595 	case 0xc0000000:
596 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
597 	}
598 	return max_leaf >= property.function;
599 }
600 
601 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
602 {
603 	uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
604 
605 	return nr_bits > feature.anti_feature.bit &&
606 	       !this_cpu_has(feature.anti_feature);
607 }
608 
609 typedef u32		__attribute__((vector_size(16))) sse128_t;
610 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
611 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
612 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
613 
614 static inline void read_sse_reg(int reg, sse128_t *data)
615 {
616 	switch (reg) {
617 	case 0:
618 		asm("movdqa %%xmm0, %0" : "=m"(*data));
619 		break;
620 	case 1:
621 		asm("movdqa %%xmm1, %0" : "=m"(*data));
622 		break;
623 	case 2:
624 		asm("movdqa %%xmm2, %0" : "=m"(*data));
625 		break;
626 	case 3:
627 		asm("movdqa %%xmm3, %0" : "=m"(*data));
628 		break;
629 	case 4:
630 		asm("movdqa %%xmm4, %0" : "=m"(*data));
631 		break;
632 	case 5:
633 		asm("movdqa %%xmm5, %0" : "=m"(*data));
634 		break;
635 	case 6:
636 		asm("movdqa %%xmm6, %0" : "=m"(*data));
637 		break;
638 	case 7:
639 		asm("movdqa %%xmm7, %0" : "=m"(*data));
640 		break;
641 	default:
642 		BUG();
643 	}
644 }
645 
646 static inline void write_sse_reg(int reg, const sse128_t *data)
647 {
648 	switch (reg) {
649 	case 0:
650 		asm("movdqa %0, %%xmm0" : : "m"(*data));
651 		break;
652 	case 1:
653 		asm("movdqa %0, %%xmm1" : : "m"(*data));
654 		break;
655 	case 2:
656 		asm("movdqa %0, %%xmm2" : : "m"(*data));
657 		break;
658 	case 3:
659 		asm("movdqa %0, %%xmm3" : : "m"(*data));
660 		break;
661 	case 4:
662 		asm("movdqa %0, %%xmm4" : : "m"(*data));
663 		break;
664 	case 5:
665 		asm("movdqa %0, %%xmm5" : : "m"(*data));
666 		break;
667 	case 6:
668 		asm("movdqa %0, %%xmm6" : : "m"(*data));
669 		break;
670 	case 7:
671 		asm("movdqa %0, %%xmm7" : : "m"(*data));
672 		break;
673 	default:
674 		BUG();
675 	}
676 }
677 
678 static inline void cpu_relax(void)
679 {
680 	asm volatile("rep; nop" ::: "memory");
681 }
682 
683 #define ud2()			\
684 	__asm__ __volatile__(	\
685 		"ud2\n"	\
686 		)
687 
688 #define hlt()			\
689 	__asm__ __volatile__(	\
690 		"hlt\n"	\
691 		)
692 
693 bool is_intel_cpu(void);
694 bool is_amd_cpu(void);
695 
696 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
697 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
698 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
699 
700 const struct kvm_msr_list *kvm_get_msr_index_list(void);
701 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
702 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
703 uint64_t kvm_get_feature_msr(uint64_t msr_index);
704 
705 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
706 				 struct kvm_msrs *msrs)
707 {
708 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
709 
710 	TEST_ASSERT(r == msrs->nmsrs,
711 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
712 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
713 }
714 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
715 {
716 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
717 
718 	TEST_ASSERT(r == msrs->nmsrs,
719 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
720 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
721 }
722 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
723 				      struct kvm_debugregs *debugregs)
724 {
725 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
726 }
727 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
728 				      struct kvm_debugregs *debugregs)
729 {
730 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
731 }
732 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
733 				  struct kvm_xsave *xsave)
734 {
735 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
736 }
737 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
738 				   struct kvm_xsave *xsave)
739 {
740 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
741 }
742 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
743 				  struct kvm_xsave *xsave)
744 {
745 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
746 }
747 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
748 				 struct kvm_xcrs *xcrs)
749 {
750 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
751 }
752 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
753 {
754 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
755 }
756 
757 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
758 					       uint32_t function, uint32_t index);
759 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
760 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
761 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
762 
763 static inline uint32_t kvm_cpu_fms(void)
764 {
765 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
766 }
767 
768 static inline uint32_t kvm_cpu_family(void)
769 {
770 	return x86_family(kvm_cpu_fms());
771 }
772 
773 static inline uint32_t kvm_cpu_model(void)
774 {
775 	return x86_model(kvm_cpu_fms());
776 }
777 
778 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
779 		   struct kvm_x86_cpu_feature feature);
780 
781 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
782 {
783 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
784 }
785 
786 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
787 			    struct kvm_x86_cpu_property property);
788 
789 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
790 {
791 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
792 }
793 
794 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
795 {
796 	uint32_t max_leaf;
797 
798 	switch (property.function & 0xc0000000) {
799 	case 0:
800 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
801 		break;
802 	case 0x40000000:
803 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
804 		break;
805 	case 0x80000000:
806 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
807 		break;
808 	case 0xc0000000:
809 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
810 	}
811 	return max_leaf >= property.function;
812 }
813 
814 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
815 {
816 	uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
817 
818 	return nr_bits > feature.anti_feature.bit &&
819 	       !kvm_cpu_has(feature.anti_feature);
820 }
821 
822 static inline size_t kvm_cpuid2_size(int nr_entries)
823 {
824 	return sizeof(struct kvm_cpuid2) +
825 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
826 }
827 
828 /*
829  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
830  * entries sized to hold @nr_entries.  The caller is responsible for freeing
831  * the struct.
832  */
833 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
834 {
835 	struct kvm_cpuid2 *cpuid;
836 
837 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
838 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
839 
840 	cpuid->nent = nr_entries;
841 
842 	return cpuid;
843 }
844 
845 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
846 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
847 
848 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
849 							      uint32_t function,
850 							      uint32_t index)
851 {
852 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
853 							  function, index);
854 }
855 
856 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
857 							    uint32_t function)
858 {
859 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
860 }
861 
862 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
863 {
864 	int r;
865 
866 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
867 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
868 	if (r)
869 		return r;
870 
871 	/* On success, refresh the cache to pick up adjustments made by KVM. */
872 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
873 	return 0;
874 }
875 
876 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
877 {
878 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
879 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
880 
881 	/* Refresh the cache to pick up adjustments made by KVM. */
882 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
883 }
884 
885 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
886 
887 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
888 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
889 				     struct kvm_x86_cpu_feature feature,
890 				     bool set);
891 
892 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
893 					  struct kvm_x86_cpu_feature feature)
894 {
895 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
896 
897 }
898 
899 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
900 					    struct kvm_x86_cpu_feature feature)
901 {
902 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
903 }
904 
905 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
906 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
907 
908 static inline void vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index,
909 				uint64_t msr_value)
910 {
911 	int r = _vcpu_set_msr(vcpu, msr_index, msr_value);
912 
913 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_SET_MSRS, r));
914 }
915 
916 
917 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
918 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
919 
920 struct ex_regs {
921 	uint64_t rax, rcx, rdx, rbx;
922 	uint64_t rbp, rsi, rdi;
923 	uint64_t r8, r9, r10, r11;
924 	uint64_t r12, r13, r14, r15;
925 	uint64_t vector;
926 	uint64_t error_code;
927 	uint64_t rip;
928 	uint64_t cs;
929 	uint64_t rflags;
930 };
931 
932 struct idt_entry {
933 	uint16_t offset0;
934 	uint16_t selector;
935 	uint16_t ist : 3;
936 	uint16_t : 5;
937 	uint16_t type : 4;
938 	uint16_t : 1;
939 	uint16_t dpl : 2;
940 	uint16_t p : 1;
941 	uint16_t offset1;
942 	uint32_t offset2; uint32_t reserved;
943 };
944 
945 void vm_init_descriptor_tables(struct kvm_vm *vm);
946 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
947 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
948 			void (*handler)(struct ex_regs *));
949 
950 /* If a toddler were to say "abracadabra". */
951 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
952 
953 /*
954  * KVM selftest exception fixup uses registers to coordinate with the exception
955  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
956  * per-CPU data.  Using only registers avoids having to map memory into the
957  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
958  * for recursive faults when accessing memory in the handler.  The downside to
959  * using registers is that it restricts what registers can be used by the actual
960  * instruction.  But, selftests are 64-bit only, making register* pressure a
961  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
962  * by the callee, and except for r11 are not implicit parameters to any
963  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
964  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
965  * is higher priority than testing non-faulting SYSCALL/SYSRET.
966  *
967  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
968  * is guaranteed to be non-zero on fault.
969  *
970  * REGISTER INPUTS:
971  * r9  = MAGIC
972  * r10 = RIP
973  * r11 = new RIP on fault
974  *
975  * REGISTER OUTPUTS:
976  * r9  = exception vector (non-zero)
977  * r10 = error code
978  */
979 #define KVM_ASM_SAFE(insn)					\
980 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
981 	"lea 1f(%%rip), %%r10\n\t"				\
982 	"lea 2f(%%rip), %%r11\n\t"				\
983 	"1: " insn "\n\t"					\
984 	"xor %%r9, %%r9\n\t"					\
985 	"2:\n\t"						\
986 	"mov  %%r9b, %[vector]\n\t"				\
987 	"mov  %%r10, %[error_code]\n\t"
988 
989 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
990 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
991 
992 #define kvm_asm_safe(insn, inputs...)					\
993 ({									\
994 	uint64_t ign_error_code;					\
995 	uint8_t vector;							\
996 									\
997 	asm volatile(KVM_ASM_SAFE(insn)					\
998 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
999 		     : inputs						\
1000 		     : KVM_ASM_SAFE_CLOBBERS);				\
1001 	vector;								\
1002 })
1003 
1004 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1005 ({									\
1006 	uint8_t vector;							\
1007 									\
1008 	asm volatile(KVM_ASM_SAFE(insn)					\
1009 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1010 		     : inputs						\
1011 		     : KVM_ASM_SAFE_CLOBBERS);				\
1012 	vector;								\
1013 })
1014 
1015 static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1016 {
1017 	uint64_t error_code;
1018 	uint8_t vector;
1019 	uint32_t a, d;
1020 
1021 	asm volatile(KVM_ASM_SAFE("rdmsr")
1022 		     : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1023 		     : "c"(msr)
1024 		     : KVM_ASM_SAFE_CLOBBERS);
1025 
1026 	*val = (uint64_t)a | ((uint64_t)d << 32);
1027 	return vector;
1028 }
1029 
1030 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1031 {
1032 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1033 }
1034 
1035 bool kvm_is_tdp_enabled(void);
1036 
1037 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1038 				    int *level);
1039 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1040 
1041 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1042 		       uint64_t a3);
1043 
1044 void __vm_xsave_require_permission(int bit, const char *name);
1045 
1046 #define vm_xsave_require_permission(perm)	\
1047 	__vm_xsave_require_permission(perm, #perm)
1048 
1049 enum pg_level {
1050 	PG_LEVEL_NONE,
1051 	PG_LEVEL_4K,
1052 	PG_LEVEL_2M,
1053 	PG_LEVEL_1G,
1054 	PG_LEVEL_512G,
1055 	PG_LEVEL_NUM
1056 };
1057 
1058 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1059 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1060 
1061 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1062 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1063 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1064 
1065 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1066 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1067 		    uint64_t nr_bytes, int level);
1068 
1069 /*
1070  * Basic CPU control in CR0
1071  */
1072 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1073 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1074 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1075 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1076 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1077 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1078 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1079 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1080 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1081 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1082 #define X86_CR0_PG          (1UL<<31) /* Paging */
1083 
1084 #define XSTATE_XTILE_CFG_BIT		17
1085 #define XSTATE_XTILE_DATA_BIT		18
1086 
1087 #define XSTATE_XTILE_CFG_MASK		(1ULL << XSTATE_XTILE_CFG_BIT)
1088 #define XSTATE_XTILE_DATA_MASK		(1ULL << XSTATE_XTILE_DATA_BIT)
1089 #define XFEATURE_XTILE_MASK		(XSTATE_XTILE_CFG_MASK | \
1090 					XSTATE_XTILE_DATA_MASK)
1091 
1092 #define PFERR_PRESENT_BIT 0
1093 #define PFERR_WRITE_BIT 1
1094 #define PFERR_USER_BIT 2
1095 #define PFERR_RSVD_BIT 3
1096 #define PFERR_FETCH_BIT 4
1097 #define PFERR_PK_BIT 5
1098 #define PFERR_SGX_BIT 15
1099 #define PFERR_GUEST_FINAL_BIT 32
1100 #define PFERR_GUEST_PAGE_BIT 33
1101 #define PFERR_IMPLICIT_ACCESS_BIT 48
1102 
1103 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1104 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1105 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1106 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1107 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1108 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1109 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1110 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1111 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1112 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1113 
1114 #endif /* SELFTEST_KVM_PROCESSOR_H */
1115