xref: /openbmc/linux/tools/testing/selftests/kvm/include/x86_64/processor.h (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * tools/testing/selftests/kvm/include/x86_64/processor.h
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #ifndef SELFTEST_KVM_PROCESSOR_H
9 #define SELFTEST_KVM_PROCESSOR_H
10 
11 #include <assert.h>
12 #include <stdint.h>
13 #include <syscall.h>
14 
15 #include <asm/msr-index.h>
16 #include <asm/prctl.h>
17 
18 #include <linux/stringify.h>
19 
20 #include "../kvm_util.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 
25 #define NMI_VECTOR		0x02
26 
27 #define X86_EFLAGS_FIXED	 (1u << 1)
28 
29 #define X86_CR4_VME		(1ul << 0)
30 #define X86_CR4_PVI		(1ul << 1)
31 #define X86_CR4_TSD		(1ul << 2)
32 #define X86_CR4_DE		(1ul << 3)
33 #define X86_CR4_PSE		(1ul << 4)
34 #define X86_CR4_PAE		(1ul << 5)
35 #define X86_CR4_MCE		(1ul << 6)
36 #define X86_CR4_PGE		(1ul << 7)
37 #define X86_CR4_PCE		(1ul << 8)
38 #define X86_CR4_OSFXSR		(1ul << 9)
39 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
40 #define X86_CR4_UMIP		(1ul << 11)
41 #define X86_CR4_LA57		(1ul << 12)
42 #define X86_CR4_VMXE		(1ul << 13)
43 #define X86_CR4_SMXE		(1ul << 14)
44 #define X86_CR4_FSGSBASE	(1ul << 16)
45 #define X86_CR4_PCIDE		(1ul << 17)
46 #define X86_CR4_OSXSAVE		(1ul << 18)
47 #define X86_CR4_SMEP		(1ul << 20)
48 #define X86_CR4_SMAP		(1ul << 21)
49 #define X86_CR4_PKE		(1ul << 22)
50 
51 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
52 enum cpuid_output_regs {
53 	KVM_CPUID_EAX,
54 	KVM_CPUID_EBX,
55 	KVM_CPUID_ECX,
56 	KVM_CPUID_EDX
57 };
58 
59 /*
60  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
61  * passed by value with no overhead.
62  */
63 struct kvm_x86_cpu_feature {
64 	u32	function;
65 	u16	index;
66 	u8	reg;
67 	u8	bit;
68 };
69 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
70 ({										\
71 	struct kvm_x86_cpu_feature feature = {					\
72 		.function = fn,							\
73 		.index = idx,							\
74 		.reg = KVM_CPUID_##gpr,						\
75 		.bit = __bit,							\
76 	};									\
77 										\
78 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
79 			  (fn & 0xc0000000) == 0x40000000 ||			\
80 			  (fn & 0xc0000000) == 0x80000000 ||			\
81 			  (fn & 0xc0000000) == 0xc0000000);			\
82 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
83 	feature;								\
84 })
85 
86 /*
87  * Basic Leafs, a.k.a. Intel defined
88  */
89 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
90 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
91 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
92 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
93 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
94 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
95 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
96 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
97 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
98 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
99 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
100 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
101 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
102 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
103 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
104 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
105 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
106 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
107 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
108 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
109 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
110 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
111 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
112 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
113 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
114 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
115 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
116 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
117 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
118 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
119 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
120 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
121 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
122 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
123 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
124 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
125 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
126 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
127 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
128 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
129 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
130 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
131 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
132 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
133 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
134 
135 /*
136  * Extended Leafs, a.k.a. AMD defined
137  */
138 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
139 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
140 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
141 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
142 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
143 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
144 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
145 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
146 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
147 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
148 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
149 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
150 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
151 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
152 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
153 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
154 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
155 
156 /*
157  * KVM defined paravirt features.
158  */
159 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
160 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
161 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
162 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
163 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
164 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
165 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
166 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
167 /* Bit 8 apparently isn't used?!?! */
168 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
169 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
170 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
171 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
172 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
173 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
174 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
175 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
176 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
177 
178 /*
179  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
180  * value/property as opposed to a single-bit feature.  Again, pack the info
181  * into a 64-bit value to pass by value with no overhead.
182  */
183 struct kvm_x86_cpu_property {
184 	u32	function;
185 	u8	index;
186 	u8	reg;
187 	u8	lo_bit;
188 	u8	hi_bit;
189 };
190 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
191 ({										\
192 	struct kvm_x86_cpu_property property = {				\
193 		.function = fn,							\
194 		.index = idx,							\
195 		.reg = KVM_CPUID_##gpr,						\
196 		.lo_bit = low_bit,						\
197 		.hi_bit = high_bit,						\
198 	};									\
199 										\
200 	kvm_static_assert(low_bit < high_bit);					\
201 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
202 			  (fn & 0xc0000000) == 0x40000000 ||			\
203 			  (fn & 0xc0000000) == 0x80000000 ||			\
204 			  (fn & 0xc0000000) == 0xc0000000);			\
205 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
206 	property;								\
207 })
208 
209 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
210 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
211 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
212 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
213 
214 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
215 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
216 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
217 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
218 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
219 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
220 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
221 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
222 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
223 
224 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
225 
226 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
227 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
228 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
229 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
230 
231 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
232 
233 /*
234  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
235  * that indicates the feature is _not_ supported, and a property that states
236  * the length of the bit mask of unsupported features.  A feature is supported
237  * if the size of the bit mask is larger than the "unavailable" bit, and said
238  * bit is not set.
239  *
240  * Wrap the "unavailable" feature to simplify checking whether or not a given
241  * architectural event is supported.
242  */
243 struct kvm_x86_pmu_feature {
244 	struct kvm_x86_cpu_feature anti_feature;
245 };
246 #define	KVM_X86_PMU_FEATURE(name, __bit)					\
247 ({										\
248 	struct kvm_x86_pmu_feature feature = {					\
249 		.anti_feature = KVM_X86_CPU_FEATURE(0xa, 0, EBX, __bit),	\
250 	};									\
251 										\
252 	feature;								\
253 })
254 
255 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED	KVM_X86_PMU_FEATURE(BRANCH_INSNS_RETIRED, 5)
256 
257 static inline unsigned int x86_family(unsigned int eax)
258 {
259 	unsigned int x86;
260 
261 	x86 = (eax >> 8) & 0xf;
262 
263 	if (x86 == 0xf)
264 		x86 += (eax >> 20) & 0xff;
265 
266 	return x86;
267 }
268 
269 static inline unsigned int x86_model(unsigned int eax)
270 {
271 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
272 }
273 
274 /* Page table bitfield declarations */
275 #define PTE_PRESENT_MASK        BIT_ULL(0)
276 #define PTE_WRITABLE_MASK       BIT_ULL(1)
277 #define PTE_USER_MASK           BIT_ULL(2)
278 #define PTE_ACCESSED_MASK       BIT_ULL(5)
279 #define PTE_DIRTY_MASK          BIT_ULL(6)
280 #define PTE_LARGE_MASK          BIT_ULL(7)
281 #define PTE_GLOBAL_MASK         BIT_ULL(8)
282 #define PTE_NX_MASK             BIT_ULL(63)
283 
284 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
285 
286 #define PAGE_SHIFT		12
287 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
288 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
289 
290 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
291 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
292 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
293 
294 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
295 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
296 
297 /* General Registers in 64-Bit Mode */
298 struct gpr64_regs {
299 	u64 rax;
300 	u64 rcx;
301 	u64 rdx;
302 	u64 rbx;
303 	u64 rsp;
304 	u64 rbp;
305 	u64 rsi;
306 	u64 rdi;
307 	u64 r8;
308 	u64 r9;
309 	u64 r10;
310 	u64 r11;
311 	u64 r12;
312 	u64 r13;
313 	u64 r14;
314 	u64 r15;
315 };
316 
317 struct desc64 {
318 	uint16_t limit0;
319 	uint16_t base0;
320 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
321 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
322 	uint32_t base3;
323 	uint32_t zero1;
324 } __attribute__((packed));
325 
326 struct desc_ptr {
327 	uint16_t size;
328 	uint64_t address;
329 } __attribute__((packed));
330 
331 struct kvm_x86_state {
332 	struct kvm_xsave *xsave;
333 	struct kvm_vcpu_events events;
334 	struct kvm_mp_state mp_state;
335 	struct kvm_regs regs;
336 	struct kvm_xcrs xcrs;
337 	struct kvm_sregs sregs;
338 	struct kvm_debugregs debugregs;
339 	union {
340 		struct kvm_nested_state nested;
341 		char nested_[16384];
342 	};
343 	struct kvm_msrs msrs;
344 };
345 
346 static inline uint64_t get_desc64_base(const struct desc64 *desc)
347 {
348 	return ((uint64_t)desc->base3 << 32) |
349 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
350 }
351 
352 static inline uint64_t rdtsc(void)
353 {
354 	uint32_t eax, edx;
355 	uint64_t tsc_val;
356 	/*
357 	 * The lfence is to wait (on Intel CPUs) until all previous
358 	 * instructions have been executed. If software requires RDTSC to be
359 	 * executed prior to execution of any subsequent instruction, it can
360 	 * execute LFENCE immediately after RDTSC
361 	 */
362 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
363 	tsc_val = ((uint64_t)edx) << 32 | eax;
364 	return tsc_val;
365 }
366 
367 static inline uint64_t rdtscp(uint32_t *aux)
368 {
369 	uint32_t eax, edx;
370 
371 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
372 	return ((uint64_t)edx) << 32 | eax;
373 }
374 
375 static inline uint64_t rdmsr(uint32_t msr)
376 {
377 	uint32_t a, d;
378 
379 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
380 
381 	return a | ((uint64_t) d << 32);
382 }
383 
384 static inline void wrmsr(uint32_t msr, uint64_t value)
385 {
386 	uint32_t a = value;
387 	uint32_t d = value >> 32;
388 
389 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
390 }
391 
392 
393 static inline uint16_t inw(uint16_t port)
394 {
395 	uint16_t tmp;
396 
397 	__asm__ __volatile__("in %%dx, %%ax"
398 		: /* output */ "=a" (tmp)
399 		: /* input */ "d" (port));
400 
401 	return tmp;
402 }
403 
404 static inline uint16_t get_es(void)
405 {
406 	uint16_t es;
407 
408 	__asm__ __volatile__("mov %%es, %[es]"
409 			     : /* output */ [es]"=rm"(es));
410 	return es;
411 }
412 
413 static inline uint16_t get_cs(void)
414 {
415 	uint16_t cs;
416 
417 	__asm__ __volatile__("mov %%cs, %[cs]"
418 			     : /* output */ [cs]"=rm"(cs));
419 	return cs;
420 }
421 
422 static inline uint16_t get_ss(void)
423 {
424 	uint16_t ss;
425 
426 	__asm__ __volatile__("mov %%ss, %[ss]"
427 			     : /* output */ [ss]"=rm"(ss));
428 	return ss;
429 }
430 
431 static inline uint16_t get_ds(void)
432 {
433 	uint16_t ds;
434 
435 	__asm__ __volatile__("mov %%ds, %[ds]"
436 			     : /* output */ [ds]"=rm"(ds));
437 	return ds;
438 }
439 
440 static inline uint16_t get_fs(void)
441 {
442 	uint16_t fs;
443 
444 	__asm__ __volatile__("mov %%fs, %[fs]"
445 			     : /* output */ [fs]"=rm"(fs));
446 	return fs;
447 }
448 
449 static inline uint16_t get_gs(void)
450 {
451 	uint16_t gs;
452 
453 	__asm__ __volatile__("mov %%gs, %[gs]"
454 			     : /* output */ [gs]"=rm"(gs));
455 	return gs;
456 }
457 
458 static inline uint16_t get_tr(void)
459 {
460 	uint16_t tr;
461 
462 	__asm__ __volatile__("str %[tr]"
463 			     : /* output */ [tr]"=rm"(tr));
464 	return tr;
465 }
466 
467 static inline uint64_t get_cr0(void)
468 {
469 	uint64_t cr0;
470 
471 	__asm__ __volatile__("mov %%cr0, %[cr0]"
472 			     : /* output */ [cr0]"=r"(cr0));
473 	return cr0;
474 }
475 
476 static inline uint64_t get_cr3(void)
477 {
478 	uint64_t cr3;
479 
480 	__asm__ __volatile__("mov %%cr3, %[cr3]"
481 			     : /* output */ [cr3]"=r"(cr3));
482 	return cr3;
483 }
484 
485 static inline uint64_t get_cr4(void)
486 {
487 	uint64_t cr4;
488 
489 	__asm__ __volatile__("mov %%cr4, %[cr4]"
490 			     : /* output */ [cr4]"=r"(cr4));
491 	return cr4;
492 }
493 
494 static inline void set_cr4(uint64_t val)
495 {
496 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
497 }
498 
499 static inline struct desc_ptr get_gdt(void)
500 {
501 	struct desc_ptr gdt;
502 	__asm__ __volatile__("sgdt %[gdt]"
503 			     : /* output */ [gdt]"=m"(gdt));
504 	return gdt;
505 }
506 
507 static inline struct desc_ptr get_idt(void)
508 {
509 	struct desc_ptr idt;
510 	__asm__ __volatile__("sidt %[idt]"
511 			     : /* output */ [idt]"=m"(idt));
512 	return idt;
513 }
514 
515 static inline void outl(uint16_t port, uint32_t value)
516 {
517 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
518 }
519 
520 static inline void __cpuid(uint32_t function, uint32_t index,
521 			   uint32_t *eax, uint32_t *ebx,
522 			   uint32_t *ecx, uint32_t *edx)
523 {
524 	*eax = function;
525 	*ecx = index;
526 
527 	asm volatile("cpuid"
528 	    : "=a" (*eax),
529 	      "=b" (*ebx),
530 	      "=c" (*ecx),
531 	      "=d" (*edx)
532 	    : "0" (*eax), "2" (*ecx)
533 	    : "memory");
534 }
535 
536 static inline void cpuid(uint32_t function,
537 			 uint32_t *eax, uint32_t *ebx,
538 			 uint32_t *ecx, uint32_t *edx)
539 {
540 	return __cpuid(function, 0, eax, ebx, ecx, edx);
541 }
542 
543 static inline uint32_t this_cpu_fms(void)
544 {
545 	uint32_t eax, ebx, ecx, edx;
546 
547 	cpuid(1, &eax, &ebx, &ecx, &edx);
548 	return eax;
549 }
550 
551 static inline uint32_t this_cpu_family(void)
552 {
553 	return x86_family(this_cpu_fms());
554 }
555 
556 static inline uint32_t this_cpu_model(void)
557 {
558 	return x86_model(this_cpu_fms());
559 }
560 
561 static inline bool this_cpu_vendor_string_is(const char *vendor)
562 {
563 	const uint32_t *chunk = (const uint32_t *)vendor;
564 	uint32_t eax, ebx, ecx, edx;
565 
566 	cpuid(0, &eax, &ebx, &ecx, &edx);
567 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
568 }
569 
570 static inline bool this_cpu_is_intel(void)
571 {
572 	return this_cpu_vendor_string_is("GenuineIntel");
573 }
574 
575 /*
576  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
577  */
578 static inline bool this_cpu_is_amd(void)
579 {
580 	return this_cpu_vendor_string_is("AuthenticAMD");
581 }
582 
583 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
584 				      uint8_t reg, uint8_t lo, uint8_t hi)
585 {
586 	uint32_t gprs[4];
587 
588 	__cpuid(function, index,
589 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
590 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
591 
592 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
593 }
594 
595 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
596 {
597 	return __this_cpu_has(feature.function, feature.index,
598 			      feature.reg, feature.bit, feature.bit);
599 }
600 
601 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
602 {
603 	return __this_cpu_has(property.function, property.index,
604 			      property.reg, property.lo_bit, property.hi_bit);
605 }
606 
607 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
608 {
609 	uint32_t max_leaf;
610 
611 	switch (property.function & 0xc0000000) {
612 	case 0:
613 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
614 		break;
615 	case 0x40000000:
616 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
617 		break;
618 	case 0x80000000:
619 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
620 		break;
621 	case 0xc0000000:
622 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
623 	}
624 	return max_leaf >= property.function;
625 }
626 
627 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
628 {
629 	uint32_t nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
630 
631 	return nr_bits > feature.anti_feature.bit &&
632 	       !this_cpu_has(feature.anti_feature);
633 }
634 
635 typedef u32		__attribute__((vector_size(16))) sse128_t;
636 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
637 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
638 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
639 
640 static inline void read_sse_reg(int reg, sse128_t *data)
641 {
642 	switch (reg) {
643 	case 0:
644 		asm("movdqa %%xmm0, %0" : "=m"(*data));
645 		break;
646 	case 1:
647 		asm("movdqa %%xmm1, %0" : "=m"(*data));
648 		break;
649 	case 2:
650 		asm("movdqa %%xmm2, %0" : "=m"(*data));
651 		break;
652 	case 3:
653 		asm("movdqa %%xmm3, %0" : "=m"(*data));
654 		break;
655 	case 4:
656 		asm("movdqa %%xmm4, %0" : "=m"(*data));
657 		break;
658 	case 5:
659 		asm("movdqa %%xmm5, %0" : "=m"(*data));
660 		break;
661 	case 6:
662 		asm("movdqa %%xmm6, %0" : "=m"(*data));
663 		break;
664 	case 7:
665 		asm("movdqa %%xmm7, %0" : "=m"(*data));
666 		break;
667 	default:
668 		BUG();
669 	}
670 }
671 
672 static inline void write_sse_reg(int reg, const sse128_t *data)
673 {
674 	switch (reg) {
675 	case 0:
676 		asm("movdqa %0, %%xmm0" : : "m"(*data));
677 		break;
678 	case 1:
679 		asm("movdqa %0, %%xmm1" : : "m"(*data));
680 		break;
681 	case 2:
682 		asm("movdqa %0, %%xmm2" : : "m"(*data));
683 		break;
684 	case 3:
685 		asm("movdqa %0, %%xmm3" : : "m"(*data));
686 		break;
687 	case 4:
688 		asm("movdqa %0, %%xmm4" : : "m"(*data));
689 		break;
690 	case 5:
691 		asm("movdqa %0, %%xmm5" : : "m"(*data));
692 		break;
693 	case 6:
694 		asm("movdqa %0, %%xmm6" : : "m"(*data));
695 		break;
696 	case 7:
697 		asm("movdqa %0, %%xmm7" : : "m"(*data));
698 		break;
699 	default:
700 		BUG();
701 	}
702 }
703 
704 static inline void cpu_relax(void)
705 {
706 	asm volatile("rep; nop" ::: "memory");
707 }
708 
709 #define ud2()			\
710 	__asm__ __volatile__(	\
711 		"ud2\n"	\
712 		)
713 
714 #define hlt()			\
715 	__asm__ __volatile__(	\
716 		"hlt\n"	\
717 		)
718 
719 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
720 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
721 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
722 
723 const struct kvm_msr_list *kvm_get_msr_index_list(void);
724 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
725 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
726 uint64_t kvm_get_feature_msr(uint64_t msr_index);
727 
728 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
729 				 struct kvm_msrs *msrs)
730 {
731 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
732 
733 	TEST_ASSERT(r == msrs->nmsrs,
734 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
735 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
736 }
737 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
738 {
739 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
740 
741 	TEST_ASSERT(r == msrs->nmsrs,
742 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
743 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
744 }
745 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
746 				      struct kvm_debugregs *debugregs)
747 {
748 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
749 }
750 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
751 				      struct kvm_debugregs *debugregs)
752 {
753 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
754 }
755 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
756 				  struct kvm_xsave *xsave)
757 {
758 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
759 }
760 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
761 				   struct kvm_xsave *xsave)
762 {
763 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
764 }
765 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
766 				  struct kvm_xsave *xsave)
767 {
768 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
769 }
770 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
771 				 struct kvm_xcrs *xcrs)
772 {
773 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
774 }
775 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
776 {
777 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
778 }
779 
780 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
781 					       uint32_t function, uint32_t index);
782 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
783 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
784 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
785 
786 static inline uint32_t kvm_cpu_fms(void)
787 {
788 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
789 }
790 
791 static inline uint32_t kvm_cpu_family(void)
792 {
793 	return x86_family(kvm_cpu_fms());
794 }
795 
796 static inline uint32_t kvm_cpu_model(void)
797 {
798 	return x86_model(kvm_cpu_fms());
799 }
800 
801 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
802 		   struct kvm_x86_cpu_feature feature);
803 
804 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
805 {
806 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
807 }
808 
809 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
810 			    struct kvm_x86_cpu_property property);
811 
812 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
813 {
814 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
815 }
816 
817 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
818 {
819 	uint32_t max_leaf;
820 
821 	switch (property.function & 0xc0000000) {
822 	case 0:
823 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
824 		break;
825 	case 0x40000000:
826 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
827 		break;
828 	case 0x80000000:
829 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
830 		break;
831 	case 0xc0000000:
832 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
833 	}
834 	return max_leaf >= property.function;
835 }
836 
837 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
838 {
839 	uint32_t nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
840 
841 	return nr_bits > feature.anti_feature.bit &&
842 	       !kvm_cpu_has(feature.anti_feature);
843 }
844 
845 static inline size_t kvm_cpuid2_size(int nr_entries)
846 {
847 	return sizeof(struct kvm_cpuid2) +
848 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
849 }
850 
851 /*
852  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
853  * entries sized to hold @nr_entries.  The caller is responsible for freeing
854  * the struct.
855  */
856 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
857 {
858 	struct kvm_cpuid2 *cpuid;
859 
860 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
861 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
862 
863 	cpuid->nent = nr_entries;
864 
865 	return cpuid;
866 }
867 
868 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
869 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
870 
871 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
872 							      uint32_t function,
873 							      uint32_t index)
874 {
875 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
876 							  function, index);
877 }
878 
879 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
880 							    uint32_t function)
881 {
882 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
883 }
884 
885 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
886 {
887 	int r;
888 
889 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
890 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
891 	if (r)
892 		return r;
893 
894 	/* On success, refresh the cache to pick up adjustments made by KVM. */
895 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
896 	return 0;
897 }
898 
899 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
900 {
901 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
902 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
903 
904 	/* Refresh the cache to pick up adjustments made by KVM. */
905 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
906 }
907 
908 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
909 
910 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
911 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
912 				     struct kvm_x86_cpu_feature feature,
913 				     bool set);
914 
915 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
916 					  struct kvm_x86_cpu_feature feature)
917 {
918 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
919 
920 }
921 
922 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
923 					    struct kvm_x86_cpu_feature feature)
924 {
925 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
926 }
927 
928 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
929 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
930 
931 static inline void vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index,
932 				uint64_t msr_value)
933 {
934 	int r = _vcpu_set_msr(vcpu, msr_index, msr_value);
935 
936 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_SET_MSRS, r));
937 }
938 
939 
940 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
941 bool vm_is_unrestricted_guest(struct kvm_vm *vm);
942 
943 struct ex_regs {
944 	uint64_t rax, rcx, rdx, rbx;
945 	uint64_t rbp, rsi, rdi;
946 	uint64_t r8, r9, r10, r11;
947 	uint64_t r12, r13, r14, r15;
948 	uint64_t vector;
949 	uint64_t error_code;
950 	uint64_t rip;
951 	uint64_t cs;
952 	uint64_t rflags;
953 };
954 
955 struct idt_entry {
956 	uint16_t offset0;
957 	uint16_t selector;
958 	uint16_t ist : 3;
959 	uint16_t : 5;
960 	uint16_t type : 4;
961 	uint16_t : 1;
962 	uint16_t dpl : 2;
963 	uint16_t p : 1;
964 	uint16_t offset1;
965 	uint32_t offset2; uint32_t reserved;
966 };
967 
968 void vm_init_descriptor_tables(struct kvm_vm *vm);
969 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
970 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
971 			void (*handler)(struct ex_regs *));
972 
973 /* If a toddler were to say "abracadabra". */
974 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
975 
976 /*
977  * KVM selftest exception fixup uses registers to coordinate with the exception
978  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
979  * per-CPU data.  Using only registers avoids having to map memory into the
980  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
981  * for recursive faults when accessing memory in the handler.  The downside to
982  * using registers is that it restricts what registers can be used by the actual
983  * instruction.  But, selftests are 64-bit only, making register* pressure a
984  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
985  * by the callee, and except for r11 are not implicit parameters to any
986  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
987  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
988  * is higher priority than testing non-faulting SYSCALL/SYSRET.
989  *
990  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
991  * is guaranteed to be non-zero on fault.
992  *
993  * REGISTER INPUTS:
994  * r9  = MAGIC
995  * r10 = RIP
996  * r11 = new RIP on fault
997  *
998  * REGISTER OUTPUTS:
999  * r9  = exception vector (non-zero)
1000  * r10 = error code
1001  */
1002 #define KVM_ASM_SAFE(insn)					\
1003 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1004 	"lea 1f(%%rip), %%r10\n\t"				\
1005 	"lea 2f(%%rip), %%r11\n\t"				\
1006 	"1: " insn "\n\t"					\
1007 	"xor %%r9, %%r9\n\t"					\
1008 	"2:\n\t"						\
1009 	"mov  %%r9b, %[vector]\n\t"				\
1010 	"mov  %%r10, %[error_code]\n\t"
1011 
1012 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1013 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1014 
1015 #define kvm_asm_safe(insn, inputs...)					\
1016 ({									\
1017 	uint64_t ign_error_code;					\
1018 	uint8_t vector;							\
1019 									\
1020 	asm volatile(KVM_ASM_SAFE(insn)					\
1021 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1022 		     : inputs						\
1023 		     : KVM_ASM_SAFE_CLOBBERS);				\
1024 	vector;								\
1025 })
1026 
1027 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1028 ({									\
1029 	uint8_t vector;							\
1030 									\
1031 	asm volatile(KVM_ASM_SAFE(insn)					\
1032 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1033 		     : inputs						\
1034 		     : KVM_ASM_SAFE_CLOBBERS);				\
1035 	vector;								\
1036 })
1037 
1038 static inline uint8_t rdmsr_safe(uint32_t msr, uint64_t *val)
1039 {
1040 	uint64_t error_code;
1041 	uint8_t vector;
1042 	uint32_t a, d;
1043 
1044 	asm volatile(KVM_ASM_SAFE("rdmsr")
1045 		     : "=a"(a), "=d"(d), KVM_ASM_SAFE_OUTPUTS(vector, error_code)
1046 		     : "c"(msr)
1047 		     : KVM_ASM_SAFE_CLOBBERS);
1048 
1049 	*val = (uint64_t)a | ((uint64_t)d << 32);
1050 	return vector;
1051 }
1052 
1053 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1054 {
1055 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1056 }
1057 
1058 bool kvm_is_tdp_enabled(void);
1059 
1060 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1061 				    int *level);
1062 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1063 
1064 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1065 		       uint64_t a3);
1066 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1067 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1068 
1069 void __vm_xsave_require_permission(int bit, const char *name);
1070 
1071 #define vm_xsave_require_permission(perm)	\
1072 	__vm_xsave_require_permission(perm, #perm)
1073 
1074 enum pg_level {
1075 	PG_LEVEL_NONE,
1076 	PG_LEVEL_4K,
1077 	PG_LEVEL_2M,
1078 	PG_LEVEL_1G,
1079 	PG_LEVEL_512G,
1080 	PG_LEVEL_NUM
1081 };
1082 
1083 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1084 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1085 
1086 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1087 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1088 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1089 
1090 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1091 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1092 		    uint64_t nr_bytes, int level);
1093 
1094 /*
1095  * Basic CPU control in CR0
1096  */
1097 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1098 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1099 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1100 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1101 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1102 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1103 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1104 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1105 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1106 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1107 #define X86_CR0_PG          (1UL<<31) /* Paging */
1108 
1109 #define XSTATE_XTILE_CFG_BIT		17
1110 #define XSTATE_XTILE_DATA_BIT		18
1111 
1112 #define XSTATE_XTILE_CFG_MASK		(1ULL << XSTATE_XTILE_CFG_BIT)
1113 #define XSTATE_XTILE_DATA_MASK		(1ULL << XSTATE_XTILE_DATA_BIT)
1114 #define XFEATURE_XTILE_MASK		(XSTATE_XTILE_CFG_MASK | \
1115 					XSTATE_XTILE_DATA_MASK)
1116 
1117 #define PFERR_PRESENT_BIT 0
1118 #define PFERR_WRITE_BIT 1
1119 #define PFERR_USER_BIT 2
1120 #define PFERR_RSVD_BIT 3
1121 #define PFERR_FETCH_BIT 4
1122 #define PFERR_PK_BIT 5
1123 #define PFERR_SGX_BIT 15
1124 #define PFERR_GUEST_FINAL_BIT 32
1125 #define PFERR_GUEST_PAGE_BIT 33
1126 #define PFERR_IMPLICIT_ACCESS_BIT 48
1127 
1128 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1129 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1130 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1131 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1132 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1133 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1134 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1135 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1136 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1137 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1138 
1139 #endif /* SELFTEST_KVM_PROCESSOR_H */
1140