1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * page_fault_test.c - Test stage 2 faults.
4  *
5  * This test tries different combinations of guest accesses (e.g., write,
6  * S1PTW), backing source type (e.g., anon) and types of faults (e.g., read on
7  * hugetlbfs with a hole). It checks that the expected handling method is
8  * called (e.g., uffd faults with the right address and write/read flag).
9  */
10 
11 #define _GNU_SOURCE
12 #include <linux/bitmap.h>
13 #include <fcntl.h>
14 #include <test_util.h>
15 #include <kvm_util.h>
16 #include <processor.h>
17 #include <asm/sysreg.h>
18 #include <linux/bitfield.h>
19 #include "guest_modes.h"
20 #include "userfaultfd_util.h"
21 
22 /* Guest virtual addresses that point to the test page and its PTE. */
23 #define TEST_GVA				0xc0000000
24 #define TEST_EXEC_GVA				(TEST_GVA + 0x8)
25 #define TEST_PTE_GVA				0xb0000000
26 #define TEST_DATA				0x0123456789ABCDEF
27 
28 static uint64_t *guest_test_memory = (uint64_t *)TEST_GVA;
29 
30 #define CMD_NONE				(0)
31 #define CMD_SKIP_TEST				(1ULL << 1)
32 #define CMD_HOLE_PT				(1ULL << 2)
33 #define CMD_HOLE_DATA				(1ULL << 3)
34 #define CMD_CHECK_WRITE_IN_DIRTY_LOG		(1ULL << 4)
35 #define CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG		(1ULL << 5)
36 #define CMD_CHECK_NO_WRITE_IN_DIRTY_LOG		(1ULL << 6)
37 #define CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG	(1ULL << 7)
38 #define CMD_SET_PTE_AF				(1ULL << 8)
39 
40 #define PREPARE_FN_NR				10
41 #define CHECK_FN_NR				10
42 
43 static struct event_cnt {
44 	int mmio_exits;
45 	int fail_vcpu_runs;
46 	int uffd_faults;
47 	/* uffd_faults is incremented from multiple threads. */
48 	pthread_mutex_t uffd_faults_mutex;
49 } events;
50 
51 struct test_desc {
52 	const char *name;
53 	uint64_t mem_mark_cmd;
54 	/* Skip the test if any prepare function returns false */
55 	bool (*guest_prepare[PREPARE_FN_NR])(void);
56 	void (*guest_test)(void);
57 	void (*guest_test_check[CHECK_FN_NR])(void);
58 	uffd_handler_t uffd_pt_handler;
59 	uffd_handler_t uffd_data_handler;
60 	void (*dabt_handler)(struct ex_regs *regs);
61 	void (*iabt_handler)(struct ex_regs *regs);
62 	void (*mmio_handler)(struct kvm_vm *vm, struct kvm_run *run);
63 	void (*fail_vcpu_run_handler)(int ret);
64 	uint32_t pt_memslot_flags;
65 	uint32_t data_memslot_flags;
66 	bool skip;
67 	struct event_cnt expected_events;
68 };
69 
70 struct test_params {
71 	enum vm_mem_backing_src_type src_type;
72 	struct test_desc *test_desc;
73 };
74 
75 static inline void flush_tlb_page(uint64_t vaddr)
76 {
77 	uint64_t page = vaddr >> 12;
78 
79 	dsb(ishst);
80 	asm volatile("tlbi vaae1is, %0" :: "r" (page));
81 	dsb(ish);
82 	isb();
83 }
84 
85 static void guest_write64(void)
86 {
87 	uint64_t val;
88 
89 	WRITE_ONCE(*guest_test_memory, TEST_DATA);
90 	val = READ_ONCE(*guest_test_memory);
91 	GUEST_ASSERT_EQ(val, TEST_DATA);
92 }
93 
94 /* Check the system for atomic instructions. */
95 static bool guest_check_lse(void)
96 {
97 	uint64_t isar0 = read_sysreg(id_aa64isar0_el1);
98 	uint64_t atomic;
99 
100 	atomic = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64ISAR0_ATOMICS), isar0);
101 	return atomic >= 2;
102 }
103 
104 static bool guest_check_dc_zva(void)
105 {
106 	uint64_t dczid = read_sysreg(dczid_el0);
107 	uint64_t dzp = FIELD_GET(ARM64_FEATURE_MASK(DCZID_DZP), dczid);
108 
109 	return dzp == 0;
110 }
111 
112 /* Compare and swap instruction. */
113 static void guest_cas(void)
114 {
115 	uint64_t val;
116 
117 	GUEST_ASSERT(guest_check_lse());
118 	asm volatile(".arch_extension lse\n"
119 		     "casal %0, %1, [%2]\n"
120 		     :: "r" (0ul), "r" (TEST_DATA), "r" (guest_test_memory));
121 	val = READ_ONCE(*guest_test_memory);
122 	GUEST_ASSERT_EQ(val, TEST_DATA);
123 }
124 
125 static void guest_read64(void)
126 {
127 	uint64_t val;
128 
129 	val = READ_ONCE(*guest_test_memory);
130 	GUEST_ASSERT_EQ(val, 0);
131 }
132 
133 /* Address translation instruction */
134 static void guest_at(void)
135 {
136 	uint64_t par;
137 
138 	asm volatile("at s1e1r, %0" :: "r" (guest_test_memory));
139 	par = read_sysreg(par_el1);
140 	isb();
141 
142 	/* Bit 1 indicates whether the AT was successful */
143 	GUEST_ASSERT_EQ(par & 1, 0);
144 }
145 
146 /*
147  * The size of the block written by "dc zva" is guaranteed to be between (2 <<
148  * 0) and (2 << 9), which is safe in our case as we need the write to happen
149  * for at least a word, and not more than a page.
150  */
151 static void guest_dc_zva(void)
152 {
153 	uint16_t val;
154 
155 	asm volatile("dc zva, %0" :: "r" (guest_test_memory));
156 	dsb(ish);
157 	val = READ_ONCE(*guest_test_memory);
158 	GUEST_ASSERT_EQ(val, 0);
159 }
160 
161 /*
162  * Pre-indexing loads and stores don't have a valid syndrome (ESR_EL2.ISV==0).
163  * And that's special because KVM must take special care with those: they
164  * should still count as accesses for dirty logging or user-faulting, but
165  * should be handled differently on mmio.
166  */
167 static void guest_ld_preidx(void)
168 {
169 	uint64_t val;
170 	uint64_t addr = TEST_GVA - 8;
171 
172 	/*
173 	 * This ends up accessing "TEST_GVA + 8 - 8", where "TEST_GVA - 8" is
174 	 * in a gap between memslots not backing by anything.
175 	 */
176 	asm volatile("ldr %0, [%1, #8]!"
177 		     : "=r" (val), "+r" (addr));
178 	GUEST_ASSERT_EQ(val, 0);
179 	GUEST_ASSERT_EQ(addr, TEST_GVA);
180 }
181 
182 static void guest_st_preidx(void)
183 {
184 	uint64_t val = TEST_DATA;
185 	uint64_t addr = TEST_GVA - 8;
186 
187 	asm volatile("str %0, [%1, #8]!"
188 		     : "+r" (val), "+r" (addr));
189 
190 	GUEST_ASSERT_EQ(addr, TEST_GVA);
191 	val = READ_ONCE(*guest_test_memory);
192 }
193 
194 static bool guest_set_ha(void)
195 {
196 	uint64_t mmfr1 = read_sysreg(id_aa64mmfr1_el1);
197 	uint64_t hadbs, tcr;
198 
199 	/* Skip if HA is not supported. */
200 	hadbs = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR1_HADBS), mmfr1);
201 	if (hadbs == 0)
202 		return false;
203 
204 	tcr = read_sysreg(tcr_el1) | TCR_EL1_HA;
205 	write_sysreg(tcr, tcr_el1);
206 	isb();
207 
208 	return true;
209 }
210 
211 static bool guest_clear_pte_af(void)
212 {
213 	*((uint64_t *)TEST_PTE_GVA) &= ~PTE_AF;
214 	flush_tlb_page(TEST_GVA);
215 
216 	return true;
217 }
218 
219 static void guest_check_pte_af(void)
220 {
221 	dsb(ish);
222 	GUEST_ASSERT_EQ(*((uint64_t *)TEST_PTE_GVA) & PTE_AF, PTE_AF);
223 }
224 
225 static void guest_check_write_in_dirty_log(void)
226 {
227 	GUEST_SYNC(CMD_CHECK_WRITE_IN_DIRTY_LOG);
228 }
229 
230 static void guest_check_no_write_in_dirty_log(void)
231 {
232 	GUEST_SYNC(CMD_CHECK_NO_WRITE_IN_DIRTY_LOG);
233 }
234 
235 static void guest_check_s1ptw_wr_in_dirty_log(void)
236 {
237 	GUEST_SYNC(CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG);
238 }
239 
240 static void guest_exec(void)
241 {
242 	int (*code)(void) = (int (*)(void))TEST_EXEC_GVA;
243 	int ret;
244 
245 	ret = code();
246 	GUEST_ASSERT_EQ(ret, 0x77);
247 }
248 
249 static bool guest_prepare(struct test_desc *test)
250 {
251 	bool (*prepare_fn)(void);
252 	int i;
253 
254 	for (i = 0; i < PREPARE_FN_NR; i++) {
255 		prepare_fn = test->guest_prepare[i];
256 		if (prepare_fn && !prepare_fn())
257 			return false;
258 	}
259 
260 	return true;
261 }
262 
263 static void guest_test_check(struct test_desc *test)
264 {
265 	void (*check_fn)(void);
266 	int i;
267 
268 	for (i = 0; i < CHECK_FN_NR; i++) {
269 		check_fn = test->guest_test_check[i];
270 		if (check_fn)
271 			check_fn();
272 	}
273 }
274 
275 static void guest_code(struct test_desc *test)
276 {
277 	if (!guest_prepare(test))
278 		GUEST_SYNC(CMD_SKIP_TEST);
279 
280 	GUEST_SYNC(test->mem_mark_cmd);
281 
282 	if (test->guest_test)
283 		test->guest_test();
284 
285 	guest_test_check(test);
286 	GUEST_DONE();
287 }
288 
289 static void no_dabt_handler(struct ex_regs *regs)
290 {
291 	GUEST_ASSERT_1(false, read_sysreg(far_el1));
292 }
293 
294 static void no_iabt_handler(struct ex_regs *regs)
295 {
296 	GUEST_ASSERT_1(false, regs->pc);
297 }
298 
299 static struct uffd_args {
300 	char *copy;
301 	void *hva;
302 	uint64_t paging_size;
303 } pt_args, data_args;
304 
305 /* Returns true to continue the test, and false if it should be skipped. */
306 static int uffd_generic_handler(int uffd_mode, int uffd, struct uffd_msg *msg,
307 				struct uffd_args *args, bool expect_write)
308 {
309 	uint64_t addr = msg->arg.pagefault.address;
310 	uint64_t flags = msg->arg.pagefault.flags;
311 	struct uffdio_copy copy;
312 	int ret;
313 
314 	TEST_ASSERT(uffd_mode == UFFDIO_REGISTER_MODE_MISSING,
315 		    "The only expected UFFD mode is MISSING");
316 	ASSERT_EQ(!!(flags & UFFD_PAGEFAULT_FLAG_WRITE), expect_write);
317 	ASSERT_EQ(addr, (uint64_t)args->hva);
318 
319 	pr_debug("uffd fault: addr=%p write=%d\n",
320 		 (void *)addr, !!(flags & UFFD_PAGEFAULT_FLAG_WRITE));
321 
322 	copy.src = (uint64_t)args->copy;
323 	copy.dst = addr;
324 	copy.len = args->paging_size;
325 	copy.mode = 0;
326 
327 	ret = ioctl(uffd, UFFDIO_COPY, &copy);
328 	if (ret == -1) {
329 		pr_info("Failed UFFDIO_COPY in 0x%lx with errno: %d\n",
330 			addr, errno);
331 		return ret;
332 	}
333 
334 	pthread_mutex_lock(&events.uffd_faults_mutex);
335 	events.uffd_faults += 1;
336 	pthread_mutex_unlock(&events.uffd_faults_mutex);
337 	return 0;
338 }
339 
340 static int uffd_pt_write_handler(int mode, int uffd, struct uffd_msg *msg)
341 {
342 	return uffd_generic_handler(mode, uffd, msg, &pt_args, true);
343 }
344 
345 static int uffd_data_write_handler(int mode, int uffd, struct uffd_msg *msg)
346 {
347 	return uffd_generic_handler(mode, uffd, msg, &data_args, true);
348 }
349 
350 static int uffd_data_read_handler(int mode, int uffd, struct uffd_msg *msg)
351 {
352 	return uffd_generic_handler(mode, uffd, msg, &data_args, false);
353 }
354 
355 static void setup_uffd_args(struct userspace_mem_region *region,
356 			    struct uffd_args *args)
357 {
358 	args->hva = (void *)region->region.userspace_addr;
359 	args->paging_size = region->region.memory_size;
360 
361 	args->copy = malloc(args->paging_size);
362 	TEST_ASSERT(args->copy, "Failed to allocate data copy.");
363 	memcpy(args->copy, args->hva, args->paging_size);
364 }
365 
366 static void setup_uffd(struct kvm_vm *vm, struct test_params *p,
367 		       struct uffd_desc **pt_uffd, struct uffd_desc **data_uffd)
368 {
369 	struct test_desc *test = p->test_desc;
370 	int uffd_mode = UFFDIO_REGISTER_MODE_MISSING;
371 
372 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_PT), &pt_args);
373 	setup_uffd_args(vm_get_mem_region(vm, MEM_REGION_TEST_DATA), &data_args);
374 
375 	*pt_uffd = NULL;
376 	if (test->uffd_pt_handler)
377 		*pt_uffd = uffd_setup_demand_paging(uffd_mode, 0,
378 						    pt_args.hva,
379 						    pt_args.paging_size,
380 						    test->uffd_pt_handler);
381 
382 	*data_uffd = NULL;
383 	if (test->uffd_data_handler)
384 		*data_uffd = uffd_setup_demand_paging(uffd_mode, 0,
385 						      data_args.hva,
386 						      data_args.paging_size,
387 						      test->uffd_data_handler);
388 }
389 
390 static void free_uffd(struct test_desc *test, struct uffd_desc *pt_uffd,
391 		      struct uffd_desc *data_uffd)
392 {
393 	if (test->uffd_pt_handler)
394 		uffd_stop_demand_paging(pt_uffd);
395 	if (test->uffd_data_handler)
396 		uffd_stop_demand_paging(data_uffd);
397 
398 	free(pt_args.copy);
399 	free(data_args.copy);
400 }
401 
402 static int uffd_no_handler(int mode, int uffd, struct uffd_msg *msg)
403 {
404 	TEST_FAIL("There was no UFFD fault expected.");
405 	return -1;
406 }
407 
408 /* Returns false if the test should be skipped. */
409 static bool punch_hole_in_backing_store(struct kvm_vm *vm,
410 					struct userspace_mem_region *region)
411 {
412 	void *hva = (void *)region->region.userspace_addr;
413 	uint64_t paging_size = region->region.memory_size;
414 	int ret, fd = region->fd;
415 
416 	if (fd != -1) {
417 		ret = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
418 				0, paging_size);
419 		TEST_ASSERT(ret == 0, "fallocate failed\n");
420 	} else {
421 		ret = madvise(hva, paging_size, MADV_DONTNEED);
422 		TEST_ASSERT(ret == 0, "madvise failed\n");
423 	}
424 
425 	return true;
426 }
427 
428 static void mmio_on_test_gpa_handler(struct kvm_vm *vm, struct kvm_run *run)
429 {
430 	struct userspace_mem_region *region;
431 	void *hva;
432 
433 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
434 	hva = (void *)region->region.userspace_addr;
435 
436 	ASSERT_EQ(run->mmio.phys_addr, region->region.guest_phys_addr);
437 
438 	memcpy(hva, run->mmio.data, run->mmio.len);
439 	events.mmio_exits += 1;
440 }
441 
442 static void mmio_no_handler(struct kvm_vm *vm, struct kvm_run *run)
443 {
444 	uint64_t data;
445 
446 	memcpy(&data, run->mmio.data, sizeof(data));
447 	pr_debug("addr=%lld len=%d w=%d data=%lx\n",
448 		 run->mmio.phys_addr, run->mmio.len,
449 		 run->mmio.is_write, data);
450 	TEST_FAIL("There was no MMIO exit expected.");
451 }
452 
453 static bool check_write_in_dirty_log(struct kvm_vm *vm,
454 				     struct userspace_mem_region *region,
455 				     uint64_t host_pg_nr)
456 {
457 	unsigned long *bmap;
458 	bool first_page_dirty;
459 	uint64_t size = region->region.memory_size;
460 
461 	/* getpage_size() is not always equal to vm->page_size */
462 	bmap = bitmap_zalloc(size / getpagesize());
463 	kvm_vm_get_dirty_log(vm, region->region.slot, bmap);
464 	first_page_dirty = test_bit(host_pg_nr, bmap);
465 	free(bmap);
466 	return first_page_dirty;
467 }
468 
469 /* Returns true to continue the test, and false if it should be skipped. */
470 static bool handle_cmd(struct kvm_vm *vm, int cmd)
471 {
472 	struct userspace_mem_region *data_region, *pt_region;
473 	bool continue_test = true;
474 
475 	data_region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
476 	pt_region = vm_get_mem_region(vm, MEM_REGION_PT);
477 
478 	if (cmd == CMD_SKIP_TEST)
479 		continue_test = false;
480 
481 	if (cmd & CMD_HOLE_PT)
482 		continue_test = punch_hole_in_backing_store(vm, pt_region);
483 	if (cmd & CMD_HOLE_DATA)
484 		continue_test = punch_hole_in_backing_store(vm, data_region);
485 	if (cmd & CMD_CHECK_WRITE_IN_DIRTY_LOG)
486 		TEST_ASSERT(check_write_in_dirty_log(vm, data_region, 0),
487 			    "Missing write in dirty log");
488 	if (cmd & CMD_CHECK_S1PTW_WR_IN_DIRTY_LOG)
489 		TEST_ASSERT(check_write_in_dirty_log(vm, pt_region, 0),
490 			    "Missing s1ptw write in dirty log");
491 	if (cmd & CMD_CHECK_NO_WRITE_IN_DIRTY_LOG)
492 		TEST_ASSERT(!check_write_in_dirty_log(vm, data_region, 0),
493 			    "Unexpected write in dirty log");
494 	if (cmd & CMD_CHECK_NO_S1PTW_WR_IN_DIRTY_LOG)
495 		TEST_ASSERT(!check_write_in_dirty_log(vm, pt_region, 0),
496 			    "Unexpected s1ptw write in dirty log");
497 
498 	return continue_test;
499 }
500 
501 void fail_vcpu_run_no_handler(int ret)
502 {
503 	TEST_FAIL("Unexpected vcpu run failure\n");
504 }
505 
506 void fail_vcpu_run_mmio_no_syndrome_handler(int ret)
507 {
508 	TEST_ASSERT(errno == ENOSYS,
509 		    "The mmio handler should have returned not implemented.");
510 	events.fail_vcpu_runs += 1;
511 }
512 
513 typedef uint32_t aarch64_insn_t;
514 extern aarch64_insn_t __exec_test[2];
515 
516 noinline void __return_0x77(void)
517 {
518 	asm volatile("__exec_test: mov x0, #0x77\n"
519 		     "ret\n");
520 }
521 
522 /*
523  * Note that this function runs on the host before the test VM starts: there's
524  * no need to sync the D$ and I$ caches.
525  */
526 static void load_exec_code_for_test(struct kvm_vm *vm)
527 {
528 	uint64_t *code;
529 	struct userspace_mem_region *region;
530 	void *hva;
531 
532 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
533 	hva = (void *)region->region.userspace_addr;
534 
535 	assert(TEST_EXEC_GVA > TEST_GVA);
536 	code = hva + TEST_EXEC_GVA - TEST_GVA;
537 	memcpy(code, __exec_test, sizeof(__exec_test));
538 }
539 
540 static void setup_abort_handlers(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
541 				 struct test_desc *test)
542 {
543 	vm_init_descriptor_tables(vm);
544 	vcpu_init_descriptor_tables(vcpu);
545 
546 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
547 				ESR_EC_DABT, no_dabt_handler);
548 	vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT,
549 				ESR_EC_IABT, no_iabt_handler);
550 }
551 
552 static void setup_gva_maps(struct kvm_vm *vm)
553 {
554 	struct userspace_mem_region *region;
555 	uint64_t pte_gpa;
556 
557 	region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
558 	/* Map TEST_GVA first. This will install a new PTE. */
559 	virt_pg_map(vm, TEST_GVA, region->region.guest_phys_addr);
560 	/* Then map TEST_PTE_GVA to the above PTE. */
561 	pte_gpa = addr_hva2gpa(vm, virt_get_pte_hva(vm, TEST_GVA));
562 	virt_pg_map(vm, TEST_PTE_GVA, pte_gpa);
563 }
564 
565 enum pf_test_memslots {
566 	CODE_AND_DATA_MEMSLOT,
567 	PAGE_TABLE_MEMSLOT,
568 	TEST_DATA_MEMSLOT,
569 };
570 
571 /*
572  * Create a memslot for code and data at pfn=0, and test-data and PT ones
573  * at max_gfn.
574  */
575 static void setup_memslots(struct kvm_vm *vm, struct test_params *p)
576 {
577 	uint64_t backing_src_pagesz = get_backing_src_pagesz(p->src_type);
578 	uint64_t guest_page_size = vm->page_size;
579 	uint64_t max_gfn = vm_compute_max_gfn(vm);
580 	/* Enough for 2M of code when using 4K guest pages. */
581 	uint64_t code_npages = 512;
582 	uint64_t pt_size, data_size, data_gpa;
583 
584 	/*
585 	 * This test requires 1 pgd, 2 pud, 4 pmd, and 6 pte pages when using
586 	 * VM_MODE_P48V48_4K. Note that the .text takes ~1.6MBs.  That's 13
587 	 * pages. VM_MODE_P48V48_4K is the mode with most PT pages; let's use
588 	 * twice that just in case.
589 	 */
590 	pt_size = 26 * guest_page_size;
591 
592 	/* memslot sizes and gpa's must be aligned to the backing page size */
593 	pt_size = align_up(pt_size, backing_src_pagesz);
594 	data_size = align_up(guest_page_size, backing_src_pagesz);
595 	data_gpa = (max_gfn * guest_page_size) - data_size;
596 	data_gpa = align_down(data_gpa, backing_src_pagesz);
597 
598 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0,
599 				    CODE_AND_DATA_MEMSLOT, code_npages, 0);
600 	vm->memslots[MEM_REGION_CODE] = CODE_AND_DATA_MEMSLOT;
601 	vm->memslots[MEM_REGION_DATA] = CODE_AND_DATA_MEMSLOT;
602 
603 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa - pt_size,
604 				    PAGE_TABLE_MEMSLOT, pt_size / guest_page_size,
605 				    p->test_desc->pt_memslot_flags);
606 	vm->memslots[MEM_REGION_PT] = PAGE_TABLE_MEMSLOT;
607 
608 	vm_userspace_mem_region_add(vm, p->src_type, data_gpa, TEST_DATA_MEMSLOT,
609 				    data_size / guest_page_size,
610 				    p->test_desc->data_memslot_flags);
611 	vm->memslots[MEM_REGION_TEST_DATA] = TEST_DATA_MEMSLOT;
612 }
613 
614 static void setup_ucall(struct kvm_vm *vm)
615 {
616 	struct userspace_mem_region *region = vm_get_mem_region(vm, MEM_REGION_TEST_DATA);
617 
618 	ucall_init(vm, region->region.guest_phys_addr + region->region.memory_size);
619 }
620 
621 static void setup_default_handlers(struct test_desc *test)
622 {
623 	if (!test->mmio_handler)
624 		test->mmio_handler = mmio_no_handler;
625 
626 	if (!test->fail_vcpu_run_handler)
627 		test->fail_vcpu_run_handler = fail_vcpu_run_no_handler;
628 }
629 
630 static void check_event_counts(struct test_desc *test)
631 {
632 	ASSERT_EQ(test->expected_events.uffd_faults, events.uffd_faults);
633 	ASSERT_EQ(test->expected_events.mmio_exits, events.mmio_exits);
634 	ASSERT_EQ(test->expected_events.fail_vcpu_runs, events.fail_vcpu_runs);
635 }
636 
637 static void print_test_banner(enum vm_guest_mode mode, struct test_params *p)
638 {
639 	struct test_desc *test = p->test_desc;
640 
641 	pr_debug("Test: %s\n", test->name);
642 	pr_debug("Testing guest mode: %s\n", vm_guest_mode_string(mode));
643 	pr_debug("Testing memory backing src type: %s\n",
644 		 vm_mem_backing_src_alias(p->src_type)->name);
645 }
646 
647 static void reset_event_counts(void)
648 {
649 	memset(&events, 0, sizeof(events));
650 }
651 
652 /*
653  * This function either succeeds, skips the test (after setting test->skip), or
654  * fails with a TEST_FAIL that aborts all tests.
655  */
656 static void vcpu_run_loop(struct kvm_vm *vm, struct kvm_vcpu *vcpu,
657 			  struct test_desc *test)
658 {
659 	struct kvm_run *run;
660 	struct ucall uc;
661 	int ret;
662 
663 	run = vcpu->run;
664 
665 	for (;;) {
666 		ret = _vcpu_run(vcpu);
667 		if (ret) {
668 			test->fail_vcpu_run_handler(ret);
669 			goto done;
670 		}
671 
672 		switch (get_ucall(vcpu, &uc)) {
673 		case UCALL_SYNC:
674 			if (!handle_cmd(vm, uc.args[1])) {
675 				test->skip = true;
676 				goto done;
677 			}
678 			break;
679 		case UCALL_ABORT:
680 			REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx");
681 			break;
682 		case UCALL_DONE:
683 			goto done;
684 		case UCALL_NONE:
685 			if (run->exit_reason == KVM_EXIT_MMIO)
686 				test->mmio_handler(vm, run);
687 			break;
688 		default:
689 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
690 		}
691 	}
692 
693 done:
694 	pr_debug(test->skip ? "Skipped.\n" : "Done.\n");
695 }
696 
697 static void run_test(enum vm_guest_mode mode, void *arg)
698 {
699 	struct test_params *p = (struct test_params *)arg;
700 	struct test_desc *test = p->test_desc;
701 	struct kvm_vm *vm;
702 	struct kvm_vcpu *vcpu;
703 	struct uffd_desc *pt_uffd, *data_uffd;
704 
705 	print_test_banner(mode, p);
706 
707 	vm = ____vm_create(mode);
708 	setup_memslots(vm, p);
709 	kvm_vm_elf_load(vm, program_invocation_name);
710 	setup_ucall(vm);
711 	vcpu = vm_vcpu_add(vm, 0, guest_code);
712 
713 	setup_gva_maps(vm);
714 
715 	reset_event_counts();
716 
717 	/*
718 	 * Set some code in the data memslot for the guest to execute (only
719 	 * applicable to the EXEC tests). This has to be done before
720 	 * setup_uffd() as that function copies the memslot data for the uffd
721 	 * handler.
722 	 */
723 	load_exec_code_for_test(vm);
724 	setup_uffd(vm, p, &pt_uffd, &data_uffd);
725 	setup_abort_handlers(vm, vcpu, test);
726 	setup_default_handlers(test);
727 	vcpu_args_set(vcpu, 1, test);
728 
729 	vcpu_run_loop(vm, vcpu, test);
730 
731 	kvm_vm_free(vm);
732 	free_uffd(test, pt_uffd, data_uffd);
733 
734 	/*
735 	 * Make sure we check the events after the uffd threads have exited,
736 	 * which means they updated their respective event counters.
737 	 */
738 	if (!test->skip)
739 		check_event_counts(test);
740 }
741 
742 static void help(char *name)
743 {
744 	puts("");
745 	printf("usage: %s [-h] [-s mem-type]\n", name);
746 	puts("");
747 	guest_modes_help();
748 	backing_src_help("-s");
749 	puts("");
750 }
751 
752 #define SNAME(s)			#s
753 #define SCAT2(a, b)			SNAME(a ## _ ## b)
754 #define SCAT3(a, b, c)			SCAT2(a, SCAT2(b, c))
755 #define SCAT4(a, b, c, d)		SCAT2(a, SCAT3(b, c, d))
756 
757 #define _CHECK(_test)			_CHECK_##_test
758 #define _PREPARE(_test)			_PREPARE_##_test
759 #define _PREPARE_guest_read64		NULL
760 #define _PREPARE_guest_ld_preidx	NULL
761 #define _PREPARE_guest_write64		NULL
762 #define _PREPARE_guest_st_preidx	NULL
763 #define _PREPARE_guest_exec		NULL
764 #define _PREPARE_guest_at		NULL
765 #define _PREPARE_guest_dc_zva		guest_check_dc_zva
766 #define _PREPARE_guest_cas		guest_check_lse
767 
768 /* With or without access flag checks */
769 #define _PREPARE_with_af		guest_set_ha, guest_clear_pte_af
770 #define _PREPARE_no_af			NULL
771 #define _CHECK_with_af			guest_check_pte_af
772 #define _CHECK_no_af			NULL
773 
774 /* Performs an access and checks that no faults were triggered. */
775 #define TEST_ACCESS(_access, _with_af, _mark_cmd)				\
776 {										\
777 	.name			= SCAT3(_access, _with_af, #_mark_cmd),		\
778 	.guest_prepare		= { _PREPARE(_with_af),				\
779 				    _PREPARE(_access) },			\
780 	.mem_mark_cmd		= _mark_cmd,					\
781 	.guest_test		= _access,					\
782 	.guest_test_check	= { _CHECK(_with_af) },				\
783 	.expected_events	= { 0 },					\
784 }
785 
786 #define TEST_UFFD(_access, _with_af, _mark_cmd,					\
787 		  _uffd_data_handler, _uffd_pt_handler, _uffd_faults)		\
788 {										\
789 	.name			= SCAT4(uffd, _access, _with_af, #_mark_cmd),	\
790 	.guest_prepare		= { _PREPARE(_with_af),				\
791 				    _PREPARE(_access) },			\
792 	.guest_test		= _access,					\
793 	.mem_mark_cmd		= _mark_cmd,					\
794 	.guest_test_check	= { _CHECK(_with_af) },				\
795 	.uffd_data_handler	= _uffd_data_handler,				\
796 	.uffd_pt_handler	= _uffd_pt_handler,				\
797 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
798 }
799 
800 #define TEST_DIRTY_LOG(_access, _with_af, _test_check)				\
801 {										\
802 	.name			= SCAT3(dirty_log, _access, _with_af),		\
803 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
804 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
805 	.guest_prepare		= { _PREPARE(_with_af),				\
806 				    _PREPARE(_access) },			\
807 	.guest_test		= _access,					\
808 	.guest_test_check	= { _CHECK(_with_af), _test_check,		\
809 				    guest_check_s1ptw_wr_in_dirty_log},		\
810 	.expected_events	= { 0 },					\
811 }
812 
813 #define TEST_UFFD_AND_DIRTY_LOG(_access, _with_af, _uffd_data_handler,		\
814 				_uffd_faults, _test_check)			\
815 {										\
816 	.name			= SCAT3(uffd_and_dirty_log, _access, _with_af),	\
817 	.data_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
818 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
819 	.guest_prepare		= { _PREPARE(_with_af),				\
820 				    _PREPARE(_access) },			\
821 	.guest_test		= _access,					\
822 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
823 	.guest_test_check	= { _CHECK(_with_af), _test_check },		\
824 	.uffd_data_handler	= _uffd_data_handler,				\
825 	.uffd_pt_handler	= uffd_pt_write_handler,			\
826 	.expected_events	= { .uffd_faults = _uffd_faults, },		\
827 }
828 
829 #define TEST_RO_MEMSLOT(_access, _mmio_handler, _mmio_exits)			\
830 {										\
831 	.name			= SCAT3(ro_memslot, _access, _with_af),		\
832 	.data_memslot_flags	= KVM_MEM_READONLY,				\
833 	.guest_prepare		= { _PREPARE(_access) },			\
834 	.guest_test		= _access,					\
835 	.mmio_handler		= _mmio_handler,				\
836 	.expected_events	= { .mmio_exits = _mmio_exits },		\
837 }
838 
839 #define TEST_RO_MEMSLOT_NO_SYNDROME(_access)					\
840 {										\
841 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
842 	.data_memslot_flags	= KVM_MEM_READONLY,				\
843 	.guest_test		= _access,					\
844 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
845 	.expected_events	= { .fail_vcpu_runs = 1 },			\
846 }
847 
848 #define TEST_RO_MEMSLOT_AND_DIRTY_LOG(_access, _mmio_handler, _mmio_exits,	\
849 				      _test_check)				\
850 {										\
851 	.name			= SCAT3(ro_memslot, _access, _with_af),		\
852 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
853 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
854 	.guest_prepare		= { _PREPARE(_access) },			\
855 	.guest_test		= _access,					\
856 	.guest_test_check	= { _test_check },				\
857 	.mmio_handler		= _mmio_handler,				\
858 	.expected_events	= { .mmio_exits = _mmio_exits},			\
859 }
860 
861 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(_access, _test_check)		\
862 {										\
863 	.name			= SCAT2(ro_memslot_no_syn_and_dlog, _access),	\
864 	.data_memslot_flags	= KVM_MEM_READONLY | KVM_MEM_LOG_DIRTY_PAGES,	\
865 	.pt_memslot_flags	= KVM_MEM_LOG_DIRTY_PAGES,			\
866 	.guest_test		= _access,					\
867 	.guest_test_check	= { _test_check },				\
868 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
869 	.expected_events	= { .fail_vcpu_runs = 1 },			\
870 }
871 
872 #define TEST_RO_MEMSLOT_AND_UFFD(_access, _mmio_handler, _mmio_exits,		\
873 				 _uffd_data_handler, _uffd_faults)		\
874 {										\
875 	.name			= SCAT2(ro_memslot_uffd, _access),		\
876 	.data_memslot_flags	= KVM_MEM_READONLY,				\
877 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
878 	.guest_prepare		= { _PREPARE(_access) },			\
879 	.guest_test		= _access,					\
880 	.uffd_data_handler	= _uffd_data_handler,				\
881 	.uffd_pt_handler	= uffd_pt_write_handler,			\
882 	.mmio_handler		= _mmio_handler,				\
883 	.expected_events	= { .mmio_exits = _mmio_exits,			\
884 				    .uffd_faults = _uffd_faults },		\
885 }
886 
887 #define TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(_access, _uffd_data_handler,	\
888 					     _uffd_faults)			\
889 {										\
890 	.name			= SCAT2(ro_memslot_no_syndrome, _access),	\
891 	.data_memslot_flags	= KVM_MEM_READONLY,				\
892 	.mem_mark_cmd		= CMD_HOLE_DATA | CMD_HOLE_PT,			\
893 	.guest_test		= _access,					\
894 	.uffd_data_handler	= _uffd_data_handler,				\
895 	.uffd_pt_handler	= uffd_pt_write_handler,			\
896 	.fail_vcpu_run_handler	= fail_vcpu_run_mmio_no_syndrome_handler,	\
897 	.expected_events	= { .fail_vcpu_runs = 1,			\
898 				    .uffd_faults = _uffd_faults },		\
899 }
900 
901 static struct test_desc tests[] = {
902 
903 	/* Check that HW is setting the Access Flag (AF) (sanity checks). */
904 	TEST_ACCESS(guest_read64, with_af, CMD_NONE),
905 	TEST_ACCESS(guest_ld_preidx, with_af, CMD_NONE),
906 	TEST_ACCESS(guest_cas, with_af, CMD_NONE),
907 	TEST_ACCESS(guest_write64, with_af, CMD_NONE),
908 	TEST_ACCESS(guest_st_preidx, with_af, CMD_NONE),
909 	TEST_ACCESS(guest_dc_zva, with_af, CMD_NONE),
910 	TEST_ACCESS(guest_exec, with_af, CMD_NONE),
911 
912 	/*
913 	 * Punch a hole in the data backing store, and then try multiple
914 	 * accesses: reads should rturn zeroes, and writes should
915 	 * re-populate the page. Moreover, the test also check that no
916 	 * exception was generated in the guest.  Note that this
917 	 * reading/writing behavior is the same as reading/writing a
918 	 * punched page (with fallocate(FALLOC_FL_PUNCH_HOLE)) from
919 	 * userspace.
920 	 */
921 	TEST_ACCESS(guest_read64, no_af, CMD_HOLE_DATA),
922 	TEST_ACCESS(guest_cas, no_af, CMD_HOLE_DATA),
923 	TEST_ACCESS(guest_ld_preidx, no_af, CMD_HOLE_DATA),
924 	TEST_ACCESS(guest_write64, no_af, CMD_HOLE_DATA),
925 	TEST_ACCESS(guest_st_preidx, no_af, CMD_HOLE_DATA),
926 	TEST_ACCESS(guest_at, no_af, CMD_HOLE_DATA),
927 	TEST_ACCESS(guest_dc_zva, no_af, CMD_HOLE_DATA),
928 
929 	/*
930 	 * Punch holes in the data and PT backing stores and mark them for
931 	 * userfaultfd handling. This should result in 2 faults: the access
932 	 * on the data backing store, and its respective S1 page table walk
933 	 * (S1PTW).
934 	 */
935 	TEST_UFFD(guest_read64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
936 		  uffd_data_read_handler, uffd_pt_write_handler, 2),
937 	/* no_af should also lead to a PT write. */
938 	TEST_UFFD(guest_read64, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
939 		  uffd_data_read_handler, uffd_pt_write_handler, 2),
940 	/* Note how that cas invokes the read handler. */
941 	TEST_UFFD(guest_cas, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
942 		  uffd_data_read_handler, uffd_pt_write_handler, 2),
943 	/*
944 	 * Can't test guest_at with_af as it's IMPDEF whether the AF is set.
945 	 * The S1PTW fault should still be marked as a write.
946 	 */
947 	TEST_UFFD(guest_at, no_af, CMD_HOLE_DATA | CMD_HOLE_PT,
948 		  uffd_data_read_handler, uffd_pt_write_handler, 1),
949 	TEST_UFFD(guest_ld_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
950 		  uffd_data_read_handler, uffd_pt_write_handler, 2),
951 	TEST_UFFD(guest_write64, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
952 		  uffd_data_write_handler, uffd_pt_write_handler, 2),
953 	TEST_UFFD(guest_dc_zva, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
954 		  uffd_data_write_handler, uffd_pt_write_handler, 2),
955 	TEST_UFFD(guest_st_preidx, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
956 		  uffd_data_write_handler, uffd_pt_write_handler, 2),
957 	TEST_UFFD(guest_exec, with_af, CMD_HOLE_DATA | CMD_HOLE_PT,
958 		  uffd_data_read_handler, uffd_pt_write_handler, 2),
959 
960 	/*
961 	 * Try accesses when the data and PT memory regions are both
962 	 * tracked for dirty logging.
963 	 */
964 	TEST_DIRTY_LOG(guest_read64, with_af, guest_check_no_write_in_dirty_log),
965 	/* no_af should also lead to a PT write. */
966 	TEST_DIRTY_LOG(guest_read64, no_af, guest_check_no_write_in_dirty_log),
967 	TEST_DIRTY_LOG(guest_ld_preidx, with_af, guest_check_no_write_in_dirty_log),
968 	TEST_DIRTY_LOG(guest_at, no_af, guest_check_no_write_in_dirty_log),
969 	TEST_DIRTY_LOG(guest_exec, with_af, guest_check_no_write_in_dirty_log),
970 	TEST_DIRTY_LOG(guest_write64, with_af, guest_check_write_in_dirty_log),
971 	TEST_DIRTY_LOG(guest_cas, with_af, guest_check_write_in_dirty_log),
972 	TEST_DIRTY_LOG(guest_dc_zva, with_af, guest_check_write_in_dirty_log),
973 	TEST_DIRTY_LOG(guest_st_preidx, with_af, guest_check_write_in_dirty_log),
974 
975 	/*
976 	 * Access when the data and PT memory regions are both marked for
977 	 * dirty logging and UFFD at the same time. The expected result is
978 	 * that writes should mark the dirty log and trigger a userfaultfd
979 	 * write fault.  Reads/execs should result in a read userfaultfd
980 	 * fault, and nothing in the dirty log.  Any S1PTW should result in
981 	 * a write in the dirty log and a userfaultfd write.
982 	 */
983 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, with_af, uffd_data_read_handler, 2,
984 				guest_check_no_write_in_dirty_log),
985 	/* no_af should also lead to a PT write. */
986 	TEST_UFFD_AND_DIRTY_LOG(guest_read64, no_af, uffd_data_read_handler, 2,
987 				guest_check_no_write_in_dirty_log),
988 	TEST_UFFD_AND_DIRTY_LOG(guest_ld_preidx, with_af, uffd_data_read_handler,
989 				2, guest_check_no_write_in_dirty_log),
990 	TEST_UFFD_AND_DIRTY_LOG(guest_at, with_af, 0, 1,
991 				guest_check_no_write_in_dirty_log),
992 	TEST_UFFD_AND_DIRTY_LOG(guest_exec, with_af, uffd_data_read_handler, 2,
993 				guest_check_no_write_in_dirty_log),
994 	TEST_UFFD_AND_DIRTY_LOG(guest_write64, with_af, uffd_data_write_handler,
995 				2, guest_check_write_in_dirty_log),
996 	TEST_UFFD_AND_DIRTY_LOG(guest_cas, with_af, uffd_data_read_handler, 2,
997 				guest_check_write_in_dirty_log),
998 	TEST_UFFD_AND_DIRTY_LOG(guest_dc_zva, with_af, uffd_data_write_handler,
999 				2, guest_check_write_in_dirty_log),
1000 	TEST_UFFD_AND_DIRTY_LOG(guest_st_preidx, with_af,
1001 				uffd_data_write_handler, 2,
1002 				guest_check_write_in_dirty_log),
1003 
1004 	/*
1005 	 * Try accesses when the data memory region is marked read-only
1006 	 * (with KVM_MEM_READONLY). Writes with a syndrome result in an
1007 	 * MMIO exit, writes with no syndrome (e.g., CAS) result in a
1008 	 * failed vcpu run, and reads/execs with and without syndroms do
1009 	 * not fault.
1010 	 */
1011 	TEST_RO_MEMSLOT(guest_read64, 0, 0),
1012 	TEST_RO_MEMSLOT(guest_ld_preidx, 0, 0),
1013 	TEST_RO_MEMSLOT(guest_at, 0, 0),
1014 	TEST_RO_MEMSLOT(guest_exec, 0, 0),
1015 	TEST_RO_MEMSLOT(guest_write64, mmio_on_test_gpa_handler, 1),
1016 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_dc_zva),
1017 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_cas),
1018 	TEST_RO_MEMSLOT_NO_SYNDROME(guest_st_preidx),
1019 
1020 	/*
1021 	 * Access when both the data region is both read-only and marked
1022 	 * for dirty logging at the same time. The expected result is that
1023 	 * for writes there should be no write in the dirty log. The
1024 	 * readonly handling is the same as if the memslot was not marked
1025 	 * for dirty logging: writes with a syndrome result in an MMIO
1026 	 * exit, and writes with no syndrome result in a failed vcpu run.
1027 	 */
1028 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_read64, 0, 0,
1029 				      guest_check_no_write_in_dirty_log),
1030 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_ld_preidx, 0, 0,
1031 				      guest_check_no_write_in_dirty_log),
1032 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_at, 0, 0,
1033 				      guest_check_no_write_in_dirty_log),
1034 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_exec, 0, 0,
1035 				      guest_check_no_write_in_dirty_log),
1036 	TEST_RO_MEMSLOT_AND_DIRTY_LOG(guest_write64, mmio_on_test_gpa_handler,
1037 				      1, guest_check_no_write_in_dirty_log),
1038 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_dc_zva,
1039 						  guest_check_no_write_in_dirty_log),
1040 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_cas,
1041 						  guest_check_no_write_in_dirty_log),
1042 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_DIRTY_LOG(guest_st_preidx,
1043 						  guest_check_no_write_in_dirty_log),
1044 
1045 	/*
1046 	 * Access when the data region is both read-only and punched with
1047 	 * holes tracked with userfaultfd.  The expected result is the
1048 	 * union of both userfaultfd and read-only behaviors. For example,
1049 	 * write accesses result in a userfaultfd write fault and an MMIO
1050 	 * exit.  Writes with no syndrome result in a failed vcpu run and
1051 	 * no userfaultfd write fault. Reads result in userfaultfd getting
1052 	 * triggered.
1053 	 */
1054 	TEST_RO_MEMSLOT_AND_UFFD(guest_read64, 0, 0,
1055 				 uffd_data_read_handler, 2),
1056 	TEST_RO_MEMSLOT_AND_UFFD(guest_ld_preidx, 0, 0,
1057 				 uffd_data_read_handler, 2),
1058 	TEST_RO_MEMSLOT_AND_UFFD(guest_at, 0, 0,
1059 				 uffd_no_handler, 1),
1060 	TEST_RO_MEMSLOT_AND_UFFD(guest_exec, 0, 0,
1061 				 uffd_data_read_handler, 2),
1062 	TEST_RO_MEMSLOT_AND_UFFD(guest_write64, mmio_on_test_gpa_handler, 1,
1063 				 uffd_data_write_handler, 2),
1064 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_cas,
1065 					     uffd_data_read_handler, 2),
1066 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_dc_zva,
1067 					     uffd_no_handler, 1),
1068 	TEST_RO_MEMSLOT_NO_SYNDROME_AND_UFFD(guest_st_preidx,
1069 					     uffd_no_handler, 1),
1070 
1071 	{ 0 }
1072 };
1073 
1074 static void for_each_test_and_guest_mode(enum vm_mem_backing_src_type src_type)
1075 {
1076 	struct test_desc *t;
1077 
1078 	for (t = &tests[0]; t->name; t++) {
1079 		if (t->skip)
1080 			continue;
1081 
1082 		struct test_params p = {
1083 			.src_type = src_type,
1084 			.test_desc = t,
1085 		};
1086 
1087 		for_each_guest_mode(run_test, &p);
1088 	}
1089 }
1090 
1091 int main(int argc, char *argv[])
1092 {
1093 	enum vm_mem_backing_src_type src_type;
1094 	int opt;
1095 
1096 	setbuf(stdout, NULL);
1097 
1098 	src_type = DEFAULT_VM_MEM_SRC;
1099 
1100 	while ((opt = getopt(argc, argv, "hm:s:")) != -1) {
1101 		switch (opt) {
1102 		case 'm':
1103 			guest_modes_cmdline(optarg);
1104 			break;
1105 		case 's':
1106 			src_type = parse_backing_src_type(optarg);
1107 			break;
1108 		case 'h':
1109 		default:
1110 			help(argv[0]);
1111 			exit(0);
1112 		}
1113 	}
1114 
1115 	for_each_test_and_guest_mode(src_type);
1116 	return 0;
1117 }
1118