1 // SPDX-License-Identifier: GPL-2.0 2 #define _GNU_SOURCE 3 4 #include <linux/limits.h> 5 #include <fcntl.h> 6 #include <stdio.h> 7 #include <stdlib.h> 8 #include <string.h> 9 #include <sys/stat.h> 10 #include <sys/types.h> 11 #include <unistd.h> 12 #include <sys/wait.h> 13 #include <errno.h> 14 #include <sys/sysinfo.h> 15 #include <pthread.h> 16 17 #include "../kselftest.h" 18 #include "cgroup_util.h" 19 20 21 /* 22 * Memory cgroup charging is performed using percpu batches 32 pages 23 * big (look at MEMCG_CHARGE_BATCH), whereas memory.stat is exact. So 24 * the maximum discrepancy between charge and vmstat entries is number 25 * of cpus multiplied by 32 pages. 26 */ 27 #define MAX_VMSTAT_ERROR (4096 * 32 * get_nprocs()) 28 29 30 static int alloc_dcache(const char *cgroup, void *arg) 31 { 32 unsigned long i; 33 struct stat st; 34 char buf[128]; 35 36 for (i = 0; i < (unsigned long)arg; i++) { 37 snprintf(buf, sizeof(buf), 38 "/something-non-existent-with-a-long-name-%64lu-%d", 39 i, getpid()); 40 stat(buf, &st); 41 } 42 43 return 0; 44 } 45 46 /* 47 * This test allocates 100000 of negative dentries with long names. 48 * Then it checks that "slab" in memory.stat is larger than 1M. 49 * Then it sets memory.high to 1M and checks that at least 1/2 50 * of slab memory has been reclaimed. 51 */ 52 static int test_kmem_basic(const char *root) 53 { 54 int ret = KSFT_FAIL; 55 char *cg = NULL; 56 long slab0, slab1, current; 57 58 cg = cg_name(root, "kmem_basic_test"); 59 if (!cg) 60 goto cleanup; 61 62 if (cg_create(cg)) 63 goto cleanup; 64 65 if (cg_run(cg, alloc_dcache, (void *)100000)) 66 goto cleanup; 67 68 slab0 = cg_read_key_long(cg, "memory.stat", "slab "); 69 if (slab0 < (1 << 20)) 70 goto cleanup; 71 72 cg_write(cg, "memory.high", "1M"); 73 slab1 = cg_read_key_long(cg, "memory.stat", "slab "); 74 if (slab1 <= 0) 75 goto cleanup; 76 77 current = cg_read_long(cg, "memory.current"); 78 if (current <= 0) 79 goto cleanup; 80 81 if (slab1 < slab0 / 2 && current < slab0 / 2) 82 ret = KSFT_PASS; 83 cleanup: 84 cg_destroy(cg); 85 free(cg); 86 87 return ret; 88 } 89 90 static void *alloc_kmem_fn(void *arg) 91 { 92 alloc_dcache(NULL, (void *)100); 93 return NULL; 94 } 95 96 static int alloc_kmem_smp(const char *cgroup, void *arg) 97 { 98 int nr_threads = 2 * get_nprocs(); 99 pthread_t *tinfo; 100 unsigned long i; 101 int ret = -1; 102 103 tinfo = calloc(nr_threads, sizeof(pthread_t)); 104 if (tinfo == NULL) 105 return -1; 106 107 for (i = 0; i < nr_threads; i++) { 108 if (pthread_create(&tinfo[i], NULL, &alloc_kmem_fn, 109 (void *)i)) { 110 free(tinfo); 111 return -1; 112 } 113 } 114 115 for (i = 0; i < nr_threads; i++) { 116 ret = pthread_join(tinfo[i], NULL); 117 if (ret) 118 break; 119 } 120 121 free(tinfo); 122 return ret; 123 } 124 125 static int cg_run_in_subcgroups(const char *parent, 126 int (*fn)(const char *cgroup, void *arg), 127 void *arg, int times) 128 { 129 char *child; 130 int i; 131 132 for (i = 0; i < times; i++) { 133 child = cg_name_indexed(parent, "child", i); 134 if (!child) 135 return -1; 136 137 if (cg_create(child)) { 138 cg_destroy(child); 139 free(child); 140 return -1; 141 } 142 143 if (cg_run(child, fn, NULL)) { 144 cg_destroy(child); 145 free(child); 146 return -1; 147 } 148 149 cg_destroy(child); 150 free(child); 151 } 152 153 return 0; 154 } 155 156 /* 157 * The test creates and destroys a large number of cgroups. In each cgroup it 158 * allocates some slab memory (mostly negative dentries) using 2 * NR_CPUS 159 * threads. Then it checks the sanity of numbers on the parent level: 160 * the total size of the cgroups should be roughly equal to 161 * anon + file + slab + kernel_stack. 162 */ 163 static int test_kmem_memcg_deletion(const char *root) 164 { 165 long current, slab, anon, file, kernel_stack, pagetables, percpu, sock, sum; 166 int ret = KSFT_FAIL; 167 char *parent; 168 169 parent = cg_name(root, "kmem_memcg_deletion_test"); 170 if (!parent) 171 goto cleanup; 172 173 if (cg_create(parent)) 174 goto cleanup; 175 176 if (cg_write(parent, "cgroup.subtree_control", "+memory")) 177 goto cleanup; 178 179 if (cg_run_in_subcgroups(parent, alloc_kmem_smp, NULL, 100)) 180 goto cleanup; 181 182 current = cg_read_long(parent, "memory.current"); 183 slab = cg_read_key_long(parent, "memory.stat", "slab "); 184 anon = cg_read_key_long(parent, "memory.stat", "anon "); 185 file = cg_read_key_long(parent, "memory.stat", "file "); 186 kernel_stack = cg_read_key_long(parent, "memory.stat", "kernel_stack "); 187 pagetables = cg_read_key_long(parent, "memory.stat", "pagetables "); 188 percpu = cg_read_key_long(parent, "memory.stat", "percpu "); 189 sock = cg_read_key_long(parent, "memory.stat", "sock "); 190 if (current < 0 || slab < 0 || anon < 0 || file < 0 || 191 kernel_stack < 0 || pagetables < 0 || percpu < 0 || sock < 0) 192 goto cleanup; 193 194 sum = slab + anon + file + kernel_stack + pagetables + percpu + sock; 195 if (abs(sum - current) < MAX_VMSTAT_ERROR) { 196 ret = KSFT_PASS; 197 } else { 198 printf("memory.current = %ld\n", current); 199 printf("slab + anon + file + kernel_stack = %ld\n", sum); 200 printf("slab = %ld\n", slab); 201 printf("anon = %ld\n", anon); 202 printf("file = %ld\n", file); 203 printf("kernel_stack = %ld\n", kernel_stack); 204 printf("pagetables = %ld\n", pagetables); 205 printf("percpu = %ld\n", percpu); 206 printf("sock = %ld\n", sock); 207 } 208 209 cleanup: 210 cg_destroy(parent); 211 free(parent); 212 213 return ret; 214 } 215 216 /* 217 * The test reads the entire /proc/kpagecgroup. If the operation went 218 * successfully (and the kernel didn't panic), the test is treated as passed. 219 */ 220 static int test_kmem_proc_kpagecgroup(const char *root) 221 { 222 unsigned long buf[128]; 223 int ret = KSFT_FAIL; 224 ssize_t len; 225 int fd; 226 227 fd = open("/proc/kpagecgroup", O_RDONLY); 228 if (fd < 0) 229 return ret; 230 231 do { 232 len = read(fd, buf, sizeof(buf)); 233 } while (len > 0); 234 235 if (len == 0) 236 ret = KSFT_PASS; 237 238 close(fd); 239 return ret; 240 } 241 242 static void *pthread_wait_fn(void *arg) 243 { 244 sleep(100); 245 return NULL; 246 } 247 248 static int spawn_1000_threads(const char *cgroup, void *arg) 249 { 250 int nr_threads = 1000; 251 pthread_t *tinfo; 252 unsigned long i; 253 long stack; 254 int ret = -1; 255 256 tinfo = calloc(nr_threads, sizeof(pthread_t)); 257 if (tinfo == NULL) 258 return -1; 259 260 for (i = 0; i < nr_threads; i++) { 261 if (pthread_create(&tinfo[i], NULL, &pthread_wait_fn, 262 (void *)i)) { 263 free(tinfo); 264 return(-1); 265 } 266 } 267 268 stack = cg_read_key_long(cgroup, "memory.stat", "kernel_stack "); 269 if (stack >= 4096 * 1000) 270 ret = 0; 271 272 free(tinfo); 273 return ret; 274 } 275 276 /* 277 * The test spawns a process, which spawns 1000 threads. Then it checks 278 * that memory.stat's kernel_stack is at least 1000 pages large. 279 */ 280 static int test_kmem_kernel_stacks(const char *root) 281 { 282 int ret = KSFT_FAIL; 283 char *cg = NULL; 284 285 cg = cg_name(root, "kmem_kernel_stacks_test"); 286 if (!cg) 287 goto cleanup; 288 289 if (cg_create(cg)) 290 goto cleanup; 291 292 if (cg_run(cg, spawn_1000_threads, NULL)) 293 goto cleanup; 294 295 ret = KSFT_PASS; 296 cleanup: 297 cg_destroy(cg); 298 free(cg); 299 300 return ret; 301 } 302 303 /* 304 * This test sequentionally creates 30 child cgroups, allocates some 305 * kernel memory in each of them, and deletes them. Then it checks 306 * that the number of dying cgroups on the parent level is 0. 307 */ 308 static int test_kmem_dead_cgroups(const char *root) 309 { 310 int ret = KSFT_FAIL; 311 char *parent; 312 long dead; 313 int i; 314 315 parent = cg_name(root, "kmem_dead_cgroups_test"); 316 if (!parent) 317 goto cleanup; 318 319 if (cg_create(parent)) 320 goto cleanup; 321 322 if (cg_write(parent, "cgroup.subtree_control", "+memory")) 323 goto cleanup; 324 325 if (cg_run_in_subcgroups(parent, alloc_dcache, (void *)100, 30)) 326 goto cleanup; 327 328 for (i = 0; i < 5; i++) { 329 dead = cg_read_key_long(parent, "cgroup.stat", 330 "nr_dying_descendants "); 331 if (dead == 0) { 332 ret = KSFT_PASS; 333 break; 334 } 335 /* 336 * Reclaiming cgroups might take some time, 337 * let's wait a bit and repeat. 338 */ 339 sleep(1); 340 } 341 342 cleanup: 343 cg_destroy(parent); 344 free(parent); 345 346 return ret; 347 } 348 349 /* 350 * This test creates a sub-tree with 1000 memory cgroups. 351 * Then it checks that the memory.current on the parent level 352 * is greater than 0 and approximates matches the percpu value 353 * from memory.stat. 354 */ 355 static int test_percpu_basic(const char *root) 356 { 357 int ret = KSFT_FAIL; 358 char *parent, *child; 359 long current, percpu; 360 int i; 361 362 parent = cg_name(root, "percpu_basic_test"); 363 if (!parent) 364 goto cleanup; 365 366 if (cg_create(parent)) 367 goto cleanup; 368 369 if (cg_write(parent, "cgroup.subtree_control", "+memory")) 370 goto cleanup; 371 372 for (i = 0; i < 1000; i++) { 373 child = cg_name_indexed(parent, "child", i); 374 if (!child) 375 return -1; 376 377 if (cg_create(child)) 378 goto cleanup_children; 379 380 free(child); 381 } 382 383 current = cg_read_long(parent, "memory.current"); 384 percpu = cg_read_key_long(parent, "memory.stat", "percpu "); 385 386 if (current > 0 && percpu > 0 && abs(current - percpu) < 387 MAX_VMSTAT_ERROR) 388 ret = KSFT_PASS; 389 else 390 printf("memory.current %ld\npercpu %ld\n", 391 current, percpu); 392 393 cleanup_children: 394 for (i = 0; i < 1000; i++) { 395 child = cg_name_indexed(parent, "child", i); 396 cg_destroy(child); 397 free(child); 398 } 399 400 cleanup: 401 cg_destroy(parent); 402 free(parent); 403 404 return ret; 405 } 406 407 #define T(x) { x, #x } 408 struct kmem_test { 409 int (*fn)(const char *root); 410 const char *name; 411 } tests[] = { 412 T(test_kmem_basic), 413 T(test_kmem_memcg_deletion), 414 T(test_kmem_proc_kpagecgroup), 415 T(test_kmem_kernel_stacks), 416 T(test_kmem_dead_cgroups), 417 T(test_percpu_basic), 418 }; 419 #undef T 420 421 int main(int argc, char **argv) 422 { 423 char root[PATH_MAX]; 424 int i, ret = EXIT_SUCCESS; 425 426 if (cg_find_unified_root(root, sizeof(root))) 427 ksft_exit_skip("cgroup v2 isn't mounted\n"); 428 429 /* 430 * Check that memory controller is available: 431 * memory is listed in cgroup.controllers 432 */ 433 if (cg_read_strstr(root, "cgroup.controllers", "memory")) 434 ksft_exit_skip("memory controller isn't available\n"); 435 436 if (cg_read_strstr(root, "cgroup.subtree_control", "memory")) 437 if (cg_write(root, "cgroup.subtree_control", "+memory")) 438 ksft_exit_skip("Failed to set memory controller\n"); 439 440 for (i = 0; i < ARRAY_SIZE(tests); i++) { 441 switch (tests[i].fn(root)) { 442 case KSFT_PASS: 443 ksft_test_result_pass("%s\n", tests[i].name); 444 break; 445 case KSFT_SKIP: 446 ksft_test_result_skip("%s\n", tests[i].name); 447 break; 448 default: 449 ret = EXIT_FAILURE; 450 ksft_test_result_fail("%s\n", tests[i].name); 451 break; 452 } 453 } 454 455 return ret; 456 } 457