1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31 
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35 
36 #ifdef HAVE_GENHDR
37 # include "autoconf.h"
38 #else
39 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
40 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
41 # endif
42 #endif
43 #include "cap_helpers.h"
44 #include "bpf_rand.h"
45 #include "bpf_util.h"
46 #include "test_btf.h"
47 #include "../../../include/linux/filter.h"
48 
49 #ifndef ENOTSUPP
50 #define ENOTSUPP 524
51 #endif
52 
53 #define MAX_INSNS	BPF_MAXINSNS
54 #define MAX_EXPECTED_INSNS	32
55 #define MAX_UNEXPECTED_INSNS	32
56 #define MAX_TEST_INSNS	1000000
57 #define MAX_FIXUPS	8
58 #define MAX_NR_MAPS	23
59 #define MAX_TEST_RUNS	8
60 #define POINTER_VALUE	0xcafe4all
61 #define TEST_DATA_LEN	64
62 #define MAX_FUNC_INFOS	8
63 #define MAX_BTF_STRINGS	256
64 #define MAX_BTF_TYPES	256
65 
66 #define INSN_OFF_MASK	((__s16)0xFFFF)
67 #define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
68 #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
69 
70 #define DEFAULT_LIBBPF_LOG_LEVEL	4
71 #define VERBOSE_LIBBPF_LOG_LEVEL	1
72 
73 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
74 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
75 
76 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
77 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
78 		    1ULL << CAP_PERFMON |	\
79 		    1ULL << CAP_BPF)
80 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
81 static bool unpriv_disabled = false;
82 static int skips;
83 static bool verbose = false;
84 
85 struct kfunc_btf_id_pair {
86 	const char *kfunc;
87 	int insn_idx;
88 };
89 
90 struct bpf_test {
91 	const char *descr;
92 	struct bpf_insn	insns[MAX_INSNS];
93 	struct bpf_insn	*fill_insns;
94 	/* If specified, test engine looks for this sequence of
95 	 * instructions in the BPF program after loading. Allows to
96 	 * test rewrites applied by verifier.  Use values
97 	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
98 	 * fields if content does not matter.  The test case fails if
99 	 * specified instructions are not found.
100 	 *
101 	 * The sequence could be split into sub-sequences by adding
102 	 * SKIP_INSNS instruction at the end of each sub-sequence. In
103 	 * such case sub-sequences are searched for one after another.
104 	 */
105 	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
106 	/* If specified, test engine applies same pattern matching
107 	 * logic as for `expected_insns`. If the specified pattern is
108 	 * matched test case is marked as failed.
109 	 */
110 	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
111 	int fixup_map_hash_8b[MAX_FIXUPS];
112 	int fixup_map_hash_48b[MAX_FIXUPS];
113 	int fixup_map_hash_16b[MAX_FIXUPS];
114 	int fixup_map_array_48b[MAX_FIXUPS];
115 	int fixup_map_sockmap[MAX_FIXUPS];
116 	int fixup_map_sockhash[MAX_FIXUPS];
117 	int fixup_map_xskmap[MAX_FIXUPS];
118 	int fixup_map_stacktrace[MAX_FIXUPS];
119 	int fixup_prog1[MAX_FIXUPS];
120 	int fixup_prog2[MAX_FIXUPS];
121 	int fixup_map_in_map[MAX_FIXUPS];
122 	int fixup_cgroup_storage[MAX_FIXUPS];
123 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
124 	int fixup_map_spin_lock[MAX_FIXUPS];
125 	int fixup_map_array_ro[MAX_FIXUPS];
126 	int fixup_map_array_wo[MAX_FIXUPS];
127 	int fixup_map_array_small[MAX_FIXUPS];
128 	int fixup_sk_storage_map[MAX_FIXUPS];
129 	int fixup_map_event_output[MAX_FIXUPS];
130 	int fixup_map_reuseport_array[MAX_FIXUPS];
131 	int fixup_map_ringbuf[MAX_FIXUPS];
132 	int fixup_map_timer[MAX_FIXUPS];
133 	int fixup_map_kptr[MAX_FIXUPS];
134 	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
135 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
136 	 * Can be a tab-separated sequence of expected strings. An empty string
137 	 * means no log verification.
138 	 */
139 	const char *errstr;
140 	const char *errstr_unpriv;
141 	uint32_t insn_processed;
142 	int prog_len;
143 	enum {
144 		UNDEF,
145 		ACCEPT,
146 		REJECT,
147 		VERBOSE_ACCEPT,
148 	} result, result_unpriv;
149 	enum bpf_prog_type prog_type;
150 	uint8_t flags;
151 	void (*fill_helper)(struct bpf_test *self);
152 	int runs;
153 #define bpf_testdata_struct_t					\
154 	struct {						\
155 		uint32_t retval, retval_unpriv;			\
156 		union {						\
157 			__u8 data[TEST_DATA_LEN];		\
158 			__u64 data64[TEST_DATA_LEN / 8];	\
159 		};						\
160 	}
161 	union {
162 		bpf_testdata_struct_t;
163 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
164 	};
165 	enum bpf_attach_type expected_attach_type;
166 	const char *kfunc;
167 	struct bpf_func_info func_info[MAX_FUNC_INFOS];
168 	int func_info_cnt;
169 	char btf_strings[MAX_BTF_STRINGS];
170 	/* A set of BTF types to load when specified,
171 	 * use macro definitions from test_btf.h,
172 	 * must end with BTF_END_RAW
173 	 */
174 	__u32 btf_types[MAX_BTF_TYPES];
175 };
176 
177 /* Note we want this to be 64 bit aligned so that the end of our array is
178  * actually the end of the structure.
179  */
180 #define MAX_ENTRIES 11
181 
182 struct test_val {
183 	unsigned int index;
184 	int foo[MAX_ENTRIES];
185 };
186 
187 struct other_val {
188 	long long foo;
189 	long long bar;
190 };
191 
192 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
193 {
194 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
195 #define PUSH_CNT 51
196 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
197 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
198 	struct bpf_insn *insn = self->fill_insns;
199 	int i = 0, j, k = 0;
200 
201 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
202 loop:
203 	for (j = 0; j < PUSH_CNT; j++) {
204 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
205 		/* jump to error label */
206 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
207 		i++;
208 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
209 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
210 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
211 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
212 					 BPF_FUNC_skb_vlan_push),
213 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
214 		i++;
215 	}
216 
217 	for (j = 0; j < PUSH_CNT; j++) {
218 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
219 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
220 		i++;
221 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
222 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
223 					 BPF_FUNC_skb_vlan_pop),
224 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
225 		i++;
226 	}
227 	if (++k < 5)
228 		goto loop;
229 
230 	for (; i < len - 3; i++)
231 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
232 	insn[len - 3] = BPF_JMP_A(1);
233 	/* error label */
234 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
235 	insn[len - 1] = BPF_EXIT_INSN();
236 	self->prog_len = len;
237 }
238 
239 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
240 {
241 	struct bpf_insn *insn = self->fill_insns;
242 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
243 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
244 	 * to extend the error value of the inlined ld_abs sequence which then
245 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
246 	 * work on all arches.
247 	 */
248 	unsigned int len = (1 << 15) / 7;
249 	int i = 0;
250 
251 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
252 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
253 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
254 	i++;
255 	while (i < len - 1)
256 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
257 	insn[i] = BPF_EXIT_INSN();
258 	self->prog_len = i + 1;
259 }
260 
261 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
262 {
263 	struct bpf_insn *insn = self->fill_insns;
264 	uint64_t res = 0;
265 	int i = 0;
266 
267 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
268 	while (i < self->retval) {
269 		uint64_t val = bpf_semi_rand_get();
270 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
271 
272 		res ^= val;
273 		insn[i++] = tmp[0];
274 		insn[i++] = tmp[1];
275 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276 	}
277 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
278 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
279 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
280 	insn[i] = BPF_EXIT_INSN();
281 	self->prog_len = i + 1;
282 	res ^= (res >> 32);
283 	self->retval = (uint32_t)res;
284 }
285 
286 #define MAX_JMP_SEQ 8192
287 
288 /* test the sequence of 8k jumps */
289 static void bpf_fill_scale1(struct bpf_test *self)
290 {
291 	struct bpf_insn *insn = self->fill_insns;
292 	int i = 0, k = 0;
293 
294 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
295 	/* test to check that the long sequence of jumps is acceptable */
296 	while (k++ < MAX_JMP_SEQ) {
297 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
298 					 BPF_FUNC_get_prandom_u32);
299 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
300 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
301 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
302 					-8 * (k % 64 + 1));
303 	}
304 	/* is_state_visited() doesn't allocate state for pruning for every jump.
305 	 * Hence multiply jmps by 4 to accommodate that heuristic
306 	 */
307 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
308 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
309 	insn[i] = BPF_EXIT_INSN();
310 	self->prog_len = i + 1;
311 	self->retval = 42;
312 }
313 
314 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
315 static void bpf_fill_scale2(struct bpf_test *self)
316 {
317 	struct bpf_insn *insn = self->fill_insns;
318 	int i = 0, k = 0;
319 
320 #define FUNC_NEST 7
321 	for (k = 0; k < FUNC_NEST; k++) {
322 		insn[i++] = BPF_CALL_REL(1);
323 		insn[i++] = BPF_EXIT_INSN();
324 	}
325 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
326 	/* test to check that the long sequence of jumps is acceptable */
327 	k = 0;
328 	while (k++ < MAX_JMP_SEQ) {
329 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
330 					 BPF_FUNC_get_prandom_u32);
331 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
332 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
333 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
334 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
335 	}
336 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
337 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
338 	insn[i] = BPF_EXIT_INSN();
339 	self->prog_len = i + 1;
340 	self->retval = 42;
341 }
342 
343 static void bpf_fill_scale(struct bpf_test *self)
344 {
345 	switch (self->retval) {
346 	case 1:
347 		return bpf_fill_scale1(self);
348 	case 2:
349 		return bpf_fill_scale2(self);
350 	default:
351 		self->prog_len = 0;
352 		break;
353 	}
354 }
355 
356 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
357 {
358 	unsigned int len = 259, hlen = 128;
359 	int i;
360 
361 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
362 	for (i = 1; i <= hlen; i++) {
363 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
364 		insn[i + hlen] = BPF_JMP_A(hlen - i);
365 	}
366 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
367 	insn[len - 1] = BPF_EXIT_INSN();
368 
369 	return len;
370 }
371 
372 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
373 {
374 	unsigned int len = 4100, jmp_off = 2048;
375 	int i, j;
376 
377 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
378 	for (i = 1; i <= jmp_off; i++) {
379 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
380 	}
381 	insn[i++] = BPF_JMP_A(jmp_off);
382 	for (; i <= jmp_off * 2 + 1; i+=16) {
383 		for (j = 0; j < 16; j++) {
384 			insn[i + j] = BPF_JMP_A(16 - j - 1);
385 		}
386 	}
387 
388 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
389 	insn[len - 1] = BPF_EXIT_INSN();
390 
391 	return len;
392 }
393 
394 static void bpf_fill_torturous_jumps(struct bpf_test *self)
395 {
396 	struct bpf_insn *insn = self->fill_insns;
397 	int i = 0;
398 
399 	switch (self->retval) {
400 	case 1:
401 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
402 		return;
403 	case 2:
404 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
405 		return;
406 	case 3:
407 		/* main */
408 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
409 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
410 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
411 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
412 		insn[i++] = BPF_EXIT_INSN();
413 
414 		/* subprog 1 */
415 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
416 
417 		/* subprog 2 */
418 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
419 
420 		self->prog_len = i;
421 		return;
422 	default:
423 		self->prog_len = 0;
424 		break;
425 	}
426 }
427 
428 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
429 {
430 	struct bpf_insn *insn = self->fill_insns;
431 	/* This test was added to catch a specific use after free
432 	 * error, which happened upon BPF program reallocation.
433 	 * Reallocation is handled by core.c:bpf_prog_realloc, which
434 	 * reuses old memory if page boundary is not crossed. The
435 	 * value of `len` is chosen to cross this boundary on bpf_loop
436 	 * patching.
437 	 */
438 	const int len = getpagesize() - 25;
439 	int callback_load_idx;
440 	int callback_idx;
441 	int i = 0;
442 
443 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
444 	callback_load_idx = i;
445 	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
446 				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
447 				 777 /* filled below */);
448 	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
449 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
450 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
451 	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
452 
453 	while (i < len - 3)
454 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
455 	insn[i++] = BPF_EXIT_INSN();
456 
457 	callback_idx = i;
458 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
459 	insn[i++] = BPF_EXIT_INSN();
460 
461 	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
462 	self->func_info[1].insn_off = callback_idx;
463 	self->prog_len = i;
464 	assert(i == len);
465 }
466 
467 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
468 #define BPF_SK_LOOKUP(func)						\
469 	/* struct bpf_sock_tuple tuple = {} */				\
470 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
471 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
472 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
473 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
474 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
475 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
476 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
477 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
478 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
479 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
480 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
481 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
482 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
483 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
484 
485 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
486  * value into 0 and does necessary preparation for direct packet access
487  * through r2. The allowed access range is 8 bytes.
488  */
489 #define BPF_DIRECT_PKT_R2						\
490 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
491 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
492 		    offsetof(struct __sk_buff, data)),			\
493 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
494 		    offsetof(struct __sk_buff, data_end)),		\
495 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
496 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
497 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
498 	BPF_EXIT_INSN()
499 
500 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
501  * positive u32, and zero-extend it into 64-bit.
502  */
503 #define BPF_RAND_UEXT_R7						\
504 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
505 		     BPF_FUNC_get_prandom_u32),				\
506 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
507 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
508 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
509 
510 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
511  * negative u32, and sign-extend it into 64-bit.
512  */
513 #define BPF_RAND_SEXT_R7						\
514 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
515 		     BPF_FUNC_get_prandom_u32),				\
516 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
517 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
518 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
519 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
520 
521 static struct bpf_test tests[] = {
522 #define FILL_ARRAY
523 #include <verifier/tests.h>
524 #undef FILL_ARRAY
525 };
526 
527 static int probe_filter_length(const struct bpf_insn *fp)
528 {
529 	int len;
530 
531 	for (len = MAX_INSNS - 1; len > 0; --len)
532 		if (fp[len].code != 0 || fp[len].imm != 0)
533 			break;
534 	return len + 1;
535 }
536 
537 static bool skip_unsupported_map(enum bpf_map_type map_type)
538 {
539 	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
540 		printf("SKIP (unsupported map type %d)\n", map_type);
541 		skips++;
542 		return true;
543 	}
544 	return false;
545 }
546 
547 static int __create_map(uint32_t type, uint32_t size_key,
548 			uint32_t size_value, uint32_t max_elem,
549 			uint32_t extra_flags)
550 {
551 	LIBBPF_OPTS(bpf_map_create_opts, opts);
552 	int fd;
553 
554 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
555 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
556 	if (fd < 0) {
557 		if (skip_unsupported_map(type))
558 			return -1;
559 		printf("Failed to create hash map '%s'!\n", strerror(errno));
560 	}
561 
562 	return fd;
563 }
564 
565 static int create_map(uint32_t type, uint32_t size_key,
566 		      uint32_t size_value, uint32_t max_elem)
567 {
568 	return __create_map(type, size_key, size_value, max_elem, 0);
569 }
570 
571 static void update_map(int fd, int index)
572 {
573 	struct test_val value = {
574 		.index = (6 + 1) * sizeof(int),
575 		.foo[6] = 0xabcdef12,
576 	};
577 
578 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
579 }
580 
581 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
582 {
583 	struct bpf_insn prog[] = {
584 		BPF_MOV64_IMM(BPF_REG_0, ret),
585 		BPF_EXIT_INSN(),
586 	};
587 
588 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
589 }
590 
591 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
592 				  int idx, int ret)
593 {
594 	struct bpf_insn prog[] = {
595 		BPF_MOV64_IMM(BPF_REG_3, idx),
596 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
597 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
598 			     BPF_FUNC_tail_call),
599 		BPF_MOV64_IMM(BPF_REG_0, ret),
600 		BPF_EXIT_INSN(),
601 	};
602 
603 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
604 }
605 
606 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
607 			     int p1key, int p2key, int p3key)
608 {
609 	int mfd, p1fd, p2fd, p3fd;
610 
611 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
612 			     sizeof(int), max_elem, NULL);
613 	if (mfd < 0) {
614 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
615 			return -1;
616 		printf("Failed to create prog array '%s'!\n", strerror(errno));
617 		return -1;
618 	}
619 
620 	p1fd = create_prog_dummy_simple(prog_type, 42);
621 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
622 	p3fd = create_prog_dummy_simple(prog_type, 24);
623 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
624 		goto err;
625 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
626 		goto err;
627 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
628 		goto err;
629 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
630 err:
631 		close(mfd);
632 		mfd = -1;
633 	}
634 	close(p3fd);
635 	close(p2fd);
636 	close(p1fd);
637 	return mfd;
638 }
639 
640 static int create_map_in_map(void)
641 {
642 	LIBBPF_OPTS(bpf_map_create_opts, opts);
643 	int inner_map_fd, outer_map_fd;
644 
645 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
646 				      sizeof(int), 1, NULL);
647 	if (inner_map_fd < 0) {
648 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
649 			return -1;
650 		printf("Failed to create array '%s'!\n", strerror(errno));
651 		return inner_map_fd;
652 	}
653 
654 	opts.inner_map_fd = inner_map_fd;
655 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
656 				      sizeof(int), sizeof(int), 1, &opts);
657 	if (outer_map_fd < 0) {
658 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
659 			return -1;
660 		printf("Failed to create array of maps '%s'!\n",
661 		       strerror(errno));
662 	}
663 
664 	close(inner_map_fd);
665 
666 	return outer_map_fd;
667 }
668 
669 static int create_cgroup_storage(bool percpu)
670 {
671 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
672 		BPF_MAP_TYPE_CGROUP_STORAGE;
673 	int fd;
674 
675 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
676 			    TEST_DATA_LEN, 0, NULL);
677 	if (fd < 0) {
678 		if (skip_unsupported_map(type))
679 			return -1;
680 		printf("Failed to create cgroup storage '%s'!\n",
681 		       strerror(errno));
682 	}
683 
684 	return fd;
685 }
686 
687 /* struct bpf_spin_lock {
688  *   int val;
689  * };
690  * struct val {
691  *   int cnt;
692  *   struct bpf_spin_lock l;
693  * };
694  * struct bpf_timer {
695  *   __u64 :64;
696  *   __u64 :64;
697  * } __attribute__((aligned(8)));
698  * struct timer {
699  *   struct bpf_timer t;
700  * };
701  * struct btf_ptr {
702  *   struct prog_test_ref_kfunc __kptr *ptr;
703  *   struct prog_test_ref_kfunc __kptr_ref *ptr;
704  *   struct prog_test_member __kptr_ref *ptr;
705  * }
706  */
707 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
708 				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref"
709 				  "\0prog_test_member";
710 static __u32 btf_raw_types[] = {
711 	/* int */
712 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
713 	/* struct bpf_spin_lock */                      /* [2] */
714 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
715 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
716 	/* struct val */                                /* [3] */
717 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
718 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
719 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
720 	/* struct bpf_timer */                          /* [4] */
721 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
722 	/* struct timer */                              /* [5] */
723 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
724 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
725 	/* struct prog_test_ref_kfunc */		/* [6] */
726 	BTF_STRUCT_ENC(51, 0, 0),
727 	BTF_STRUCT_ENC(89, 0, 0),			/* [7] */
728 	/* type tag "kptr" */
729 	BTF_TYPE_TAG_ENC(75, 6),			/* [8] */
730 	/* type tag "kptr_ref" */
731 	BTF_TYPE_TAG_ENC(80, 6),			/* [9] */
732 	BTF_TYPE_TAG_ENC(80, 7),			/* [10] */
733 	BTF_PTR_ENC(8),					/* [11] */
734 	BTF_PTR_ENC(9),					/* [12] */
735 	BTF_PTR_ENC(10),				/* [13] */
736 	/* struct btf_ptr */				/* [14] */
737 	BTF_STRUCT_ENC(43, 3, 24),
738 	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */
739 	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */
740 	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */
741 };
742 
743 static char bpf_vlog[UINT_MAX >> 8];
744 
745 static int load_btf_spec(__u32 *types, int types_len,
746 			 const char *strings, int strings_len)
747 {
748 	struct btf_header hdr = {
749 		.magic = BTF_MAGIC,
750 		.version = BTF_VERSION,
751 		.hdr_len = sizeof(struct btf_header),
752 		.type_len = types_len,
753 		.str_off = types_len,
754 		.str_len = strings_len,
755 	};
756 	void *ptr, *raw_btf;
757 	int btf_fd;
758 	LIBBPF_OPTS(bpf_btf_load_opts, opts,
759 		    .log_buf = bpf_vlog,
760 		    .log_size = sizeof(bpf_vlog),
761 		    .log_level = (verbose
762 				  ? VERBOSE_LIBBPF_LOG_LEVEL
763 				  : DEFAULT_LIBBPF_LOG_LEVEL),
764 	);
765 
766 	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
767 
768 	ptr = raw_btf;
769 	memcpy(ptr, &hdr, sizeof(hdr));
770 	ptr += sizeof(hdr);
771 	memcpy(ptr, types, hdr.type_len);
772 	ptr += hdr.type_len;
773 	memcpy(ptr, strings, hdr.str_len);
774 	ptr += hdr.str_len;
775 
776 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
777 	if (btf_fd < 0)
778 		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
779 
780 	free(raw_btf);
781 
782 	return btf_fd < 0 ? -1 : btf_fd;
783 }
784 
785 static int load_btf(void)
786 {
787 	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
788 			     btf_str_sec, sizeof(btf_str_sec));
789 }
790 
791 static int load_btf_for_test(struct bpf_test *test)
792 {
793 	int types_num = 0;
794 
795 	while (types_num < MAX_BTF_TYPES &&
796 	       test->btf_types[types_num] != BTF_END_RAW)
797 		++types_num;
798 
799 	int types_len = types_num * sizeof(test->btf_types[0]);
800 
801 	return load_btf_spec(test->btf_types, types_len,
802 			     test->btf_strings, sizeof(test->btf_strings));
803 }
804 
805 static int create_map_spin_lock(void)
806 {
807 	LIBBPF_OPTS(bpf_map_create_opts, opts,
808 		.btf_key_type_id = 1,
809 		.btf_value_type_id = 3,
810 	);
811 	int fd, btf_fd;
812 
813 	btf_fd = load_btf();
814 	if (btf_fd < 0)
815 		return -1;
816 	opts.btf_fd = btf_fd;
817 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
818 	if (fd < 0)
819 		printf("Failed to create map with spin_lock\n");
820 	return fd;
821 }
822 
823 static int create_sk_storage_map(void)
824 {
825 	LIBBPF_OPTS(bpf_map_create_opts, opts,
826 		.map_flags = BPF_F_NO_PREALLOC,
827 		.btf_key_type_id = 1,
828 		.btf_value_type_id = 3,
829 	);
830 	int fd, btf_fd;
831 
832 	btf_fd = load_btf();
833 	if (btf_fd < 0)
834 		return -1;
835 	opts.btf_fd = btf_fd;
836 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
837 	close(opts.btf_fd);
838 	if (fd < 0)
839 		printf("Failed to create sk_storage_map\n");
840 	return fd;
841 }
842 
843 static int create_map_timer(void)
844 {
845 	LIBBPF_OPTS(bpf_map_create_opts, opts,
846 		.btf_key_type_id = 1,
847 		.btf_value_type_id = 5,
848 	);
849 	int fd, btf_fd;
850 
851 	btf_fd = load_btf();
852 	if (btf_fd < 0)
853 		return -1;
854 
855 	opts.btf_fd = btf_fd;
856 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
857 	if (fd < 0)
858 		printf("Failed to create map with timer\n");
859 	return fd;
860 }
861 
862 static int create_map_kptr(void)
863 {
864 	LIBBPF_OPTS(bpf_map_create_opts, opts,
865 		.btf_key_type_id = 1,
866 		.btf_value_type_id = 14,
867 	);
868 	int fd, btf_fd;
869 
870 	btf_fd = load_btf();
871 	if (btf_fd < 0)
872 		return -1;
873 
874 	opts.btf_fd = btf_fd;
875 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
876 	if (fd < 0)
877 		printf("Failed to create map with btf_id pointer\n");
878 	return fd;
879 }
880 
881 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
882 			  struct bpf_insn *prog, int *map_fds)
883 {
884 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
885 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
886 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
887 	int *fixup_map_array_48b = test->fixup_map_array_48b;
888 	int *fixup_map_sockmap = test->fixup_map_sockmap;
889 	int *fixup_map_sockhash = test->fixup_map_sockhash;
890 	int *fixup_map_xskmap = test->fixup_map_xskmap;
891 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
892 	int *fixup_prog1 = test->fixup_prog1;
893 	int *fixup_prog2 = test->fixup_prog2;
894 	int *fixup_map_in_map = test->fixup_map_in_map;
895 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
896 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
897 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
898 	int *fixup_map_array_ro = test->fixup_map_array_ro;
899 	int *fixup_map_array_wo = test->fixup_map_array_wo;
900 	int *fixup_map_array_small = test->fixup_map_array_small;
901 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
902 	int *fixup_map_event_output = test->fixup_map_event_output;
903 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
904 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
905 	int *fixup_map_timer = test->fixup_map_timer;
906 	int *fixup_map_kptr = test->fixup_map_kptr;
907 	struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id;
908 
909 	if (test->fill_helper) {
910 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
911 		test->fill_helper(test);
912 	}
913 
914 	/* Allocating HTs with 1 elem is fine here, since we only test
915 	 * for verifier and not do a runtime lookup, so the only thing
916 	 * that really matters is value size in this case.
917 	 */
918 	if (*fixup_map_hash_8b) {
919 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
920 					sizeof(long long), 1);
921 		do {
922 			prog[*fixup_map_hash_8b].imm = map_fds[0];
923 			fixup_map_hash_8b++;
924 		} while (*fixup_map_hash_8b);
925 	}
926 
927 	if (*fixup_map_hash_48b) {
928 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
929 					sizeof(struct test_val), 1);
930 		do {
931 			prog[*fixup_map_hash_48b].imm = map_fds[1];
932 			fixup_map_hash_48b++;
933 		} while (*fixup_map_hash_48b);
934 	}
935 
936 	if (*fixup_map_hash_16b) {
937 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
938 					sizeof(struct other_val), 1);
939 		do {
940 			prog[*fixup_map_hash_16b].imm = map_fds[2];
941 			fixup_map_hash_16b++;
942 		} while (*fixup_map_hash_16b);
943 	}
944 
945 	if (*fixup_map_array_48b) {
946 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
947 					sizeof(struct test_val), 1);
948 		update_map(map_fds[3], 0);
949 		do {
950 			prog[*fixup_map_array_48b].imm = map_fds[3];
951 			fixup_map_array_48b++;
952 		} while (*fixup_map_array_48b);
953 	}
954 
955 	if (*fixup_prog1) {
956 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
957 		do {
958 			prog[*fixup_prog1].imm = map_fds[4];
959 			fixup_prog1++;
960 		} while (*fixup_prog1);
961 	}
962 
963 	if (*fixup_prog2) {
964 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
965 		do {
966 			prog[*fixup_prog2].imm = map_fds[5];
967 			fixup_prog2++;
968 		} while (*fixup_prog2);
969 	}
970 
971 	if (*fixup_map_in_map) {
972 		map_fds[6] = create_map_in_map();
973 		do {
974 			prog[*fixup_map_in_map].imm = map_fds[6];
975 			fixup_map_in_map++;
976 		} while (*fixup_map_in_map);
977 	}
978 
979 	if (*fixup_cgroup_storage) {
980 		map_fds[7] = create_cgroup_storage(false);
981 		do {
982 			prog[*fixup_cgroup_storage].imm = map_fds[7];
983 			fixup_cgroup_storage++;
984 		} while (*fixup_cgroup_storage);
985 	}
986 
987 	if (*fixup_percpu_cgroup_storage) {
988 		map_fds[8] = create_cgroup_storage(true);
989 		do {
990 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
991 			fixup_percpu_cgroup_storage++;
992 		} while (*fixup_percpu_cgroup_storage);
993 	}
994 	if (*fixup_map_sockmap) {
995 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
996 					sizeof(int), 1);
997 		do {
998 			prog[*fixup_map_sockmap].imm = map_fds[9];
999 			fixup_map_sockmap++;
1000 		} while (*fixup_map_sockmap);
1001 	}
1002 	if (*fixup_map_sockhash) {
1003 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1004 					sizeof(int), 1);
1005 		do {
1006 			prog[*fixup_map_sockhash].imm = map_fds[10];
1007 			fixup_map_sockhash++;
1008 		} while (*fixup_map_sockhash);
1009 	}
1010 	if (*fixup_map_xskmap) {
1011 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1012 					sizeof(int), 1);
1013 		do {
1014 			prog[*fixup_map_xskmap].imm = map_fds[11];
1015 			fixup_map_xskmap++;
1016 		} while (*fixup_map_xskmap);
1017 	}
1018 	if (*fixup_map_stacktrace) {
1019 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1020 					 sizeof(u64), 1);
1021 		do {
1022 			prog[*fixup_map_stacktrace].imm = map_fds[12];
1023 			fixup_map_stacktrace++;
1024 		} while (*fixup_map_stacktrace);
1025 	}
1026 	if (*fixup_map_spin_lock) {
1027 		map_fds[13] = create_map_spin_lock();
1028 		do {
1029 			prog[*fixup_map_spin_lock].imm = map_fds[13];
1030 			fixup_map_spin_lock++;
1031 		} while (*fixup_map_spin_lock);
1032 	}
1033 	if (*fixup_map_array_ro) {
1034 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1035 					   sizeof(struct test_val), 1,
1036 					   BPF_F_RDONLY_PROG);
1037 		update_map(map_fds[14], 0);
1038 		do {
1039 			prog[*fixup_map_array_ro].imm = map_fds[14];
1040 			fixup_map_array_ro++;
1041 		} while (*fixup_map_array_ro);
1042 	}
1043 	if (*fixup_map_array_wo) {
1044 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1045 					   sizeof(struct test_val), 1,
1046 					   BPF_F_WRONLY_PROG);
1047 		update_map(map_fds[15], 0);
1048 		do {
1049 			prog[*fixup_map_array_wo].imm = map_fds[15];
1050 			fixup_map_array_wo++;
1051 		} while (*fixup_map_array_wo);
1052 	}
1053 	if (*fixup_map_array_small) {
1054 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1055 					   1, 1, 0);
1056 		update_map(map_fds[16], 0);
1057 		do {
1058 			prog[*fixup_map_array_small].imm = map_fds[16];
1059 			fixup_map_array_small++;
1060 		} while (*fixup_map_array_small);
1061 	}
1062 	if (*fixup_sk_storage_map) {
1063 		map_fds[17] = create_sk_storage_map();
1064 		do {
1065 			prog[*fixup_sk_storage_map].imm = map_fds[17];
1066 			fixup_sk_storage_map++;
1067 		} while (*fixup_sk_storage_map);
1068 	}
1069 	if (*fixup_map_event_output) {
1070 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1071 					   sizeof(int), sizeof(int), 1, 0);
1072 		do {
1073 			prog[*fixup_map_event_output].imm = map_fds[18];
1074 			fixup_map_event_output++;
1075 		} while (*fixup_map_event_output);
1076 	}
1077 	if (*fixup_map_reuseport_array) {
1078 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1079 					   sizeof(u32), sizeof(u64), 1, 0);
1080 		do {
1081 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1082 			fixup_map_reuseport_array++;
1083 		} while (*fixup_map_reuseport_array);
1084 	}
1085 	if (*fixup_map_ringbuf) {
1086 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1087 					   0, 4096);
1088 		do {
1089 			prog[*fixup_map_ringbuf].imm = map_fds[20];
1090 			fixup_map_ringbuf++;
1091 		} while (*fixup_map_ringbuf);
1092 	}
1093 	if (*fixup_map_timer) {
1094 		map_fds[21] = create_map_timer();
1095 		do {
1096 			prog[*fixup_map_timer].imm = map_fds[21];
1097 			fixup_map_timer++;
1098 		} while (*fixup_map_timer);
1099 	}
1100 	if (*fixup_map_kptr) {
1101 		map_fds[22] = create_map_kptr();
1102 		do {
1103 			prog[*fixup_map_kptr].imm = map_fds[22];
1104 			fixup_map_kptr++;
1105 		} while (*fixup_map_kptr);
1106 	}
1107 
1108 	/* Patch in kfunc BTF IDs */
1109 	if (fixup_kfunc_btf_id->kfunc) {
1110 		struct btf *btf;
1111 		int btf_id;
1112 
1113 		do {
1114 			btf_id = 0;
1115 			btf = btf__load_vmlinux_btf();
1116 			if (btf) {
1117 				btf_id = btf__find_by_name_kind(btf,
1118 								fixup_kfunc_btf_id->kfunc,
1119 								BTF_KIND_FUNC);
1120 				btf_id = btf_id < 0 ? 0 : btf_id;
1121 			}
1122 			btf__free(btf);
1123 			prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1124 			fixup_kfunc_btf_id++;
1125 		} while (fixup_kfunc_btf_id->kfunc);
1126 	}
1127 }
1128 
1129 struct libcap {
1130 	struct __user_cap_header_struct hdr;
1131 	struct __user_cap_data_struct data[2];
1132 };
1133 
1134 static int set_admin(bool admin)
1135 {
1136 	int err;
1137 
1138 	if (admin) {
1139 		err = cap_enable_effective(ADMIN_CAPS, NULL);
1140 		if (err)
1141 			perror("cap_enable_effective(ADMIN_CAPS)");
1142 	} else {
1143 		err = cap_disable_effective(ADMIN_CAPS, NULL);
1144 		if (err)
1145 			perror("cap_disable_effective(ADMIN_CAPS)");
1146 	}
1147 
1148 	return err;
1149 }
1150 
1151 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1152 			    void *data, size_t size_data)
1153 {
1154 	__u8 tmp[TEST_DATA_LEN << 2];
1155 	__u32 size_tmp = sizeof(tmp);
1156 	int err, saved_errno;
1157 	LIBBPF_OPTS(bpf_test_run_opts, topts,
1158 		.data_in = data,
1159 		.data_size_in = size_data,
1160 		.data_out = tmp,
1161 		.data_size_out = size_tmp,
1162 		.repeat = 1,
1163 	);
1164 
1165 	if (unpriv)
1166 		set_admin(true);
1167 	err = bpf_prog_test_run_opts(fd_prog, &topts);
1168 	saved_errno = errno;
1169 
1170 	if (unpriv)
1171 		set_admin(false);
1172 
1173 	if (err) {
1174 		switch (saved_errno) {
1175 		case ENOTSUPP:
1176 			printf("Did not run the program (not supported) ");
1177 			return 0;
1178 		case EPERM:
1179 			if (unpriv) {
1180 				printf("Did not run the program (no permission) ");
1181 				return 0;
1182 			}
1183 			/* fallthrough; */
1184 		default:
1185 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1186 				strerror(saved_errno));
1187 			return err;
1188 		}
1189 	}
1190 
1191 	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1192 		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1193 		return 1;
1194 	}
1195 
1196 	return 0;
1197 }
1198 
1199 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1200  *
1201  * If exp is an empty string, returns true.
1202  */
1203 static bool cmp_str_seq(const char *log, const char *exp)
1204 {
1205 	char needle[200];
1206 	const char *p, *q;
1207 	int len;
1208 
1209 	do {
1210 		if (!strlen(exp))
1211 			break;
1212 		p = strchr(exp, '\t');
1213 		if (!p)
1214 			p = exp + strlen(exp);
1215 
1216 		len = p - exp;
1217 		if (len >= sizeof(needle) || !len) {
1218 			printf("FAIL\nTestcase bug\n");
1219 			return false;
1220 		}
1221 		strncpy(needle, exp, len);
1222 		needle[len] = 0;
1223 		q = strstr(log, needle);
1224 		if (!q) {
1225 			printf("FAIL\nUnexpected verifier log!\n"
1226 			       "EXP: %s\nRES:\n", needle);
1227 			return false;
1228 		}
1229 		log = q + len;
1230 		exp = p + 1;
1231 	} while (*p);
1232 	return true;
1233 }
1234 
1235 static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt)
1236 {
1237 	struct bpf_prog_info info = {};
1238 	__u32 info_len = sizeof(info);
1239 	__u32 xlated_prog_len;
1240 	__u32 buf_element_size = sizeof(struct bpf_insn);
1241 
1242 	if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1243 		perror("bpf_obj_get_info_by_fd failed");
1244 		return -1;
1245 	}
1246 
1247 	xlated_prog_len = info.xlated_prog_len;
1248 	if (xlated_prog_len % buf_element_size) {
1249 		printf("Program length %d is not multiple of %d\n",
1250 		       xlated_prog_len, buf_element_size);
1251 		return -1;
1252 	}
1253 
1254 	*cnt = xlated_prog_len / buf_element_size;
1255 	*buf = calloc(*cnt, buf_element_size);
1256 	if (!buf) {
1257 		perror("can't allocate xlated program buffer");
1258 		return -ENOMEM;
1259 	}
1260 
1261 	bzero(&info, sizeof(info));
1262 	info.xlated_prog_len = xlated_prog_len;
1263 	info.xlated_prog_insns = (__u64)*buf;
1264 	if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1265 		perror("second bpf_obj_get_info_by_fd failed");
1266 		goto out_free_buf;
1267 	}
1268 
1269 	return 0;
1270 
1271 out_free_buf:
1272 	free(*buf);
1273 	return -1;
1274 }
1275 
1276 static bool is_null_insn(struct bpf_insn *insn)
1277 {
1278 	struct bpf_insn null_insn = {};
1279 
1280 	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1281 }
1282 
1283 static bool is_skip_insn(struct bpf_insn *insn)
1284 {
1285 	struct bpf_insn skip_insn = SKIP_INSNS();
1286 
1287 	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1288 }
1289 
1290 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1291 {
1292 	int i;
1293 
1294 	for (i = 0; i < max_len; ++i) {
1295 		if (is_null_insn(&seq[i]))
1296 			return i;
1297 	}
1298 	return max_len;
1299 }
1300 
1301 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1302 {
1303 	struct bpf_insn orig_masked;
1304 
1305 	memcpy(&orig_masked, orig, sizeof(orig_masked));
1306 	if (masked->imm == INSN_IMM_MASK)
1307 		orig_masked.imm = INSN_IMM_MASK;
1308 	if (masked->off == INSN_OFF_MASK)
1309 		orig_masked.off = INSN_OFF_MASK;
1310 
1311 	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1312 }
1313 
1314 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1315 			    int seq_len, int subseq_len)
1316 {
1317 	int i, j;
1318 
1319 	if (subseq_len > seq_len)
1320 		return -1;
1321 
1322 	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1323 		bool found = true;
1324 
1325 		for (j = 0; j < subseq_len; ++j) {
1326 			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1327 				found = false;
1328 				break;
1329 			}
1330 		}
1331 		if (found)
1332 			return i;
1333 	}
1334 
1335 	return -1;
1336 }
1337 
1338 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1339 {
1340 	int i;
1341 
1342 	for (i = 0; i < len; ++i)
1343 		if (is_skip_insn(&seq[i]))
1344 			return i;
1345 
1346 	return -1;
1347 }
1348 
1349 /* Return true if all sub-sequences in `subseqs` could be found in
1350  * `seq` one after another. Sub-sequences are separated by a single
1351  * nil instruction.
1352  */
1353 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1354 				  int seq_len, int max_subseqs_len)
1355 {
1356 	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1357 
1358 	while (subseqs_len > 0) {
1359 		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1360 		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1361 		int subseq_idx = find_insn_subseq(seq, subseqs,
1362 						  seq_len, cur_subseq_len);
1363 
1364 		if (subseq_idx < 0)
1365 			return false;
1366 		seq += subseq_idx + cur_subseq_len;
1367 		seq_len -= subseq_idx + cur_subseq_len;
1368 		subseqs += cur_subseq_len + 1;
1369 		subseqs_len -= cur_subseq_len + 1;
1370 	}
1371 
1372 	return true;
1373 }
1374 
1375 static void print_insn(struct bpf_insn *buf, int cnt)
1376 {
1377 	int i;
1378 
1379 	printf("  addr  op d s off  imm\n");
1380 	for (i = 0; i < cnt; ++i) {
1381 		struct bpf_insn *insn = &buf[i];
1382 
1383 		if (is_null_insn(insn))
1384 			break;
1385 
1386 		if (is_skip_insn(insn))
1387 			printf("  ...\n");
1388 		else
1389 			printf("  %04x: %02x %1x %x %04hx %08x\n",
1390 			       i, insn->code, insn->dst_reg,
1391 			       insn->src_reg, insn->off, insn->imm);
1392 	}
1393 }
1394 
1395 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1396 {
1397 	struct bpf_insn *buf;
1398 	int cnt;
1399 	bool result = true;
1400 	bool check_expected = !is_null_insn(test->expected_insns);
1401 	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1402 
1403 	if (!check_expected && !check_unexpected)
1404 		goto out;
1405 
1406 	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1407 		printf("FAIL: can't get xlated program\n");
1408 		result = false;
1409 		goto out;
1410 	}
1411 
1412 	if (check_expected &&
1413 	    !find_all_insn_subseqs(buf, test->expected_insns,
1414 				   cnt, MAX_EXPECTED_INSNS)) {
1415 		printf("FAIL: can't find expected subsequence of instructions\n");
1416 		result = false;
1417 		if (verbose) {
1418 			printf("Program:\n");
1419 			print_insn(buf, cnt);
1420 			printf("Expected subsequence:\n");
1421 			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1422 		}
1423 	}
1424 
1425 	if (check_unexpected &&
1426 	    find_all_insn_subseqs(buf, test->unexpected_insns,
1427 				  cnt, MAX_UNEXPECTED_INSNS)) {
1428 		printf("FAIL: found unexpected subsequence of instructions\n");
1429 		result = false;
1430 		if (verbose) {
1431 			printf("Program:\n");
1432 			print_insn(buf, cnt);
1433 			printf("Un-expected subsequence:\n");
1434 			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1435 		}
1436 	}
1437 
1438 	free(buf);
1439  out:
1440 	return result;
1441 }
1442 
1443 static void do_test_single(struct bpf_test *test, bool unpriv,
1444 			   int *passes, int *errors)
1445 {
1446 	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1447 	int prog_len, prog_type = test->prog_type;
1448 	struct bpf_insn *prog = test->insns;
1449 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1450 	int run_errs, run_successes;
1451 	int map_fds[MAX_NR_MAPS];
1452 	const char *expected_err;
1453 	int saved_errno;
1454 	int fixup_skips;
1455 	__u32 pflags;
1456 	int i, err;
1457 
1458 	fd_prog = -1;
1459 	for (i = 0; i < MAX_NR_MAPS; i++)
1460 		map_fds[i] = -1;
1461 	btf_fd = -1;
1462 
1463 	if (!prog_type)
1464 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1465 	fixup_skips = skips;
1466 	do_test_fixup(test, prog_type, prog, map_fds);
1467 	if (test->fill_insns) {
1468 		prog = test->fill_insns;
1469 		prog_len = test->prog_len;
1470 	} else {
1471 		prog_len = probe_filter_length(prog);
1472 	}
1473 	/* If there were some map skips during fixup due to missing bpf
1474 	 * features, skip this test.
1475 	 */
1476 	if (fixup_skips != skips)
1477 		return;
1478 
1479 	pflags = BPF_F_TEST_RND_HI32;
1480 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1481 		pflags |= BPF_F_STRICT_ALIGNMENT;
1482 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1483 		pflags |= BPF_F_ANY_ALIGNMENT;
1484 	if (test->flags & ~3)
1485 		pflags |= test->flags;
1486 
1487 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1488 		       test->result_unpriv : test->result;
1489 	expected_err = unpriv && test->errstr_unpriv ?
1490 		       test->errstr_unpriv : test->errstr;
1491 
1492 	opts.expected_attach_type = test->expected_attach_type;
1493 	if (verbose)
1494 		opts.log_level = VERBOSE_LIBBPF_LOG_LEVEL;
1495 	else if (expected_ret == VERBOSE_ACCEPT)
1496 		opts.log_level = 2;
1497 	else
1498 		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1499 	opts.prog_flags = pflags;
1500 
1501 	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1502 	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1503 		int attach_btf_id;
1504 
1505 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1506 						opts.expected_attach_type);
1507 		if (attach_btf_id < 0) {
1508 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1509 				test->kfunc);
1510 			(*errors)++;
1511 			return;
1512 		}
1513 
1514 		opts.attach_btf_id = attach_btf_id;
1515 	}
1516 
1517 	if (test->btf_types[0] != 0) {
1518 		btf_fd = load_btf_for_test(test);
1519 		if (btf_fd < 0)
1520 			goto fail_log;
1521 		opts.prog_btf_fd = btf_fd;
1522 	}
1523 
1524 	if (test->func_info_cnt != 0) {
1525 		opts.func_info = test->func_info;
1526 		opts.func_info_cnt = test->func_info_cnt;
1527 		opts.func_info_rec_size = sizeof(test->func_info[0]);
1528 	}
1529 
1530 	opts.log_buf = bpf_vlog;
1531 	opts.log_size = sizeof(bpf_vlog);
1532 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1533 	saved_errno = errno;
1534 
1535 	/* BPF_PROG_TYPE_TRACING requires more setup and
1536 	 * bpf_probe_prog_type won't give correct answer
1537 	 */
1538 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1539 	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1540 		printf("SKIP (unsupported program type %d)\n", prog_type);
1541 		skips++;
1542 		goto close_fds;
1543 	}
1544 
1545 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1546 		printf("SKIP (program uses an unsupported feature)\n");
1547 		skips++;
1548 		goto close_fds;
1549 	}
1550 
1551 	alignment_prevented_execution = 0;
1552 
1553 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1554 		if (fd_prog < 0) {
1555 			printf("FAIL\nFailed to load prog '%s'!\n",
1556 			       strerror(saved_errno));
1557 			goto fail_log;
1558 		}
1559 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1560 		if (fd_prog >= 0 &&
1561 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1562 			alignment_prevented_execution = 1;
1563 #endif
1564 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1565 			goto fail_log;
1566 		}
1567 	} else {
1568 		if (fd_prog >= 0) {
1569 			printf("FAIL\nUnexpected success to load!\n");
1570 			goto fail_log;
1571 		}
1572 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1573 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1574 			      expected_err, bpf_vlog);
1575 			goto fail_log;
1576 		}
1577 	}
1578 
1579 	if (!unpriv && test->insn_processed) {
1580 		uint32_t insn_processed;
1581 		char *proc;
1582 
1583 		proc = strstr(bpf_vlog, "processed ");
1584 		insn_processed = atoi(proc + 10);
1585 		if (test->insn_processed != insn_processed) {
1586 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1587 			       insn_processed, test->insn_processed);
1588 			goto fail_log;
1589 		}
1590 	}
1591 
1592 	if (verbose)
1593 		printf(", verifier log:\n%s", bpf_vlog);
1594 
1595 	if (!check_xlated_program(test, fd_prog))
1596 		goto fail_log;
1597 
1598 	run_errs = 0;
1599 	run_successes = 0;
1600 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1601 		uint32_t expected_val;
1602 		int i;
1603 
1604 		if (!test->runs)
1605 			test->runs = 1;
1606 
1607 		for (i = 0; i < test->runs; i++) {
1608 			if (unpriv && test->retvals[i].retval_unpriv)
1609 				expected_val = test->retvals[i].retval_unpriv;
1610 			else
1611 				expected_val = test->retvals[i].retval;
1612 
1613 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1614 					       test->retvals[i].data,
1615 					       sizeof(test->retvals[i].data));
1616 			if (err) {
1617 				printf("(run %d/%d) ", i + 1, test->runs);
1618 				run_errs++;
1619 			} else {
1620 				run_successes++;
1621 			}
1622 		}
1623 	}
1624 
1625 	if (!run_errs) {
1626 		(*passes)++;
1627 		if (run_successes > 1)
1628 			printf("%d cases ", run_successes);
1629 		printf("OK");
1630 		if (alignment_prevented_execution)
1631 			printf(" (NOTE: not executed due to unknown alignment)");
1632 		printf("\n");
1633 	} else {
1634 		printf("\n");
1635 		goto fail_log;
1636 	}
1637 close_fds:
1638 	if (test->fill_insns)
1639 		free(test->fill_insns);
1640 	close(fd_prog);
1641 	close(btf_fd);
1642 	for (i = 0; i < MAX_NR_MAPS; i++)
1643 		close(map_fds[i]);
1644 	sched_yield();
1645 	return;
1646 fail_log:
1647 	(*errors)++;
1648 	printf("%s", bpf_vlog);
1649 	goto close_fds;
1650 }
1651 
1652 static bool is_admin(void)
1653 {
1654 	__u64 caps;
1655 
1656 	/* The test checks for finer cap as CAP_NET_ADMIN,
1657 	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1658 	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1659 	 */
1660 	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1661 		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1662 		return false;
1663 	}
1664 
1665 	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1666 }
1667 
1668 static void get_unpriv_disabled()
1669 {
1670 	char buf[2];
1671 	FILE *fd;
1672 
1673 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1674 	if (!fd) {
1675 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1676 		unpriv_disabled = true;
1677 		return;
1678 	}
1679 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1680 		unpriv_disabled = true;
1681 	fclose(fd);
1682 }
1683 
1684 static bool test_as_unpriv(struct bpf_test *test)
1685 {
1686 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1687 	/* Some architectures have strict alignment requirements. In
1688 	 * that case, the BPF verifier detects if a program has
1689 	 * unaligned accesses and rejects them. A user can pass
1690 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1691 	 * check. That, however, will only work when a privileged user
1692 	 * loads a program. An unprivileged user loading a program
1693 	 * with this flag will be rejected prior entering the
1694 	 * verifier.
1695 	 */
1696 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1697 		return false;
1698 #endif
1699 	return !test->prog_type ||
1700 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1701 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1702 }
1703 
1704 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1705 {
1706 	int i, passes = 0, errors = 0;
1707 
1708 	for (i = from; i < to; i++) {
1709 		struct bpf_test *test = &tests[i];
1710 
1711 		/* Program types that are not supported by non-root we
1712 		 * skip right away.
1713 		 */
1714 		if (test_as_unpriv(test) && unpriv_disabled) {
1715 			printf("#%d/u %s SKIP\n", i, test->descr);
1716 			skips++;
1717 		} else if (test_as_unpriv(test)) {
1718 			if (!unpriv)
1719 				set_admin(false);
1720 			printf("#%d/u %s ", i, test->descr);
1721 			do_test_single(test, true, &passes, &errors);
1722 			if (!unpriv)
1723 				set_admin(true);
1724 		}
1725 
1726 		if (unpriv) {
1727 			printf("#%d/p %s SKIP\n", i, test->descr);
1728 			skips++;
1729 		} else {
1730 			printf("#%d/p %s ", i, test->descr);
1731 			do_test_single(test, false, &passes, &errors);
1732 		}
1733 	}
1734 
1735 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1736 	       skips, errors);
1737 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1738 }
1739 
1740 int main(int argc, char **argv)
1741 {
1742 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1743 	bool unpriv = !is_admin();
1744 	int arg = 1;
1745 
1746 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1747 		arg++;
1748 		verbose = true;
1749 		argc--;
1750 	}
1751 
1752 	if (argc == 3) {
1753 		unsigned int l = atoi(argv[arg]);
1754 		unsigned int u = atoi(argv[arg + 1]);
1755 
1756 		if (l < to && u < to) {
1757 			from = l;
1758 			to   = u + 1;
1759 		}
1760 	} else if (argc == 2) {
1761 		unsigned int t = atoi(argv[arg]);
1762 
1763 		if (t < to) {
1764 			from = t;
1765 			to   = t + 1;
1766 		}
1767 	}
1768 
1769 	get_unpriv_disabled();
1770 	if (unpriv && unpriv_disabled) {
1771 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1772 		       UNPRIV_SYSCTL);
1773 		return EXIT_FAILURE;
1774 	}
1775 
1776 	/* Use libbpf 1.0 API mode */
1777 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1778 
1779 	bpf_semi_rand_init();
1780 	return do_test(unpriv, from, to);
1781 }
1782