1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49 
50 #define MAX_INSNS	BPF_MAXINSNS
51 #define MAX_TEST_INSNS	1000000
52 #define MAX_FIXUPS	8
53 #define MAX_NR_MAPS	21
54 #define MAX_TEST_RUNS	8
55 #define POINTER_VALUE	0xcafe4all
56 #define TEST_DATA_LEN	64
57 
58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
59 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
60 
61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
62 static bool unpriv_disabled = false;
63 static int skips;
64 static bool verbose = false;
65 
66 struct bpf_test {
67 	const char *descr;
68 	struct bpf_insn	insns[MAX_INSNS];
69 	struct bpf_insn	*fill_insns;
70 	int fixup_map_hash_8b[MAX_FIXUPS];
71 	int fixup_map_hash_48b[MAX_FIXUPS];
72 	int fixup_map_hash_16b[MAX_FIXUPS];
73 	int fixup_map_array_48b[MAX_FIXUPS];
74 	int fixup_map_sockmap[MAX_FIXUPS];
75 	int fixup_map_sockhash[MAX_FIXUPS];
76 	int fixup_map_xskmap[MAX_FIXUPS];
77 	int fixup_map_stacktrace[MAX_FIXUPS];
78 	int fixup_prog1[MAX_FIXUPS];
79 	int fixup_prog2[MAX_FIXUPS];
80 	int fixup_map_in_map[MAX_FIXUPS];
81 	int fixup_cgroup_storage[MAX_FIXUPS];
82 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
83 	int fixup_map_spin_lock[MAX_FIXUPS];
84 	int fixup_map_array_ro[MAX_FIXUPS];
85 	int fixup_map_array_wo[MAX_FIXUPS];
86 	int fixup_map_array_small[MAX_FIXUPS];
87 	int fixup_sk_storage_map[MAX_FIXUPS];
88 	int fixup_map_event_output[MAX_FIXUPS];
89 	int fixup_map_reuseport_array[MAX_FIXUPS];
90 	int fixup_map_ringbuf[MAX_FIXUPS];
91 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
92 	 * Can be a tab-separated sequence of expected strings. An empty string
93 	 * means no log verification.
94 	 */
95 	const char *errstr;
96 	const char *errstr_unpriv;
97 	uint32_t insn_processed;
98 	int prog_len;
99 	enum {
100 		UNDEF,
101 		ACCEPT,
102 		REJECT,
103 		VERBOSE_ACCEPT,
104 	} result, result_unpriv;
105 	enum bpf_prog_type prog_type;
106 	uint8_t flags;
107 	void (*fill_helper)(struct bpf_test *self);
108 	uint8_t runs;
109 #define bpf_testdata_struct_t					\
110 	struct {						\
111 		uint32_t retval, retval_unpriv;			\
112 		union {						\
113 			__u8 data[TEST_DATA_LEN];		\
114 			__u64 data64[TEST_DATA_LEN / 8];	\
115 		};						\
116 	}
117 	union {
118 		bpf_testdata_struct_t;
119 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
120 	};
121 	enum bpf_attach_type expected_attach_type;
122 	const char *kfunc;
123 };
124 
125 /* Note we want this to be 64 bit aligned so that the end of our array is
126  * actually the end of the structure.
127  */
128 #define MAX_ENTRIES 11
129 
130 struct test_val {
131 	unsigned int index;
132 	int foo[MAX_ENTRIES];
133 };
134 
135 struct other_val {
136 	long long foo;
137 	long long bar;
138 };
139 
140 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
141 {
142 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
143 #define PUSH_CNT 51
144 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
145 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
146 	struct bpf_insn *insn = self->fill_insns;
147 	int i = 0, j, k = 0;
148 
149 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
150 loop:
151 	for (j = 0; j < PUSH_CNT; j++) {
152 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
153 		/* jump to error label */
154 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
155 		i++;
156 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
157 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
158 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
159 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
160 					 BPF_FUNC_skb_vlan_push),
161 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
162 		i++;
163 	}
164 
165 	for (j = 0; j < PUSH_CNT; j++) {
166 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
167 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
168 		i++;
169 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
170 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
171 					 BPF_FUNC_skb_vlan_pop),
172 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
173 		i++;
174 	}
175 	if (++k < 5)
176 		goto loop;
177 
178 	for (; i < len - 3; i++)
179 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
180 	insn[len - 3] = BPF_JMP_A(1);
181 	/* error label */
182 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
183 	insn[len - 1] = BPF_EXIT_INSN();
184 	self->prog_len = len;
185 }
186 
187 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
188 {
189 	struct bpf_insn *insn = self->fill_insns;
190 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
191 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
192 	 * to extend the error value of the inlined ld_abs sequence which then
193 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
194 	 * work on all arches.
195 	 */
196 	unsigned int len = (1 << 15) / 7;
197 	int i = 0;
198 
199 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
200 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
201 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
202 	i++;
203 	while (i < len - 1)
204 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
205 	insn[i] = BPF_EXIT_INSN();
206 	self->prog_len = i + 1;
207 }
208 
209 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
210 {
211 	struct bpf_insn *insn = self->fill_insns;
212 	uint64_t res = 0;
213 	int i = 0;
214 
215 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
216 	while (i < self->retval) {
217 		uint64_t val = bpf_semi_rand_get();
218 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
219 
220 		res ^= val;
221 		insn[i++] = tmp[0];
222 		insn[i++] = tmp[1];
223 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
224 	}
225 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
226 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
227 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
228 	insn[i] = BPF_EXIT_INSN();
229 	self->prog_len = i + 1;
230 	res ^= (res >> 32);
231 	self->retval = (uint32_t)res;
232 }
233 
234 #define MAX_JMP_SEQ 8192
235 
236 /* test the sequence of 8k jumps */
237 static void bpf_fill_scale1(struct bpf_test *self)
238 {
239 	struct bpf_insn *insn = self->fill_insns;
240 	int i = 0, k = 0;
241 
242 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
243 	/* test to check that the long sequence of jumps is acceptable */
244 	while (k++ < MAX_JMP_SEQ) {
245 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
246 					 BPF_FUNC_get_prandom_u32);
247 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
248 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
249 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
250 					-8 * (k % 64 + 1));
251 	}
252 	/* is_state_visited() doesn't allocate state for pruning for every jump.
253 	 * Hence multiply jmps by 4 to accommodate that heuristic
254 	 */
255 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
256 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
257 	insn[i] = BPF_EXIT_INSN();
258 	self->prog_len = i + 1;
259 	self->retval = 42;
260 }
261 
262 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
263 static void bpf_fill_scale2(struct bpf_test *self)
264 {
265 	struct bpf_insn *insn = self->fill_insns;
266 	int i = 0, k = 0;
267 
268 #define FUNC_NEST 7
269 	for (k = 0; k < FUNC_NEST; k++) {
270 		insn[i++] = BPF_CALL_REL(1);
271 		insn[i++] = BPF_EXIT_INSN();
272 	}
273 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
274 	/* test to check that the long sequence of jumps is acceptable */
275 	k = 0;
276 	while (k++ < MAX_JMP_SEQ) {
277 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
278 					 BPF_FUNC_get_prandom_u32);
279 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
280 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
281 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
282 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
283 	}
284 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
285 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
286 	insn[i] = BPF_EXIT_INSN();
287 	self->prog_len = i + 1;
288 	self->retval = 42;
289 }
290 
291 static void bpf_fill_scale(struct bpf_test *self)
292 {
293 	switch (self->retval) {
294 	case 1:
295 		return bpf_fill_scale1(self);
296 	case 2:
297 		return bpf_fill_scale2(self);
298 	default:
299 		self->prog_len = 0;
300 		break;
301 	}
302 }
303 
304 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
305 {
306 	unsigned int len = 259, hlen = 128;
307 	int i;
308 
309 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
310 	for (i = 1; i <= hlen; i++) {
311 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
312 		insn[i + hlen] = BPF_JMP_A(hlen - i);
313 	}
314 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
315 	insn[len - 1] = BPF_EXIT_INSN();
316 
317 	return len;
318 }
319 
320 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
321 {
322 	unsigned int len = 4100, jmp_off = 2048;
323 	int i, j;
324 
325 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
326 	for (i = 1; i <= jmp_off; i++) {
327 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
328 	}
329 	insn[i++] = BPF_JMP_A(jmp_off);
330 	for (; i <= jmp_off * 2 + 1; i+=16) {
331 		for (j = 0; j < 16; j++) {
332 			insn[i + j] = BPF_JMP_A(16 - j - 1);
333 		}
334 	}
335 
336 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
337 	insn[len - 1] = BPF_EXIT_INSN();
338 
339 	return len;
340 }
341 
342 static void bpf_fill_torturous_jumps(struct bpf_test *self)
343 {
344 	struct bpf_insn *insn = self->fill_insns;
345 	int i = 0;
346 
347 	switch (self->retval) {
348 	case 1:
349 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
350 		return;
351 	case 2:
352 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
353 		return;
354 	case 3:
355 		/* main */
356 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
357 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
358 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
359 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
360 		insn[i++] = BPF_EXIT_INSN();
361 
362 		/* subprog 1 */
363 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
364 
365 		/* subprog 2 */
366 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
367 
368 		self->prog_len = i;
369 		return;
370 	default:
371 		self->prog_len = 0;
372 		break;
373 	}
374 }
375 
376 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
377 #define BPF_SK_LOOKUP(func)						\
378 	/* struct bpf_sock_tuple tuple = {} */				\
379 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
380 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
381 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
382 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
383 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
384 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
385 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
386 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
387 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
388 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
389 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
390 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
391 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
392 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
393 
394 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
395  * value into 0 and does necessary preparation for direct packet access
396  * through r2. The allowed access range is 8 bytes.
397  */
398 #define BPF_DIRECT_PKT_R2						\
399 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
400 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
401 		    offsetof(struct __sk_buff, data)),			\
402 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
403 		    offsetof(struct __sk_buff, data_end)),		\
404 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
405 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
406 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
407 	BPF_EXIT_INSN()
408 
409 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
410  * positive u32, and zero-extend it into 64-bit.
411  */
412 #define BPF_RAND_UEXT_R7						\
413 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
414 		     BPF_FUNC_get_prandom_u32),				\
415 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
416 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
417 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
418 
419 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
420  * negative u32, and sign-extend it into 64-bit.
421  */
422 #define BPF_RAND_SEXT_R7						\
423 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
424 		     BPF_FUNC_get_prandom_u32),				\
425 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
426 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
427 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
428 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
429 
430 static struct bpf_test tests[] = {
431 #define FILL_ARRAY
432 #include <verifier/tests.h>
433 #undef FILL_ARRAY
434 };
435 
436 static int probe_filter_length(const struct bpf_insn *fp)
437 {
438 	int len;
439 
440 	for (len = MAX_INSNS - 1; len > 0; --len)
441 		if (fp[len].code != 0 || fp[len].imm != 0)
442 			break;
443 	return len + 1;
444 }
445 
446 static bool skip_unsupported_map(enum bpf_map_type map_type)
447 {
448 	if (!bpf_probe_map_type(map_type, 0)) {
449 		printf("SKIP (unsupported map type %d)\n", map_type);
450 		skips++;
451 		return true;
452 	}
453 	return false;
454 }
455 
456 static int __create_map(uint32_t type, uint32_t size_key,
457 			uint32_t size_value, uint32_t max_elem,
458 			uint32_t extra_flags)
459 {
460 	int fd;
461 
462 	fd = bpf_create_map(type, size_key, size_value, max_elem,
463 			    (type == BPF_MAP_TYPE_HASH ?
464 			     BPF_F_NO_PREALLOC : 0) | extra_flags);
465 	if (fd < 0) {
466 		if (skip_unsupported_map(type))
467 			return -1;
468 		printf("Failed to create hash map '%s'!\n", strerror(errno));
469 	}
470 
471 	return fd;
472 }
473 
474 static int create_map(uint32_t type, uint32_t size_key,
475 		      uint32_t size_value, uint32_t max_elem)
476 {
477 	return __create_map(type, size_key, size_value, max_elem, 0);
478 }
479 
480 static void update_map(int fd, int index)
481 {
482 	struct test_val value = {
483 		.index = (6 + 1) * sizeof(int),
484 		.foo[6] = 0xabcdef12,
485 	};
486 
487 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
488 }
489 
490 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
491 {
492 	struct bpf_insn prog[] = {
493 		BPF_MOV64_IMM(BPF_REG_0, ret),
494 		BPF_EXIT_INSN(),
495 	};
496 
497 	return bpf_load_program(prog_type, prog,
498 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
499 }
500 
501 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
502 				  int idx, int ret)
503 {
504 	struct bpf_insn prog[] = {
505 		BPF_MOV64_IMM(BPF_REG_3, idx),
506 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
507 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
508 			     BPF_FUNC_tail_call),
509 		BPF_MOV64_IMM(BPF_REG_0, ret),
510 		BPF_EXIT_INSN(),
511 	};
512 
513 	return bpf_load_program(prog_type, prog,
514 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
515 }
516 
517 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
518 			     int p1key, int p2key, int p3key)
519 {
520 	int mfd, p1fd, p2fd, p3fd;
521 
522 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
523 			     sizeof(int), max_elem, 0);
524 	if (mfd < 0) {
525 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
526 			return -1;
527 		printf("Failed to create prog array '%s'!\n", strerror(errno));
528 		return -1;
529 	}
530 
531 	p1fd = create_prog_dummy_simple(prog_type, 42);
532 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
533 	p3fd = create_prog_dummy_simple(prog_type, 24);
534 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
535 		goto err;
536 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
537 		goto err;
538 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
539 		goto err;
540 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
541 err:
542 		close(mfd);
543 		mfd = -1;
544 	}
545 	close(p3fd);
546 	close(p2fd);
547 	close(p1fd);
548 	return mfd;
549 }
550 
551 static int create_map_in_map(void)
552 {
553 	int inner_map_fd, outer_map_fd;
554 
555 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
556 				      sizeof(int), 1, 0);
557 	if (inner_map_fd < 0) {
558 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
559 			return -1;
560 		printf("Failed to create array '%s'!\n", strerror(errno));
561 		return inner_map_fd;
562 	}
563 
564 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
565 					     sizeof(int), inner_map_fd, 1, 0);
566 	if (outer_map_fd < 0) {
567 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
568 			return -1;
569 		printf("Failed to create array of maps '%s'!\n",
570 		       strerror(errno));
571 	}
572 
573 	close(inner_map_fd);
574 
575 	return outer_map_fd;
576 }
577 
578 static int create_cgroup_storage(bool percpu)
579 {
580 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
581 		BPF_MAP_TYPE_CGROUP_STORAGE;
582 	int fd;
583 
584 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
585 			    TEST_DATA_LEN, 0, 0);
586 	if (fd < 0) {
587 		if (skip_unsupported_map(type))
588 			return -1;
589 		printf("Failed to create cgroup storage '%s'!\n",
590 		       strerror(errno));
591 	}
592 
593 	return fd;
594 }
595 
596 /* struct bpf_spin_lock {
597  *   int val;
598  * };
599  * struct val {
600  *   int cnt;
601  *   struct bpf_spin_lock l;
602  * };
603  */
604 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
605 static __u32 btf_raw_types[] = {
606 	/* int */
607 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
608 	/* struct bpf_spin_lock */                      /* [2] */
609 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
610 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
611 	/* struct val */                                /* [3] */
612 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
613 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
614 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
615 };
616 
617 static int load_btf(void)
618 {
619 	struct btf_header hdr = {
620 		.magic = BTF_MAGIC,
621 		.version = BTF_VERSION,
622 		.hdr_len = sizeof(struct btf_header),
623 		.type_len = sizeof(btf_raw_types),
624 		.str_off = sizeof(btf_raw_types),
625 		.str_len = sizeof(btf_str_sec),
626 	};
627 	void *ptr, *raw_btf;
628 	int btf_fd;
629 
630 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
631 			       sizeof(btf_str_sec));
632 
633 	memcpy(ptr, &hdr, sizeof(hdr));
634 	ptr += sizeof(hdr);
635 	memcpy(ptr, btf_raw_types, hdr.type_len);
636 	ptr += hdr.type_len;
637 	memcpy(ptr, btf_str_sec, hdr.str_len);
638 	ptr += hdr.str_len;
639 
640 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
641 	free(raw_btf);
642 	if (btf_fd < 0)
643 		return -1;
644 	return btf_fd;
645 }
646 
647 static int create_map_spin_lock(void)
648 {
649 	struct bpf_create_map_attr attr = {
650 		.name = "test_map",
651 		.map_type = BPF_MAP_TYPE_ARRAY,
652 		.key_size = 4,
653 		.value_size = 8,
654 		.max_entries = 1,
655 		.btf_key_type_id = 1,
656 		.btf_value_type_id = 3,
657 	};
658 	int fd, btf_fd;
659 
660 	btf_fd = load_btf();
661 	if (btf_fd < 0)
662 		return -1;
663 	attr.btf_fd = btf_fd;
664 	fd = bpf_create_map_xattr(&attr);
665 	if (fd < 0)
666 		printf("Failed to create map with spin_lock\n");
667 	return fd;
668 }
669 
670 static int create_sk_storage_map(void)
671 {
672 	struct bpf_create_map_attr attr = {
673 		.name = "test_map",
674 		.map_type = BPF_MAP_TYPE_SK_STORAGE,
675 		.key_size = 4,
676 		.value_size = 8,
677 		.max_entries = 0,
678 		.map_flags = BPF_F_NO_PREALLOC,
679 		.btf_key_type_id = 1,
680 		.btf_value_type_id = 3,
681 	};
682 	int fd, btf_fd;
683 
684 	btf_fd = load_btf();
685 	if (btf_fd < 0)
686 		return -1;
687 	attr.btf_fd = btf_fd;
688 	fd = bpf_create_map_xattr(&attr);
689 	close(attr.btf_fd);
690 	if (fd < 0)
691 		printf("Failed to create sk_storage_map\n");
692 	return fd;
693 }
694 
695 static char bpf_vlog[UINT_MAX >> 8];
696 
697 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
698 			  struct bpf_insn *prog, int *map_fds)
699 {
700 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
701 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
702 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
703 	int *fixup_map_array_48b = test->fixup_map_array_48b;
704 	int *fixup_map_sockmap = test->fixup_map_sockmap;
705 	int *fixup_map_sockhash = test->fixup_map_sockhash;
706 	int *fixup_map_xskmap = test->fixup_map_xskmap;
707 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
708 	int *fixup_prog1 = test->fixup_prog1;
709 	int *fixup_prog2 = test->fixup_prog2;
710 	int *fixup_map_in_map = test->fixup_map_in_map;
711 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
712 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
713 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
714 	int *fixup_map_array_ro = test->fixup_map_array_ro;
715 	int *fixup_map_array_wo = test->fixup_map_array_wo;
716 	int *fixup_map_array_small = test->fixup_map_array_small;
717 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
718 	int *fixup_map_event_output = test->fixup_map_event_output;
719 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
720 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
721 
722 	if (test->fill_helper) {
723 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
724 		test->fill_helper(test);
725 	}
726 
727 	/* Allocating HTs with 1 elem is fine here, since we only test
728 	 * for verifier and not do a runtime lookup, so the only thing
729 	 * that really matters is value size in this case.
730 	 */
731 	if (*fixup_map_hash_8b) {
732 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
733 					sizeof(long long), 1);
734 		do {
735 			prog[*fixup_map_hash_8b].imm = map_fds[0];
736 			fixup_map_hash_8b++;
737 		} while (*fixup_map_hash_8b);
738 	}
739 
740 	if (*fixup_map_hash_48b) {
741 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
742 					sizeof(struct test_val), 1);
743 		do {
744 			prog[*fixup_map_hash_48b].imm = map_fds[1];
745 			fixup_map_hash_48b++;
746 		} while (*fixup_map_hash_48b);
747 	}
748 
749 	if (*fixup_map_hash_16b) {
750 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
751 					sizeof(struct other_val), 1);
752 		do {
753 			prog[*fixup_map_hash_16b].imm = map_fds[2];
754 			fixup_map_hash_16b++;
755 		} while (*fixup_map_hash_16b);
756 	}
757 
758 	if (*fixup_map_array_48b) {
759 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
760 					sizeof(struct test_val), 1);
761 		update_map(map_fds[3], 0);
762 		do {
763 			prog[*fixup_map_array_48b].imm = map_fds[3];
764 			fixup_map_array_48b++;
765 		} while (*fixup_map_array_48b);
766 	}
767 
768 	if (*fixup_prog1) {
769 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
770 		do {
771 			prog[*fixup_prog1].imm = map_fds[4];
772 			fixup_prog1++;
773 		} while (*fixup_prog1);
774 	}
775 
776 	if (*fixup_prog2) {
777 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
778 		do {
779 			prog[*fixup_prog2].imm = map_fds[5];
780 			fixup_prog2++;
781 		} while (*fixup_prog2);
782 	}
783 
784 	if (*fixup_map_in_map) {
785 		map_fds[6] = create_map_in_map();
786 		do {
787 			prog[*fixup_map_in_map].imm = map_fds[6];
788 			fixup_map_in_map++;
789 		} while (*fixup_map_in_map);
790 	}
791 
792 	if (*fixup_cgroup_storage) {
793 		map_fds[7] = create_cgroup_storage(false);
794 		do {
795 			prog[*fixup_cgroup_storage].imm = map_fds[7];
796 			fixup_cgroup_storage++;
797 		} while (*fixup_cgroup_storage);
798 	}
799 
800 	if (*fixup_percpu_cgroup_storage) {
801 		map_fds[8] = create_cgroup_storage(true);
802 		do {
803 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
804 			fixup_percpu_cgroup_storage++;
805 		} while (*fixup_percpu_cgroup_storage);
806 	}
807 	if (*fixup_map_sockmap) {
808 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
809 					sizeof(int), 1);
810 		do {
811 			prog[*fixup_map_sockmap].imm = map_fds[9];
812 			fixup_map_sockmap++;
813 		} while (*fixup_map_sockmap);
814 	}
815 	if (*fixup_map_sockhash) {
816 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
817 					sizeof(int), 1);
818 		do {
819 			prog[*fixup_map_sockhash].imm = map_fds[10];
820 			fixup_map_sockhash++;
821 		} while (*fixup_map_sockhash);
822 	}
823 	if (*fixup_map_xskmap) {
824 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
825 					sizeof(int), 1);
826 		do {
827 			prog[*fixup_map_xskmap].imm = map_fds[11];
828 			fixup_map_xskmap++;
829 		} while (*fixup_map_xskmap);
830 	}
831 	if (*fixup_map_stacktrace) {
832 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
833 					 sizeof(u64), 1);
834 		do {
835 			prog[*fixup_map_stacktrace].imm = map_fds[12];
836 			fixup_map_stacktrace++;
837 		} while (*fixup_map_stacktrace);
838 	}
839 	if (*fixup_map_spin_lock) {
840 		map_fds[13] = create_map_spin_lock();
841 		do {
842 			prog[*fixup_map_spin_lock].imm = map_fds[13];
843 			fixup_map_spin_lock++;
844 		} while (*fixup_map_spin_lock);
845 	}
846 	if (*fixup_map_array_ro) {
847 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
848 					   sizeof(struct test_val), 1,
849 					   BPF_F_RDONLY_PROG);
850 		update_map(map_fds[14], 0);
851 		do {
852 			prog[*fixup_map_array_ro].imm = map_fds[14];
853 			fixup_map_array_ro++;
854 		} while (*fixup_map_array_ro);
855 	}
856 	if (*fixup_map_array_wo) {
857 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
858 					   sizeof(struct test_val), 1,
859 					   BPF_F_WRONLY_PROG);
860 		update_map(map_fds[15], 0);
861 		do {
862 			prog[*fixup_map_array_wo].imm = map_fds[15];
863 			fixup_map_array_wo++;
864 		} while (*fixup_map_array_wo);
865 	}
866 	if (*fixup_map_array_small) {
867 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
868 					   1, 1, 0);
869 		update_map(map_fds[16], 0);
870 		do {
871 			prog[*fixup_map_array_small].imm = map_fds[16];
872 			fixup_map_array_small++;
873 		} while (*fixup_map_array_small);
874 	}
875 	if (*fixup_sk_storage_map) {
876 		map_fds[17] = create_sk_storage_map();
877 		do {
878 			prog[*fixup_sk_storage_map].imm = map_fds[17];
879 			fixup_sk_storage_map++;
880 		} while (*fixup_sk_storage_map);
881 	}
882 	if (*fixup_map_event_output) {
883 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
884 					   sizeof(int), sizeof(int), 1, 0);
885 		do {
886 			prog[*fixup_map_event_output].imm = map_fds[18];
887 			fixup_map_event_output++;
888 		} while (*fixup_map_event_output);
889 	}
890 	if (*fixup_map_reuseport_array) {
891 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
892 					   sizeof(u32), sizeof(u64), 1, 0);
893 		do {
894 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
895 			fixup_map_reuseport_array++;
896 		} while (*fixup_map_reuseport_array);
897 	}
898 	if (*fixup_map_ringbuf) {
899 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
900 					   0, 4096);
901 		do {
902 			prog[*fixup_map_ringbuf].imm = map_fds[20];
903 			fixup_map_ringbuf++;
904 		} while (*fixup_map_ringbuf);
905 	}
906 }
907 
908 struct libcap {
909 	struct __user_cap_header_struct hdr;
910 	struct __user_cap_data_struct data[2];
911 };
912 
913 static int set_admin(bool admin)
914 {
915 	cap_t caps;
916 	/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
917 	const cap_value_t cap_net_admin = CAP_NET_ADMIN;
918 	const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
919 	struct libcap *cap;
920 	int ret = -1;
921 
922 	caps = cap_get_proc();
923 	if (!caps) {
924 		perror("cap_get_proc");
925 		return -1;
926 	}
927 	cap = (struct libcap *)caps;
928 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
929 		perror("cap_set_flag clear admin");
930 		goto out;
931 	}
932 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
933 				admin ? CAP_SET : CAP_CLEAR)) {
934 		perror("cap_set_flag set_or_clear net");
935 		goto out;
936 	}
937 	/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
938 	 * so update effective bits manually
939 	 */
940 	if (admin) {
941 		cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
942 		cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
943 	} else {
944 		cap->data[1].effective &= ~(1 << (38 - 32));
945 		cap->data[1].effective &= ~(1 << (39 - 32));
946 	}
947 	if (cap_set_proc(caps)) {
948 		perror("cap_set_proc");
949 		goto out;
950 	}
951 	ret = 0;
952 out:
953 	if (cap_free(caps))
954 		perror("cap_free");
955 	return ret;
956 }
957 
958 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
959 			    void *data, size_t size_data)
960 {
961 	__u8 tmp[TEST_DATA_LEN << 2];
962 	__u32 size_tmp = sizeof(tmp);
963 	uint32_t retval;
964 	int err, saved_errno;
965 
966 	if (unpriv)
967 		set_admin(true);
968 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
969 				tmp, &size_tmp, &retval, NULL);
970 	saved_errno = errno;
971 
972 	if (unpriv)
973 		set_admin(false);
974 
975 	if (err) {
976 		switch (saved_errno) {
977 		case 524/*ENOTSUPP*/:
978 			printf("Did not run the program (not supported) ");
979 			return 0;
980 		case EPERM:
981 			if (unpriv) {
982 				printf("Did not run the program (no permission) ");
983 				return 0;
984 			}
985 			/* fallthrough; */
986 		default:
987 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
988 				strerror(saved_errno));
989 			return err;
990 		}
991 	}
992 
993 	if (retval != expected_val &&
994 	    expected_val != POINTER_VALUE) {
995 		printf("FAIL retval %d != %d ", retval, expected_val);
996 		return 1;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1003  *
1004  * If exp is an empty string, returns true.
1005  */
1006 static bool cmp_str_seq(const char *log, const char *exp)
1007 {
1008 	char needle[200];
1009 	const char *p, *q;
1010 	int len;
1011 
1012 	do {
1013 		if (!strlen(exp))
1014 			break;
1015 		p = strchr(exp, '\t');
1016 		if (!p)
1017 			p = exp + strlen(exp);
1018 
1019 		len = p - exp;
1020 		if (len >= sizeof(needle) || !len) {
1021 			printf("FAIL\nTestcase bug\n");
1022 			return false;
1023 		}
1024 		strncpy(needle, exp, len);
1025 		needle[len] = 0;
1026 		q = strstr(log, needle);
1027 		if (!q) {
1028 			printf("FAIL\nUnexpected verifier log!\n"
1029 			       "EXP: %s\nRES:\n", needle);
1030 			return false;
1031 		}
1032 		log = q + len;
1033 		exp = p + 1;
1034 	} while (*p);
1035 	return true;
1036 }
1037 
1038 static void do_test_single(struct bpf_test *test, bool unpriv,
1039 			   int *passes, int *errors)
1040 {
1041 	int fd_prog, expected_ret, alignment_prevented_execution;
1042 	int prog_len, prog_type = test->prog_type;
1043 	struct bpf_insn *prog = test->insns;
1044 	struct bpf_load_program_attr attr;
1045 	int run_errs, run_successes;
1046 	int map_fds[MAX_NR_MAPS];
1047 	const char *expected_err;
1048 	int saved_errno;
1049 	int fixup_skips;
1050 	__u32 pflags;
1051 	int i, err;
1052 
1053 	for (i = 0; i < MAX_NR_MAPS; i++)
1054 		map_fds[i] = -1;
1055 
1056 	if (!prog_type)
1057 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1058 	fixup_skips = skips;
1059 	do_test_fixup(test, prog_type, prog, map_fds);
1060 	if (test->fill_insns) {
1061 		prog = test->fill_insns;
1062 		prog_len = test->prog_len;
1063 	} else {
1064 		prog_len = probe_filter_length(prog);
1065 	}
1066 	/* If there were some map skips during fixup due to missing bpf
1067 	 * features, skip this test.
1068 	 */
1069 	if (fixup_skips != skips)
1070 		return;
1071 
1072 	pflags = BPF_F_TEST_RND_HI32;
1073 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1074 		pflags |= BPF_F_STRICT_ALIGNMENT;
1075 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1076 		pflags |= BPF_F_ANY_ALIGNMENT;
1077 	if (test->flags & ~3)
1078 		pflags |= test->flags;
1079 
1080 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1081 		       test->result_unpriv : test->result;
1082 	expected_err = unpriv && test->errstr_unpriv ?
1083 		       test->errstr_unpriv : test->errstr;
1084 	memset(&attr, 0, sizeof(attr));
1085 	attr.prog_type = prog_type;
1086 	attr.expected_attach_type = test->expected_attach_type;
1087 	attr.insns = prog;
1088 	attr.insns_cnt = prog_len;
1089 	attr.license = "GPL";
1090 	if (verbose)
1091 		attr.log_level = 1;
1092 	else if (expected_ret == VERBOSE_ACCEPT)
1093 		attr.log_level = 2;
1094 	else
1095 		attr.log_level = 4;
1096 	attr.prog_flags = pflags;
1097 
1098 	if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1099 		attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1100 						attr.expected_attach_type);
1101 		if (attr.attach_btf_id < 0) {
1102 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1103 				test->kfunc);
1104 			(*errors)++;
1105 			return;
1106 		}
1107 	}
1108 
1109 	fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
1110 	saved_errno = errno;
1111 
1112 	/* BPF_PROG_TYPE_TRACING requires more setup and
1113 	 * bpf_probe_prog_type won't give correct answer
1114 	 */
1115 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1116 	    !bpf_probe_prog_type(prog_type, 0)) {
1117 		printf("SKIP (unsupported program type %d)\n", prog_type);
1118 		skips++;
1119 		goto close_fds;
1120 	}
1121 
1122 	alignment_prevented_execution = 0;
1123 
1124 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1125 		if (fd_prog < 0) {
1126 			printf("FAIL\nFailed to load prog '%s'!\n",
1127 			       strerror(saved_errno));
1128 			goto fail_log;
1129 		}
1130 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1131 		if (fd_prog >= 0 &&
1132 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1133 			alignment_prevented_execution = 1;
1134 #endif
1135 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1136 			goto fail_log;
1137 		}
1138 	} else {
1139 		if (fd_prog >= 0) {
1140 			printf("FAIL\nUnexpected success to load!\n");
1141 			goto fail_log;
1142 		}
1143 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1144 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1145 			      expected_err, bpf_vlog);
1146 			goto fail_log;
1147 		}
1148 	}
1149 
1150 	if (test->insn_processed) {
1151 		uint32_t insn_processed;
1152 		char *proc;
1153 
1154 		proc = strstr(bpf_vlog, "processed ");
1155 		insn_processed = atoi(proc + 10);
1156 		if (test->insn_processed != insn_processed) {
1157 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1158 			       insn_processed, test->insn_processed);
1159 			goto fail_log;
1160 		}
1161 	}
1162 
1163 	if (verbose)
1164 		printf(", verifier log:\n%s", bpf_vlog);
1165 
1166 	run_errs = 0;
1167 	run_successes = 0;
1168 	if (!alignment_prevented_execution && fd_prog >= 0) {
1169 		uint32_t expected_val;
1170 		int i;
1171 
1172 		if (!test->runs)
1173 			test->runs = 1;
1174 
1175 		for (i = 0; i < test->runs; i++) {
1176 			if (unpriv && test->retvals[i].retval_unpriv)
1177 				expected_val = test->retvals[i].retval_unpriv;
1178 			else
1179 				expected_val = test->retvals[i].retval;
1180 
1181 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1182 					       test->retvals[i].data,
1183 					       sizeof(test->retvals[i].data));
1184 			if (err) {
1185 				printf("(run %d/%d) ", i + 1, test->runs);
1186 				run_errs++;
1187 			} else {
1188 				run_successes++;
1189 			}
1190 		}
1191 	}
1192 
1193 	if (!run_errs) {
1194 		(*passes)++;
1195 		if (run_successes > 1)
1196 			printf("%d cases ", run_successes);
1197 		printf("OK");
1198 		if (alignment_prevented_execution)
1199 			printf(" (NOTE: not executed due to unknown alignment)");
1200 		printf("\n");
1201 	} else {
1202 		printf("\n");
1203 		goto fail_log;
1204 	}
1205 close_fds:
1206 	if (test->fill_insns)
1207 		free(test->fill_insns);
1208 	close(fd_prog);
1209 	for (i = 0; i < MAX_NR_MAPS; i++)
1210 		close(map_fds[i]);
1211 	sched_yield();
1212 	return;
1213 fail_log:
1214 	(*errors)++;
1215 	printf("%s", bpf_vlog);
1216 	goto close_fds;
1217 }
1218 
1219 static bool is_admin(void)
1220 {
1221 	cap_flag_value_t net_priv = CAP_CLEAR;
1222 	bool perfmon_priv = false;
1223 	bool bpf_priv = false;
1224 	struct libcap *cap;
1225 	cap_t caps;
1226 
1227 #ifdef CAP_IS_SUPPORTED
1228 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1229 		perror("cap_get_flag");
1230 		return false;
1231 	}
1232 #endif
1233 	caps = cap_get_proc();
1234 	if (!caps) {
1235 		perror("cap_get_proc");
1236 		return false;
1237 	}
1238 	cap = (struct libcap *)caps;
1239 	bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1240 	perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1241 	if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1242 		perror("cap_get_flag NET");
1243 	if (cap_free(caps))
1244 		perror("cap_free");
1245 	return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1246 }
1247 
1248 static void get_unpriv_disabled()
1249 {
1250 	char buf[2];
1251 	FILE *fd;
1252 
1253 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1254 	if (!fd) {
1255 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1256 		unpriv_disabled = true;
1257 		return;
1258 	}
1259 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1260 		unpriv_disabled = true;
1261 	fclose(fd);
1262 }
1263 
1264 static bool test_as_unpriv(struct bpf_test *test)
1265 {
1266 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1267 	/* Some architectures have strict alignment requirements. In
1268 	 * that case, the BPF verifier detects if a program has
1269 	 * unaligned accesses and rejects them. A user can pass
1270 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1271 	 * check. That, however, will only work when a privileged user
1272 	 * loads a program. An unprivileged user loading a program
1273 	 * with this flag will be rejected prior entering the
1274 	 * verifier.
1275 	 */
1276 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1277 		return false;
1278 #endif
1279 	return !test->prog_type ||
1280 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1281 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1282 }
1283 
1284 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1285 {
1286 	int i, passes = 0, errors = 0;
1287 
1288 	for (i = from; i < to; i++) {
1289 		struct bpf_test *test = &tests[i];
1290 
1291 		/* Program types that are not supported by non-root we
1292 		 * skip right away.
1293 		 */
1294 		if (test_as_unpriv(test) && unpriv_disabled) {
1295 			printf("#%d/u %s SKIP\n", i, test->descr);
1296 			skips++;
1297 		} else if (test_as_unpriv(test)) {
1298 			if (!unpriv)
1299 				set_admin(false);
1300 			printf("#%d/u %s ", i, test->descr);
1301 			do_test_single(test, true, &passes, &errors);
1302 			if (!unpriv)
1303 				set_admin(true);
1304 		}
1305 
1306 		if (unpriv) {
1307 			printf("#%d/p %s SKIP\n", i, test->descr);
1308 			skips++;
1309 		} else {
1310 			printf("#%d/p %s ", i, test->descr);
1311 			do_test_single(test, false, &passes, &errors);
1312 		}
1313 	}
1314 
1315 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1316 	       skips, errors);
1317 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1318 }
1319 
1320 int main(int argc, char **argv)
1321 {
1322 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1323 	bool unpriv = !is_admin();
1324 	int arg = 1;
1325 
1326 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1327 		arg++;
1328 		verbose = true;
1329 		argc--;
1330 	}
1331 
1332 	if (argc == 3) {
1333 		unsigned int l = atoi(argv[arg]);
1334 		unsigned int u = atoi(argv[arg + 1]);
1335 
1336 		if (l < to && u < to) {
1337 			from = l;
1338 			to   = u + 1;
1339 		}
1340 	} else if (argc == 2) {
1341 		unsigned int t = atoi(argv[arg]);
1342 
1343 		if (t < to) {
1344 			from = t;
1345 			to   = t + 1;
1346 		}
1347 	}
1348 
1349 	get_unpriv_disabled();
1350 	if (unpriv && unpriv_disabled) {
1351 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1352 		       UNPRIV_SYSCTL);
1353 		return EXIT_FAILURE;
1354 	}
1355 
1356 	bpf_semi_rand_init();
1357 	return do_test(unpriv, from, to);
1358 }
1359