1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 21 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 static bool verbose = false; 65 66 struct bpf_test { 67 const char *descr; 68 struct bpf_insn insns[MAX_INSNS]; 69 struct bpf_insn *fill_insns; 70 int fixup_map_hash_8b[MAX_FIXUPS]; 71 int fixup_map_hash_48b[MAX_FIXUPS]; 72 int fixup_map_hash_16b[MAX_FIXUPS]; 73 int fixup_map_array_48b[MAX_FIXUPS]; 74 int fixup_map_sockmap[MAX_FIXUPS]; 75 int fixup_map_sockhash[MAX_FIXUPS]; 76 int fixup_map_xskmap[MAX_FIXUPS]; 77 int fixup_map_stacktrace[MAX_FIXUPS]; 78 int fixup_prog1[MAX_FIXUPS]; 79 int fixup_prog2[MAX_FIXUPS]; 80 int fixup_map_in_map[MAX_FIXUPS]; 81 int fixup_cgroup_storage[MAX_FIXUPS]; 82 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 83 int fixup_map_spin_lock[MAX_FIXUPS]; 84 int fixup_map_array_ro[MAX_FIXUPS]; 85 int fixup_map_array_wo[MAX_FIXUPS]; 86 int fixup_map_array_small[MAX_FIXUPS]; 87 int fixup_sk_storage_map[MAX_FIXUPS]; 88 int fixup_map_event_output[MAX_FIXUPS]; 89 int fixup_map_reuseport_array[MAX_FIXUPS]; 90 int fixup_map_ringbuf[MAX_FIXUPS]; 91 const char *errstr; 92 const char *errstr_unpriv; 93 uint32_t insn_processed; 94 int prog_len; 95 enum { 96 UNDEF, 97 ACCEPT, 98 REJECT, 99 VERBOSE_ACCEPT, 100 } result, result_unpriv; 101 enum bpf_prog_type prog_type; 102 uint8_t flags; 103 void (*fill_helper)(struct bpf_test *self); 104 uint8_t runs; 105 #define bpf_testdata_struct_t \ 106 struct { \ 107 uint32_t retval, retval_unpriv; \ 108 union { \ 109 __u8 data[TEST_DATA_LEN]; \ 110 __u64 data64[TEST_DATA_LEN / 8]; \ 111 }; \ 112 } 113 union { 114 bpf_testdata_struct_t; 115 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 116 }; 117 enum bpf_attach_type expected_attach_type; 118 const char *kfunc; 119 }; 120 121 /* Note we want this to be 64 bit aligned so that the end of our array is 122 * actually the end of the structure. 123 */ 124 #define MAX_ENTRIES 11 125 126 struct test_val { 127 unsigned int index; 128 int foo[MAX_ENTRIES]; 129 }; 130 131 struct other_val { 132 long long foo; 133 long long bar; 134 }; 135 136 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 137 { 138 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 139 #define PUSH_CNT 51 140 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 141 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 142 struct bpf_insn *insn = self->fill_insns; 143 int i = 0, j, k = 0; 144 145 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 146 loop: 147 for (j = 0; j < PUSH_CNT; j++) { 148 insn[i++] = BPF_LD_ABS(BPF_B, 0); 149 /* jump to error label */ 150 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 151 i++; 152 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 153 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 154 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 155 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 156 BPF_FUNC_skb_vlan_push), 157 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 158 i++; 159 } 160 161 for (j = 0; j < PUSH_CNT; j++) { 162 insn[i++] = BPF_LD_ABS(BPF_B, 0); 163 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 164 i++; 165 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 166 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 167 BPF_FUNC_skb_vlan_pop), 168 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 169 i++; 170 } 171 if (++k < 5) 172 goto loop; 173 174 for (; i < len - 3; i++) 175 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 176 insn[len - 3] = BPF_JMP_A(1); 177 /* error label */ 178 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 179 insn[len - 1] = BPF_EXIT_INSN(); 180 self->prog_len = len; 181 } 182 183 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 184 { 185 struct bpf_insn *insn = self->fill_insns; 186 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 187 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 188 * to extend the error value of the inlined ld_abs sequence which then 189 * contains 7 insns. so, set the dividend to 7 so the testcase could 190 * work on all arches. 191 */ 192 unsigned int len = (1 << 15) / 7; 193 int i = 0; 194 195 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 196 insn[i++] = BPF_LD_ABS(BPF_B, 0); 197 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 198 i++; 199 while (i < len - 1) 200 insn[i++] = BPF_LD_ABS(BPF_B, 1); 201 insn[i] = BPF_EXIT_INSN(); 202 self->prog_len = i + 1; 203 } 204 205 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 206 { 207 struct bpf_insn *insn = self->fill_insns; 208 uint64_t res = 0; 209 int i = 0; 210 211 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 212 while (i < self->retval) { 213 uint64_t val = bpf_semi_rand_get(); 214 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 215 216 res ^= val; 217 insn[i++] = tmp[0]; 218 insn[i++] = tmp[1]; 219 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 220 } 221 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 222 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 223 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 224 insn[i] = BPF_EXIT_INSN(); 225 self->prog_len = i + 1; 226 res ^= (res >> 32); 227 self->retval = (uint32_t)res; 228 } 229 230 #define MAX_JMP_SEQ 8192 231 232 /* test the sequence of 8k jumps */ 233 static void bpf_fill_scale1(struct bpf_test *self) 234 { 235 struct bpf_insn *insn = self->fill_insns; 236 int i = 0, k = 0; 237 238 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 239 /* test to check that the long sequence of jumps is acceptable */ 240 while (k++ < MAX_JMP_SEQ) { 241 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 242 BPF_FUNC_get_prandom_u32); 243 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 244 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 245 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 246 -8 * (k % 64 + 1)); 247 } 248 /* is_state_visited() doesn't allocate state for pruning for every jump. 249 * Hence multiply jmps by 4 to accommodate that heuristic 250 */ 251 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 252 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 253 insn[i] = BPF_EXIT_INSN(); 254 self->prog_len = i + 1; 255 self->retval = 42; 256 } 257 258 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 259 static void bpf_fill_scale2(struct bpf_test *self) 260 { 261 struct bpf_insn *insn = self->fill_insns; 262 int i = 0, k = 0; 263 264 #define FUNC_NEST 7 265 for (k = 0; k < FUNC_NEST; k++) { 266 insn[i++] = BPF_CALL_REL(1); 267 insn[i++] = BPF_EXIT_INSN(); 268 } 269 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 270 /* test to check that the long sequence of jumps is acceptable */ 271 k = 0; 272 while (k++ < MAX_JMP_SEQ) { 273 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 274 BPF_FUNC_get_prandom_u32); 275 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 276 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 277 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 278 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 279 } 280 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 281 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 282 insn[i] = BPF_EXIT_INSN(); 283 self->prog_len = i + 1; 284 self->retval = 42; 285 } 286 287 static void bpf_fill_scale(struct bpf_test *self) 288 { 289 switch (self->retval) { 290 case 1: 291 return bpf_fill_scale1(self); 292 case 2: 293 return bpf_fill_scale2(self); 294 default: 295 self->prog_len = 0; 296 break; 297 } 298 } 299 300 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 301 #define BPF_SK_LOOKUP(func) \ 302 /* struct bpf_sock_tuple tuple = {} */ \ 303 BPF_MOV64_IMM(BPF_REG_2, 0), \ 304 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 305 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 306 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 307 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 308 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 309 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 310 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 311 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 312 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 313 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 314 BPF_MOV64_IMM(BPF_REG_4, 0), \ 315 BPF_MOV64_IMM(BPF_REG_5, 0), \ 316 BPF_EMIT_CALL(BPF_FUNC_ ## func) 317 318 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 319 * value into 0 and does necessary preparation for direct packet access 320 * through r2. The allowed access range is 8 bytes. 321 */ 322 #define BPF_DIRECT_PKT_R2 \ 323 BPF_MOV64_IMM(BPF_REG_0, 0), \ 324 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 325 offsetof(struct __sk_buff, data)), \ 326 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 327 offsetof(struct __sk_buff, data_end)), \ 328 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 329 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 330 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 331 BPF_EXIT_INSN() 332 333 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 334 * positive u32, and zero-extend it into 64-bit. 335 */ 336 #define BPF_RAND_UEXT_R7 \ 337 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 338 BPF_FUNC_get_prandom_u32), \ 339 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 340 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 341 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 342 343 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 344 * negative u32, and sign-extend it into 64-bit. 345 */ 346 #define BPF_RAND_SEXT_R7 \ 347 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 348 BPF_FUNC_get_prandom_u32), \ 349 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 350 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 351 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 352 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 353 354 static struct bpf_test tests[] = { 355 #define FILL_ARRAY 356 #include <verifier/tests.h> 357 #undef FILL_ARRAY 358 }; 359 360 static int probe_filter_length(const struct bpf_insn *fp) 361 { 362 int len; 363 364 for (len = MAX_INSNS - 1; len > 0; --len) 365 if (fp[len].code != 0 || fp[len].imm != 0) 366 break; 367 return len + 1; 368 } 369 370 static bool skip_unsupported_map(enum bpf_map_type map_type) 371 { 372 if (!bpf_probe_map_type(map_type, 0)) { 373 printf("SKIP (unsupported map type %d)\n", map_type); 374 skips++; 375 return true; 376 } 377 return false; 378 } 379 380 static int __create_map(uint32_t type, uint32_t size_key, 381 uint32_t size_value, uint32_t max_elem, 382 uint32_t extra_flags) 383 { 384 int fd; 385 386 fd = bpf_create_map(type, size_key, size_value, max_elem, 387 (type == BPF_MAP_TYPE_HASH ? 388 BPF_F_NO_PREALLOC : 0) | extra_flags); 389 if (fd < 0) { 390 if (skip_unsupported_map(type)) 391 return -1; 392 printf("Failed to create hash map '%s'!\n", strerror(errno)); 393 } 394 395 return fd; 396 } 397 398 static int create_map(uint32_t type, uint32_t size_key, 399 uint32_t size_value, uint32_t max_elem) 400 { 401 return __create_map(type, size_key, size_value, max_elem, 0); 402 } 403 404 static void update_map(int fd, int index) 405 { 406 struct test_val value = { 407 .index = (6 + 1) * sizeof(int), 408 .foo[6] = 0xabcdef12, 409 }; 410 411 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 412 } 413 414 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 415 { 416 struct bpf_insn prog[] = { 417 BPF_MOV64_IMM(BPF_REG_0, ret), 418 BPF_EXIT_INSN(), 419 }; 420 421 return bpf_load_program(prog_type, prog, 422 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 423 } 424 425 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 426 int idx, int ret) 427 { 428 struct bpf_insn prog[] = { 429 BPF_MOV64_IMM(BPF_REG_3, idx), 430 BPF_LD_MAP_FD(BPF_REG_2, mfd), 431 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 432 BPF_FUNC_tail_call), 433 BPF_MOV64_IMM(BPF_REG_0, ret), 434 BPF_EXIT_INSN(), 435 }; 436 437 return bpf_load_program(prog_type, prog, 438 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 439 } 440 441 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 442 int p1key, int p2key, int p3key) 443 { 444 int mfd, p1fd, p2fd, p3fd; 445 446 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 447 sizeof(int), max_elem, 0); 448 if (mfd < 0) { 449 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 450 return -1; 451 printf("Failed to create prog array '%s'!\n", strerror(errno)); 452 return -1; 453 } 454 455 p1fd = create_prog_dummy_simple(prog_type, 42); 456 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 457 p3fd = create_prog_dummy_simple(prog_type, 24); 458 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 459 goto err; 460 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 461 goto err; 462 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 463 goto err; 464 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 465 err: 466 close(mfd); 467 mfd = -1; 468 } 469 close(p3fd); 470 close(p2fd); 471 close(p1fd); 472 return mfd; 473 } 474 475 static int create_map_in_map(void) 476 { 477 int inner_map_fd, outer_map_fd; 478 479 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 480 sizeof(int), 1, 0); 481 if (inner_map_fd < 0) { 482 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 483 return -1; 484 printf("Failed to create array '%s'!\n", strerror(errno)); 485 return inner_map_fd; 486 } 487 488 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 489 sizeof(int), inner_map_fd, 1, 0); 490 if (outer_map_fd < 0) { 491 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 492 return -1; 493 printf("Failed to create array of maps '%s'!\n", 494 strerror(errno)); 495 } 496 497 close(inner_map_fd); 498 499 return outer_map_fd; 500 } 501 502 static int create_cgroup_storage(bool percpu) 503 { 504 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 505 BPF_MAP_TYPE_CGROUP_STORAGE; 506 int fd; 507 508 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 509 TEST_DATA_LEN, 0, 0); 510 if (fd < 0) { 511 if (skip_unsupported_map(type)) 512 return -1; 513 printf("Failed to create cgroup storage '%s'!\n", 514 strerror(errno)); 515 } 516 517 return fd; 518 } 519 520 /* struct bpf_spin_lock { 521 * int val; 522 * }; 523 * struct val { 524 * int cnt; 525 * struct bpf_spin_lock l; 526 * }; 527 */ 528 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 529 static __u32 btf_raw_types[] = { 530 /* int */ 531 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 532 /* struct bpf_spin_lock */ /* [2] */ 533 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 534 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 535 /* struct val */ /* [3] */ 536 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 537 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 538 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 539 }; 540 541 static int load_btf(void) 542 { 543 struct btf_header hdr = { 544 .magic = BTF_MAGIC, 545 .version = BTF_VERSION, 546 .hdr_len = sizeof(struct btf_header), 547 .type_len = sizeof(btf_raw_types), 548 .str_off = sizeof(btf_raw_types), 549 .str_len = sizeof(btf_str_sec), 550 }; 551 void *ptr, *raw_btf; 552 int btf_fd; 553 554 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 555 sizeof(btf_str_sec)); 556 557 memcpy(ptr, &hdr, sizeof(hdr)); 558 ptr += sizeof(hdr); 559 memcpy(ptr, btf_raw_types, hdr.type_len); 560 ptr += hdr.type_len; 561 memcpy(ptr, btf_str_sec, hdr.str_len); 562 ptr += hdr.str_len; 563 564 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 565 free(raw_btf); 566 if (btf_fd < 0) 567 return -1; 568 return btf_fd; 569 } 570 571 static int create_map_spin_lock(void) 572 { 573 struct bpf_create_map_attr attr = { 574 .name = "test_map", 575 .map_type = BPF_MAP_TYPE_ARRAY, 576 .key_size = 4, 577 .value_size = 8, 578 .max_entries = 1, 579 .btf_key_type_id = 1, 580 .btf_value_type_id = 3, 581 }; 582 int fd, btf_fd; 583 584 btf_fd = load_btf(); 585 if (btf_fd < 0) 586 return -1; 587 attr.btf_fd = btf_fd; 588 fd = bpf_create_map_xattr(&attr); 589 if (fd < 0) 590 printf("Failed to create map with spin_lock\n"); 591 return fd; 592 } 593 594 static int create_sk_storage_map(void) 595 { 596 struct bpf_create_map_attr attr = { 597 .name = "test_map", 598 .map_type = BPF_MAP_TYPE_SK_STORAGE, 599 .key_size = 4, 600 .value_size = 8, 601 .max_entries = 0, 602 .map_flags = BPF_F_NO_PREALLOC, 603 .btf_key_type_id = 1, 604 .btf_value_type_id = 3, 605 }; 606 int fd, btf_fd; 607 608 btf_fd = load_btf(); 609 if (btf_fd < 0) 610 return -1; 611 attr.btf_fd = btf_fd; 612 fd = bpf_create_map_xattr(&attr); 613 close(attr.btf_fd); 614 if (fd < 0) 615 printf("Failed to create sk_storage_map\n"); 616 return fd; 617 } 618 619 static char bpf_vlog[UINT_MAX >> 8]; 620 621 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 622 struct bpf_insn *prog, int *map_fds) 623 { 624 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 625 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 626 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 627 int *fixup_map_array_48b = test->fixup_map_array_48b; 628 int *fixup_map_sockmap = test->fixup_map_sockmap; 629 int *fixup_map_sockhash = test->fixup_map_sockhash; 630 int *fixup_map_xskmap = test->fixup_map_xskmap; 631 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 632 int *fixup_prog1 = test->fixup_prog1; 633 int *fixup_prog2 = test->fixup_prog2; 634 int *fixup_map_in_map = test->fixup_map_in_map; 635 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 636 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 637 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 638 int *fixup_map_array_ro = test->fixup_map_array_ro; 639 int *fixup_map_array_wo = test->fixup_map_array_wo; 640 int *fixup_map_array_small = test->fixup_map_array_small; 641 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 642 int *fixup_map_event_output = test->fixup_map_event_output; 643 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 644 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 645 646 if (test->fill_helper) { 647 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 648 test->fill_helper(test); 649 } 650 651 /* Allocating HTs with 1 elem is fine here, since we only test 652 * for verifier and not do a runtime lookup, so the only thing 653 * that really matters is value size in this case. 654 */ 655 if (*fixup_map_hash_8b) { 656 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 657 sizeof(long long), 1); 658 do { 659 prog[*fixup_map_hash_8b].imm = map_fds[0]; 660 fixup_map_hash_8b++; 661 } while (*fixup_map_hash_8b); 662 } 663 664 if (*fixup_map_hash_48b) { 665 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 666 sizeof(struct test_val), 1); 667 do { 668 prog[*fixup_map_hash_48b].imm = map_fds[1]; 669 fixup_map_hash_48b++; 670 } while (*fixup_map_hash_48b); 671 } 672 673 if (*fixup_map_hash_16b) { 674 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 675 sizeof(struct other_val), 1); 676 do { 677 prog[*fixup_map_hash_16b].imm = map_fds[2]; 678 fixup_map_hash_16b++; 679 } while (*fixup_map_hash_16b); 680 } 681 682 if (*fixup_map_array_48b) { 683 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 684 sizeof(struct test_val), 1); 685 update_map(map_fds[3], 0); 686 do { 687 prog[*fixup_map_array_48b].imm = map_fds[3]; 688 fixup_map_array_48b++; 689 } while (*fixup_map_array_48b); 690 } 691 692 if (*fixup_prog1) { 693 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 694 do { 695 prog[*fixup_prog1].imm = map_fds[4]; 696 fixup_prog1++; 697 } while (*fixup_prog1); 698 } 699 700 if (*fixup_prog2) { 701 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 702 do { 703 prog[*fixup_prog2].imm = map_fds[5]; 704 fixup_prog2++; 705 } while (*fixup_prog2); 706 } 707 708 if (*fixup_map_in_map) { 709 map_fds[6] = create_map_in_map(); 710 do { 711 prog[*fixup_map_in_map].imm = map_fds[6]; 712 fixup_map_in_map++; 713 } while (*fixup_map_in_map); 714 } 715 716 if (*fixup_cgroup_storage) { 717 map_fds[7] = create_cgroup_storage(false); 718 do { 719 prog[*fixup_cgroup_storage].imm = map_fds[7]; 720 fixup_cgroup_storage++; 721 } while (*fixup_cgroup_storage); 722 } 723 724 if (*fixup_percpu_cgroup_storage) { 725 map_fds[8] = create_cgroup_storage(true); 726 do { 727 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 728 fixup_percpu_cgroup_storage++; 729 } while (*fixup_percpu_cgroup_storage); 730 } 731 if (*fixup_map_sockmap) { 732 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 733 sizeof(int), 1); 734 do { 735 prog[*fixup_map_sockmap].imm = map_fds[9]; 736 fixup_map_sockmap++; 737 } while (*fixup_map_sockmap); 738 } 739 if (*fixup_map_sockhash) { 740 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 741 sizeof(int), 1); 742 do { 743 prog[*fixup_map_sockhash].imm = map_fds[10]; 744 fixup_map_sockhash++; 745 } while (*fixup_map_sockhash); 746 } 747 if (*fixup_map_xskmap) { 748 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 749 sizeof(int), 1); 750 do { 751 prog[*fixup_map_xskmap].imm = map_fds[11]; 752 fixup_map_xskmap++; 753 } while (*fixup_map_xskmap); 754 } 755 if (*fixup_map_stacktrace) { 756 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 757 sizeof(u64), 1); 758 do { 759 prog[*fixup_map_stacktrace].imm = map_fds[12]; 760 fixup_map_stacktrace++; 761 } while (*fixup_map_stacktrace); 762 } 763 if (*fixup_map_spin_lock) { 764 map_fds[13] = create_map_spin_lock(); 765 do { 766 prog[*fixup_map_spin_lock].imm = map_fds[13]; 767 fixup_map_spin_lock++; 768 } while (*fixup_map_spin_lock); 769 } 770 if (*fixup_map_array_ro) { 771 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 772 sizeof(struct test_val), 1, 773 BPF_F_RDONLY_PROG); 774 update_map(map_fds[14], 0); 775 do { 776 prog[*fixup_map_array_ro].imm = map_fds[14]; 777 fixup_map_array_ro++; 778 } while (*fixup_map_array_ro); 779 } 780 if (*fixup_map_array_wo) { 781 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 782 sizeof(struct test_val), 1, 783 BPF_F_WRONLY_PROG); 784 update_map(map_fds[15], 0); 785 do { 786 prog[*fixup_map_array_wo].imm = map_fds[15]; 787 fixup_map_array_wo++; 788 } while (*fixup_map_array_wo); 789 } 790 if (*fixup_map_array_small) { 791 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 792 1, 1, 0); 793 update_map(map_fds[16], 0); 794 do { 795 prog[*fixup_map_array_small].imm = map_fds[16]; 796 fixup_map_array_small++; 797 } while (*fixup_map_array_small); 798 } 799 if (*fixup_sk_storage_map) { 800 map_fds[17] = create_sk_storage_map(); 801 do { 802 prog[*fixup_sk_storage_map].imm = map_fds[17]; 803 fixup_sk_storage_map++; 804 } while (*fixup_sk_storage_map); 805 } 806 if (*fixup_map_event_output) { 807 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 808 sizeof(int), sizeof(int), 1, 0); 809 do { 810 prog[*fixup_map_event_output].imm = map_fds[18]; 811 fixup_map_event_output++; 812 } while (*fixup_map_event_output); 813 } 814 if (*fixup_map_reuseport_array) { 815 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 816 sizeof(u32), sizeof(u64), 1, 0); 817 do { 818 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 819 fixup_map_reuseport_array++; 820 } while (*fixup_map_reuseport_array); 821 } 822 if (*fixup_map_ringbuf) { 823 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 824 0, 4096); 825 do { 826 prog[*fixup_map_ringbuf].imm = map_fds[20]; 827 fixup_map_ringbuf++; 828 } while (*fixup_map_ringbuf); 829 } 830 } 831 832 struct libcap { 833 struct __user_cap_header_struct hdr; 834 struct __user_cap_data_struct data[2]; 835 }; 836 837 static int set_admin(bool admin) 838 { 839 cap_t caps; 840 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 841 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 842 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 843 struct libcap *cap; 844 int ret = -1; 845 846 caps = cap_get_proc(); 847 if (!caps) { 848 perror("cap_get_proc"); 849 return -1; 850 } 851 cap = (struct libcap *)caps; 852 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 853 perror("cap_set_flag clear admin"); 854 goto out; 855 } 856 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 857 admin ? CAP_SET : CAP_CLEAR)) { 858 perror("cap_set_flag set_or_clear net"); 859 goto out; 860 } 861 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 862 * so update effective bits manually 863 */ 864 if (admin) { 865 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 866 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 867 } else { 868 cap->data[1].effective &= ~(1 << (38 - 32)); 869 cap->data[1].effective &= ~(1 << (39 - 32)); 870 } 871 if (cap_set_proc(caps)) { 872 perror("cap_set_proc"); 873 goto out; 874 } 875 ret = 0; 876 out: 877 if (cap_free(caps)) 878 perror("cap_free"); 879 return ret; 880 } 881 882 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 883 void *data, size_t size_data) 884 { 885 __u8 tmp[TEST_DATA_LEN << 2]; 886 __u32 size_tmp = sizeof(tmp); 887 uint32_t retval; 888 int err, saved_errno; 889 890 if (unpriv) 891 set_admin(true); 892 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 893 tmp, &size_tmp, &retval, NULL); 894 saved_errno = errno; 895 896 if (unpriv) 897 set_admin(false); 898 899 if (err) { 900 switch (saved_errno) { 901 case 524/*ENOTSUPP*/: 902 printf("Did not run the program (not supported) "); 903 return 0; 904 case EPERM: 905 if (unpriv) { 906 printf("Did not run the program (no permission) "); 907 return 0; 908 } 909 /* fallthrough; */ 910 default: 911 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 912 strerror(saved_errno)); 913 return err; 914 } 915 } 916 917 if (retval != expected_val && 918 expected_val != POINTER_VALUE) { 919 printf("FAIL retval %d != %d ", retval, expected_val); 920 return 1; 921 } 922 923 return 0; 924 } 925 926 static bool cmp_str_seq(const char *log, const char *exp) 927 { 928 char needle[80]; 929 const char *p, *q; 930 int len; 931 932 do { 933 p = strchr(exp, '\t'); 934 if (!p) 935 p = exp + strlen(exp); 936 937 len = p - exp; 938 if (len >= sizeof(needle) || !len) { 939 printf("FAIL\nTestcase bug\n"); 940 return false; 941 } 942 strncpy(needle, exp, len); 943 needle[len] = 0; 944 q = strstr(log, needle); 945 if (!q) { 946 printf("FAIL\nUnexpected verifier log in successful load!\n" 947 "EXP: %s\nRES:\n", needle); 948 return false; 949 } 950 log = q + len; 951 exp = p + 1; 952 } while (*p); 953 return true; 954 } 955 956 static void do_test_single(struct bpf_test *test, bool unpriv, 957 int *passes, int *errors) 958 { 959 int fd_prog, expected_ret, alignment_prevented_execution; 960 int prog_len, prog_type = test->prog_type; 961 struct bpf_insn *prog = test->insns; 962 struct bpf_load_program_attr attr; 963 int run_errs, run_successes; 964 int map_fds[MAX_NR_MAPS]; 965 const char *expected_err; 966 int saved_errno; 967 int fixup_skips; 968 __u32 pflags; 969 int i, err; 970 971 for (i = 0; i < MAX_NR_MAPS; i++) 972 map_fds[i] = -1; 973 974 if (!prog_type) 975 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 976 fixup_skips = skips; 977 do_test_fixup(test, prog_type, prog, map_fds); 978 if (test->fill_insns) { 979 prog = test->fill_insns; 980 prog_len = test->prog_len; 981 } else { 982 prog_len = probe_filter_length(prog); 983 } 984 /* If there were some map skips during fixup due to missing bpf 985 * features, skip this test. 986 */ 987 if (fixup_skips != skips) 988 return; 989 990 pflags = BPF_F_TEST_RND_HI32; 991 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 992 pflags |= BPF_F_STRICT_ALIGNMENT; 993 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 994 pflags |= BPF_F_ANY_ALIGNMENT; 995 if (test->flags & ~3) 996 pflags |= test->flags; 997 998 expected_ret = unpriv && test->result_unpriv != UNDEF ? 999 test->result_unpriv : test->result; 1000 expected_err = unpriv && test->errstr_unpriv ? 1001 test->errstr_unpriv : test->errstr; 1002 memset(&attr, 0, sizeof(attr)); 1003 attr.prog_type = prog_type; 1004 attr.expected_attach_type = test->expected_attach_type; 1005 attr.insns = prog; 1006 attr.insns_cnt = prog_len; 1007 attr.license = "GPL"; 1008 if (verbose) 1009 attr.log_level = 1; 1010 else if (expected_ret == VERBOSE_ACCEPT) 1011 attr.log_level = 2; 1012 else 1013 attr.log_level = 4; 1014 attr.prog_flags = pflags; 1015 1016 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1017 attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1018 attr.expected_attach_type); 1019 if (attr.attach_btf_id < 0) { 1020 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1021 test->kfunc); 1022 (*errors)++; 1023 return; 1024 } 1025 } 1026 1027 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 1028 saved_errno = errno; 1029 1030 /* BPF_PROG_TYPE_TRACING requires more setup and 1031 * bpf_probe_prog_type won't give correct answer 1032 */ 1033 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1034 !bpf_probe_prog_type(prog_type, 0)) { 1035 printf("SKIP (unsupported program type %d)\n", prog_type); 1036 skips++; 1037 goto close_fds; 1038 } 1039 1040 alignment_prevented_execution = 0; 1041 1042 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1043 if (fd_prog < 0) { 1044 printf("FAIL\nFailed to load prog '%s'!\n", 1045 strerror(saved_errno)); 1046 goto fail_log; 1047 } 1048 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1049 if (fd_prog >= 0 && 1050 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1051 alignment_prevented_execution = 1; 1052 #endif 1053 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1054 goto fail_log; 1055 } 1056 } else { 1057 if (fd_prog >= 0) { 1058 printf("FAIL\nUnexpected success to load!\n"); 1059 goto fail_log; 1060 } 1061 if (!expected_err || !strstr(bpf_vlog, expected_err)) { 1062 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1063 expected_err, bpf_vlog); 1064 goto fail_log; 1065 } 1066 } 1067 1068 if (test->insn_processed) { 1069 uint32_t insn_processed; 1070 char *proc; 1071 1072 proc = strstr(bpf_vlog, "processed "); 1073 insn_processed = atoi(proc + 10); 1074 if (test->insn_processed != insn_processed) { 1075 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1076 insn_processed, test->insn_processed); 1077 goto fail_log; 1078 } 1079 } 1080 1081 if (verbose) 1082 printf(", verifier log:\n%s", bpf_vlog); 1083 1084 run_errs = 0; 1085 run_successes = 0; 1086 if (!alignment_prevented_execution && fd_prog >= 0) { 1087 uint32_t expected_val; 1088 int i; 1089 1090 if (!test->runs) 1091 test->runs = 1; 1092 1093 for (i = 0; i < test->runs; i++) { 1094 if (unpriv && test->retvals[i].retval_unpriv) 1095 expected_val = test->retvals[i].retval_unpriv; 1096 else 1097 expected_val = test->retvals[i].retval; 1098 1099 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1100 test->retvals[i].data, 1101 sizeof(test->retvals[i].data)); 1102 if (err) { 1103 printf("(run %d/%d) ", i + 1, test->runs); 1104 run_errs++; 1105 } else { 1106 run_successes++; 1107 } 1108 } 1109 } 1110 1111 if (!run_errs) { 1112 (*passes)++; 1113 if (run_successes > 1) 1114 printf("%d cases ", run_successes); 1115 printf("OK"); 1116 if (alignment_prevented_execution) 1117 printf(" (NOTE: not executed due to unknown alignment)"); 1118 printf("\n"); 1119 } else { 1120 printf("\n"); 1121 goto fail_log; 1122 } 1123 close_fds: 1124 if (test->fill_insns) 1125 free(test->fill_insns); 1126 close(fd_prog); 1127 for (i = 0; i < MAX_NR_MAPS; i++) 1128 close(map_fds[i]); 1129 sched_yield(); 1130 return; 1131 fail_log: 1132 (*errors)++; 1133 printf("%s", bpf_vlog); 1134 goto close_fds; 1135 } 1136 1137 static bool is_admin(void) 1138 { 1139 cap_flag_value_t net_priv = CAP_CLEAR; 1140 bool perfmon_priv = false; 1141 bool bpf_priv = false; 1142 struct libcap *cap; 1143 cap_t caps; 1144 1145 #ifdef CAP_IS_SUPPORTED 1146 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1147 perror("cap_get_flag"); 1148 return false; 1149 } 1150 #endif 1151 caps = cap_get_proc(); 1152 if (!caps) { 1153 perror("cap_get_proc"); 1154 return false; 1155 } 1156 cap = (struct libcap *)caps; 1157 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1158 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1159 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1160 perror("cap_get_flag NET"); 1161 if (cap_free(caps)) 1162 perror("cap_free"); 1163 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1164 } 1165 1166 static void get_unpriv_disabled() 1167 { 1168 char buf[2]; 1169 FILE *fd; 1170 1171 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1172 if (!fd) { 1173 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1174 unpriv_disabled = true; 1175 return; 1176 } 1177 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1178 unpriv_disabled = true; 1179 fclose(fd); 1180 } 1181 1182 static bool test_as_unpriv(struct bpf_test *test) 1183 { 1184 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1185 /* Some architectures have strict alignment requirements. In 1186 * that case, the BPF verifier detects if a program has 1187 * unaligned accesses and rejects them. A user can pass 1188 * BPF_F_ANY_ALIGNMENT to a program to override this 1189 * check. That, however, will only work when a privileged user 1190 * loads a program. An unprivileged user loading a program 1191 * with this flag will be rejected prior entering the 1192 * verifier. 1193 */ 1194 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1195 return false; 1196 #endif 1197 return !test->prog_type || 1198 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1199 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1200 } 1201 1202 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1203 { 1204 int i, passes = 0, errors = 0; 1205 1206 for (i = from; i < to; i++) { 1207 struct bpf_test *test = &tests[i]; 1208 1209 /* Program types that are not supported by non-root we 1210 * skip right away. 1211 */ 1212 if (test_as_unpriv(test) && unpriv_disabled) { 1213 printf("#%d/u %s SKIP\n", i, test->descr); 1214 skips++; 1215 } else if (test_as_unpriv(test)) { 1216 if (!unpriv) 1217 set_admin(false); 1218 printf("#%d/u %s ", i, test->descr); 1219 do_test_single(test, true, &passes, &errors); 1220 if (!unpriv) 1221 set_admin(true); 1222 } 1223 1224 if (unpriv) { 1225 printf("#%d/p %s SKIP\n", i, test->descr); 1226 skips++; 1227 } else { 1228 printf("#%d/p %s ", i, test->descr); 1229 do_test_single(test, false, &passes, &errors); 1230 } 1231 } 1232 1233 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1234 skips, errors); 1235 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1236 } 1237 1238 int main(int argc, char **argv) 1239 { 1240 unsigned int from = 0, to = ARRAY_SIZE(tests); 1241 bool unpriv = !is_admin(); 1242 int arg = 1; 1243 1244 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1245 arg++; 1246 verbose = true; 1247 argc--; 1248 } 1249 1250 if (argc == 3) { 1251 unsigned int l = atoi(argv[arg]); 1252 unsigned int u = atoi(argv[arg + 1]); 1253 1254 if (l < to && u < to) { 1255 from = l; 1256 to = u + 1; 1257 } 1258 } else if (argc == 2) { 1259 unsigned int t = atoi(argv[arg]); 1260 1261 if (t < to) { 1262 from = t; 1263 to = t + 1; 1264 } 1265 } 1266 1267 get_unpriv_disabled(); 1268 if (unpriv && unpriv_disabled) { 1269 printf("Cannot run as unprivileged user with sysctl %s.\n", 1270 UNPRIV_SYSCTL); 1271 return EXIT_FAILURE; 1272 } 1273 1274 bpf_semi_rand_init(); 1275 return do_test(unpriv, from, to); 1276 } 1277