1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31 
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35 
36 #ifdef HAVE_GENHDR
37 # include "autoconf.h"
38 #else
39 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
40 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
41 # endif
42 #endif
43 #include "cap_helpers.h"
44 #include "bpf_rand.h"
45 #include "bpf_util.h"
46 #include "test_btf.h"
47 #include "../../../include/linux/filter.h"
48 
49 #ifndef ENOTSUPP
50 #define ENOTSUPP 524
51 #endif
52 
53 #define MAX_INSNS	BPF_MAXINSNS
54 #define MAX_EXPECTED_INSNS	32
55 #define MAX_UNEXPECTED_INSNS	32
56 #define MAX_TEST_INSNS	1000000
57 #define MAX_FIXUPS	8
58 #define MAX_NR_MAPS	23
59 #define MAX_TEST_RUNS	8
60 #define POINTER_VALUE	0xcafe4all
61 #define TEST_DATA_LEN	64
62 #define MAX_FUNC_INFOS	8
63 #define MAX_BTF_STRINGS	256
64 #define MAX_BTF_TYPES	256
65 
66 #define INSN_OFF_MASK	((__s16)0xFFFF)
67 #define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
68 #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
69 
70 #define DEFAULT_LIBBPF_LOG_LEVEL	4
71 #define VERBOSE_LIBBPF_LOG_LEVEL	1
72 
73 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
74 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
75 
76 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
77 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
78 		    1ULL << CAP_PERFMON |	\
79 		    1ULL << CAP_BPF)
80 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
81 static bool unpriv_disabled = false;
82 static int skips;
83 static bool verbose = false;
84 
85 struct kfunc_btf_id_pair {
86 	const char *kfunc;
87 	int insn_idx;
88 };
89 
90 struct bpf_test {
91 	const char *descr;
92 	struct bpf_insn	insns[MAX_INSNS];
93 	struct bpf_insn	*fill_insns;
94 	/* If specified, test engine looks for this sequence of
95 	 * instructions in the BPF program after loading. Allows to
96 	 * test rewrites applied by verifier.  Use values
97 	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
98 	 * fields if content does not matter.  The test case fails if
99 	 * specified instructions are not found.
100 	 *
101 	 * The sequence could be split into sub-sequences by adding
102 	 * SKIP_INSNS instruction at the end of each sub-sequence. In
103 	 * such case sub-sequences are searched for one after another.
104 	 */
105 	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
106 	/* If specified, test engine applies same pattern matching
107 	 * logic as for `expected_insns`. If the specified pattern is
108 	 * matched test case is marked as failed.
109 	 */
110 	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
111 	int fixup_map_hash_8b[MAX_FIXUPS];
112 	int fixup_map_hash_48b[MAX_FIXUPS];
113 	int fixup_map_hash_16b[MAX_FIXUPS];
114 	int fixup_map_array_48b[MAX_FIXUPS];
115 	int fixup_map_sockmap[MAX_FIXUPS];
116 	int fixup_map_sockhash[MAX_FIXUPS];
117 	int fixup_map_xskmap[MAX_FIXUPS];
118 	int fixup_map_stacktrace[MAX_FIXUPS];
119 	int fixup_prog1[MAX_FIXUPS];
120 	int fixup_prog2[MAX_FIXUPS];
121 	int fixup_map_in_map[MAX_FIXUPS];
122 	int fixup_cgroup_storage[MAX_FIXUPS];
123 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
124 	int fixup_map_spin_lock[MAX_FIXUPS];
125 	int fixup_map_array_ro[MAX_FIXUPS];
126 	int fixup_map_array_wo[MAX_FIXUPS];
127 	int fixup_map_array_small[MAX_FIXUPS];
128 	int fixup_sk_storage_map[MAX_FIXUPS];
129 	int fixup_map_event_output[MAX_FIXUPS];
130 	int fixup_map_reuseport_array[MAX_FIXUPS];
131 	int fixup_map_ringbuf[MAX_FIXUPS];
132 	int fixup_map_timer[MAX_FIXUPS];
133 	int fixup_map_kptr[MAX_FIXUPS];
134 	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
135 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
136 	 * Can be a tab-separated sequence of expected strings. An empty string
137 	 * means no log verification.
138 	 */
139 	const char *errstr;
140 	const char *errstr_unpriv;
141 	uint32_t insn_processed;
142 	int prog_len;
143 	enum {
144 		UNDEF,
145 		ACCEPT,
146 		REJECT,
147 		VERBOSE_ACCEPT,
148 	} result, result_unpriv;
149 	enum bpf_prog_type prog_type;
150 	uint8_t flags;
151 	void (*fill_helper)(struct bpf_test *self);
152 	int runs;
153 #define bpf_testdata_struct_t					\
154 	struct {						\
155 		uint32_t retval, retval_unpriv;			\
156 		union {						\
157 			__u8 data[TEST_DATA_LEN];		\
158 			__u64 data64[TEST_DATA_LEN / 8];	\
159 		};						\
160 	}
161 	union {
162 		bpf_testdata_struct_t;
163 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
164 	};
165 	enum bpf_attach_type expected_attach_type;
166 	const char *kfunc;
167 	struct bpf_func_info func_info[MAX_FUNC_INFOS];
168 	int func_info_cnt;
169 	char btf_strings[MAX_BTF_STRINGS];
170 	/* A set of BTF types to load when specified,
171 	 * use macro definitions from test_btf.h,
172 	 * must end with BTF_END_RAW
173 	 */
174 	__u32 btf_types[MAX_BTF_TYPES];
175 };
176 
177 /* Note we want this to be 64 bit aligned so that the end of our array is
178  * actually the end of the structure.
179  */
180 #define MAX_ENTRIES 11
181 
182 struct test_val {
183 	unsigned int index;
184 	int foo[MAX_ENTRIES];
185 };
186 
187 struct other_val {
188 	long long foo;
189 	long long bar;
190 };
191 
192 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
193 {
194 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
195 #define PUSH_CNT 51
196 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
197 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
198 	struct bpf_insn *insn = self->fill_insns;
199 	int i = 0, j, k = 0;
200 
201 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
202 loop:
203 	for (j = 0; j < PUSH_CNT; j++) {
204 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
205 		/* jump to error label */
206 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
207 		i++;
208 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
209 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
210 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
211 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
212 					 BPF_FUNC_skb_vlan_push),
213 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
214 		i++;
215 	}
216 
217 	for (j = 0; j < PUSH_CNT; j++) {
218 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
219 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
220 		i++;
221 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
222 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
223 					 BPF_FUNC_skb_vlan_pop),
224 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
225 		i++;
226 	}
227 	if (++k < 5)
228 		goto loop;
229 
230 	for (; i < len - 3; i++)
231 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
232 	insn[len - 3] = BPF_JMP_A(1);
233 	/* error label */
234 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
235 	insn[len - 1] = BPF_EXIT_INSN();
236 	self->prog_len = len;
237 }
238 
239 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
240 {
241 	struct bpf_insn *insn = self->fill_insns;
242 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
243 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
244 	 * to extend the error value of the inlined ld_abs sequence which then
245 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
246 	 * work on all arches.
247 	 */
248 	unsigned int len = (1 << 15) / 7;
249 	int i = 0;
250 
251 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
252 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
253 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
254 	i++;
255 	while (i < len - 1)
256 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
257 	insn[i] = BPF_EXIT_INSN();
258 	self->prog_len = i + 1;
259 }
260 
261 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
262 {
263 	struct bpf_insn *insn = self->fill_insns;
264 	uint64_t res = 0;
265 	int i = 0;
266 
267 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
268 	while (i < self->retval) {
269 		uint64_t val = bpf_semi_rand_get();
270 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
271 
272 		res ^= val;
273 		insn[i++] = tmp[0];
274 		insn[i++] = tmp[1];
275 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276 	}
277 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
278 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
279 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
280 	insn[i] = BPF_EXIT_INSN();
281 	self->prog_len = i + 1;
282 	res ^= (res >> 32);
283 	self->retval = (uint32_t)res;
284 }
285 
286 #define MAX_JMP_SEQ 8192
287 
288 /* test the sequence of 8k jumps */
289 static void bpf_fill_scale1(struct bpf_test *self)
290 {
291 	struct bpf_insn *insn = self->fill_insns;
292 	int i = 0, k = 0;
293 
294 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
295 	/* test to check that the long sequence of jumps is acceptable */
296 	while (k++ < MAX_JMP_SEQ) {
297 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
298 					 BPF_FUNC_get_prandom_u32);
299 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
300 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
301 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
302 					-8 * (k % 64 + 1));
303 	}
304 	/* is_state_visited() doesn't allocate state for pruning for every jump.
305 	 * Hence multiply jmps by 4 to accommodate that heuristic
306 	 */
307 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
308 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
309 	insn[i] = BPF_EXIT_INSN();
310 	self->prog_len = i + 1;
311 	self->retval = 42;
312 }
313 
314 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
315 static void bpf_fill_scale2(struct bpf_test *self)
316 {
317 	struct bpf_insn *insn = self->fill_insns;
318 	int i = 0, k = 0;
319 
320 #define FUNC_NEST 7
321 	for (k = 0; k < FUNC_NEST; k++) {
322 		insn[i++] = BPF_CALL_REL(1);
323 		insn[i++] = BPF_EXIT_INSN();
324 	}
325 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
326 	/* test to check that the long sequence of jumps is acceptable */
327 	k = 0;
328 	while (k++ < MAX_JMP_SEQ) {
329 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
330 					 BPF_FUNC_get_prandom_u32);
331 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
332 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
333 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
334 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
335 	}
336 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
337 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
338 	insn[i] = BPF_EXIT_INSN();
339 	self->prog_len = i + 1;
340 	self->retval = 42;
341 }
342 
343 static void bpf_fill_scale(struct bpf_test *self)
344 {
345 	switch (self->retval) {
346 	case 1:
347 		return bpf_fill_scale1(self);
348 	case 2:
349 		return bpf_fill_scale2(self);
350 	default:
351 		self->prog_len = 0;
352 		break;
353 	}
354 }
355 
356 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
357 {
358 	unsigned int len = 259, hlen = 128;
359 	int i;
360 
361 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
362 	for (i = 1; i <= hlen; i++) {
363 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
364 		insn[i + hlen] = BPF_JMP_A(hlen - i);
365 	}
366 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
367 	insn[len - 1] = BPF_EXIT_INSN();
368 
369 	return len;
370 }
371 
372 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
373 {
374 	unsigned int len = 4100, jmp_off = 2048;
375 	int i, j;
376 
377 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
378 	for (i = 1; i <= jmp_off; i++) {
379 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
380 	}
381 	insn[i++] = BPF_JMP_A(jmp_off);
382 	for (; i <= jmp_off * 2 + 1; i+=16) {
383 		for (j = 0; j < 16; j++) {
384 			insn[i + j] = BPF_JMP_A(16 - j - 1);
385 		}
386 	}
387 
388 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
389 	insn[len - 1] = BPF_EXIT_INSN();
390 
391 	return len;
392 }
393 
394 static void bpf_fill_torturous_jumps(struct bpf_test *self)
395 {
396 	struct bpf_insn *insn = self->fill_insns;
397 	int i = 0;
398 
399 	switch (self->retval) {
400 	case 1:
401 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
402 		return;
403 	case 2:
404 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
405 		return;
406 	case 3:
407 		/* main */
408 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
409 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
410 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
411 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
412 		insn[i++] = BPF_EXIT_INSN();
413 
414 		/* subprog 1 */
415 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
416 
417 		/* subprog 2 */
418 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
419 
420 		self->prog_len = i;
421 		return;
422 	default:
423 		self->prog_len = 0;
424 		break;
425 	}
426 }
427 
428 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
429 #define BPF_SK_LOOKUP(func)						\
430 	/* struct bpf_sock_tuple tuple = {} */				\
431 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
432 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
433 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
434 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
435 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
436 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
437 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
438 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
439 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
440 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
441 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
442 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
443 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
444 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
445 
446 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
447  * value into 0 and does necessary preparation for direct packet access
448  * through r2. The allowed access range is 8 bytes.
449  */
450 #define BPF_DIRECT_PKT_R2						\
451 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
452 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
453 		    offsetof(struct __sk_buff, data)),			\
454 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
455 		    offsetof(struct __sk_buff, data_end)),		\
456 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
457 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
458 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
459 	BPF_EXIT_INSN()
460 
461 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
462  * positive u32, and zero-extend it into 64-bit.
463  */
464 #define BPF_RAND_UEXT_R7						\
465 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
466 		     BPF_FUNC_get_prandom_u32),				\
467 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
468 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
469 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
470 
471 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
472  * negative u32, and sign-extend it into 64-bit.
473  */
474 #define BPF_RAND_SEXT_R7						\
475 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
476 		     BPF_FUNC_get_prandom_u32),				\
477 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
478 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
479 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
480 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
481 
482 static struct bpf_test tests[] = {
483 #define FILL_ARRAY
484 #include <verifier/tests.h>
485 #undef FILL_ARRAY
486 };
487 
488 static int probe_filter_length(const struct bpf_insn *fp)
489 {
490 	int len;
491 
492 	for (len = MAX_INSNS - 1; len > 0; --len)
493 		if (fp[len].code != 0 || fp[len].imm != 0)
494 			break;
495 	return len + 1;
496 }
497 
498 static bool skip_unsupported_map(enum bpf_map_type map_type)
499 {
500 	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
501 		printf("SKIP (unsupported map type %d)\n", map_type);
502 		skips++;
503 		return true;
504 	}
505 	return false;
506 }
507 
508 static int __create_map(uint32_t type, uint32_t size_key,
509 			uint32_t size_value, uint32_t max_elem,
510 			uint32_t extra_flags)
511 {
512 	LIBBPF_OPTS(bpf_map_create_opts, opts);
513 	int fd;
514 
515 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
516 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
517 	if (fd < 0) {
518 		if (skip_unsupported_map(type))
519 			return -1;
520 		printf("Failed to create hash map '%s'!\n", strerror(errno));
521 	}
522 
523 	return fd;
524 }
525 
526 static int create_map(uint32_t type, uint32_t size_key,
527 		      uint32_t size_value, uint32_t max_elem)
528 {
529 	return __create_map(type, size_key, size_value, max_elem, 0);
530 }
531 
532 static void update_map(int fd, int index)
533 {
534 	struct test_val value = {
535 		.index = (6 + 1) * sizeof(int),
536 		.foo[6] = 0xabcdef12,
537 	};
538 
539 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
540 }
541 
542 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
543 {
544 	struct bpf_insn prog[] = {
545 		BPF_MOV64_IMM(BPF_REG_0, ret),
546 		BPF_EXIT_INSN(),
547 	};
548 
549 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
550 }
551 
552 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
553 				  int idx, int ret)
554 {
555 	struct bpf_insn prog[] = {
556 		BPF_MOV64_IMM(BPF_REG_3, idx),
557 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
558 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
559 			     BPF_FUNC_tail_call),
560 		BPF_MOV64_IMM(BPF_REG_0, ret),
561 		BPF_EXIT_INSN(),
562 	};
563 
564 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
565 }
566 
567 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
568 			     int p1key, int p2key, int p3key)
569 {
570 	int mfd, p1fd, p2fd, p3fd;
571 
572 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
573 			     sizeof(int), max_elem, NULL);
574 	if (mfd < 0) {
575 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
576 			return -1;
577 		printf("Failed to create prog array '%s'!\n", strerror(errno));
578 		return -1;
579 	}
580 
581 	p1fd = create_prog_dummy_simple(prog_type, 42);
582 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
583 	p3fd = create_prog_dummy_simple(prog_type, 24);
584 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
585 		goto err;
586 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
587 		goto err;
588 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
589 		goto err;
590 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
591 err:
592 		close(mfd);
593 		mfd = -1;
594 	}
595 	close(p3fd);
596 	close(p2fd);
597 	close(p1fd);
598 	return mfd;
599 }
600 
601 static int create_map_in_map(void)
602 {
603 	LIBBPF_OPTS(bpf_map_create_opts, opts);
604 	int inner_map_fd, outer_map_fd;
605 
606 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
607 				      sizeof(int), 1, NULL);
608 	if (inner_map_fd < 0) {
609 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
610 			return -1;
611 		printf("Failed to create array '%s'!\n", strerror(errno));
612 		return inner_map_fd;
613 	}
614 
615 	opts.inner_map_fd = inner_map_fd;
616 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
617 				      sizeof(int), sizeof(int), 1, &opts);
618 	if (outer_map_fd < 0) {
619 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
620 			return -1;
621 		printf("Failed to create array of maps '%s'!\n",
622 		       strerror(errno));
623 	}
624 
625 	close(inner_map_fd);
626 
627 	return outer_map_fd;
628 }
629 
630 static int create_cgroup_storage(bool percpu)
631 {
632 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
633 		BPF_MAP_TYPE_CGROUP_STORAGE;
634 	int fd;
635 
636 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
637 			    TEST_DATA_LEN, 0, NULL);
638 	if (fd < 0) {
639 		if (skip_unsupported_map(type))
640 			return -1;
641 		printf("Failed to create cgroup storage '%s'!\n",
642 		       strerror(errno));
643 	}
644 
645 	return fd;
646 }
647 
648 /* struct bpf_spin_lock {
649  *   int val;
650  * };
651  * struct val {
652  *   int cnt;
653  *   struct bpf_spin_lock l;
654  * };
655  * struct bpf_timer {
656  *   __u64 :64;
657  *   __u64 :64;
658  * } __attribute__((aligned(8)));
659  * struct timer {
660  *   struct bpf_timer t;
661  * };
662  * struct btf_ptr {
663  *   struct prog_test_ref_kfunc __kptr *ptr;
664  *   struct prog_test_ref_kfunc __kptr_ref *ptr;
665  *   struct prog_test_member __kptr_ref *ptr;
666  * }
667  */
668 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
669 				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref"
670 				  "\0prog_test_member";
671 static __u32 btf_raw_types[] = {
672 	/* int */
673 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
674 	/* struct bpf_spin_lock */                      /* [2] */
675 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
676 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
677 	/* struct val */                                /* [3] */
678 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
679 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
680 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
681 	/* struct bpf_timer */                          /* [4] */
682 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
683 	/* struct timer */                              /* [5] */
684 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
685 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
686 	/* struct prog_test_ref_kfunc */		/* [6] */
687 	BTF_STRUCT_ENC(51, 0, 0),
688 	BTF_STRUCT_ENC(89, 0, 0),			/* [7] */
689 	/* type tag "kptr" */
690 	BTF_TYPE_TAG_ENC(75, 6),			/* [8] */
691 	/* type tag "kptr_ref" */
692 	BTF_TYPE_TAG_ENC(80, 6),			/* [9] */
693 	BTF_TYPE_TAG_ENC(80, 7),			/* [10] */
694 	BTF_PTR_ENC(8),					/* [11] */
695 	BTF_PTR_ENC(9),					/* [12] */
696 	BTF_PTR_ENC(10),				/* [13] */
697 	/* struct btf_ptr */				/* [14] */
698 	BTF_STRUCT_ENC(43, 3, 24),
699 	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */
700 	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */
701 	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */
702 };
703 
704 static char bpf_vlog[UINT_MAX >> 8];
705 
706 static int load_btf_spec(__u32 *types, int types_len,
707 			 const char *strings, int strings_len)
708 {
709 	struct btf_header hdr = {
710 		.magic = BTF_MAGIC,
711 		.version = BTF_VERSION,
712 		.hdr_len = sizeof(struct btf_header),
713 		.type_len = types_len,
714 		.str_off = types_len,
715 		.str_len = strings_len,
716 	};
717 	void *ptr, *raw_btf;
718 	int btf_fd;
719 	LIBBPF_OPTS(bpf_btf_load_opts, opts,
720 		    .log_buf = bpf_vlog,
721 		    .log_size = sizeof(bpf_vlog),
722 		    .log_level = (verbose
723 				  ? VERBOSE_LIBBPF_LOG_LEVEL
724 				  : DEFAULT_LIBBPF_LOG_LEVEL),
725 	);
726 
727 	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
728 
729 	ptr = raw_btf;
730 	memcpy(ptr, &hdr, sizeof(hdr));
731 	ptr += sizeof(hdr);
732 	memcpy(ptr, types, hdr.type_len);
733 	ptr += hdr.type_len;
734 	memcpy(ptr, strings, hdr.str_len);
735 	ptr += hdr.str_len;
736 
737 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
738 	if (btf_fd < 0)
739 		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
740 
741 	free(raw_btf);
742 
743 	return btf_fd < 0 ? -1 : btf_fd;
744 }
745 
746 static int load_btf(void)
747 {
748 	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
749 			     btf_str_sec, sizeof(btf_str_sec));
750 }
751 
752 static int load_btf_for_test(struct bpf_test *test)
753 {
754 	int types_num = 0;
755 
756 	while (types_num < MAX_BTF_TYPES &&
757 	       test->btf_types[types_num] != BTF_END_RAW)
758 		++types_num;
759 
760 	int types_len = types_num * sizeof(test->btf_types[0]);
761 
762 	return load_btf_spec(test->btf_types, types_len,
763 			     test->btf_strings, sizeof(test->btf_strings));
764 }
765 
766 static int create_map_spin_lock(void)
767 {
768 	LIBBPF_OPTS(bpf_map_create_opts, opts,
769 		.btf_key_type_id = 1,
770 		.btf_value_type_id = 3,
771 	);
772 	int fd, btf_fd;
773 
774 	btf_fd = load_btf();
775 	if (btf_fd < 0)
776 		return -1;
777 	opts.btf_fd = btf_fd;
778 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
779 	if (fd < 0)
780 		printf("Failed to create map with spin_lock\n");
781 	return fd;
782 }
783 
784 static int create_sk_storage_map(void)
785 {
786 	LIBBPF_OPTS(bpf_map_create_opts, opts,
787 		.map_flags = BPF_F_NO_PREALLOC,
788 		.btf_key_type_id = 1,
789 		.btf_value_type_id = 3,
790 	);
791 	int fd, btf_fd;
792 
793 	btf_fd = load_btf();
794 	if (btf_fd < 0)
795 		return -1;
796 	opts.btf_fd = btf_fd;
797 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
798 	close(opts.btf_fd);
799 	if (fd < 0)
800 		printf("Failed to create sk_storage_map\n");
801 	return fd;
802 }
803 
804 static int create_map_timer(void)
805 {
806 	LIBBPF_OPTS(bpf_map_create_opts, opts,
807 		.btf_key_type_id = 1,
808 		.btf_value_type_id = 5,
809 	);
810 	int fd, btf_fd;
811 
812 	btf_fd = load_btf();
813 	if (btf_fd < 0)
814 		return -1;
815 
816 	opts.btf_fd = btf_fd;
817 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
818 	if (fd < 0)
819 		printf("Failed to create map with timer\n");
820 	return fd;
821 }
822 
823 static int create_map_kptr(void)
824 {
825 	LIBBPF_OPTS(bpf_map_create_opts, opts,
826 		.btf_key_type_id = 1,
827 		.btf_value_type_id = 14,
828 	);
829 	int fd, btf_fd;
830 
831 	btf_fd = load_btf();
832 	if (btf_fd < 0)
833 		return -1;
834 
835 	opts.btf_fd = btf_fd;
836 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
837 	if (fd < 0)
838 		printf("Failed to create map with btf_id pointer\n");
839 	return fd;
840 }
841 
842 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
843 			  struct bpf_insn *prog, int *map_fds)
844 {
845 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
846 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
847 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
848 	int *fixup_map_array_48b = test->fixup_map_array_48b;
849 	int *fixup_map_sockmap = test->fixup_map_sockmap;
850 	int *fixup_map_sockhash = test->fixup_map_sockhash;
851 	int *fixup_map_xskmap = test->fixup_map_xskmap;
852 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
853 	int *fixup_prog1 = test->fixup_prog1;
854 	int *fixup_prog2 = test->fixup_prog2;
855 	int *fixup_map_in_map = test->fixup_map_in_map;
856 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
857 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
858 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
859 	int *fixup_map_array_ro = test->fixup_map_array_ro;
860 	int *fixup_map_array_wo = test->fixup_map_array_wo;
861 	int *fixup_map_array_small = test->fixup_map_array_small;
862 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
863 	int *fixup_map_event_output = test->fixup_map_event_output;
864 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
865 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
866 	int *fixup_map_timer = test->fixup_map_timer;
867 	int *fixup_map_kptr = test->fixup_map_kptr;
868 	struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id;
869 
870 	if (test->fill_helper) {
871 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
872 		test->fill_helper(test);
873 	}
874 
875 	/* Allocating HTs with 1 elem is fine here, since we only test
876 	 * for verifier and not do a runtime lookup, so the only thing
877 	 * that really matters is value size in this case.
878 	 */
879 	if (*fixup_map_hash_8b) {
880 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
881 					sizeof(long long), 1);
882 		do {
883 			prog[*fixup_map_hash_8b].imm = map_fds[0];
884 			fixup_map_hash_8b++;
885 		} while (*fixup_map_hash_8b);
886 	}
887 
888 	if (*fixup_map_hash_48b) {
889 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
890 					sizeof(struct test_val), 1);
891 		do {
892 			prog[*fixup_map_hash_48b].imm = map_fds[1];
893 			fixup_map_hash_48b++;
894 		} while (*fixup_map_hash_48b);
895 	}
896 
897 	if (*fixup_map_hash_16b) {
898 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
899 					sizeof(struct other_val), 1);
900 		do {
901 			prog[*fixup_map_hash_16b].imm = map_fds[2];
902 			fixup_map_hash_16b++;
903 		} while (*fixup_map_hash_16b);
904 	}
905 
906 	if (*fixup_map_array_48b) {
907 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
908 					sizeof(struct test_val), 1);
909 		update_map(map_fds[3], 0);
910 		do {
911 			prog[*fixup_map_array_48b].imm = map_fds[3];
912 			fixup_map_array_48b++;
913 		} while (*fixup_map_array_48b);
914 	}
915 
916 	if (*fixup_prog1) {
917 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
918 		do {
919 			prog[*fixup_prog1].imm = map_fds[4];
920 			fixup_prog1++;
921 		} while (*fixup_prog1);
922 	}
923 
924 	if (*fixup_prog2) {
925 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
926 		do {
927 			prog[*fixup_prog2].imm = map_fds[5];
928 			fixup_prog2++;
929 		} while (*fixup_prog2);
930 	}
931 
932 	if (*fixup_map_in_map) {
933 		map_fds[6] = create_map_in_map();
934 		do {
935 			prog[*fixup_map_in_map].imm = map_fds[6];
936 			fixup_map_in_map++;
937 		} while (*fixup_map_in_map);
938 	}
939 
940 	if (*fixup_cgroup_storage) {
941 		map_fds[7] = create_cgroup_storage(false);
942 		do {
943 			prog[*fixup_cgroup_storage].imm = map_fds[7];
944 			fixup_cgroup_storage++;
945 		} while (*fixup_cgroup_storage);
946 	}
947 
948 	if (*fixup_percpu_cgroup_storage) {
949 		map_fds[8] = create_cgroup_storage(true);
950 		do {
951 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
952 			fixup_percpu_cgroup_storage++;
953 		} while (*fixup_percpu_cgroup_storage);
954 	}
955 	if (*fixup_map_sockmap) {
956 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
957 					sizeof(int), 1);
958 		do {
959 			prog[*fixup_map_sockmap].imm = map_fds[9];
960 			fixup_map_sockmap++;
961 		} while (*fixup_map_sockmap);
962 	}
963 	if (*fixup_map_sockhash) {
964 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
965 					sizeof(int), 1);
966 		do {
967 			prog[*fixup_map_sockhash].imm = map_fds[10];
968 			fixup_map_sockhash++;
969 		} while (*fixup_map_sockhash);
970 	}
971 	if (*fixup_map_xskmap) {
972 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
973 					sizeof(int), 1);
974 		do {
975 			prog[*fixup_map_xskmap].imm = map_fds[11];
976 			fixup_map_xskmap++;
977 		} while (*fixup_map_xskmap);
978 	}
979 	if (*fixup_map_stacktrace) {
980 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
981 					 sizeof(u64), 1);
982 		do {
983 			prog[*fixup_map_stacktrace].imm = map_fds[12];
984 			fixup_map_stacktrace++;
985 		} while (*fixup_map_stacktrace);
986 	}
987 	if (*fixup_map_spin_lock) {
988 		map_fds[13] = create_map_spin_lock();
989 		do {
990 			prog[*fixup_map_spin_lock].imm = map_fds[13];
991 			fixup_map_spin_lock++;
992 		} while (*fixup_map_spin_lock);
993 	}
994 	if (*fixup_map_array_ro) {
995 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
996 					   sizeof(struct test_val), 1,
997 					   BPF_F_RDONLY_PROG);
998 		update_map(map_fds[14], 0);
999 		do {
1000 			prog[*fixup_map_array_ro].imm = map_fds[14];
1001 			fixup_map_array_ro++;
1002 		} while (*fixup_map_array_ro);
1003 	}
1004 	if (*fixup_map_array_wo) {
1005 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1006 					   sizeof(struct test_val), 1,
1007 					   BPF_F_WRONLY_PROG);
1008 		update_map(map_fds[15], 0);
1009 		do {
1010 			prog[*fixup_map_array_wo].imm = map_fds[15];
1011 			fixup_map_array_wo++;
1012 		} while (*fixup_map_array_wo);
1013 	}
1014 	if (*fixup_map_array_small) {
1015 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1016 					   1, 1, 0);
1017 		update_map(map_fds[16], 0);
1018 		do {
1019 			prog[*fixup_map_array_small].imm = map_fds[16];
1020 			fixup_map_array_small++;
1021 		} while (*fixup_map_array_small);
1022 	}
1023 	if (*fixup_sk_storage_map) {
1024 		map_fds[17] = create_sk_storage_map();
1025 		do {
1026 			prog[*fixup_sk_storage_map].imm = map_fds[17];
1027 			fixup_sk_storage_map++;
1028 		} while (*fixup_sk_storage_map);
1029 	}
1030 	if (*fixup_map_event_output) {
1031 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1032 					   sizeof(int), sizeof(int), 1, 0);
1033 		do {
1034 			prog[*fixup_map_event_output].imm = map_fds[18];
1035 			fixup_map_event_output++;
1036 		} while (*fixup_map_event_output);
1037 	}
1038 	if (*fixup_map_reuseport_array) {
1039 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1040 					   sizeof(u32), sizeof(u64), 1, 0);
1041 		do {
1042 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1043 			fixup_map_reuseport_array++;
1044 		} while (*fixup_map_reuseport_array);
1045 	}
1046 	if (*fixup_map_ringbuf) {
1047 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1048 					   0, 4096);
1049 		do {
1050 			prog[*fixup_map_ringbuf].imm = map_fds[20];
1051 			fixup_map_ringbuf++;
1052 		} while (*fixup_map_ringbuf);
1053 	}
1054 	if (*fixup_map_timer) {
1055 		map_fds[21] = create_map_timer();
1056 		do {
1057 			prog[*fixup_map_timer].imm = map_fds[21];
1058 			fixup_map_timer++;
1059 		} while (*fixup_map_timer);
1060 	}
1061 	if (*fixup_map_kptr) {
1062 		map_fds[22] = create_map_kptr();
1063 		do {
1064 			prog[*fixup_map_kptr].imm = map_fds[22];
1065 			fixup_map_kptr++;
1066 		} while (*fixup_map_kptr);
1067 	}
1068 
1069 	/* Patch in kfunc BTF IDs */
1070 	if (fixup_kfunc_btf_id->kfunc) {
1071 		struct btf *btf;
1072 		int btf_id;
1073 
1074 		do {
1075 			btf_id = 0;
1076 			btf = btf__load_vmlinux_btf();
1077 			if (btf) {
1078 				btf_id = btf__find_by_name_kind(btf,
1079 								fixup_kfunc_btf_id->kfunc,
1080 								BTF_KIND_FUNC);
1081 				btf_id = btf_id < 0 ? 0 : btf_id;
1082 			}
1083 			btf__free(btf);
1084 			prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1085 			fixup_kfunc_btf_id++;
1086 		} while (fixup_kfunc_btf_id->kfunc);
1087 	}
1088 }
1089 
1090 struct libcap {
1091 	struct __user_cap_header_struct hdr;
1092 	struct __user_cap_data_struct data[2];
1093 };
1094 
1095 static int set_admin(bool admin)
1096 {
1097 	int err;
1098 
1099 	if (admin) {
1100 		err = cap_enable_effective(ADMIN_CAPS, NULL);
1101 		if (err)
1102 			perror("cap_enable_effective(ADMIN_CAPS)");
1103 	} else {
1104 		err = cap_disable_effective(ADMIN_CAPS, NULL);
1105 		if (err)
1106 			perror("cap_disable_effective(ADMIN_CAPS)");
1107 	}
1108 
1109 	return err;
1110 }
1111 
1112 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1113 			    void *data, size_t size_data)
1114 {
1115 	__u8 tmp[TEST_DATA_LEN << 2];
1116 	__u32 size_tmp = sizeof(tmp);
1117 	int err, saved_errno;
1118 	LIBBPF_OPTS(bpf_test_run_opts, topts,
1119 		.data_in = data,
1120 		.data_size_in = size_data,
1121 		.data_out = tmp,
1122 		.data_size_out = size_tmp,
1123 		.repeat = 1,
1124 	);
1125 
1126 	if (unpriv)
1127 		set_admin(true);
1128 	err = bpf_prog_test_run_opts(fd_prog, &topts);
1129 	saved_errno = errno;
1130 
1131 	if (unpriv)
1132 		set_admin(false);
1133 
1134 	if (err) {
1135 		switch (saved_errno) {
1136 		case ENOTSUPP:
1137 			printf("Did not run the program (not supported) ");
1138 			return 0;
1139 		case EPERM:
1140 			if (unpriv) {
1141 				printf("Did not run the program (no permission) ");
1142 				return 0;
1143 			}
1144 			/* fallthrough; */
1145 		default:
1146 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1147 				strerror(saved_errno));
1148 			return err;
1149 		}
1150 	}
1151 
1152 	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1153 		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1154 		return 1;
1155 	}
1156 
1157 	return 0;
1158 }
1159 
1160 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1161  *
1162  * If exp is an empty string, returns true.
1163  */
1164 static bool cmp_str_seq(const char *log, const char *exp)
1165 {
1166 	char needle[200];
1167 	const char *p, *q;
1168 	int len;
1169 
1170 	do {
1171 		if (!strlen(exp))
1172 			break;
1173 		p = strchr(exp, '\t');
1174 		if (!p)
1175 			p = exp + strlen(exp);
1176 
1177 		len = p - exp;
1178 		if (len >= sizeof(needle) || !len) {
1179 			printf("FAIL\nTestcase bug\n");
1180 			return false;
1181 		}
1182 		strncpy(needle, exp, len);
1183 		needle[len] = 0;
1184 		q = strstr(log, needle);
1185 		if (!q) {
1186 			printf("FAIL\nUnexpected verifier log!\n"
1187 			       "EXP: %s\nRES:\n", needle);
1188 			return false;
1189 		}
1190 		log = q + len;
1191 		exp = p + 1;
1192 	} while (*p);
1193 	return true;
1194 }
1195 
1196 static int get_xlated_program(int fd_prog, struct bpf_insn **buf, int *cnt)
1197 {
1198 	struct bpf_prog_info info = {};
1199 	__u32 info_len = sizeof(info);
1200 	__u32 xlated_prog_len;
1201 	__u32 buf_element_size = sizeof(struct bpf_insn);
1202 
1203 	if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1204 		perror("bpf_obj_get_info_by_fd failed");
1205 		return -1;
1206 	}
1207 
1208 	xlated_prog_len = info.xlated_prog_len;
1209 	if (xlated_prog_len % buf_element_size) {
1210 		printf("Program length %d is not multiple of %d\n",
1211 		       xlated_prog_len, buf_element_size);
1212 		return -1;
1213 	}
1214 
1215 	*cnt = xlated_prog_len / buf_element_size;
1216 	*buf = calloc(*cnt, buf_element_size);
1217 	if (!buf) {
1218 		perror("can't allocate xlated program buffer");
1219 		return -ENOMEM;
1220 	}
1221 
1222 	bzero(&info, sizeof(info));
1223 	info.xlated_prog_len = xlated_prog_len;
1224 	info.xlated_prog_insns = (__u64)*buf;
1225 	if (bpf_obj_get_info_by_fd(fd_prog, &info, &info_len)) {
1226 		perror("second bpf_obj_get_info_by_fd failed");
1227 		goto out_free_buf;
1228 	}
1229 
1230 	return 0;
1231 
1232 out_free_buf:
1233 	free(*buf);
1234 	return -1;
1235 }
1236 
1237 static bool is_null_insn(struct bpf_insn *insn)
1238 {
1239 	struct bpf_insn null_insn = {};
1240 
1241 	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1242 }
1243 
1244 static bool is_skip_insn(struct bpf_insn *insn)
1245 {
1246 	struct bpf_insn skip_insn = SKIP_INSNS();
1247 
1248 	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1249 }
1250 
1251 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1252 {
1253 	int i;
1254 
1255 	for (i = 0; i < max_len; ++i) {
1256 		if (is_null_insn(&seq[i]))
1257 			return i;
1258 	}
1259 	return max_len;
1260 }
1261 
1262 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1263 {
1264 	struct bpf_insn orig_masked;
1265 
1266 	memcpy(&orig_masked, orig, sizeof(orig_masked));
1267 	if (masked->imm == INSN_IMM_MASK)
1268 		orig_masked.imm = INSN_IMM_MASK;
1269 	if (masked->off == INSN_OFF_MASK)
1270 		orig_masked.off = INSN_OFF_MASK;
1271 
1272 	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1273 }
1274 
1275 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1276 			    int seq_len, int subseq_len)
1277 {
1278 	int i, j;
1279 
1280 	if (subseq_len > seq_len)
1281 		return -1;
1282 
1283 	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1284 		bool found = true;
1285 
1286 		for (j = 0; j < subseq_len; ++j) {
1287 			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1288 				found = false;
1289 				break;
1290 			}
1291 		}
1292 		if (found)
1293 			return i;
1294 	}
1295 
1296 	return -1;
1297 }
1298 
1299 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1300 {
1301 	int i;
1302 
1303 	for (i = 0; i < len; ++i)
1304 		if (is_skip_insn(&seq[i]))
1305 			return i;
1306 
1307 	return -1;
1308 }
1309 
1310 /* Return true if all sub-sequences in `subseqs` could be found in
1311  * `seq` one after another. Sub-sequences are separated by a single
1312  * nil instruction.
1313  */
1314 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1315 				  int seq_len, int max_subseqs_len)
1316 {
1317 	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1318 
1319 	while (subseqs_len > 0) {
1320 		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1321 		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1322 		int subseq_idx = find_insn_subseq(seq, subseqs,
1323 						  seq_len, cur_subseq_len);
1324 
1325 		if (subseq_idx < 0)
1326 			return false;
1327 		seq += subseq_idx + cur_subseq_len;
1328 		seq_len -= subseq_idx + cur_subseq_len;
1329 		subseqs += cur_subseq_len + 1;
1330 		subseqs_len -= cur_subseq_len + 1;
1331 	}
1332 
1333 	return true;
1334 }
1335 
1336 static void print_insn(struct bpf_insn *buf, int cnt)
1337 {
1338 	int i;
1339 
1340 	printf("  addr  op d s off  imm\n");
1341 	for (i = 0; i < cnt; ++i) {
1342 		struct bpf_insn *insn = &buf[i];
1343 
1344 		if (is_null_insn(insn))
1345 			break;
1346 
1347 		if (is_skip_insn(insn))
1348 			printf("  ...\n");
1349 		else
1350 			printf("  %04x: %02x %1x %x %04hx %08x\n",
1351 			       i, insn->code, insn->dst_reg,
1352 			       insn->src_reg, insn->off, insn->imm);
1353 	}
1354 }
1355 
1356 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1357 {
1358 	struct bpf_insn *buf;
1359 	int cnt;
1360 	bool result = true;
1361 	bool check_expected = !is_null_insn(test->expected_insns);
1362 	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1363 
1364 	if (!check_expected && !check_unexpected)
1365 		goto out;
1366 
1367 	if (get_xlated_program(fd_prog, &buf, &cnt)) {
1368 		printf("FAIL: can't get xlated program\n");
1369 		result = false;
1370 		goto out;
1371 	}
1372 
1373 	if (check_expected &&
1374 	    !find_all_insn_subseqs(buf, test->expected_insns,
1375 				   cnt, MAX_EXPECTED_INSNS)) {
1376 		printf("FAIL: can't find expected subsequence of instructions\n");
1377 		result = false;
1378 		if (verbose) {
1379 			printf("Program:\n");
1380 			print_insn(buf, cnt);
1381 			printf("Expected subsequence:\n");
1382 			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1383 		}
1384 	}
1385 
1386 	if (check_unexpected &&
1387 	    find_all_insn_subseqs(buf, test->unexpected_insns,
1388 				  cnt, MAX_UNEXPECTED_INSNS)) {
1389 		printf("FAIL: found unexpected subsequence of instructions\n");
1390 		result = false;
1391 		if (verbose) {
1392 			printf("Program:\n");
1393 			print_insn(buf, cnt);
1394 			printf("Un-expected subsequence:\n");
1395 			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1396 		}
1397 	}
1398 
1399 	free(buf);
1400  out:
1401 	return result;
1402 }
1403 
1404 static void do_test_single(struct bpf_test *test, bool unpriv,
1405 			   int *passes, int *errors)
1406 {
1407 	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1408 	int prog_len, prog_type = test->prog_type;
1409 	struct bpf_insn *prog = test->insns;
1410 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1411 	int run_errs, run_successes;
1412 	int map_fds[MAX_NR_MAPS];
1413 	const char *expected_err;
1414 	int saved_errno;
1415 	int fixup_skips;
1416 	__u32 pflags;
1417 	int i, err;
1418 
1419 	fd_prog = -1;
1420 	for (i = 0; i < MAX_NR_MAPS; i++)
1421 		map_fds[i] = -1;
1422 	btf_fd = -1;
1423 
1424 	if (!prog_type)
1425 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1426 	fixup_skips = skips;
1427 	do_test_fixup(test, prog_type, prog, map_fds);
1428 	if (test->fill_insns) {
1429 		prog = test->fill_insns;
1430 		prog_len = test->prog_len;
1431 	} else {
1432 		prog_len = probe_filter_length(prog);
1433 	}
1434 	/* If there were some map skips during fixup due to missing bpf
1435 	 * features, skip this test.
1436 	 */
1437 	if (fixup_skips != skips)
1438 		return;
1439 
1440 	pflags = BPF_F_TEST_RND_HI32;
1441 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1442 		pflags |= BPF_F_STRICT_ALIGNMENT;
1443 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1444 		pflags |= BPF_F_ANY_ALIGNMENT;
1445 	if (test->flags & ~3)
1446 		pflags |= test->flags;
1447 
1448 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1449 		       test->result_unpriv : test->result;
1450 	expected_err = unpriv && test->errstr_unpriv ?
1451 		       test->errstr_unpriv : test->errstr;
1452 
1453 	opts.expected_attach_type = test->expected_attach_type;
1454 	if (verbose)
1455 		opts.log_level = VERBOSE_LIBBPF_LOG_LEVEL;
1456 	else if (expected_ret == VERBOSE_ACCEPT)
1457 		opts.log_level = 2;
1458 	else
1459 		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1460 	opts.prog_flags = pflags;
1461 
1462 	if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1463 		int attach_btf_id;
1464 
1465 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1466 						opts.expected_attach_type);
1467 		if (attach_btf_id < 0) {
1468 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1469 				test->kfunc);
1470 			(*errors)++;
1471 			return;
1472 		}
1473 
1474 		opts.attach_btf_id = attach_btf_id;
1475 	}
1476 
1477 	if (test->btf_types[0] != 0) {
1478 		btf_fd = load_btf_for_test(test);
1479 		if (btf_fd < 0)
1480 			goto fail_log;
1481 		opts.prog_btf_fd = btf_fd;
1482 	}
1483 
1484 	if (test->func_info_cnt != 0) {
1485 		opts.func_info = test->func_info;
1486 		opts.func_info_cnt = test->func_info_cnt;
1487 		opts.func_info_rec_size = sizeof(test->func_info[0]);
1488 	}
1489 
1490 	opts.log_buf = bpf_vlog;
1491 	opts.log_size = sizeof(bpf_vlog);
1492 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1493 	saved_errno = errno;
1494 
1495 	/* BPF_PROG_TYPE_TRACING requires more setup and
1496 	 * bpf_probe_prog_type won't give correct answer
1497 	 */
1498 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1499 	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1500 		printf("SKIP (unsupported program type %d)\n", prog_type);
1501 		skips++;
1502 		goto close_fds;
1503 	}
1504 
1505 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1506 		printf("SKIP (program uses an unsupported feature)\n");
1507 		skips++;
1508 		goto close_fds;
1509 	}
1510 
1511 	alignment_prevented_execution = 0;
1512 
1513 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1514 		if (fd_prog < 0) {
1515 			printf("FAIL\nFailed to load prog '%s'!\n",
1516 			       strerror(saved_errno));
1517 			goto fail_log;
1518 		}
1519 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1520 		if (fd_prog >= 0 &&
1521 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1522 			alignment_prevented_execution = 1;
1523 #endif
1524 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1525 			goto fail_log;
1526 		}
1527 	} else {
1528 		if (fd_prog >= 0) {
1529 			printf("FAIL\nUnexpected success to load!\n");
1530 			goto fail_log;
1531 		}
1532 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1533 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1534 			      expected_err, bpf_vlog);
1535 			goto fail_log;
1536 		}
1537 	}
1538 
1539 	if (!unpriv && test->insn_processed) {
1540 		uint32_t insn_processed;
1541 		char *proc;
1542 
1543 		proc = strstr(bpf_vlog, "processed ");
1544 		insn_processed = atoi(proc + 10);
1545 		if (test->insn_processed != insn_processed) {
1546 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1547 			       insn_processed, test->insn_processed);
1548 			goto fail_log;
1549 		}
1550 	}
1551 
1552 	if (verbose)
1553 		printf(", verifier log:\n%s", bpf_vlog);
1554 
1555 	if (!check_xlated_program(test, fd_prog))
1556 		goto fail_log;
1557 
1558 	run_errs = 0;
1559 	run_successes = 0;
1560 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1561 		uint32_t expected_val;
1562 		int i;
1563 
1564 		if (!test->runs)
1565 			test->runs = 1;
1566 
1567 		for (i = 0; i < test->runs; i++) {
1568 			if (unpriv && test->retvals[i].retval_unpriv)
1569 				expected_val = test->retvals[i].retval_unpriv;
1570 			else
1571 				expected_val = test->retvals[i].retval;
1572 
1573 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1574 					       test->retvals[i].data,
1575 					       sizeof(test->retvals[i].data));
1576 			if (err) {
1577 				printf("(run %d/%d) ", i + 1, test->runs);
1578 				run_errs++;
1579 			} else {
1580 				run_successes++;
1581 			}
1582 		}
1583 	}
1584 
1585 	if (!run_errs) {
1586 		(*passes)++;
1587 		if (run_successes > 1)
1588 			printf("%d cases ", run_successes);
1589 		printf("OK");
1590 		if (alignment_prevented_execution)
1591 			printf(" (NOTE: not executed due to unknown alignment)");
1592 		printf("\n");
1593 	} else {
1594 		printf("\n");
1595 		goto fail_log;
1596 	}
1597 close_fds:
1598 	if (test->fill_insns)
1599 		free(test->fill_insns);
1600 	close(fd_prog);
1601 	close(btf_fd);
1602 	for (i = 0; i < MAX_NR_MAPS; i++)
1603 		close(map_fds[i]);
1604 	sched_yield();
1605 	return;
1606 fail_log:
1607 	(*errors)++;
1608 	printf("%s", bpf_vlog);
1609 	goto close_fds;
1610 }
1611 
1612 static bool is_admin(void)
1613 {
1614 	__u64 caps;
1615 
1616 	/* The test checks for finer cap as CAP_NET_ADMIN,
1617 	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1618 	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1619 	 */
1620 	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1621 		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1622 		return false;
1623 	}
1624 
1625 	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1626 }
1627 
1628 static void get_unpriv_disabled()
1629 {
1630 	char buf[2];
1631 	FILE *fd;
1632 
1633 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1634 	if (!fd) {
1635 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1636 		unpriv_disabled = true;
1637 		return;
1638 	}
1639 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1640 		unpriv_disabled = true;
1641 	fclose(fd);
1642 }
1643 
1644 static bool test_as_unpriv(struct bpf_test *test)
1645 {
1646 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1647 	/* Some architectures have strict alignment requirements. In
1648 	 * that case, the BPF verifier detects if a program has
1649 	 * unaligned accesses and rejects them. A user can pass
1650 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1651 	 * check. That, however, will only work when a privileged user
1652 	 * loads a program. An unprivileged user loading a program
1653 	 * with this flag will be rejected prior entering the
1654 	 * verifier.
1655 	 */
1656 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1657 		return false;
1658 #endif
1659 	return !test->prog_type ||
1660 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1661 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1662 }
1663 
1664 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1665 {
1666 	int i, passes = 0, errors = 0;
1667 
1668 	for (i = from; i < to; i++) {
1669 		struct bpf_test *test = &tests[i];
1670 
1671 		/* Program types that are not supported by non-root we
1672 		 * skip right away.
1673 		 */
1674 		if (test_as_unpriv(test) && unpriv_disabled) {
1675 			printf("#%d/u %s SKIP\n", i, test->descr);
1676 			skips++;
1677 		} else if (test_as_unpriv(test)) {
1678 			if (!unpriv)
1679 				set_admin(false);
1680 			printf("#%d/u %s ", i, test->descr);
1681 			do_test_single(test, true, &passes, &errors);
1682 			if (!unpriv)
1683 				set_admin(true);
1684 		}
1685 
1686 		if (unpriv) {
1687 			printf("#%d/p %s SKIP\n", i, test->descr);
1688 			skips++;
1689 		} else {
1690 			printf("#%d/p %s ", i, test->descr);
1691 			do_test_single(test, false, &passes, &errors);
1692 		}
1693 	}
1694 
1695 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1696 	       skips, errors);
1697 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1698 }
1699 
1700 int main(int argc, char **argv)
1701 {
1702 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1703 	bool unpriv = !is_admin();
1704 	int arg = 1;
1705 
1706 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1707 		arg++;
1708 		verbose = true;
1709 		argc--;
1710 	}
1711 
1712 	if (argc == 3) {
1713 		unsigned int l = atoi(argv[arg]);
1714 		unsigned int u = atoi(argv[arg + 1]);
1715 
1716 		if (l < to && u < to) {
1717 			from = l;
1718 			to   = u + 1;
1719 		}
1720 	} else if (argc == 2) {
1721 		unsigned int t = atoi(argv[arg]);
1722 
1723 		if (t < to) {
1724 			from = t;
1725 			to   = t + 1;
1726 		}
1727 	}
1728 
1729 	get_unpriv_disabled();
1730 	if (unpriv && unpriv_disabled) {
1731 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1732 		       UNPRIV_SYSCTL);
1733 		return EXIT_FAILURE;
1734 	}
1735 
1736 	/* Use libbpf 1.0 API mode */
1737 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1738 
1739 	bpf_semi_rand_init();
1740 	return do_test(unpriv, from, to);
1741 }
1742