1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <linux/unistd.h>
26 #include <linux/filter.h>
27 #include <linux/bpf_perf_event.h>
28 #include <linux/bpf.h>
29 #include <linux/if_ether.h>
30 #include <linux/btf.h>
31 
32 #include <bpf/btf.h>
33 #include <bpf/bpf.h>
34 #include <bpf/libbpf.h>
35 
36 #include "autoconf_helper.h"
37 #include "unpriv_helpers.h"
38 #include "cap_helpers.h"
39 #include "bpf_rand.h"
40 #include "bpf_util.h"
41 #include "test_btf.h"
42 #include "../../../include/linux/filter.h"
43 #include "testing_helpers.h"
44 
45 #ifndef ENOTSUPP
46 #define ENOTSUPP 524
47 #endif
48 
49 #define MAX_INSNS	BPF_MAXINSNS
50 #define MAX_EXPECTED_INSNS	32
51 #define MAX_UNEXPECTED_INSNS	32
52 #define MAX_TEST_INSNS	1000000
53 #define MAX_FIXUPS	8
54 #define MAX_NR_MAPS	23
55 #define MAX_TEST_RUNS	8
56 #define POINTER_VALUE	0xcafe4all
57 #define TEST_DATA_LEN	64
58 #define MAX_FUNC_INFOS	8
59 #define MAX_BTF_STRINGS	256
60 #define MAX_BTF_TYPES	256
61 
62 #define INSN_OFF_MASK	((__s16)0xFFFF)
63 #define INSN_IMM_MASK	((__s32)0xFFFFFFFF)
64 #define SKIP_INSNS()	BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef)
65 
66 #define DEFAULT_LIBBPF_LOG_LEVEL	4
67 
68 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
69 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
70 
71 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
72 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN |	\
73 		    1ULL << CAP_PERFMON |	\
74 		    1ULL << CAP_BPF)
75 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
76 static bool unpriv_disabled = false;
77 static int skips;
78 static bool verbose = false;
79 static int verif_log_level = 0;
80 
81 struct kfunc_btf_id_pair {
82 	const char *kfunc;
83 	int insn_idx;
84 };
85 
86 struct bpf_test {
87 	const char *descr;
88 	struct bpf_insn	insns[MAX_INSNS];
89 	struct bpf_insn	*fill_insns;
90 	/* If specified, test engine looks for this sequence of
91 	 * instructions in the BPF program after loading. Allows to
92 	 * test rewrites applied by verifier.  Use values
93 	 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm`
94 	 * fields if content does not matter.  The test case fails if
95 	 * specified instructions are not found.
96 	 *
97 	 * The sequence could be split into sub-sequences by adding
98 	 * SKIP_INSNS instruction at the end of each sub-sequence. In
99 	 * such case sub-sequences are searched for one after another.
100 	 */
101 	struct bpf_insn expected_insns[MAX_EXPECTED_INSNS];
102 	/* If specified, test engine applies same pattern matching
103 	 * logic as for `expected_insns`. If the specified pattern is
104 	 * matched test case is marked as failed.
105 	 */
106 	struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS];
107 	int fixup_map_hash_8b[MAX_FIXUPS];
108 	int fixup_map_hash_48b[MAX_FIXUPS];
109 	int fixup_map_hash_16b[MAX_FIXUPS];
110 	int fixup_map_array_48b[MAX_FIXUPS];
111 	int fixup_map_sockmap[MAX_FIXUPS];
112 	int fixup_map_sockhash[MAX_FIXUPS];
113 	int fixup_map_xskmap[MAX_FIXUPS];
114 	int fixup_map_stacktrace[MAX_FIXUPS];
115 	int fixup_prog1[MAX_FIXUPS];
116 	int fixup_prog2[MAX_FIXUPS];
117 	int fixup_map_in_map[MAX_FIXUPS];
118 	int fixup_cgroup_storage[MAX_FIXUPS];
119 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
120 	int fixup_map_spin_lock[MAX_FIXUPS];
121 	int fixup_map_array_ro[MAX_FIXUPS];
122 	int fixup_map_array_wo[MAX_FIXUPS];
123 	int fixup_map_array_small[MAX_FIXUPS];
124 	int fixup_sk_storage_map[MAX_FIXUPS];
125 	int fixup_map_event_output[MAX_FIXUPS];
126 	int fixup_map_reuseport_array[MAX_FIXUPS];
127 	int fixup_map_ringbuf[MAX_FIXUPS];
128 	int fixup_map_timer[MAX_FIXUPS];
129 	int fixup_map_kptr[MAX_FIXUPS];
130 	struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS];
131 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
132 	 * Can be a tab-separated sequence of expected strings. An empty string
133 	 * means no log verification.
134 	 */
135 	const char *errstr;
136 	const char *errstr_unpriv;
137 	uint32_t insn_processed;
138 	int prog_len;
139 	enum {
140 		UNDEF,
141 		ACCEPT,
142 		REJECT,
143 		VERBOSE_ACCEPT,
144 	} result, result_unpriv;
145 	enum bpf_prog_type prog_type;
146 	uint8_t flags;
147 	void (*fill_helper)(struct bpf_test *self);
148 	int runs;
149 #define bpf_testdata_struct_t					\
150 	struct {						\
151 		uint32_t retval, retval_unpriv;			\
152 		union {						\
153 			__u8 data[TEST_DATA_LEN];		\
154 			__u64 data64[TEST_DATA_LEN / 8];	\
155 		};						\
156 	}
157 	union {
158 		bpf_testdata_struct_t;
159 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
160 	};
161 	enum bpf_attach_type expected_attach_type;
162 	const char *kfunc;
163 	struct bpf_func_info func_info[MAX_FUNC_INFOS];
164 	int func_info_cnt;
165 	char btf_strings[MAX_BTF_STRINGS];
166 	/* A set of BTF types to load when specified,
167 	 * use macro definitions from test_btf.h,
168 	 * must end with BTF_END_RAW
169 	 */
170 	__u32 btf_types[MAX_BTF_TYPES];
171 };
172 
173 /* Note we want this to be 64 bit aligned so that the end of our array is
174  * actually the end of the structure.
175  */
176 #define MAX_ENTRIES 11
177 
178 struct test_val {
179 	unsigned int index;
180 	int foo[MAX_ENTRIES];
181 };
182 
183 struct other_val {
184 	long long foo;
185 	long long bar;
186 };
187 
188 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
189 {
190 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
191 #define PUSH_CNT 51
192 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
193 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
194 	struct bpf_insn *insn = self->fill_insns;
195 	int i = 0, j, k = 0;
196 
197 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
198 loop:
199 	for (j = 0; j < PUSH_CNT; j++) {
200 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
201 		/* jump to error label */
202 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
203 		i++;
204 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
205 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
206 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
207 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
208 					 BPF_FUNC_skb_vlan_push);
209 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
210 		i++;
211 	}
212 
213 	for (j = 0; j < PUSH_CNT; j++) {
214 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
215 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
216 		i++;
217 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
218 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
219 					 BPF_FUNC_skb_vlan_pop);
220 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
221 		i++;
222 	}
223 	if (++k < 5)
224 		goto loop;
225 
226 	for (; i < len - 3; i++)
227 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
228 	insn[len - 3] = BPF_JMP_A(1);
229 	/* error label */
230 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
231 	insn[len - 1] = BPF_EXIT_INSN();
232 	self->prog_len = len;
233 }
234 
235 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
236 {
237 	struct bpf_insn *insn = self->fill_insns;
238 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
239 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
240 	 * to extend the error value of the inlined ld_abs sequence which then
241 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
242 	 * work on all arches.
243 	 */
244 	unsigned int len = (1 << 15) / 7;
245 	int i = 0;
246 
247 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
248 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
249 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
250 	i++;
251 	while (i < len - 1)
252 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
253 	insn[i] = BPF_EXIT_INSN();
254 	self->prog_len = i + 1;
255 }
256 
257 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
258 {
259 	struct bpf_insn *insn = self->fill_insns;
260 	uint64_t res = 0;
261 	int i = 0;
262 
263 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
264 	while (i < self->retval) {
265 		uint64_t val = bpf_semi_rand_get();
266 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
267 
268 		res ^= val;
269 		insn[i++] = tmp[0];
270 		insn[i++] = tmp[1];
271 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
272 	}
273 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
274 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
275 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
276 	insn[i] = BPF_EXIT_INSN();
277 	self->prog_len = i + 1;
278 	res ^= (res >> 32);
279 	self->retval = (uint32_t)res;
280 }
281 
282 #define MAX_JMP_SEQ 8192
283 
284 /* test the sequence of 8k jumps */
285 static void bpf_fill_scale1(struct bpf_test *self)
286 {
287 	struct bpf_insn *insn = self->fill_insns;
288 	int i = 0, k = 0;
289 
290 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
291 	/* test to check that the long sequence of jumps is acceptable */
292 	while (k++ < MAX_JMP_SEQ) {
293 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
294 					 BPF_FUNC_get_prandom_u32);
295 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
296 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
297 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
298 					-8 * (k % 64 + 1));
299 	}
300 	/* is_state_visited() doesn't allocate state for pruning for every jump.
301 	 * Hence multiply jmps by 4 to accommodate that heuristic
302 	 */
303 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
304 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
305 	insn[i] = BPF_EXIT_INSN();
306 	self->prog_len = i + 1;
307 	self->retval = 42;
308 }
309 
310 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
311 static void bpf_fill_scale2(struct bpf_test *self)
312 {
313 	struct bpf_insn *insn = self->fill_insns;
314 	int i = 0, k = 0;
315 
316 #define FUNC_NEST 7
317 	for (k = 0; k < FUNC_NEST; k++) {
318 		insn[i++] = BPF_CALL_REL(1);
319 		insn[i++] = BPF_EXIT_INSN();
320 	}
321 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
322 	/* test to check that the long sequence of jumps is acceptable */
323 	k = 0;
324 	while (k++ < MAX_JMP_SEQ) {
325 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
326 					 BPF_FUNC_get_prandom_u32);
327 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
328 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
329 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
330 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
331 	}
332 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
333 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
334 	insn[i] = BPF_EXIT_INSN();
335 	self->prog_len = i + 1;
336 	self->retval = 42;
337 }
338 
339 static void bpf_fill_scale(struct bpf_test *self)
340 {
341 	switch (self->retval) {
342 	case 1:
343 		return bpf_fill_scale1(self);
344 	case 2:
345 		return bpf_fill_scale2(self);
346 	default:
347 		self->prog_len = 0;
348 		break;
349 	}
350 }
351 
352 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
353 {
354 	unsigned int len = 259, hlen = 128;
355 	int i;
356 
357 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
358 	for (i = 1; i <= hlen; i++) {
359 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
360 		insn[i + hlen] = BPF_JMP_A(hlen - i);
361 	}
362 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
363 	insn[len - 1] = BPF_EXIT_INSN();
364 
365 	return len;
366 }
367 
368 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
369 {
370 	unsigned int len = 4100, jmp_off = 2048;
371 	int i, j;
372 
373 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
374 	for (i = 1; i <= jmp_off; i++) {
375 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
376 	}
377 	insn[i++] = BPF_JMP_A(jmp_off);
378 	for (; i <= jmp_off * 2 + 1; i+=16) {
379 		for (j = 0; j < 16; j++) {
380 			insn[i + j] = BPF_JMP_A(16 - j - 1);
381 		}
382 	}
383 
384 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
385 	insn[len - 1] = BPF_EXIT_INSN();
386 
387 	return len;
388 }
389 
390 static void bpf_fill_torturous_jumps(struct bpf_test *self)
391 {
392 	struct bpf_insn *insn = self->fill_insns;
393 	int i = 0;
394 
395 	switch (self->retval) {
396 	case 1:
397 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
398 		return;
399 	case 2:
400 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
401 		return;
402 	case 3:
403 		/* main */
404 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
405 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
406 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
407 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
408 		insn[i++] = BPF_EXIT_INSN();
409 
410 		/* subprog 1 */
411 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
412 
413 		/* subprog 2 */
414 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
415 
416 		self->prog_len = i;
417 		return;
418 	default:
419 		self->prog_len = 0;
420 		break;
421 	}
422 }
423 
424 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self)
425 {
426 	struct bpf_insn *insn = self->fill_insns;
427 	/* This test was added to catch a specific use after free
428 	 * error, which happened upon BPF program reallocation.
429 	 * Reallocation is handled by core.c:bpf_prog_realloc, which
430 	 * reuses old memory if page boundary is not crossed. The
431 	 * value of `len` is chosen to cross this boundary on bpf_loop
432 	 * patching.
433 	 */
434 	const int len = getpagesize() - 25;
435 	int callback_load_idx;
436 	int callback_idx;
437 	int i = 0;
438 
439 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1);
440 	callback_load_idx = i;
441 	insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW,
442 				 BPF_REG_2, BPF_PSEUDO_FUNC, 0,
443 				 777 /* filled below */);
444 	insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0);
445 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0);
446 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0);
447 	insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop);
448 
449 	while (i < len - 3)
450 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
451 	insn[i++] = BPF_EXIT_INSN();
452 
453 	callback_idx = i;
454 	insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0);
455 	insn[i++] = BPF_EXIT_INSN();
456 
457 	insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1;
458 	self->func_info[1].insn_off = callback_idx;
459 	self->prog_len = i;
460 	assert(i == len);
461 }
462 
463 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
464 #define BPF_SK_LOOKUP(func)						\
465 	/* struct bpf_sock_tuple tuple = {} */				\
466 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
467 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
468 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
469 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
470 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
471 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
472 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
473 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
474 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
475 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
476 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
477 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
478 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
479 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
480 
481 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
482  * value into 0 and does necessary preparation for direct packet access
483  * through r2. The allowed access range is 8 bytes.
484  */
485 #define BPF_DIRECT_PKT_R2						\
486 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
487 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
488 		    offsetof(struct __sk_buff, data)),			\
489 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
490 		    offsetof(struct __sk_buff, data_end)),		\
491 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
492 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
493 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
494 	BPF_EXIT_INSN()
495 
496 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
497  * positive u32, and zero-extend it into 64-bit.
498  */
499 #define BPF_RAND_UEXT_R7						\
500 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
501 		     BPF_FUNC_get_prandom_u32),				\
502 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
503 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
504 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
505 
506 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
507  * negative u32, and sign-extend it into 64-bit.
508  */
509 #define BPF_RAND_SEXT_R7						\
510 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
511 		     BPF_FUNC_get_prandom_u32),				\
512 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
513 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
514 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
515 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
516 
517 static struct bpf_test tests[] = {
518 #define FILL_ARRAY
519 #include <verifier/tests.h>
520 #undef FILL_ARRAY
521 };
522 
523 static int probe_filter_length(const struct bpf_insn *fp)
524 {
525 	int len;
526 
527 	for (len = MAX_INSNS - 1; len > 0; --len)
528 		if (fp[len].code != 0 || fp[len].imm != 0)
529 			break;
530 	return len + 1;
531 }
532 
533 static bool skip_unsupported_map(enum bpf_map_type map_type)
534 {
535 	if (!libbpf_probe_bpf_map_type(map_type, NULL)) {
536 		printf("SKIP (unsupported map type %d)\n", map_type);
537 		skips++;
538 		return true;
539 	}
540 	return false;
541 }
542 
543 static int __create_map(uint32_t type, uint32_t size_key,
544 			uint32_t size_value, uint32_t max_elem,
545 			uint32_t extra_flags)
546 {
547 	LIBBPF_OPTS(bpf_map_create_opts, opts);
548 	int fd;
549 
550 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
551 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
552 	if (fd < 0) {
553 		if (skip_unsupported_map(type))
554 			return -1;
555 		printf("Failed to create hash map '%s'!\n", strerror(errno));
556 	}
557 
558 	return fd;
559 }
560 
561 static int create_map(uint32_t type, uint32_t size_key,
562 		      uint32_t size_value, uint32_t max_elem)
563 {
564 	return __create_map(type, size_key, size_value, max_elem, 0);
565 }
566 
567 static void update_map(int fd, int index)
568 {
569 	struct test_val value = {
570 		.index = (6 + 1) * sizeof(int),
571 		.foo[6] = 0xabcdef12,
572 	};
573 
574 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
575 }
576 
577 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
578 {
579 	struct bpf_insn prog[] = {
580 		BPF_MOV64_IMM(BPF_REG_0, ret),
581 		BPF_EXIT_INSN(),
582 	};
583 
584 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
585 }
586 
587 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
588 				  int idx, int ret)
589 {
590 	struct bpf_insn prog[] = {
591 		BPF_MOV64_IMM(BPF_REG_3, idx),
592 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
593 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
594 			     BPF_FUNC_tail_call),
595 		BPF_MOV64_IMM(BPF_REG_0, ret),
596 		BPF_EXIT_INSN(),
597 	};
598 
599 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
600 }
601 
602 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
603 			     int p1key, int p2key, int p3key)
604 {
605 	int mfd, p1fd, p2fd, p3fd;
606 
607 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
608 			     sizeof(int), max_elem, NULL);
609 	if (mfd < 0) {
610 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
611 			return -1;
612 		printf("Failed to create prog array '%s'!\n", strerror(errno));
613 		return -1;
614 	}
615 
616 	p1fd = create_prog_dummy_simple(prog_type, 42);
617 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
618 	p3fd = create_prog_dummy_simple(prog_type, 24);
619 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
620 		goto err;
621 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
622 		goto err;
623 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
624 		goto err;
625 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
626 err:
627 		close(mfd);
628 		mfd = -1;
629 	}
630 	close(p3fd);
631 	close(p2fd);
632 	close(p1fd);
633 	return mfd;
634 }
635 
636 static int create_map_in_map(void)
637 {
638 	LIBBPF_OPTS(bpf_map_create_opts, opts);
639 	int inner_map_fd, outer_map_fd;
640 
641 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
642 				      sizeof(int), 1, NULL);
643 	if (inner_map_fd < 0) {
644 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
645 			return -1;
646 		printf("Failed to create array '%s'!\n", strerror(errno));
647 		return inner_map_fd;
648 	}
649 
650 	opts.inner_map_fd = inner_map_fd;
651 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
652 				      sizeof(int), sizeof(int), 1, &opts);
653 	if (outer_map_fd < 0) {
654 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
655 			return -1;
656 		printf("Failed to create array of maps '%s'!\n",
657 		       strerror(errno));
658 	}
659 
660 	close(inner_map_fd);
661 
662 	return outer_map_fd;
663 }
664 
665 static int create_cgroup_storage(bool percpu)
666 {
667 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
668 		BPF_MAP_TYPE_CGROUP_STORAGE;
669 	int fd;
670 
671 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
672 			    TEST_DATA_LEN, 0, NULL);
673 	if (fd < 0) {
674 		if (skip_unsupported_map(type))
675 			return -1;
676 		printf("Failed to create cgroup storage '%s'!\n",
677 		       strerror(errno));
678 	}
679 
680 	return fd;
681 }
682 
683 /* struct bpf_spin_lock {
684  *   int val;
685  * };
686  * struct val {
687  *   int cnt;
688  *   struct bpf_spin_lock l;
689  * };
690  * struct bpf_timer {
691  *   __u64 :64;
692  *   __u64 :64;
693  * } __attribute__((aligned(8)));
694  * struct timer {
695  *   struct bpf_timer t;
696  * };
697  * struct btf_ptr {
698  *   struct prog_test_ref_kfunc __kptr_untrusted *ptr;
699  *   struct prog_test_ref_kfunc __kptr *ptr;
700  *   struct prog_test_member __kptr *ptr;
701  * }
702  */
703 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"
704 				  "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted"
705 				  "\0prog_test_member";
706 static __u32 btf_raw_types[] = {
707 	/* int */
708 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
709 	/* struct bpf_spin_lock */                      /* [2] */
710 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
711 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
712 	/* struct val */                                /* [3] */
713 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
714 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
715 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
716 	/* struct bpf_timer */                          /* [4] */
717 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
718 	/* struct timer */                              /* [5] */
719 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
720 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
721 	/* struct prog_test_ref_kfunc */		/* [6] */
722 	BTF_STRUCT_ENC(51, 0, 0),
723 	BTF_STRUCT_ENC(95, 0, 0),			/* [7] */
724 	/* type tag "kptr_untrusted" */
725 	BTF_TYPE_TAG_ENC(80, 6),			/* [8] */
726 	/* type tag "kptr" */
727 	BTF_TYPE_TAG_ENC(75, 6),			/* [9] */
728 	BTF_TYPE_TAG_ENC(75, 7),			/* [10] */
729 	BTF_PTR_ENC(8),					/* [11] */
730 	BTF_PTR_ENC(9),					/* [12] */
731 	BTF_PTR_ENC(10),				/* [13] */
732 	/* struct btf_ptr */				/* [14] */
733 	BTF_STRUCT_ENC(43, 3, 24),
734 	BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */
735 	BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */
736 	BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */
737 };
738 
739 static char bpf_vlog[UINT_MAX >> 8];
740 
741 static int load_btf_spec(__u32 *types, int types_len,
742 			 const char *strings, int strings_len)
743 {
744 	struct btf_header hdr = {
745 		.magic = BTF_MAGIC,
746 		.version = BTF_VERSION,
747 		.hdr_len = sizeof(struct btf_header),
748 		.type_len = types_len,
749 		.str_off = types_len,
750 		.str_len = strings_len,
751 	};
752 	void *ptr, *raw_btf;
753 	int btf_fd;
754 	LIBBPF_OPTS(bpf_btf_load_opts, opts,
755 		    .log_buf = bpf_vlog,
756 		    .log_size = sizeof(bpf_vlog),
757 		    .log_level = (verbose
758 				  ? verif_log_level
759 				  : DEFAULT_LIBBPF_LOG_LEVEL),
760 	);
761 
762 	raw_btf = malloc(sizeof(hdr) + types_len + strings_len);
763 
764 	ptr = raw_btf;
765 	memcpy(ptr, &hdr, sizeof(hdr));
766 	ptr += sizeof(hdr);
767 	memcpy(ptr, types, hdr.type_len);
768 	ptr += hdr.type_len;
769 	memcpy(ptr, strings, hdr.str_len);
770 	ptr += hdr.str_len;
771 
772 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts);
773 	if (btf_fd < 0)
774 		printf("Failed to load BTF spec: '%s'\n", strerror(errno));
775 
776 	free(raw_btf);
777 
778 	return btf_fd < 0 ? -1 : btf_fd;
779 }
780 
781 static int load_btf(void)
782 {
783 	return load_btf_spec(btf_raw_types, sizeof(btf_raw_types),
784 			     btf_str_sec, sizeof(btf_str_sec));
785 }
786 
787 static int load_btf_for_test(struct bpf_test *test)
788 {
789 	int types_num = 0;
790 
791 	while (types_num < MAX_BTF_TYPES &&
792 	       test->btf_types[types_num] != BTF_END_RAW)
793 		++types_num;
794 
795 	int types_len = types_num * sizeof(test->btf_types[0]);
796 
797 	return load_btf_spec(test->btf_types, types_len,
798 			     test->btf_strings, sizeof(test->btf_strings));
799 }
800 
801 static int create_map_spin_lock(void)
802 {
803 	LIBBPF_OPTS(bpf_map_create_opts, opts,
804 		.btf_key_type_id = 1,
805 		.btf_value_type_id = 3,
806 	);
807 	int fd, btf_fd;
808 
809 	btf_fd = load_btf();
810 	if (btf_fd < 0)
811 		return -1;
812 	opts.btf_fd = btf_fd;
813 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
814 	if (fd < 0)
815 		printf("Failed to create map with spin_lock\n");
816 	return fd;
817 }
818 
819 static int create_sk_storage_map(void)
820 {
821 	LIBBPF_OPTS(bpf_map_create_opts, opts,
822 		.map_flags = BPF_F_NO_PREALLOC,
823 		.btf_key_type_id = 1,
824 		.btf_value_type_id = 3,
825 	);
826 	int fd, btf_fd;
827 
828 	btf_fd = load_btf();
829 	if (btf_fd < 0)
830 		return -1;
831 	opts.btf_fd = btf_fd;
832 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
833 	close(opts.btf_fd);
834 	if (fd < 0)
835 		printf("Failed to create sk_storage_map\n");
836 	return fd;
837 }
838 
839 static int create_map_timer(void)
840 {
841 	LIBBPF_OPTS(bpf_map_create_opts, opts,
842 		.btf_key_type_id = 1,
843 		.btf_value_type_id = 5,
844 	);
845 	int fd, btf_fd;
846 
847 	btf_fd = load_btf();
848 	if (btf_fd < 0)
849 		return -1;
850 
851 	opts.btf_fd = btf_fd;
852 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
853 	if (fd < 0)
854 		printf("Failed to create map with timer\n");
855 	return fd;
856 }
857 
858 static int create_map_kptr(void)
859 {
860 	LIBBPF_OPTS(bpf_map_create_opts, opts,
861 		.btf_key_type_id = 1,
862 		.btf_value_type_id = 14,
863 	);
864 	int fd, btf_fd;
865 
866 	btf_fd = load_btf();
867 	if (btf_fd < 0)
868 		return -1;
869 
870 	opts.btf_fd = btf_fd;
871 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts);
872 	if (fd < 0)
873 		printf("Failed to create map with btf_id pointer\n");
874 	return fd;
875 }
876 
877 static void set_root(bool set)
878 {
879 	__u64 caps;
880 
881 	if (set) {
882 		if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps))
883 			perror("cap_disable_effective(CAP_SYS_ADMIN)");
884 	} else {
885 		if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps))
886 			perror("cap_disable_effective(CAP_SYS_ADMIN)");
887 	}
888 }
889 
890 static __u64 ptr_to_u64(const void *ptr)
891 {
892 	return (uintptr_t) ptr;
893 }
894 
895 static struct btf *btf__load_testmod_btf(struct btf *vmlinux)
896 {
897 	struct bpf_btf_info info;
898 	__u32 len = sizeof(info);
899 	struct btf *btf = NULL;
900 	char name[64];
901 	__u32 id = 0;
902 	int err, fd;
903 
904 	/* Iterate all loaded BTF objects and find bpf_testmod,
905 	 * we need SYS_ADMIN cap for that.
906 	 */
907 	set_root(true);
908 
909 	while (true) {
910 		err = bpf_btf_get_next_id(id, &id);
911 		if (err) {
912 			if (errno == ENOENT)
913 				break;
914 			perror("bpf_btf_get_next_id failed");
915 			break;
916 		}
917 
918 		fd = bpf_btf_get_fd_by_id(id);
919 		if (fd < 0) {
920 			if (errno == ENOENT)
921 				continue;
922 			perror("bpf_btf_get_fd_by_id failed");
923 			break;
924 		}
925 
926 		memset(&info, 0, sizeof(info));
927 		info.name_len = sizeof(name);
928 		info.name = ptr_to_u64(name);
929 		len = sizeof(info);
930 
931 		err = bpf_obj_get_info_by_fd(fd, &info, &len);
932 		if (err) {
933 			close(fd);
934 			perror("bpf_obj_get_info_by_fd failed");
935 			break;
936 		}
937 
938 		if (strcmp("bpf_testmod", name)) {
939 			close(fd);
940 			continue;
941 		}
942 
943 		btf = btf__load_from_kernel_by_id_split(id, vmlinux);
944 		if (!btf) {
945 			close(fd);
946 			break;
947 		}
948 
949 		/* We need the fd to stay open so it can be used in fd_array.
950 		 * The final cleanup call to btf__free will free btf object
951 		 * and close the file descriptor.
952 		 */
953 		btf__set_fd(btf, fd);
954 		break;
955 	}
956 
957 	set_root(false);
958 	return btf;
959 }
960 
961 static struct btf *testmod_btf;
962 static struct btf *vmlinux_btf;
963 
964 static void kfuncs_cleanup(void)
965 {
966 	btf__free(testmod_btf);
967 	btf__free(vmlinux_btf);
968 }
969 
970 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array,
971 			      struct kfunc_btf_id_pair *fixup_kfunc_btf_id)
972 {
973 	/* Patch in kfunc BTF IDs */
974 	while (fixup_kfunc_btf_id->kfunc) {
975 		int btf_id = 0;
976 
977 		/* try to find kfunc in kernel BTF */
978 		vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf();
979 		if (vmlinux_btf) {
980 			btf_id = btf__find_by_name_kind(vmlinux_btf,
981 							fixup_kfunc_btf_id->kfunc,
982 							BTF_KIND_FUNC);
983 			btf_id = btf_id < 0 ? 0 : btf_id;
984 		}
985 
986 		/* kfunc not found in kernel BTF, try bpf_testmod BTF */
987 		if (!btf_id) {
988 			testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf);
989 			if (testmod_btf) {
990 				btf_id = btf__find_by_name_kind(testmod_btf,
991 								fixup_kfunc_btf_id->kfunc,
992 								BTF_KIND_FUNC);
993 				btf_id = btf_id < 0 ? 0 : btf_id;
994 				if (btf_id) {
995 					/* We put bpf_testmod module fd into fd_array
996 					 * and its index 1 into instruction 'off'.
997 					 */
998 					*fd_array = btf__fd(testmod_btf);
999 					prog[fixup_kfunc_btf_id->insn_idx].off = 1;
1000 				}
1001 			}
1002 		}
1003 
1004 		prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id;
1005 		fixup_kfunc_btf_id++;
1006 	}
1007 }
1008 
1009 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
1010 			  struct bpf_insn *prog, int *map_fds, int *fd_array)
1011 {
1012 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
1013 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
1014 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
1015 	int *fixup_map_array_48b = test->fixup_map_array_48b;
1016 	int *fixup_map_sockmap = test->fixup_map_sockmap;
1017 	int *fixup_map_sockhash = test->fixup_map_sockhash;
1018 	int *fixup_map_xskmap = test->fixup_map_xskmap;
1019 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
1020 	int *fixup_prog1 = test->fixup_prog1;
1021 	int *fixup_prog2 = test->fixup_prog2;
1022 	int *fixup_map_in_map = test->fixup_map_in_map;
1023 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
1024 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
1025 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
1026 	int *fixup_map_array_ro = test->fixup_map_array_ro;
1027 	int *fixup_map_array_wo = test->fixup_map_array_wo;
1028 	int *fixup_map_array_small = test->fixup_map_array_small;
1029 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
1030 	int *fixup_map_event_output = test->fixup_map_event_output;
1031 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
1032 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
1033 	int *fixup_map_timer = test->fixup_map_timer;
1034 	int *fixup_map_kptr = test->fixup_map_kptr;
1035 
1036 	if (test->fill_helper) {
1037 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
1038 		test->fill_helper(test);
1039 	}
1040 
1041 	/* Allocating HTs with 1 elem is fine here, since we only test
1042 	 * for verifier and not do a runtime lookup, so the only thing
1043 	 * that really matters is value size in this case.
1044 	 */
1045 	if (*fixup_map_hash_8b) {
1046 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1047 					sizeof(long long), 1);
1048 		do {
1049 			prog[*fixup_map_hash_8b].imm = map_fds[0];
1050 			fixup_map_hash_8b++;
1051 		} while (*fixup_map_hash_8b);
1052 	}
1053 
1054 	if (*fixup_map_hash_48b) {
1055 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1056 					sizeof(struct test_val), 1);
1057 		do {
1058 			prog[*fixup_map_hash_48b].imm = map_fds[1];
1059 			fixup_map_hash_48b++;
1060 		} while (*fixup_map_hash_48b);
1061 	}
1062 
1063 	if (*fixup_map_hash_16b) {
1064 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
1065 					sizeof(struct other_val), 1);
1066 		do {
1067 			prog[*fixup_map_hash_16b].imm = map_fds[2];
1068 			fixup_map_hash_16b++;
1069 		} while (*fixup_map_hash_16b);
1070 	}
1071 
1072 	if (*fixup_map_array_48b) {
1073 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1074 					sizeof(struct test_val), 1);
1075 		update_map(map_fds[3], 0);
1076 		do {
1077 			prog[*fixup_map_array_48b].imm = map_fds[3];
1078 			fixup_map_array_48b++;
1079 		} while (*fixup_map_array_48b);
1080 	}
1081 
1082 	if (*fixup_prog1) {
1083 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
1084 		do {
1085 			prog[*fixup_prog1].imm = map_fds[4];
1086 			fixup_prog1++;
1087 		} while (*fixup_prog1);
1088 	}
1089 
1090 	if (*fixup_prog2) {
1091 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
1092 		do {
1093 			prog[*fixup_prog2].imm = map_fds[5];
1094 			fixup_prog2++;
1095 		} while (*fixup_prog2);
1096 	}
1097 
1098 	if (*fixup_map_in_map) {
1099 		map_fds[6] = create_map_in_map();
1100 		do {
1101 			prog[*fixup_map_in_map].imm = map_fds[6];
1102 			fixup_map_in_map++;
1103 		} while (*fixup_map_in_map);
1104 	}
1105 
1106 	if (*fixup_cgroup_storage) {
1107 		map_fds[7] = create_cgroup_storage(false);
1108 		do {
1109 			prog[*fixup_cgroup_storage].imm = map_fds[7];
1110 			fixup_cgroup_storage++;
1111 		} while (*fixup_cgroup_storage);
1112 	}
1113 
1114 	if (*fixup_percpu_cgroup_storage) {
1115 		map_fds[8] = create_cgroup_storage(true);
1116 		do {
1117 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
1118 			fixup_percpu_cgroup_storage++;
1119 		} while (*fixup_percpu_cgroup_storage);
1120 	}
1121 	if (*fixup_map_sockmap) {
1122 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
1123 					sizeof(int), 1);
1124 		do {
1125 			prog[*fixup_map_sockmap].imm = map_fds[9];
1126 			fixup_map_sockmap++;
1127 		} while (*fixup_map_sockmap);
1128 	}
1129 	if (*fixup_map_sockhash) {
1130 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
1131 					sizeof(int), 1);
1132 		do {
1133 			prog[*fixup_map_sockhash].imm = map_fds[10];
1134 			fixup_map_sockhash++;
1135 		} while (*fixup_map_sockhash);
1136 	}
1137 	if (*fixup_map_xskmap) {
1138 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
1139 					sizeof(int), 1);
1140 		do {
1141 			prog[*fixup_map_xskmap].imm = map_fds[11];
1142 			fixup_map_xskmap++;
1143 		} while (*fixup_map_xskmap);
1144 	}
1145 	if (*fixup_map_stacktrace) {
1146 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
1147 					 sizeof(u64), 1);
1148 		do {
1149 			prog[*fixup_map_stacktrace].imm = map_fds[12];
1150 			fixup_map_stacktrace++;
1151 		} while (*fixup_map_stacktrace);
1152 	}
1153 	if (*fixup_map_spin_lock) {
1154 		map_fds[13] = create_map_spin_lock();
1155 		do {
1156 			prog[*fixup_map_spin_lock].imm = map_fds[13];
1157 			fixup_map_spin_lock++;
1158 		} while (*fixup_map_spin_lock);
1159 	}
1160 	if (*fixup_map_array_ro) {
1161 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1162 					   sizeof(struct test_val), 1,
1163 					   BPF_F_RDONLY_PROG);
1164 		update_map(map_fds[14], 0);
1165 		do {
1166 			prog[*fixup_map_array_ro].imm = map_fds[14];
1167 			fixup_map_array_ro++;
1168 		} while (*fixup_map_array_ro);
1169 	}
1170 	if (*fixup_map_array_wo) {
1171 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1172 					   sizeof(struct test_val), 1,
1173 					   BPF_F_WRONLY_PROG);
1174 		update_map(map_fds[15], 0);
1175 		do {
1176 			prog[*fixup_map_array_wo].imm = map_fds[15];
1177 			fixup_map_array_wo++;
1178 		} while (*fixup_map_array_wo);
1179 	}
1180 	if (*fixup_map_array_small) {
1181 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
1182 					   1, 1, 0);
1183 		update_map(map_fds[16], 0);
1184 		do {
1185 			prog[*fixup_map_array_small].imm = map_fds[16];
1186 			fixup_map_array_small++;
1187 		} while (*fixup_map_array_small);
1188 	}
1189 	if (*fixup_sk_storage_map) {
1190 		map_fds[17] = create_sk_storage_map();
1191 		do {
1192 			prog[*fixup_sk_storage_map].imm = map_fds[17];
1193 			fixup_sk_storage_map++;
1194 		} while (*fixup_sk_storage_map);
1195 	}
1196 	if (*fixup_map_event_output) {
1197 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
1198 					   sizeof(int), sizeof(int), 1, 0);
1199 		do {
1200 			prog[*fixup_map_event_output].imm = map_fds[18];
1201 			fixup_map_event_output++;
1202 		} while (*fixup_map_event_output);
1203 	}
1204 	if (*fixup_map_reuseport_array) {
1205 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
1206 					   sizeof(u32), sizeof(u64), 1, 0);
1207 		do {
1208 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
1209 			fixup_map_reuseport_array++;
1210 		} while (*fixup_map_reuseport_array);
1211 	}
1212 	if (*fixup_map_ringbuf) {
1213 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
1214 					 0, getpagesize());
1215 		do {
1216 			prog[*fixup_map_ringbuf].imm = map_fds[20];
1217 			fixup_map_ringbuf++;
1218 		} while (*fixup_map_ringbuf);
1219 	}
1220 	if (*fixup_map_timer) {
1221 		map_fds[21] = create_map_timer();
1222 		do {
1223 			prog[*fixup_map_timer].imm = map_fds[21];
1224 			fixup_map_timer++;
1225 		} while (*fixup_map_timer);
1226 	}
1227 	if (*fixup_map_kptr) {
1228 		map_fds[22] = create_map_kptr();
1229 		do {
1230 			prog[*fixup_map_kptr].imm = map_fds[22];
1231 			fixup_map_kptr++;
1232 		} while (*fixup_map_kptr);
1233 	}
1234 
1235 	fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id);
1236 }
1237 
1238 struct libcap {
1239 	struct __user_cap_header_struct hdr;
1240 	struct __user_cap_data_struct data[2];
1241 };
1242 
1243 static int set_admin(bool admin)
1244 {
1245 	int err;
1246 
1247 	if (admin) {
1248 		err = cap_enable_effective(ADMIN_CAPS, NULL);
1249 		if (err)
1250 			perror("cap_enable_effective(ADMIN_CAPS)");
1251 	} else {
1252 		err = cap_disable_effective(ADMIN_CAPS, NULL);
1253 		if (err)
1254 			perror("cap_disable_effective(ADMIN_CAPS)");
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
1261 			    void *data, size_t size_data)
1262 {
1263 	__u8 tmp[TEST_DATA_LEN << 2];
1264 	__u32 size_tmp = sizeof(tmp);
1265 	int err, saved_errno;
1266 	LIBBPF_OPTS(bpf_test_run_opts, topts,
1267 		.data_in = data,
1268 		.data_size_in = size_data,
1269 		.data_out = tmp,
1270 		.data_size_out = size_tmp,
1271 		.repeat = 1,
1272 	);
1273 
1274 	if (unpriv)
1275 		set_admin(true);
1276 	err = bpf_prog_test_run_opts(fd_prog, &topts);
1277 	saved_errno = errno;
1278 
1279 	if (unpriv)
1280 		set_admin(false);
1281 
1282 	if (err) {
1283 		switch (saved_errno) {
1284 		case ENOTSUPP:
1285 			printf("Did not run the program (not supported) ");
1286 			return 0;
1287 		case EPERM:
1288 			if (unpriv) {
1289 				printf("Did not run the program (no permission) ");
1290 				return 0;
1291 			}
1292 			/* fallthrough; */
1293 		default:
1294 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1295 				strerror(saved_errno));
1296 			return err;
1297 		}
1298 	}
1299 
1300 	if (topts.retval != expected_val && expected_val != POINTER_VALUE) {
1301 		printf("FAIL retval %d != %d ", topts.retval, expected_val);
1302 		return 1;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1309  *
1310  * If exp is an empty string, returns true.
1311  */
1312 static bool cmp_str_seq(const char *log, const char *exp)
1313 {
1314 	char needle[200];
1315 	const char *p, *q;
1316 	int len;
1317 
1318 	do {
1319 		if (!strlen(exp))
1320 			break;
1321 		p = strchr(exp, '\t');
1322 		if (!p)
1323 			p = exp + strlen(exp);
1324 
1325 		len = p - exp;
1326 		if (len >= sizeof(needle) || !len) {
1327 			printf("FAIL\nTestcase bug\n");
1328 			return false;
1329 		}
1330 		strncpy(needle, exp, len);
1331 		needle[len] = 0;
1332 		q = strstr(log, needle);
1333 		if (!q) {
1334 			printf("FAIL\nUnexpected verifier log!\n"
1335 			       "EXP: %s\nRES:\n", needle);
1336 			return false;
1337 		}
1338 		log = q + len;
1339 		exp = p + 1;
1340 	} while (*p);
1341 	return true;
1342 }
1343 
1344 static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt)
1345 {
1346 	__u32 buf_element_size = sizeof(struct bpf_insn);
1347 	struct bpf_prog_info info = {};
1348 	__u32 info_len = sizeof(info);
1349 	__u32 xlated_prog_len;
1350 	struct bpf_insn *buf;
1351 
1352 	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1353 		perror("bpf_prog_get_info_by_fd failed");
1354 		return NULL;
1355 	}
1356 
1357 	xlated_prog_len = info.xlated_prog_len;
1358 	if (xlated_prog_len % buf_element_size) {
1359 		printf("Program length %d is not multiple of %d\n",
1360 		       xlated_prog_len, buf_element_size);
1361 		return NULL;
1362 	}
1363 
1364 	*cnt = xlated_prog_len / buf_element_size;
1365 	buf = calloc(*cnt, buf_element_size);
1366 	if (!buf) {
1367 		perror("can't allocate xlated program buffer");
1368 		return NULL;
1369 	}
1370 
1371 	bzero(&info, sizeof(info));
1372 	info.xlated_prog_len = xlated_prog_len;
1373 	info.xlated_prog_insns = (__u64)(unsigned long)buf;
1374 	if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) {
1375 		perror("second bpf_prog_get_info_by_fd failed");
1376 		goto out_free_buf;
1377 	}
1378 
1379 	return buf;
1380 
1381 out_free_buf:
1382 	free(buf);
1383 	return NULL;
1384 }
1385 
1386 static bool is_null_insn(struct bpf_insn *insn)
1387 {
1388 	struct bpf_insn null_insn = {};
1389 
1390 	return memcmp(insn, &null_insn, sizeof(null_insn)) == 0;
1391 }
1392 
1393 static bool is_skip_insn(struct bpf_insn *insn)
1394 {
1395 	struct bpf_insn skip_insn = SKIP_INSNS();
1396 
1397 	return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0;
1398 }
1399 
1400 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len)
1401 {
1402 	int i;
1403 
1404 	for (i = 0; i < max_len; ++i) {
1405 		if (is_null_insn(&seq[i]))
1406 			return i;
1407 	}
1408 	return max_len;
1409 }
1410 
1411 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked)
1412 {
1413 	struct bpf_insn orig_masked;
1414 
1415 	memcpy(&orig_masked, orig, sizeof(orig_masked));
1416 	if (masked->imm == INSN_IMM_MASK)
1417 		orig_masked.imm = INSN_IMM_MASK;
1418 	if (masked->off == INSN_OFF_MASK)
1419 		orig_masked.off = INSN_OFF_MASK;
1420 
1421 	return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0;
1422 }
1423 
1424 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq,
1425 			    int seq_len, int subseq_len)
1426 {
1427 	int i, j;
1428 
1429 	if (subseq_len > seq_len)
1430 		return -1;
1431 
1432 	for (i = 0; i < seq_len - subseq_len + 1; ++i) {
1433 		bool found = true;
1434 
1435 		for (j = 0; j < subseq_len; ++j) {
1436 			if (!compare_masked_insn(&seq[i + j], &subseq[j])) {
1437 				found = false;
1438 				break;
1439 			}
1440 		}
1441 		if (found)
1442 			return i;
1443 	}
1444 
1445 	return -1;
1446 }
1447 
1448 static int find_skip_insn_marker(struct bpf_insn *seq, int len)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < len; ++i)
1453 		if (is_skip_insn(&seq[i]))
1454 			return i;
1455 
1456 	return -1;
1457 }
1458 
1459 /* Return true if all sub-sequences in `subseqs` could be found in
1460  * `seq` one after another. Sub-sequences are separated by a single
1461  * nil instruction.
1462  */
1463 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs,
1464 				  int seq_len, int max_subseqs_len)
1465 {
1466 	int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len);
1467 
1468 	while (subseqs_len > 0) {
1469 		int skip_idx = find_skip_insn_marker(subseqs, subseqs_len);
1470 		int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx;
1471 		int subseq_idx = find_insn_subseq(seq, subseqs,
1472 						  seq_len, cur_subseq_len);
1473 
1474 		if (subseq_idx < 0)
1475 			return false;
1476 		seq += subseq_idx + cur_subseq_len;
1477 		seq_len -= subseq_idx + cur_subseq_len;
1478 		subseqs += cur_subseq_len + 1;
1479 		subseqs_len -= cur_subseq_len + 1;
1480 	}
1481 
1482 	return true;
1483 }
1484 
1485 static void print_insn(struct bpf_insn *buf, int cnt)
1486 {
1487 	int i;
1488 
1489 	printf("  addr  op d s off  imm\n");
1490 	for (i = 0; i < cnt; ++i) {
1491 		struct bpf_insn *insn = &buf[i];
1492 
1493 		if (is_null_insn(insn))
1494 			break;
1495 
1496 		if (is_skip_insn(insn))
1497 			printf("  ...\n");
1498 		else
1499 			printf("  %04x: %02x %1x %x %04hx %08x\n",
1500 			       i, insn->code, insn->dst_reg,
1501 			       insn->src_reg, insn->off, insn->imm);
1502 	}
1503 }
1504 
1505 static bool check_xlated_program(struct bpf_test *test, int fd_prog)
1506 {
1507 	struct bpf_insn *buf;
1508 	int cnt;
1509 	bool result = true;
1510 	bool check_expected = !is_null_insn(test->expected_insns);
1511 	bool check_unexpected = !is_null_insn(test->unexpected_insns);
1512 
1513 	if (!check_expected && !check_unexpected)
1514 		goto out;
1515 
1516 	buf = get_xlated_program(fd_prog, &cnt);
1517 	if (!buf) {
1518 		printf("FAIL: can't get xlated program\n");
1519 		result = false;
1520 		goto out;
1521 	}
1522 
1523 	if (check_expected &&
1524 	    !find_all_insn_subseqs(buf, test->expected_insns,
1525 				   cnt, MAX_EXPECTED_INSNS)) {
1526 		printf("FAIL: can't find expected subsequence of instructions\n");
1527 		result = false;
1528 		if (verbose) {
1529 			printf("Program:\n");
1530 			print_insn(buf, cnt);
1531 			printf("Expected subsequence:\n");
1532 			print_insn(test->expected_insns, MAX_EXPECTED_INSNS);
1533 		}
1534 	}
1535 
1536 	if (check_unexpected &&
1537 	    find_all_insn_subseqs(buf, test->unexpected_insns,
1538 				  cnt, MAX_UNEXPECTED_INSNS)) {
1539 		printf("FAIL: found unexpected subsequence of instructions\n");
1540 		result = false;
1541 		if (verbose) {
1542 			printf("Program:\n");
1543 			print_insn(buf, cnt);
1544 			printf("Un-expected subsequence:\n");
1545 			print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS);
1546 		}
1547 	}
1548 
1549 	free(buf);
1550  out:
1551 	return result;
1552 }
1553 
1554 static void do_test_single(struct bpf_test *test, bool unpriv,
1555 			   int *passes, int *errors)
1556 {
1557 	int fd_prog, btf_fd, expected_ret, alignment_prevented_execution;
1558 	int prog_len, prog_type = test->prog_type;
1559 	struct bpf_insn *prog = test->insns;
1560 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1561 	int run_errs, run_successes;
1562 	int map_fds[MAX_NR_MAPS];
1563 	const char *expected_err;
1564 	int fd_array[2] = { -1, -1 };
1565 	int saved_errno;
1566 	int fixup_skips;
1567 	__u32 pflags;
1568 	int i, err;
1569 
1570 	fd_prog = -1;
1571 	for (i = 0; i < MAX_NR_MAPS; i++)
1572 		map_fds[i] = -1;
1573 	btf_fd = -1;
1574 
1575 	if (!prog_type)
1576 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1577 	fixup_skips = skips;
1578 	do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]);
1579 	if (test->fill_insns) {
1580 		prog = test->fill_insns;
1581 		prog_len = test->prog_len;
1582 	} else {
1583 		prog_len = probe_filter_length(prog);
1584 	}
1585 	/* If there were some map skips during fixup due to missing bpf
1586 	 * features, skip this test.
1587 	 */
1588 	if (fixup_skips != skips)
1589 		return;
1590 
1591 	pflags = BPF_F_TEST_RND_HI32;
1592 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1593 		pflags |= BPF_F_STRICT_ALIGNMENT;
1594 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1595 		pflags |= BPF_F_ANY_ALIGNMENT;
1596 	if (test->flags & ~3)
1597 		pflags |= test->flags;
1598 
1599 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1600 		       test->result_unpriv : test->result;
1601 	expected_err = unpriv && test->errstr_unpriv ?
1602 		       test->errstr_unpriv : test->errstr;
1603 
1604 	opts.expected_attach_type = test->expected_attach_type;
1605 	if (verbose)
1606 		opts.log_level = verif_log_level | 4; /* force stats */
1607 	else if (expected_ret == VERBOSE_ACCEPT)
1608 		opts.log_level = 2;
1609 	else
1610 		opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL;
1611 	opts.prog_flags = pflags;
1612 	if (fd_array[1] != -1)
1613 		opts.fd_array = &fd_array[0];
1614 
1615 	if ((prog_type == BPF_PROG_TYPE_TRACING ||
1616 	     prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) {
1617 		int attach_btf_id;
1618 
1619 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1620 						opts.expected_attach_type);
1621 		if (attach_btf_id < 0) {
1622 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1623 				test->kfunc);
1624 			(*errors)++;
1625 			return;
1626 		}
1627 
1628 		opts.attach_btf_id = attach_btf_id;
1629 	}
1630 
1631 	if (test->btf_types[0] != 0) {
1632 		btf_fd = load_btf_for_test(test);
1633 		if (btf_fd < 0)
1634 			goto fail_log;
1635 		opts.prog_btf_fd = btf_fd;
1636 	}
1637 
1638 	if (test->func_info_cnt != 0) {
1639 		opts.func_info = test->func_info;
1640 		opts.func_info_cnt = test->func_info_cnt;
1641 		opts.func_info_rec_size = sizeof(test->func_info[0]);
1642 	}
1643 
1644 	opts.log_buf = bpf_vlog;
1645 	opts.log_size = sizeof(bpf_vlog);
1646 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1647 	saved_errno = errno;
1648 
1649 	/* BPF_PROG_TYPE_TRACING requires more setup and
1650 	 * bpf_probe_prog_type won't give correct answer
1651 	 */
1652 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1653 	    !libbpf_probe_bpf_prog_type(prog_type, NULL)) {
1654 		printf("SKIP (unsupported program type %d)\n", prog_type);
1655 		skips++;
1656 		goto close_fds;
1657 	}
1658 
1659 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1660 		printf("SKIP (program uses an unsupported feature)\n");
1661 		skips++;
1662 		goto close_fds;
1663 	}
1664 
1665 	alignment_prevented_execution = 0;
1666 
1667 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1668 		if (fd_prog < 0) {
1669 			printf("FAIL\nFailed to load prog '%s'!\n",
1670 			       strerror(saved_errno));
1671 			goto fail_log;
1672 		}
1673 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1674 		if (fd_prog >= 0 &&
1675 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1676 			alignment_prevented_execution = 1;
1677 #endif
1678 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1679 			goto fail_log;
1680 		}
1681 	} else {
1682 		if (fd_prog >= 0) {
1683 			printf("FAIL\nUnexpected success to load!\n");
1684 			goto fail_log;
1685 		}
1686 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1687 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1688 			      expected_err, bpf_vlog);
1689 			goto fail_log;
1690 		}
1691 	}
1692 
1693 	if (!unpriv && test->insn_processed) {
1694 		uint32_t insn_processed;
1695 		char *proc;
1696 
1697 		proc = strstr(bpf_vlog, "processed ");
1698 		insn_processed = atoi(proc + 10);
1699 		if (test->insn_processed != insn_processed) {
1700 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1701 			       insn_processed, test->insn_processed);
1702 			goto fail_log;
1703 		}
1704 	}
1705 
1706 	if (verbose)
1707 		printf(", verifier log:\n%s", bpf_vlog);
1708 
1709 	if (!check_xlated_program(test, fd_prog))
1710 		goto fail_log;
1711 
1712 	run_errs = 0;
1713 	run_successes = 0;
1714 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1715 		uint32_t expected_val;
1716 		int i;
1717 
1718 		if (!test->runs)
1719 			test->runs = 1;
1720 
1721 		for (i = 0; i < test->runs; i++) {
1722 			if (unpriv && test->retvals[i].retval_unpriv)
1723 				expected_val = test->retvals[i].retval_unpriv;
1724 			else
1725 				expected_val = test->retvals[i].retval;
1726 
1727 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1728 					       test->retvals[i].data,
1729 					       sizeof(test->retvals[i].data));
1730 			if (err) {
1731 				printf("(run %d/%d) ", i + 1, test->runs);
1732 				run_errs++;
1733 			} else {
1734 				run_successes++;
1735 			}
1736 		}
1737 	}
1738 
1739 	if (!run_errs) {
1740 		(*passes)++;
1741 		if (run_successes > 1)
1742 			printf("%d cases ", run_successes);
1743 		printf("OK");
1744 		if (alignment_prevented_execution)
1745 			printf(" (NOTE: not executed due to unknown alignment)");
1746 		printf("\n");
1747 	} else {
1748 		printf("\n");
1749 		goto fail_log;
1750 	}
1751 close_fds:
1752 	if (test->fill_insns)
1753 		free(test->fill_insns);
1754 	close(fd_prog);
1755 	close(btf_fd);
1756 	for (i = 0; i < MAX_NR_MAPS; i++)
1757 		close(map_fds[i]);
1758 	sched_yield();
1759 	return;
1760 fail_log:
1761 	(*errors)++;
1762 	printf("%s", bpf_vlog);
1763 	goto close_fds;
1764 }
1765 
1766 static bool is_admin(void)
1767 {
1768 	__u64 caps;
1769 
1770 	/* The test checks for finer cap as CAP_NET_ADMIN,
1771 	 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN.
1772 	 * Thus, disable CAP_SYS_ADMIN at the beginning.
1773 	 */
1774 	if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) {
1775 		perror("cap_disable_effective(CAP_SYS_ADMIN)");
1776 		return false;
1777 	}
1778 
1779 	return (caps & ADMIN_CAPS) == ADMIN_CAPS;
1780 }
1781 
1782 static bool test_as_unpriv(struct bpf_test *test)
1783 {
1784 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1785 	/* Some architectures have strict alignment requirements. In
1786 	 * that case, the BPF verifier detects if a program has
1787 	 * unaligned accesses and rejects them. A user can pass
1788 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1789 	 * check. That, however, will only work when a privileged user
1790 	 * loads a program. An unprivileged user loading a program
1791 	 * with this flag will be rejected prior entering the
1792 	 * verifier.
1793 	 */
1794 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1795 		return false;
1796 #endif
1797 	return !test->prog_type ||
1798 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1799 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1800 }
1801 
1802 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1803 {
1804 	int i, passes = 0, errors = 0;
1805 
1806 	/* ensure previous instance of the module is unloaded */
1807 	unload_bpf_testmod(verbose);
1808 
1809 	if (load_bpf_testmod(verbose))
1810 		return EXIT_FAILURE;
1811 
1812 	for (i = from; i < to; i++) {
1813 		struct bpf_test *test = &tests[i];
1814 
1815 		/* Program types that are not supported by non-root we
1816 		 * skip right away.
1817 		 */
1818 		if (test_as_unpriv(test) && unpriv_disabled) {
1819 			printf("#%d/u %s SKIP\n", i, test->descr);
1820 			skips++;
1821 		} else if (test_as_unpriv(test)) {
1822 			if (!unpriv)
1823 				set_admin(false);
1824 			printf("#%d/u %s ", i, test->descr);
1825 			do_test_single(test, true, &passes, &errors);
1826 			if (!unpriv)
1827 				set_admin(true);
1828 		}
1829 
1830 		if (unpriv) {
1831 			printf("#%d/p %s SKIP\n", i, test->descr);
1832 			skips++;
1833 		} else {
1834 			printf("#%d/p %s ", i, test->descr);
1835 			do_test_single(test, false, &passes, &errors);
1836 		}
1837 	}
1838 
1839 	unload_bpf_testmod(verbose);
1840 	kfuncs_cleanup();
1841 
1842 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1843 	       skips, errors);
1844 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1845 }
1846 
1847 int main(int argc, char **argv)
1848 {
1849 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1850 	bool unpriv = !is_admin();
1851 	int arg = 1;
1852 
1853 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1854 		arg++;
1855 		verbose = true;
1856 		verif_log_level = 1;
1857 		argc--;
1858 	}
1859 	if (argc > 1 && strcmp(argv[1], "-vv") == 0) {
1860 		arg++;
1861 		verbose = true;
1862 		verif_log_level = 2;
1863 		argc--;
1864 	}
1865 
1866 	if (argc == 3) {
1867 		unsigned int l = atoi(argv[arg]);
1868 		unsigned int u = atoi(argv[arg + 1]);
1869 
1870 		if (l < to && u < to) {
1871 			from = l;
1872 			to   = u + 1;
1873 		}
1874 	} else if (argc == 2) {
1875 		unsigned int t = atoi(argv[arg]);
1876 
1877 		if (t < to) {
1878 			from = t;
1879 			to   = t + 1;
1880 		}
1881 	}
1882 
1883 	unpriv_disabled = get_unpriv_disabled();
1884 	if (unpriv && unpriv_disabled) {
1885 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1886 		       UNPRIV_SYSCTL);
1887 		return EXIT_FAILURE;
1888 	}
1889 
1890 	/* Use libbpf 1.0 API mode */
1891 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1892 
1893 	bpf_semi_rand_init();
1894 	return do_test(unpriv, from, to);
1895 }
1896