1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <linux/unistd.h> 26 #include <linux/filter.h> 27 #include <linux/bpf_perf_event.h> 28 #include <linux/bpf.h> 29 #include <linux/if_ether.h> 30 #include <linux/btf.h> 31 32 #include <bpf/btf.h> 33 #include <bpf/bpf.h> 34 #include <bpf/libbpf.h> 35 36 #include "autoconf_helper.h" 37 #include "unpriv_helpers.h" 38 #include "cap_helpers.h" 39 #include "bpf_rand.h" 40 #include "bpf_util.h" 41 #include "test_btf.h" 42 #include "../../../include/linux/filter.h" 43 #include "testing_helpers.h" 44 45 #ifndef ENOTSUPP 46 #define ENOTSUPP 524 47 #endif 48 49 #define MAX_INSNS BPF_MAXINSNS 50 #define MAX_EXPECTED_INSNS 32 51 #define MAX_UNEXPECTED_INSNS 32 52 #define MAX_TEST_INSNS 1000000 53 #define MAX_FIXUPS 8 54 #define MAX_NR_MAPS 23 55 #define MAX_TEST_RUNS 8 56 #define POINTER_VALUE 0xcafe4all 57 #define TEST_DATA_LEN 64 58 #define MAX_FUNC_INFOS 8 59 #define MAX_BTF_STRINGS 256 60 #define MAX_BTF_TYPES 256 61 62 #define INSN_OFF_MASK ((__s16)0xFFFF) 63 #define INSN_IMM_MASK ((__s32)0xFFFFFFFF) 64 #define SKIP_INSNS() BPF_RAW_INSN(0xde, 0xa, 0xd, 0xbeef, 0xdeadbeef) 65 66 #define DEFAULT_LIBBPF_LOG_LEVEL 4 67 68 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 69 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 70 71 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 72 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 73 1ULL << CAP_PERFMON | \ 74 1ULL << CAP_BPF) 75 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 76 static bool unpriv_disabled = false; 77 static int skips; 78 static bool verbose = false; 79 static int verif_log_level = 0; 80 81 struct kfunc_btf_id_pair { 82 const char *kfunc; 83 int insn_idx; 84 }; 85 86 struct bpf_test { 87 const char *descr; 88 struct bpf_insn insns[MAX_INSNS]; 89 struct bpf_insn *fill_insns; 90 /* If specified, test engine looks for this sequence of 91 * instructions in the BPF program after loading. Allows to 92 * test rewrites applied by verifier. Use values 93 * INSN_OFF_MASK and INSN_IMM_MASK to mask `off` and `imm` 94 * fields if content does not matter. The test case fails if 95 * specified instructions are not found. 96 * 97 * The sequence could be split into sub-sequences by adding 98 * SKIP_INSNS instruction at the end of each sub-sequence. In 99 * such case sub-sequences are searched for one after another. 100 */ 101 struct bpf_insn expected_insns[MAX_EXPECTED_INSNS]; 102 /* If specified, test engine applies same pattern matching 103 * logic as for `expected_insns`. If the specified pattern is 104 * matched test case is marked as failed. 105 */ 106 struct bpf_insn unexpected_insns[MAX_UNEXPECTED_INSNS]; 107 int fixup_map_hash_8b[MAX_FIXUPS]; 108 int fixup_map_hash_48b[MAX_FIXUPS]; 109 int fixup_map_hash_16b[MAX_FIXUPS]; 110 int fixup_map_array_48b[MAX_FIXUPS]; 111 int fixup_map_sockmap[MAX_FIXUPS]; 112 int fixup_map_sockhash[MAX_FIXUPS]; 113 int fixup_map_xskmap[MAX_FIXUPS]; 114 int fixup_map_stacktrace[MAX_FIXUPS]; 115 int fixup_prog1[MAX_FIXUPS]; 116 int fixup_prog2[MAX_FIXUPS]; 117 int fixup_map_in_map[MAX_FIXUPS]; 118 int fixup_cgroup_storage[MAX_FIXUPS]; 119 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 120 int fixup_map_spin_lock[MAX_FIXUPS]; 121 int fixup_map_array_ro[MAX_FIXUPS]; 122 int fixup_map_array_wo[MAX_FIXUPS]; 123 int fixup_map_array_small[MAX_FIXUPS]; 124 int fixup_sk_storage_map[MAX_FIXUPS]; 125 int fixup_map_event_output[MAX_FIXUPS]; 126 int fixup_map_reuseport_array[MAX_FIXUPS]; 127 int fixup_map_ringbuf[MAX_FIXUPS]; 128 int fixup_map_timer[MAX_FIXUPS]; 129 int fixup_map_kptr[MAX_FIXUPS]; 130 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; 131 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 132 * Can be a tab-separated sequence of expected strings. An empty string 133 * means no log verification. 134 */ 135 const char *errstr; 136 const char *errstr_unpriv; 137 uint32_t insn_processed; 138 int prog_len; 139 enum { 140 UNDEF, 141 ACCEPT, 142 REJECT, 143 VERBOSE_ACCEPT, 144 } result, result_unpriv; 145 enum bpf_prog_type prog_type; 146 uint8_t flags; 147 void (*fill_helper)(struct bpf_test *self); 148 int runs; 149 #define bpf_testdata_struct_t \ 150 struct { \ 151 uint32_t retval, retval_unpriv; \ 152 union { \ 153 __u8 data[TEST_DATA_LEN]; \ 154 __u64 data64[TEST_DATA_LEN / 8]; \ 155 }; \ 156 } 157 union { 158 bpf_testdata_struct_t; 159 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 160 }; 161 enum bpf_attach_type expected_attach_type; 162 const char *kfunc; 163 struct bpf_func_info func_info[MAX_FUNC_INFOS]; 164 int func_info_cnt; 165 char btf_strings[MAX_BTF_STRINGS]; 166 /* A set of BTF types to load when specified, 167 * use macro definitions from test_btf.h, 168 * must end with BTF_END_RAW 169 */ 170 __u32 btf_types[MAX_BTF_TYPES]; 171 }; 172 173 /* Note we want this to be 64 bit aligned so that the end of our array is 174 * actually the end of the structure. 175 */ 176 #define MAX_ENTRIES 11 177 178 struct test_val { 179 unsigned int index; 180 int foo[MAX_ENTRIES]; 181 }; 182 183 struct other_val { 184 long long foo; 185 long long bar; 186 }; 187 188 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 189 { 190 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 191 #define PUSH_CNT 51 192 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 193 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 194 struct bpf_insn *insn = self->fill_insns; 195 int i = 0, j, k = 0; 196 197 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 198 loop: 199 for (j = 0; j < PUSH_CNT; j++) { 200 insn[i++] = BPF_LD_ABS(BPF_B, 0); 201 /* jump to error label */ 202 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 203 i++; 204 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 205 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 206 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 207 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 208 BPF_FUNC_skb_vlan_push); 209 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 210 i++; 211 } 212 213 for (j = 0; j < PUSH_CNT; j++) { 214 insn[i++] = BPF_LD_ABS(BPF_B, 0); 215 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 216 i++; 217 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 218 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 219 BPF_FUNC_skb_vlan_pop); 220 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 221 i++; 222 } 223 if (++k < 5) 224 goto loop; 225 226 for (; i < len - 3; i++) 227 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 228 insn[len - 3] = BPF_JMP_A(1); 229 /* error label */ 230 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 231 insn[len - 1] = BPF_EXIT_INSN(); 232 self->prog_len = len; 233 } 234 235 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 236 { 237 struct bpf_insn *insn = self->fill_insns; 238 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 239 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 240 * to extend the error value of the inlined ld_abs sequence which then 241 * contains 7 insns. so, set the dividend to 7 so the testcase could 242 * work on all arches. 243 */ 244 unsigned int len = (1 << 15) / 7; 245 int i = 0; 246 247 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 248 insn[i++] = BPF_LD_ABS(BPF_B, 0); 249 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 250 i++; 251 while (i < len - 1) 252 insn[i++] = BPF_LD_ABS(BPF_B, 1); 253 insn[i] = BPF_EXIT_INSN(); 254 self->prog_len = i + 1; 255 } 256 257 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 258 { 259 struct bpf_insn *insn = self->fill_insns; 260 uint64_t res = 0; 261 int i = 0; 262 263 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 264 while (i < self->retval) { 265 uint64_t val = bpf_semi_rand_get(); 266 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 267 268 res ^= val; 269 insn[i++] = tmp[0]; 270 insn[i++] = tmp[1]; 271 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 272 } 273 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 274 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 275 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 276 insn[i] = BPF_EXIT_INSN(); 277 self->prog_len = i + 1; 278 res ^= (res >> 32); 279 self->retval = (uint32_t)res; 280 } 281 282 #define MAX_JMP_SEQ 8192 283 284 /* test the sequence of 8k jumps */ 285 static void bpf_fill_scale1(struct bpf_test *self) 286 { 287 struct bpf_insn *insn = self->fill_insns; 288 int i = 0, k = 0; 289 290 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 291 /* test to check that the long sequence of jumps is acceptable */ 292 while (k++ < MAX_JMP_SEQ) { 293 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 294 BPF_FUNC_get_prandom_u32); 295 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 296 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 297 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 298 -8 * (k % 64 + 1)); 299 } 300 /* is_state_visited() doesn't allocate state for pruning for every jump. 301 * Hence multiply jmps by 4 to accommodate that heuristic 302 */ 303 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 304 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 305 insn[i] = BPF_EXIT_INSN(); 306 self->prog_len = i + 1; 307 self->retval = 42; 308 } 309 310 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 311 static void bpf_fill_scale2(struct bpf_test *self) 312 { 313 struct bpf_insn *insn = self->fill_insns; 314 int i = 0, k = 0; 315 316 #define FUNC_NEST 7 317 for (k = 0; k < FUNC_NEST; k++) { 318 insn[i++] = BPF_CALL_REL(1); 319 insn[i++] = BPF_EXIT_INSN(); 320 } 321 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 322 /* test to check that the long sequence of jumps is acceptable */ 323 k = 0; 324 while (k++ < MAX_JMP_SEQ) { 325 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 326 BPF_FUNC_get_prandom_u32); 327 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 328 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 329 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 330 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 331 } 332 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 333 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 334 insn[i] = BPF_EXIT_INSN(); 335 self->prog_len = i + 1; 336 self->retval = 42; 337 } 338 339 static void bpf_fill_scale(struct bpf_test *self) 340 { 341 switch (self->retval) { 342 case 1: 343 return bpf_fill_scale1(self); 344 case 2: 345 return bpf_fill_scale2(self); 346 default: 347 self->prog_len = 0; 348 break; 349 } 350 } 351 352 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 353 { 354 unsigned int len = 259, hlen = 128; 355 int i; 356 357 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 358 for (i = 1; i <= hlen; i++) { 359 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 360 insn[i + hlen] = BPF_JMP_A(hlen - i); 361 } 362 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 363 insn[len - 1] = BPF_EXIT_INSN(); 364 365 return len; 366 } 367 368 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 369 { 370 unsigned int len = 4100, jmp_off = 2048; 371 int i, j; 372 373 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 374 for (i = 1; i <= jmp_off; i++) { 375 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 376 } 377 insn[i++] = BPF_JMP_A(jmp_off); 378 for (; i <= jmp_off * 2 + 1; i+=16) { 379 for (j = 0; j < 16; j++) { 380 insn[i + j] = BPF_JMP_A(16 - j - 1); 381 } 382 } 383 384 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 385 insn[len - 1] = BPF_EXIT_INSN(); 386 387 return len; 388 } 389 390 static void bpf_fill_torturous_jumps(struct bpf_test *self) 391 { 392 struct bpf_insn *insn = self->fill_insns; 393 int i = 0; 394 395 switch (self->retval) { 396 case 1: 397 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 398 return; 399 case 2: 400 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 401 return; 402 case 3: 403 /* main */ 404 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 405 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 406 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 407 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 408 insn[i++] = BPF_EXIT_INSN(); 409 410 /* subprog 1 */ 411 i += bpf_fill_torturous_jumps_insn_1(insn + i); 412 413 /* subprog 2 */ 414 i += bpf_fill_torturous_jumps_insn_2(insn + i); 415 416 self->prog_len = i; 417 return; 418 default: 419 self->prog_len = 0; 420 break; 421 } 422 } 423 424 static void bpf_fill_big_prog_with_loop_1(struct bpf_test *self) 425 { 426 struct bpf_insn *insn = self->fill_insns; 427 /* This test was added to catch a specific use after free 428 * error, which happened upon BPF program reallocation. 429 * Reallocation is handled by core.c:bpf_prog_realloc, which 430 * reuses old memory if page boundary is not crossed. The 431 * value of `len` is chosen to cross this boundary on bpf_loop 432 * patching. 433 */ 434 const int len = getpagesize() - 25; 435 int callback_load_idx; 436 int callback_idx; 437 int i = 0; 438 439 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_1, 1); 440 callback_load_idx = i; 441 insn[i++] = BPF_RAW_INSN(BPF_LD | BPF_IMM | BPF_DW, 442 BPF_REG_2, BPF_PSEUDO_FUNC, 0, 443 777 /* filled below */); 444 insn[i++] = BPF_RAW_INSN(0, 0, 0, 0, 0); 445 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_3, 0); 446 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_4, 0); 447 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_loop); 448 449 while (i < len - 3) 450 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 451 insn[i++] = BPF_EXIT_INSN(); 452 453 callback_idx = i; 454 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0); 455 insn[i++] = BPF_EXIT_INSN(); 456 457 insn[callback_load_idx].imm = callback_idx - callback_load_idx - 1; 458 self->func_info[1].insn_off = callback_idx; 459 self->prog_len = i; 460 assert(i == len); 461 } 462 463 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 464 #define BPF_SK_LOOKUP(func) \ 465 /* struct bpf_sock_tuple tuple = {} */ \ 466 BPF_MOV64_IMM(BPF_REG_2, 0), \ 467 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 468 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 469 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 470 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 471 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 472 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 473 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 474 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 475 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 476 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 477 BPF_MOV64_IMM(BPF_REG_4, 0), \ 478 BPF_MOV64_IMM(BPF_REG_5, 0), \ 479 BPF_EMIT_CALL(BPF_FUNC_ ## func) 480 481 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 482 * value into 0 and does necessary preparation for direct packet access 483 * through r2. The allowed access range is 8 bytes. 484 */ 485 #define BPF_DIRECT_PKT_R2 \ 486 BPF_MOV64_IMM(BPF_REG_0, 0), \ 487 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 488 offsetof(struct __sk_buff, data)), \ 489 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 490 offsetof(struct __sk_buff, data_end)), \ 491 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 492 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 493 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 494 BPF_EXIT_INSN() 495 496 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 497 * positive u32, and zero-extend it into 64-bit. 498 */ 499 #define BPF_RAND_UEXT_R7 \ 500 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 501 BPF_FUNC_get_prandom_u32), \ 502 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 503 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 504 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 505 506 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 507 * negative u32, and sign-extend it into 64-bit. 508 */ 509 #define BPF_RAND_SEXT_R7 \ 510 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 511 BPF_FUNC_get_prandom_u32), \ 512 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 513 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 514 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 515 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 516 517 static struct bpf_test tests[] = { 518 #define FILL_ARRAY 519 #include <verifier/tests.h> 520 #undef FILL_ARRAY 521 }; 522 523 static int probe_filter_length(const struct bpf_insn *fp) 524 { 525 int len; 526 527 for (len = MAX_INSNS - 1; len > 0; --len) 528 if (fp[len].code != 0 || fp[len].imm != 0) 529 break; 530 return len + 1; 531 } 532 533 static bool skip_unsupported_map(enum bpf_map_type map_type) 534 { 535 if (!libbpf_probe_bpf_map_type(map_type, NULL)) { 536 printf("SKIP (unsupported map type %d)\n", map_type); 537 skips++; 538 return true; 539 } 540 return false; 541 } 542 543 static int __create_map(uint32_t type, uint32_t size_key, 544 uint32_t size_value, uint32_t max_elem, 545 uint32_t extra_flags) 546 { 547 LIBBPF_OPTS(bpf_map_create_opts, opts); 548 int fd; 549 550 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 551 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 552 if (fd < 0) { 553 if (skip_unsupported_map(type)) 554 return -1; 555 printf("Failed to create hash map '%s'!\n", strerror(errno)); 556 } 557 558 return fd; 559 } 560 561 static int create_map(uint32_t type, uint32_t size_key, 562 uint32_t size_value, uint32_t max_elem) 563 { 564 return __create_map(type, size_key, size_value, max_elem, 0); 565 } 566 567 static void update_map(int fd, int index) 568 { 569 struct test_val value = { 570 .index = (6 + 1) * sizeof(int), 571 .foo[6] = 0xabcdef12, 572 }; 573 574 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 575 } 576 577 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 578 { 579 struct bpf_insn prog[] = { 580 BPF_MOV64_IMM(BPF_REG_0, ret), 581 BPF_EXIT_INSN(), 582 }; 583 584 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 585 } 586 587 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 588 int idx, int ret) 589 { 590 struct bpf_insn prog[] = { 591 BPF_MOV64_IMM(BPF_REG_3, idx), 592 BPF_LD_MAP_FD(BPF_REG_2, mfd), 593 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 594 BPF_FUNC_tail_call), 595 BPF_MOV64_IMM(BPF_REG_0, ret), 596 BPF_EXIT_INSN(), 597 }; 598 599 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 600 } 601 602 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 603 int p1key, int p2key, int p3key) 604 { 605 int mfd, p1fd, p2fd, p3fd; 606 607 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 608 sizeof(int), max_elem, NULL); 609 if (mfd < 0) { 610 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 611 return -1; 612 printf("Failed to create prog array '%s'!\n", strerror(errno)); 613 return -1; 614 } 615 616 p1fd = create_prog_dummy_simple(prog_type, 42); 617 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 618 p3fd = create_prog_dummy_simple(prog_type, 24); 619 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 620 goto err; 621 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 622 goto err; 623 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 624 goto err; 625 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 626 err: 627 close(mfd); 628 mfd = -1; 629 } 630 close(p3fd); 631 close(p2fd); 632 close(p1fd); 633 return mfd; 634 } 635 636 static int create_map_in_map(void) 637 { 638 LIBBPF_OPTS(bpf_map_create_opts, opts); 639 int inner_map_fd, outer_map_fd; 640 641 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 642 sizeof(int), 1, NULL); 643 if (inner_map_fd < 0) { 644 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 645 return -1; 646 printf("Failed to create array '%s'!\n", strerror(errno)); 647 return inner_map_fd; 648 } 649 650 opts.inner_map_fd = inner_map_fd; 651 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 652 sizeof(int), sizeof(int), 1, &opts); 653 if (outer_map_fd < 0) { 654 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 655 return -1; 656 printf("Failed to create array of maps '%s'!\n", 657 strerror(errno)); 658 } 659 660 close(inner_map_fd); 661 662 return outer_map_fd; 663 } 664 665 static int create_cgroup_storage(bool percpu) 666 { 667 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 668 BPF_MAP_TYPE_CGROUP_STORAGE; 669 int fd; 670 671 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 672 TEST_DATA_LEN, 0, NULL); 673 if (fd < 0) { 674 if (skip_unsupported_map(type)) 675 return -1; 676 printf("Failed to create cgroup storage '%s'!\n", 677 strerror(errno)); 678 } 679 680 return fd; 681 } 682 683 /* struct bpf_spin_lock { 684 * int val; 685 * }; 686 * struct val { 687 * int cnt; 688 * struct bpf_spin_lock l; 689 * }; 690 * struct bpf_timer { 691 * __u64 :64; 692 * __u64 :64; 693 * } __attribute__((aligned(8))); 694 * struct timer { 695 * struct bpf_timer t; 696 * }; 697 * struct btf_ptr { 698 * struct prog_test_ref_kfunc __kptr_untrusted *ptr; 699 * struct prog_test_ref_kfunc __kptr *ptr; 700 * struct prog_test_member __kptr *ptr; 701 * } 702 */ 703 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" 704 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_untrusted" 705 "\0prog_test_member"; 706 static __u32 btf_raw_types[] = { 707 /* int */ 708 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 709 /* struct bpf_spin_lock */ /* [2] */ 710 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 711 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 712 /* struct val */ /* [3] */ 713 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 714 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 715 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 716 /* struct bpf_timer */ /* [4] */ 717 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 718 /* struct timer */ /* [5] */ 719 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 720 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 721 /* struct prog_test_ref_kfunc */ /* [6] */ 722 BTF_STRUCT_ENC(51, 0, 0), 723 BTF_STRUCT_ENC(95, 0, 0), /* [7] */ 724 /* type tag "kptr_untrusted" */ 725 BTF_TYPE_TAG_ENC(80, 6), /* [8] */ 726 /* type tag "kptr" */ 727 BTF_TYPE_TAG_ENC(75, 6), /* [9] */ 728 BTF_TYPE_TAG_ENC(75, 7), /* [10] */ 729 BTF_PTR_ENC(8), /* [11] */ 730 BTF_PTR_ENC(9), /* [12] */ 731 BTF_PTR_ENC(10), /* [13] */ 732 /* struct btf_ptr */ /* [14] */ 733 BTF_STRUCT_ENC(43, 3, 24), 734 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr_untrusted *ptr; */ 735 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr *ptr; */ 736 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr *ptr; */ 737 }; 738 739 static char bpf_vlog[UINT_MAX >> 8]; 740 741 static int load_btf_spec(__u32 *types, int types_len, 742 const char *strings, int strings_len) 743 { 744 struct btf_header hdr = { 745 .magic = BTF_MAGIC, 746 .version = BTF_VERSION, 747 .hdr_len = sizeof(struct btf_header), 748 .type_len = types_len, 749 .str_off = types_len, 750 .str_len = strings_len, 751 }; 752 void *ptr, *raw_btf; 753 int btf_fd; 754 LIBBPF_OPTS(bpf_btf_load_opts, opts, 755 .log_buf = bpf_vlog, 756 .log_size = sizeof(bpf_vlog), 757 .log_level = (verbose 758 ? verif_log_level 759 : DEFAULT_LIBBPF_LOG_LEVEL), 760 ); 761 762 raw_btf = malloc(sizeof(hdr) + types_len + strings_len); 763 764 ptr = raw_btf; 765 memcpy(ptr, &hdr, sizeof(hdr)); 766 ptr += sizeof(hdr); 767 memcpy(ptr, types, hdr.type_len); 768 ptr += hdr.type_len; 769 memcpy(ptr, strings, hdr.str_len); 770 ptr += hdr.str_len; 771 772 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, &opts); 773 if (btf_fd < 0) 774 printf("Failed to load BTF spec: '%s'\n", strerror(errno)); 775 776 free(raw_btf); 777 778 return btf_fd < 0 ? -1 : btf_fd; 779 } 780 781 static int load_btf(void) 782 { 783 return load_btf_spec(btf_raw_types, sizeof(btf_raw_types), 784 btf_str_sec, sizeof(btf_str_sec)); 785 } 786 787 static int load_btf_for_test(struct bpf_test *test) 788 { 789 int types_num = 0; 790 791 while (types_num < MAX_BTF_TYPES && 792 test->btf_types[types_num] != BTF_END_RAW) 793 ++types_num; 794 795 int types_len = types_num * sizeof(test->btf_types[0]); 796 797 return load_btf_spec(test->btf_types, types_len, 798 test->btf_strings, sizeof(test->btf_strings)); 799 } 800 801 static int create_map_spin_lock(void) 802 { 803 LIBBPF_OPTS(bpf_map_create_opts, opts, 804 .btf_key_type_id = 1, 805 .btf_value_type_id = 3, 806 ); 807 int fd, btf_fd; 808 809 btf_fd = load_btf(); 810 if (btf_fd < 0) 811 return -1; 812 opts.btf_fd = btf_fd; 813 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 814 if (fd < 0) 815 printf("Failed to create map with spin_lock\n"); 816 return fd; 817 } 818 819 static int create_sk_storage_map(void) 820 { 821 LIBBPF_OPTS(bpf_map_create_opts, opts, 822 .map_flags = BPF_F_NO_PREALLOC, 823 .btf_key_type_id = 1, 824 .btf_value_type_id = 3, 825 ); 826 int fd, btf_fd; 827 828 btf_fd = load_btf(); 829 if (btf_fd < 0) 830 return -1; 831 opts.btf_fd = btf_fd; 832 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 833 close(opts.btf_fd); 834 if (fd < 0) 835 printf("Failed to create sk_storage_map\n"); 836 return fd; 837 } 838 839 static int create_map_timer(void) 840 { 841 LIBBPF_OPTS(bpf_map_create_opts, opts, 842 .btf_key_type_id = 1, 843 .btf_value_type_id = 5, 844 ); 845 int fd, btf_fd; 846 847 btf_fd = load_btf(); 848 if (btf_fd < 0) 849 return -1; 850 851 opts.btf_fd = btf_fd; 852 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 853 if (fd < 0) 854 printf("Failed to create map with timer\n"); 855 return fd; 856 } 857 858 static int create_map_kptr(void) 859 { 860 LIBBPF_OPTS(bpf_map_create_opts, opts, 861 .btf_key_type_id = 1, 862 .btf_value_type_id = 14, 863 ); 864 int fd, btf_fd; 865 866 btf_fd = load_btf(); 867 if (btf_fd < 0) 868 return -1; 869 870 opts.btf_fd = btf_fd; 871 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); 872 if (fd < 0) 873 printf("Failed to create map with btf_id pointer\n"); 874 return fd; 875 } 876 877 static void set_root(bool set) 878 { 879 __u64 caps; 880 881 if (set) { 882 if (cap_enable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 883 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 884 } else { 885 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) 886 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 887 } 888 } 889 890 static __u64 ptr_to_u64(const void *ptr) 891 { 892 return (uintptr_t) ptr; 893 } 894 895 static struct btf *btf__load_testmod_btf(struct btf *vmlinux) 896 { 897 struct bpf_btf_info info; 898 __u32 len = sizeof(info); 899 struct btf *btf = NULL; 900 char name[64]; 901 __u32 id = 0; 902 int err, fd; 903 904 /* Iterate all loaded BTF objects and find bpf_testmod, 905 * we need SYS_ADMIN cap for that. 906 */ 907 set_root(true); 908 909 while (true) { 910 err = bpf_btf_get_next_id(id, &id); 911 if (err) { 912 if (errno == ENOENT) 913 break; 914 perror("bpf_btf_get_next_id failed"); 915 break; 916 } 917 918 fd = bpf_btf_get_fd_by_id(id); 919 if (fd < 0) { 920 if (errno == ENOENT) 921 continue; 922 perror("bpf_btf_get_fd_by_id failed"); 923 break; 924 } 925 926 memset(&info, 0, sizeof(info)); 927 info.name_len = sizeof(name); 928 info.name = ptr_to_u64(name); 929 len = sizeof(info); 930 931 err = bpf_obj_get_info_by_fd(fd, &info, &len); 932 if (err) { 933 close(fd); 934 perror("bpf_obj_get_info_by_fd failed"); 935 break; 936 } 937 938 if (strcmp("bpf_testmod", name)) { 939 close(fd); 940 continue; 941 } 942 943 btf = btf__load_from_kernel_by_id_split(id, vmlinux); 944 if (!btf) { 945 close(fd); 946 break; 947 } 948 949 /* We need the fd to stay open so it can be used in fd_array. 950 * The final cleanup call to btf__free will free btf object 951 * and close the file descriptor. 952 */ 953 btf__set_fd(btf, fd); 954 break; 955 } 956 957 set_root(false); 958 return btf; 959 } 960 961 static struct btf *testmod_btf; 962 static struct btf *vmlinux_btf; 963 964 static void kfuncs_cleanup(void) 965 { 966 btf__free(testmod_btf); 967 btf__free(vmlinux_btf); 968 } 969 970 static void fixup_prog_kfuncs(struct bpf_insn *prog, int *fd_array, 971 struct kfunc_btf_id_pair *fixup_kfunc_btf_id) 972 { 973 /* Patch in kfunc BTF IDs */ 974 while (fixup_kfunc_btf_id->kfunc) { 975 int btf_id = 0; 976 977 /* try to find kfunc in kernel BTF */ 978 vmlinux_btf = vmlinux_btf ?: btf__load_vmlinux_btf(); 979 if (vmlinux_btf) { 980 btf_id = btf__find_by_name_kind(vmlinux_btf, 981 fixup_kfunc_btf_id->kfunc, 982 BTF_KIND_FUNC); 983 btf_id = btf_id < 0 ? 0 : btf_id; 984 } 985 986 /* kfunc not found in kernel BTF, try bpf_testmod BTF */ 987 if (!btf_id) { 988 testmod_btf = testmod_btf ?: btf__load_testmod_btf(vmlinux_btf); 989 if (testmod_btf) { 990 btf_id = btf__find_by_name_kind(testmod_btf, 991 fixup_kfunc_btf_id->kfunc, 992 BTF_KIND_FUNC); 993 btf_id = btf_id < 0 ? 0 : btf_id; 994 if (btf_id) { 995 /* We put bpf_testmod module fd into fd_array 996 * and its index 1 into instruction 'off'. 997 */ 998 *fd_array = btf__fd(testmod_btf); 999 prog[fixup_kfunc_btf_id->insn_idx].off = 1; 1000 } 1001 } 1002 } 1003 1004 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; 1005 fixup_kfunc_btf_id++; 1006 } 1007 } 1008 1009 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 1010 struct bpf_insn *prog, int *map_fds, int *fd_array) 1011 { 1012 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 1013 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 1014 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 1015 int *fixup_map_array_48b = test->fixup_map_array_48b; 1016 int *fixup_map_sockmap = test->fixup_map_sockmap; 1017 int *fixup_map_sockhash = test->fixup_map_sockhash; 1018 int *fixup_map_xskmap = test->fixup_map_xskmap; 1019 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 1020 int *fixup_prog1 = test->fixup_prog1; 1021 int *fixup_prog2 = test->fixup_prog2; 1022 int *fixup_map_in_map = test->fixup_map_in_map; 1023 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 1024 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 1025 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 1026 int *fixup_map_array_ro = test->fixup_map_array_ro; 1027 int *fixup_map_array_wo = test->fixup_map_array_wo; 1028 int *fixup_map_array_small = test->fixup_map_array_small; 1029 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 1030 int *fixup_map_event_output = test->fixup_map_event_output; 1031 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 1032 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 1033 int *fixup_map_timer = test->fixup_map_timer; 1034 int *fixup_map_kptr = test->fixup_map_kptr; 1035 1036 if (test->fill_helper) { 1037 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 1038 test->fill_helper(test); 1039 } 1040 1041 /* Allocating HTs with 1 elem is fine here, since we only test 1042 * for verifier and not do a runtime lookup, so the only thing 1043 * that really matters is value size in this case. 1044 */ 1045 if (*fixup_map_hash_8b) { 1046 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1047 sizeof(long long), 1); 1048 do { 1049 prog[*fixup_map_hash_8b].imm = map_fds[0]; 1050 fixup_map_hash_8b++; 1051 } while (*fixup_map_hash_8b); 1052 } 1053 1054 if (*fixup_map_hash_48b) { 1055 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1056 sizeof(struct test_val), 1); 1057 do { 1058 prog[*fixup_map_hash_48b].imm = map_fds[1]; 1059 fixup_map_hash_48b++; 1060 } while (*fixup_map_hash_48b); 1061 } 1062 1063 if (*fixup_map_hash_16b) { 1064 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 1065 sizeof(struct other_val), 1); 1066 do { 1067 prog[*fixup_map_hash_16b].imm = map_fds[2]; 1068 fixup_map_hash_16b++; 1069 } while (*fixup_map_hash_16b); 1070 } 1071 1072 if (*fixup_map_array_48b) { 1073 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1074 sizeof(struct test_val), 1); 1075 update_map(map_fds[3], 0); 1076 do { 1077 prog[*fixup_map_array_48b].imm = map_fds[3]; 1078 fixup_map_array_48b++; 1079 } while (*fixup_map_array_48b); 1080 } 1081 1082 if (*fixup_prog1) { 1083 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 1084 do { 1085 prog[*fixup_prog1].imm = map_fds[4]; 1086 fixup_prog1++; 1087 } while (*fixup_prog1); 1088 } 1089 1090 if (*fixup_prog2) { 1091 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 1092 do { 1093 prog[*fixup_prog2].imm = map_fds[5]; 1094 fixup_prog2++; 1095 } while (*fixup_prog2); 1096 } 1097 1098 if (*fixup_map_in_map) { 1099 map_fds[6] = create_map_in_map(); 1100 do { 1101 prog[*fixup_map_in_map].imm = map_fds[6]; 1102 fixup_map_in_map++; 1103 } while (*fixup_map_in_map); 1104 } 1105 1106 if (*fixup_cgroup_storage) { 1107 map_fds[7] = create_cgroup_storage(false); 1108 do { 1109 prog[*fixup_cgroup_storage].imm = map_fds[7]; 1110 fixup_cgroup_storage++; 1111 } while (*fixup_cgroup_storage); 1112 } 1113 1114 if (*fixup_percpu_cgroup_storage) { 1115 map_fds[8] = create_cgroup_storage(true); 1116 do { 1117 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 1118 fixup_percpu_cgroup_storage++; 1119 } while (*fixup_percpu_cgroup_storage); 1120 } 1121 if (*fixup_map_sockmap) { 1122 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 1123 sizeof(int), 1); 1124 do { 1125 prog[*fixup_map_sockmap].imm = map_fds[9]; 1126 fixup_map_sockmap++; 1127 } while (*fixup_map_sockmap); 1128 } 1129 if (*fixup_map_sockhash) { 1130 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 1131 sizeof(int), 1); 1132 do { 1133 prog[*fixup_map_sockhash].imm = map_fds[10]; 1134 fixup_map_sockhash++; 1135 } while (*fixup_map_sockhash); 1136 } 1137 if (*fixup_map_xskmap) { 1138 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 1139 sizeof(int), 1); 1140 do { 1141 prog[*fixup_map_xskmap].imm = map_fds[11]; 1142 fixup_map_xskmap++; 1143 } while (*fixup_map_xskmap); 1144 } 1145 if (*fixup_map_stacktrace) { 1146 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 1147 sizeof(u64), 1); 1148 do { 1149 prog[*fixup_map_stacktrace].imm = map_fds[12]; 1150 fixup_map_stacktrace++; 1151 } while (*fixup_map_stacktrace); 1152 } 1153 if (*fixup_map_spin_lock) { 1154 map_fds[13] = create_map_spin_lock(); 1155 do { 1156 prog[*fixup_map_spin_lock].imm = map_fds[13]; 1157 fixup_map_spin_lock++; 1158 } while (*fixup_map_spin_lock); 1159 } 1160 if (*fixup_map_array_ro) { 1161 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1162 sizeof(struct test_val), 1, 1163 BPF_F_RDONLY_PROG); 1164 update_map(map_fds[14], 0); 1165 do { 1166 prog[*fixup_map_array_ro].imm = map_fds[14]; 1167 fixup_map_array_ro++; 1168 } while (*fixup_map_array_ro); 1169 } 1170 if (*fixup_map_array_wo) { 1171 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1172 sizeof(struct test_val), 1, 1173 BPF_F_WRONLY_PROG); 1174 update_map(map_fds[15], 0); 1175 do { 1176 prog[*fixup_map_array_wo].imm = map_fds[15]; 1177 fixup_map_array_wo++; 1178 } while (*fixup_map_array_wo); 1179 } 1180 if (*fixup_map_array_small) { 1181 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 1182 1, 1, 0); 1183 update_map(map_fds[16], 0); 1184 do { 1185 prog[*fixup_map_array_small].imm = map_fds[16]; 1186 fixup_map_array_small++; 1187 } while (*fixup_map_array_small); 1188 } 1189 if (*fixup_sk_storage_map) { 1190 map_fds[17] = create_sk_storage_map(); 1191 do { 1192 prog[*fixup_sk_storage_map].imm = map_fds[17]; 1193 fixup_sk_storage_map++; 1194 } while (*fixup_sk_storage_map); 1195 } 1196 if (*fixup_map_event_output) { 1197 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 1198 sizeof(int), sizeof(int), 1, 0); 1199 do { 1200 prog[*fixup_map_event_output].imm = map_fds[18]; 1201 fixup_map_event_output++; 1202 } while (*fixup_map_event_output); 1203 } 1204 if (*fixup_map_reuseport_array) { 1205 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 1206 sizeof(u32), sizeof(u64), 1, 0); 1207 do { 1208 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 1209 fixup_map_reuseport_array++; 1210 } while (*fixup_map_reuseport_array); 1211 } 1212 if (*fixup_map_ringbuf) { 1213 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 1214 0, getpagesize()); 1215 do { 1216 prog[*fixup_map_ringbuf].imm = map_fds[20]; 1217 fixup_map_ringbuf++; 1218 } while (*fixup_map_ringbuf); 1219 } 1220 if (*fixup_map_timer) { 1221 map_fds[21] = create_map_timer(); 1222 do { 1223 prog[*fixup_map_timer].imm = map_fds[21]; 1224 fixup_map_timer++; 1225 } while (*fixup_map_timer); 1226 } 1227 if (*fixup_map_kptr) { 1228 map_fds[22] = create_map_kptr(); 1229 do { 1230 prog[*fixup_map_kptr].imm = map_fds[22]; 1231 fixup_map_kptr++; 1232 } while (*fixup_map_kptr); 1233 } 1234 1235 fixup_prog_kfuncs(prog, fd_array, test->fixup_kfunc_btf_id); 1236 } 1237 1238 struct libcap { 1239 struct __user_cap_header_struct hdr; 1240 struct __user_cap_data_struct data[2]; 1241 }; 1242 1243 static int set_admin(bool admin) 1244 { 1245 int err; 1246 1247 if (admin) { 1248 err = cap_enable_effective(ADMIN_CAPS, NULL); 1249 if (err) 1250 perror("cap_enable_effective(ADMIN_CAPS)"); 1251 } else { 1252 err = cap_disable_effective(ADMIN_CAPS, NULL); 1253 if (err) 1254 perror("cap_disable_effective(ADMIN_CAPS)"); 1255 } 1256 1257 return err; 1258 } 1259 1260 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 1261 void *data, size_t size_data) 1262 { 1263 __u8 tmp[TEST_DATA_LEN << 2]; 1264 __u32 size_tmp = sizeof(tmp); 1265 int err, saved_errno; 1266 LIBBPF_OPTS(bpf_test_run_opts, topts, 1267 .data_in = data, 1268 .data_size_in = size_data, 1269 .data_out = tmp, 1270 .data_size_out = size_tmp, 1271 .repeat = 1, 1272 ); 1273 1274 if (unpriv) 1275 set_admin(true); 1276 err = bpf_prog_test_run_opts(fd_prog, &topts); 1277 saved_errno = errno; 1278 1279 if (unpriv) 1280 set_admin(false); 1281 1282 if (err) { 1283 switch (saved_errno) { 1284 case ENOTSUPP: 1285 printf("Did not run the program (not supported) "); 1286 return 0; 1287 case EPERM: 1288 if (unpriv) { 1289 printf("Did not run the program (no permission) "); 1290 return 0; 1291 } 1292 /* fallthrough; */ 1293 default: 1294 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1295 strerror(saved_errno)); 1296 return err; 1297 } 1298 } 1299 1300 if (topts.retval != expected_val && expected_val != POINTER_VALUE) { 1301 printf("FAIL retval %d != %d ", topts.retval, expected_val); 1302 return 1; 1303 } 1304 1305 return 0; 1306 } 1307 1308 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1309 * 1310 * If exp is an empty string, returns true. 1311 */ 1312 static bool cmp_str_seq(const char *log, const char *exp) 1313 { 1314 char needle[200]; 1315 const char *p, *q; 1316 int len; 1317 1318 do { 1319 if (!strlen(exp)) 1320 break; 1321 p = strchr(exp, '\t'); 1322 if (!p) 1323 p = exp + strlen(exp); 1324 1325 len = p - exp; 1326 if (len >= sizeof(needle) || !len) { 1327 printf("FAIL\nTestcase bug\n"); 1328 return false; 1329 } 1330 strncpy(needle, exp, len); 1331 needle[len] = 0; 1332 q = strstr(log, needle); 1333 if (!q) { 1334 printf("FAIL\nUnexpected verifier log!\n" 1335 "EXP: %s\nRES:\n", needle); 1336 return false; 1337 } 1338 log = q + len; 1339 exp = p + 1; 1340 } while (*p); 1341 return true; 1342 } 1343 1344 static struct bpf_insn *get_xlated_program(int fd_prog, int *cnt) 1345 { 1346 __u32 buf_element_size = sizeof(struct bpf_insn); 1347 struct bpf_prog_info info = {}; 1348 __u32 info_len = sizeof(info); 1349 __u32 xlated_prog_len; 1350 struct bpf_insn *buf; 1351 1352 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { 1353 perror("bpf_prog_get_info_by_fd failed"); 1354 return NULL; 1355 } 1356 1357 xlated_prog_len = info.xlated_prog_len; 1358 if (xlated_prog_len % buf_element_size) { 1359 printf("Program length %d is not multiple of %d\n", 1360 xlated_prog_len, buf_element_size); 1361 return NULL; 1362 } 1363 1364 *cnt = xlated_prog_len / buf_element_size; 1365 buf = calloc(*cnt, buf_element_size); 1366 if (!buf) { 1367 perror("can't allocate xlated program buffer"); 1368 return NULL; 1369 } 1370 1371 bzero(&info, sizeof(info)); 1372 info.xlated_prog_len = xlated_prog_len; 1373 info.xlated_prog_insns = (__u64)(unsigned long)buf; 1374 if (bpf_prog_get_info_by_fd(fd_prog, &info, &info_len)) { 1375 perror("second bpf_prog_get_info_by_fd failed"); 1376 goto out_free_buf; 1377 } 1378 1379 return buf; 1380 1381 out_free_buf: 1382 free(buf); 1383 return NULL; 1384 } 1385 1386 static bool is_null_insn(struct bpf_insn *insn) 1387 { 1388 struct bpf_insn null_insn = {}; 1389 1390 return memcmp(insn, &null_insn, sizeof(null_insn)) == 0; 1391 } 1392 1393 static bool is_skip_insn(struct bpf_insn *insn) 1394 { 1395 struct bpf_insn skip_insn = SKIP_INSNS(); 1396 1397 return memcmp(insn, &skip_insn, sizeof(skip_insn)) == 0; 1398 } 1399 1400 static int null_terminated_insn_len(struct bpf_insn *seq, int max_len) 1401 { 1402 int i; 1403 1404 for (i = 0; i < max_len; ++i) { 1405 if (is_null_insn(&seq[i])) 1406 return i; 1407 } 1408 return max_len; 1409 } 1410 1411 static bool compare_masked_insn(struct bpf_insn *orig, struct bpf_insn *masked) 1412 { 1413 struct bpf_insn orig_masked; 1414 1415 memcpy(&orig_masked, orig, sizeof(orig_masked)); 1416 if (masked->imm == INSN_IMM_MASK) 1417 orig_masked.imm = INSN_IMM_MASK; 1418 if (masked->off == INSN_OFF_MASK) 1419 orig_masked.off = INSN_OFF_MASK; 1420 1421 return memcmp(&orig_masked, masked, sizeof(orig_masked)) == 0; 1422 } 1423 1424 static int find_insn_subseq(struct bpf_insn *seq, struct bpf_insn *subseq, 1425 int seq_len, int subseq_len) 1426 { 1427 int i, j; 1428 1429 if (subseq_len > seq_len) 1430 return -1; 1431 1432 for (i = 0; i < seq_len - subseq_len + 1; ++i) { 1433 bool found = true; 1434 1435 for (j = 0; j < subseq_len; ++j) { 1436 if (!compare_masked_insn(&seq[i + j], &subseq[j])) { 1437 found = false; 1438 break; 1439 } 1440 } 1441 if (found) 1442 return i; 1443 } 1444 1445 return -1; 1446 } 1447 1448 static int find_skip_insn_marker(struct bpf_insn *seq, int len) 1449 { 1450 int i; 1451 1452 for (i = 0; i < len; ++i) 1453 if (is_skip_insn(&seq[i])) 1454 return i; 1455 1456 return -1; 1457 } 1458 1459 /* Return true if all sub-sequences in `subseqs` could be found in 1460 * `seq` one after another. Sub-sequences are separated by a single 1461 * nil instruction. 1462 */ 1463 static bool find_all_insn_subseqs(struct bpf_insn *seq, struct bpf_insn *subseqs, 1464 int seq_len, int max_subseqs_len) 1465 { 1466 int subseqs_len = null_terminated_insn_len(subseqs, max_subseqs_len); 1467 1468 while (subseqs_len > 0) { 1469 int skip_idx = find_skip_insn_marker(subseqs, subseqs_len); 1470 int cur_subseq_len = skip_idx < 0 ? subseqs_len : skip_idx; 1471 int subseq_idx = find_insn_subseq(seq, subseqs, 1472 seq_len, cur_subseq_len); 1473 1474 if (subseq_idx < 0) 1475 return false; 1476 seq += subseq_idx + cur_subseq_len; 1477 seq_len -= subseq_idx + cur_subseq_len; 1478 subseqs += cur_subseq_len + 1; 1479 subseqs_len -= cur_subseq_len + 1; 1480 } 1481 1482 return true; 1483 } 1484 1485 static void print_insn(struct bpf_insn *buf, int cnt) 1486 { 1487 int i; 1488 1489 printf(" addr op d s off imm\n"); 1490 for (i = 0; i < cnt; ++i) { 1491 struct bpf_insn *insn = &buf[i]; 1492 1493 if (is_null_insn(insn)) 1494 break; 1495 1496 if (is_skip_insn(insn)) 1497 printf(" ...\n"); 1498 else 1499 printf(" %04x: %02x %1x %x %04hx %08x\n", 1500 i, insn->code, insn->dst_reg, 1501 insn->src_reg, insn->off, insn->imm); 1502 } 1503 } 1504 1505 static bool check_xlated_program(struct bpf_test *test, int fd_prog) 1506 { 1507 struct bpf_insn *buf; 1508 int cnt; 1509 bool result = true; 1510 bool check_expected = !is_null_insn(test->expected_insns); 1511 bool check_unexpected = !is_null_insn(test->unexpected_insns); 1512 1513 if (!check_expected && !check_unexpected) 1514 goto out; 1515 1516 buf = get_xlated_program(fd_prog, &cnt); 1517 if (!buf) { 1518 printf("FAIL: can't get xlated program\n"); 1519 result = false; 1520 goto out; 1521 } 1522 1523 if (check_expected && 1524 !find_all_insn_subseqs(buf, test->expected_insns, 1525 cnt, MAX_EXPECTED_INSNS)) { 1526 printf("FAIL: can't find expected subsequence of instructions\n"); 1527 result = false; 1528 if (verbose) { 1529 printf("Program:\n"); 1530 print_insn(buf, cnt); 1531 printf("Expected subsequence:\n"); 1532 print_insn(test->expected_insns, MAX_EXPECTED_INSNS); 1533 } 1534 } 1535 1536 if (check_unexpected && 1537 find_all_insn_subseqs(buf, test->unexpected_insns, 1538 cnt, MAX_UNEXPECTED_INSNS)) { 1539 printf("FAIL: found unexpected subsequence of instructions\n"); 1540 result = false; 1541 if (verbose) { 1542 printf("Program:\n"); 1543 print_insn(buf, cnt); 1544 printf("Un-expected subsequence:\n"); 1545 print_insn(test->unexpected_insns, MAX_UNEXPECTED_INSNS); 1546 } 1547 } 1548 1549 free(buf); 1550 out: 1551 return result; 1552 } 1553 1554 static void do_test_single(struct bpf_test *test, bool unpriv, 1555 int *passes, int *errors) 1556 { 1557 int fd_prog, btf_fd, expected_ret, alignment_prevented_execution; 1558 int prog_len, prog_type = test->prog_type; 1559 struct bpf_insn *prog = test->insns; 1560 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1561 int run_errs, run_successes; 1562 int map_fds[MAX_NR_MAPS]; 1563 const char *expected_err; 1564 int fd_array[2] = { -1, -1 }; 1565 int saved_errno; 1566 int fixup_skips; 1567 __u32 pflags; 1568 int i, err; 1569 1570 fd_prog = -1; 1571 for (i = 0; i < MAX_NR_MAPS; i++) 1572 map_fds[i] = -1; 1573 btf_fd = -1; 1574 1575 if (!prog_type) 1576 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1577 fixup_skips = skips; 1578 do_test_fixup(test, prog_type, prog, map_fds, &fd_array[1]); 1579 if (test->fill_insns) { 1580 prog = test->fill_insns; 1581 prog_len = test->prog_len; 1582 } else { 1583 prog_len = probe_filter_length(prog); 1584 } 1585 /* If there were some map skips during fixup due to missing bpf 1586 * features, skip this test. 1587 */ 1588 if (fixup_skips != skips) 1589 return; 1590 1591 pflags = BPF_F_TEST_RND_HI32; 1592 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1593 pflags |= BPF_F_STRICT_ALIGNMENT; 1594 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1595 pflags |= BPF_F_ANY_ALIGNMENT; 1596 if (test->flags & ~3) 1597 pflags |= test->flags; 1598 1599 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1600 test->result_unpriv : test->result; 1601 expected_err = unpriv && test->errstr_unpriv ? 1602 test->errstr_unpriv : test->errstr; 1603 1604 opts.expected_attach_type = test->expected_attach_type; 1605 if (verbose) 1606 opts.log_level = verif_log_level | 4; /* force stats */ 1607 else if (expected_ret == VERBOSE_ACCEPT) 1608 opts.log_level = 2; 1609 else 1610 opts.log_level = DEFAULT_LIBBPF_LOG_LEVEL; 1611 opts.prog_flags = pflags; 1612 if (fd_array[1] != -1) 1613 opts.fd_array = &fd_array[0]; 1614 1615 if ((prog_type == BPF_PROG_TYPE_TRACING || 1616 prog_type == BPF_PROG_TYPE_LSM) && test->kfunc) { 1617 int attach_btf_id; 1618 1619 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1620 opts.expected_attach_type); 1621 if (attach_btf_id < 0) { 1622 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1623 test->kfunc); 1624 (*errors)++; 1625 return; 1626 } 1627 1628 opts.attach_btf_id = attach_btf_id; 1629 } 1630 1631 if (test->btf_types[0] != 0) { 1632 btf_fd = load_btf_for_test(test); 1633 if (btf_fd < 0) 1634 goto fail_log; 1635 opts.prog_btf_fd = btf_fd; 1636 } 1637 1638 if (test->func_info_cnt != 0) { 1639 opts.func_info = test->func_info; 1640 opts.func_info_cnt = test->func_info_cnt; 1641 opts.func_info_rec_size = sizeof(test->func_info[0]); 1642 } 1643 1644 opts.log_buf = bpf_vlog; 1645 opts.log_size = sizeof(bpf_vlog); 1646 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1647 saved_errno = errno; 1648 1649 /* BPF_PROG_TYPE_TRACING requires more setup and 1650 * bpf_probe_prog_type won't give correct answer 1651 */ 1652 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1653 !libbpf_probe_bpf_prog_type(prog_type, NULL)) { 1654 printf("SKIP (unsupported program type %d)\n", prog_type); 1655 skips++; 1656 goto close_fds; 1657 } 1658 1659 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1660 printf("SKIP (program uses an unsupported feature)\n"); 1661 skips++; 1662 goto close_fds; 1663 } 1664 1665 alignment_prevented_execution = 0; 1666 1667 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1668 if (fd_prog < 0) { 1669 printf("FAIL\nFailed to load prog '%s'!\n", 1670 strerror(saved_errno)); 1671 goto fail_log; 1672 } 1673 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1674 if (fd_prog >= 0 && 1675 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1676 alignment_prevented_execution = 1; 1677 #endif 1678 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1679 goto fail_log; 1680 } 1681 } else { 1682 if (fd_prog >= 0) { 1683 printf("FAIL\nUnexpected success to load!\n"); 1684 goto fail_log; 1685 } 1686 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1687 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1688 expected_err, bpf_vlog); 1689 goto fail_log; 1690 } 1691 } 1692 1693 if (!unpriv && test->insn_processed) { 1694 uint32_t insn_processed; 1695 char *proc; 1696 1697 proc = strstr(bpf_vlog, "processed "); 1698 insn_processed = atoi(proc + 10); 1699 if (test->insn_processed != insn_processed) { 1700 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1701 insn_processed, test->insn_processed); 1702 goto fail_log; 1703 } 1704 } 1705 1706 if (verbose) 1707 printf(", verifier log:\n%s", bpf_vlog); 1708 1709 if (!check_xlated_program(test, fd_prog)) 1710 goto fail_log; 1711 1712 run_errs = 0; 1713 run_successes = 0; 1714 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1715 uint32_t expected_val; 1716 int i; 1717 1718 if (!test->runs) 1719 test->runs = 1; 1720 1721 for (i = 0; i < test->runs; i++) { 1722 if (unpriv && test->retvals[i].retval_unpriv) 1723 expected_val = test->retvals[i].retval_unpriv; 1724 else 1725 expected_val = test->retvals[i].retval; 1726 1727 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1728 test->retvals[i].data, 1729 sizeof(test->retvals[i].data)); 1730 if (err) { 1731 printf("(run %d/%d) ", i + 1, test->runs); 1732 run_errs++; 1733 } else { 1734 run_successes++; 1735 } 1736 } 1737 } 1738 1739 if (!run_errs) { 1740 (*passes)++; 1741 if (run_successes > 1) 1742 printf("%d cases ", run_successes); 1743 printf("OK"); 1744 if (alignment_prevented_execution) 1745 printf(" (NOTE: not executed due to unknown alignment)"); 1746 printf("\n"); 1747 } else { 1748 printf("\n"); 1749 goto fail_log; 1750 } 1751 close_fds: 1752 if (test->fill_insns) 1753 free(test->fill_insns); 1754 close(fd_prog); 1755 close(btf_fd); 1756 for (i = 0; i < MAX_NR_MAPS; i++) 1757 close(map_fds[i]); 1758 sched_yield(); 1759 return; 1760 fail_log: 1761 (*errors)++; 1762 printf("%s", bpf_vlog); 1763 goto close_fds; 1764 } 1765 1766 static bool is_admin(void) 1767 { 1768 __u64 caps; 1769 1770 /* The test checks for finer cap as CAP_NET_ADMIN, 1771 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. 1772 * Thus, disable CAP_SYS_ADMIN at the beginning. 1773 */ 1774 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { 1775 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 1776 return false; 1777 } 1778 1779 return (caps & ADMIN_CAPS) == ADMIN_CAPS; 1780 } 1781 1782 static bool test_as_unpriv(struct bpf_test *test) 1783 { 1784 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1785 /* Some architectures have strict alignment requirements. In 1786 * that case, the BPF verifier detects if a program has 1787 * unaligned accesses and rejects them. A user can pass 1788 * BPF_F_ANY_ALIGNMENT to a program to override this 1789 * check. That, however, will only work when a privileged user 1790 * loads a program. An unprivileged user loading a program 1791 * with this flag will be rejected prior entering the 1792 * verifier. 1793 */ 1794 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1795 return false; 1796 #endif 1797 return !test->prog_type || 1798 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1799 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1800 } 1801 1802 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1803 { 1804 int i, passes = 0, errors = 0; 1805 1806 /* ensure previous instance of the module is unloaded */ 1807 unload_bpf_testmod(verbose); 1808 1809 if (load_bpf_testmod(verbose)) 1810 return EXIT_FAILURE; 1811 1812 for (i = from; i < to; i++) { 1813 struct bpf_test *test = &tests[i]; 1814 1815 /* Program types that are not supported by non-root we 1816 * skip right away. 1817 */ 1818 if (test_as_unpriv(test) && unpriv_disabled) { 1819 printf("#%d/u %s SKIP\n", i, test->descr); 1820 skips++; 1821 } else if (test_as_unpriv(test)) { 1822 if (!unpriv) 1823 set_admin(false); 1824 printf("#%d/u %s ", i, test->descr); 1825 do_test_single(test, true, &passes, &errors); 1826 if (!unpriv) 1827 set_admin(true); 1828 } 1829 1830 if (unpriv) { 1831 printf("#%d/p %s SKIP\n", i, test->descr); 1832 skips++; 1833 } else { 1834 printf("#%d/p %s ", i, test->descr); 1835 do_test_single(test, false, &passes, &errors); 1836 } 1837 } 1838 1839 unload_bpf_testmod(verbose); 1840 kfuncs_cleanup(); 1841 1842 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1843 skips, errors); 1844 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1845 } 1846 1847 int main(int argc, char **argv) 1848 { 1849 unsigned int from = 0, to = ARRAY_SIZE(tests); 1850 bool unpriv = !is_admin(); 1851 int arg = 1; 1852 1853 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1854 arg++; 1855 verbose = true; 1856 verif_log_level = 1; 1857 argc--; 1858 } 1859 if (argc > 1 && strcmp(argv[1], "-vv") == 0) { 1860 arg++; 1861 verbose = true; 1862 verif_log_level = 2; 1863 argc--; 1864 } 1865 1866 if (argc == 3) { 1867 unsigned int l = atoi(argv[arg]); 1868 unsigned int u = atoi(argv[arg + 1]); 1869 1870 if (l < to && u < to) { 1871 from = l; 1872 to = u + 1; 1873 } 1874 } else if (argc == 2) { 1875 unsigned int t = atoi(argv[arg]); 1876 1877 if (t < to) { 1878 from = t; 1879 to = t + 1; 1880 } 1881 } 1882 1883 unpriv_disabled = get_unpriv_disabled(); 1884 if (unpriv && unpriv_disabled) { 1885 printf("Cannot run as unprivileged user with sysctl %s.\n", 1886 UNPRIV_SYSCTL); 1887 return EXIT_FAILURE; 1888 } 1889 1890 /* Use libbpf 1.0 API mode */ 1891 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1892 1893 bpf_semi_rand_init(); 1894 return do_test(unpriv, from, to); 1895 } 1896