xref: /openbmc/linux/tools/testing/selftests/bpf/test_verifier.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49 
50 #define MAX_INSNS	BPF_MAXINSNS
51 #define MAX_TEST_INSNS	1000000
52 #define MAX_FIXUPS	8
53 #define MAX_NR_MAPS	21
54 #define MAX_TEST_RUNS	8
55 #define POINTER_VALUE	0xcafe4all
56 #define TEST_DATA_LEN	64
57 
58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
59 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
60 
61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
62 static bool unpriv_disabled = false;
63 static int skips;
64 static bool verbose = false;
65 
66 struct bpf_test {
67 	const char *descr;
68 	struct bpf_insn	insns[MAX_INSNS];
69 	struct bpf_insn	*fill_insns;
70 	int fixup_map_hash_8b[MAX_FIXUPS];
71 	int fixup_map_hash_48b[MAX_FIXUPS];
72 	int fixup_map_hash_16b[MAX_FIXUPS];
73 	int fixup_map_array_48b[MAX_FIXUPS];
74 	int fixup_map_sockmap[MAX_FIXUPS];
75 	int fixup_map_sockhash[MAX_FIXUPS];
76 	int fixup_map_xskmap[MAX_FIXUPS];
77 	int fixup_map_stacktrace[MAX_FIXUPS];
78 	int fixup_prog1[MAX_FIXUPS];
79 	int fixup_prog2[MAX_FIXUPS];
80 	int fixup_map_in_map[MAX_FIXUPS];
81 	int fixup_cgroup_storage[MAX_FIXUPS];
82 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
83 	int fixup_map_spin_lock[MAX_FIXUPS];
84 	int fixup_map_array_ro[MAX_FIXUPS];
85 	int fixup_map_array_wo[MAX_FIXUPS];
86 	int fixup_map_array_small[MAX_FIXUPS];
87 	int fixup_sk_storage_map[MAX_FIXUPS];
88 	int fixup_map_event_output[MAX_FIXUPS];
89 	int fixup_map_reuseport_array[MAX_FIXUPS];
90 	int fixup_map_ringbuf[MAX_FIXUPS];
91 	const char *errstr;
92 	const char *errstr_unpriv;
93 	uint32_t insn_processed;
94 	int prog_len;
95 	enum {
96 		UNDEF,
97 		ACCEPT,
98 		REJECT,
99 		VERBOSE_ACCEPT,
100 	} result, result_unpriv;
101 	enum bpf_prog_type prog_type;
102 	uint8_t flags;
103 	void (*fill_helper)(struct bpf_test *self);
104 	uint8_t runs;
105 #define bpf_testdata_struct_t					\
106 	struct {						\
107 		uint32_t retval, retval_unpriv;			\
108 		union {						\
109 			__u8 data[TEST_DATA_LEN];		\
110 			__u64 data64[TEST_DATA_LEN / 8];	\
111 		};						\
112 	}
113 	union {
114 		bpf_testdata_struct_t;
115 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
116 	};
117 	enum bpf_attach_type expected_attach_type;
118 	const char *kfunc;
119 };
120 
121 /* Note we want this to be 64 bit aligned so that the end of our array is
122  * actually the end of the structure.
123  */
124 #define MAX_ENTRIES 11
125 
126 struct test_val {
127 	unsigned int index;
128 	int foo[MAX_ENTRIES];
129 };
130 
131 struct other_val {
132 	long long foo;
133 	long long bar;
134 };
135 
136 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
137 {
138 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
139 #define PUSH_CNT 51
140 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
141 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
142 	struct bpf_insn *insn = self->fill_insns;
143 	int i = 0, j, k = 0;
144 
145 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
146 loop:
147 	for (j = 0; j < PUSH_CNT; j++) {
148 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
149 		/* jump to error label */
150 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
151 		i++;
152 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
153 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
154 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
155 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
156 					 BPF_FUNC_skb_vlan_push),
157 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
158 		i++;
159 	}
160 
161 	for (j = 0; j < PUSH_CNT; j++) {
162 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
163 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
164 		i++;
165 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
166 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
167 					 BPF_FUNC_skb_vlan_pop),
168 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
169 		i++;
170 	}
171 	if (++k < 5)
172 		goto loop;
173 
174 	for (; i < len - 3; i++)
175 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
176 	insn[len - 3] = BPF_JMP_A(1);
177 	/* error label */
178 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
179 	insn[len - 1] = BPF_EXIT_INSN();
180 	self->prog_len = len;
181 }
182 
183 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
184 {
185 	struct bpf_insn *insn = self->fill_insns;
186 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
187 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
188 	 * to extend the error value of the inlined ld_abs sequence which then
189 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
190 	 * work on all arches.
191 	 */
192 	unsigned int len = (1 << 15) / 7;
193 	int i = 0;
194 
195 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
196 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
197 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
198 	i++;
199 	while (i < len - 1)
200 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
201 	insn[i] = BPF_EXIT_INSN();
202 	self->prog_len = i + 1;
203 }
204 
205 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
206 {
207 	struct bpf_insn *insn = self->fill_insns;
208 	uint64_t res = 0;
209 	int i = 0;
210 
211 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
212 	while (i < self->retval) {
213 		uint64_t val = bpf_semi_rand_get();
214 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
215 
216 		res ^= val;
217 		insn[i++] = tmp[0];
218 		insn[i++] = tmp[1];
219 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
220 	}
221 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
222 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
223 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
224 	insn[i] = BPF_EXIT_INSN();
225 	self->prog_len = i + 1;
226 	res ^= (res >> 32);
227 	self->retval = (uint32_t)res;
228 }
229 
230 #define MAX_JMP_SEQ 8192
231 
232 /* test the sequence of 8k jumps */
233 static void bpf_fill_scale1(struct bpf_test *self)
234 {
235 	struct bpf_insn *insn = self->fill_insns;
236 	int i = 0, k = 0;
237 
238 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
239 	/* test to check that the long sequence of jumps is acceptable */
240 	while (k++ < MAX_JMP_SEQ) {
241 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
242 					 BPF_FUNC_get_prandom_u32);
243 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
244 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
245 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
246 					-8 * (k % 64 + 1));
247 	}
248 	/* is_state_visited() doesn't allocate state for pruning for every jump.
249 	 * Hence multiply jmps by 4 to accommodate that heuristic
250 	 */
251 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
252 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
253 	insn[i] = BPF_EXIT_INSN();
254 	self->prog_len = i + 1;
255 	self->retval = 42;
256 }
257 
258 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
259 static void bpf_fill_scale2(struct bpf_test *self)
260 {
261 	struct bpf_insn *insn = self->fill_insns;
262 	int i = 0, k = 0;
263 
264 #define FUNC_NEST 7
265 	for (k = 0; k < FUNC_NEST; k++) {
266 		insn[i++] = BPF_CALL_REL(1);
267 		insn[i++] = BPF_EXIT_INSN();
268 	}
269 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
270 	/* test to check that the long sequence of jumps is acceptable */
271 	k = 0;
272 	while (k++ < MAX_JMP_SEQ) {
273 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
274 					 BPF_FUNC_get_prandom_u32);
275 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
276 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
277 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
278 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
279 	}
280 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
281 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
282 	insn[i] = BPF_EXIT_INSN();
283 	self->prog_len = i + 1;
284 	self->retval = 42;
285 }
286 
287 static void bpf_fill_scale(struct bpf_test *self)
288 {
289 	switch (self->retval) {
290 	case 1:
291 		return bpf_fill_scale1(self);
292 	case 2:
293 		return bpf_fill_scale2(self);
294 	default:
295 		self->prog_len = 0;
296 		break;
297 	}
298 }
299 
300 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
301 #define BPF_SK_LOOKUP(func)						\
302 	/* struct bpf_sock_tuple tuple = {} */				\
303 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
304 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
305 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
306 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
307 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
308 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
309 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
310 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
311 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
312 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
313 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
314 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
315 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
316 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
317 
318 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
319  * value into 0 and does necessary preparation for direct packet access
320  * through r2. The allowed access range is 8 bytes.
321  */
322 #define BPF_DIRECT_PKT_R2						\
323 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
324 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
325 		    offsetof(struct __sk_buff, data)),			\
326 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
327 		    offsetof(struct __sk_buff, data_end)),		\
328 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
329 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
330 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
331 	BPF_EXIT_INSN()
332 
333 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
334  * positive u32, and zero-extend it into 64-bit.
335  */
336 #define BPF_RAND_UEXT_R7						\
337 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
338 		     BPF_FUNC_get_prandom_u32),				\
339 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
340 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
341 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
342 
343 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
344  * negative u32, and sign-extend it into 64-bit.
345  */
346 #define BPF_RAND_SEXT_R7						\
347 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
348 		     BPF_FUNC_get_prandom_u32),				\
349 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
350 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
351 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
352 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
353 
354 static struct bpf_test tests[] = {
355 #define FILL_ARRAY
356 #include <verifier/tests.h>
357 #undef FILL_ARRAY
358 };
359 
360 static int probe_filter_length(const struct bpf_insn *fp)
361 {
362 	int len;
363 
364 	for (len = MAX_INSNS - 1; len > 0; --len)
365 		if (fp[len].code != 0 || fp[len].imm != 0)
366 			break;
367 	return len + 1;
368 }
369 
370 static bool skip_unsupported_map(enum bpf_map_type map_type)
371 {
372 	if (!bpf_probe_map_type(map_type, 0)) {
373 		printf("SKIP (unsupported map type %d)\n", map_type);
374 		skips++;
375 		return true;
376 	}
377 	return false;
378 }
379 
380 static int __create_map(uint32_t type, uint32_t size_key,
381 			uint32_t size_value, uint32_t max_elem,
382 			uint32_t extra_flags)
383 {
384 	int fd;
385 
386 	fd = bpf_create_map(type, size_key, size_value, max_elem,
387 			    (type == BPF_MAP_TYPE_HASH ?
388 			     BPF_F_NO_PREALLOC : 0) | extra_flags);
389 	if (fd < 0) {
390 		if (skip_unsupported_map(type))
391 			return -1;
392 		printf("Failed to create hash map '%s'!\n", strerror(errno));
393 	}
394 
395 	return fd;
396 }
397 
398 static int create_map(uint32_t type, uint32_t size_key,
399 		      uint32_t size_value, uint32_t max_elem)
400 {
401 	return __create_map(type, size_key, size_value, max_elem, 0);
402 }
403 
404 static void update_map(int fd, int index)
405 {
406 	struct test_val value = {
407 		.index = (6 + 1) * sizeof(int),
408 		.foo[6] = 0xabcdef12,
409 	};
410 
411 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
412 }
413 
414 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
415 {
416 	struct bpf_insn prog[] = {
417 		BPF_MOV64_IMM(BPF_REG_0, ret),
418 		BPF_EXIT_INSN(),
419 	};
420 
421 	return bpf_load_program(prog_type, prog,
422 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
423 }
424 
425 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
426 				  int idx, int ret)
427 {
428 	struct bpf_insn prog[] = {
429 		BPF_MOV64_IMM(BPF_REG_3, idx),
430 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
431 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
432 			     BPF_FUNC_tail_call),
433 		BPF_MOV64_IMM(BPF_REG_0, ret),
434 		BPF_EXIT_INSN(),
435 	};
436 
437 	return bpf_load_program(prog_type, prog,
438 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
439 }
440 
441 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
442 			     int p1key, int p2key, int p3key)
443 {
444 	int mfd, p1fd, p2fd, p3fd;
445 
446 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
447 			     sizeof(int), max_elem, 0);
448 	if (mfd < 0) {
449 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
450 			return -1;
451 		printf("Failed to create prog array '%s'!\n", strerror(errno));
452 		return -1;
453 	}
454 
455 	p1fd = create_prog_dummy_simple(prog_type, 42);
456 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
457 	p3fd = create_prog_dummy_simple(prog_type, 24);
458 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
459 		goto err;
460 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
461 		goto err;
462 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
463 		goto err;
464 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
465 err:
466 		close(mfd);
467 		mfd = -1;
468 	}
469 	close(p3fd);
470 	close(p2fd);
471 	close(p1fd);
472 	return mfd;
473 }
474 
475 static int create_map_in_map(void)
476 {
477 	int inner_map_fd, outer_map_fd;
478 
479 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
480 				      sizeof(int), 1, 0);
481 	if (inner_map_fd < 0) {
482 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
483 			return -1;
484 		printf("Failed to create array '%s'!\n", strerror(errno));
485 		return inner_map_fd;
486 	}
487 
488 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
489 					     sizeof(int), inner_map_fd, 1, 0);
490 	if (outer_map_fd < 0) {
491 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
492 			return -1;
493 		printf("Failed to create array of maps '%s'!\n",
494 		       strerror(errno));
495 	}
496 
497 	close(inner_map_fd);
498 
499 	return outer_map_fd;
500 }
501 
502 static int create_cgroup_storage(bool percpu)
503 {
504 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
505 		BPF_MAP_TYPE_CGROUP_STORAGE;
506 	int fd;
507 
508 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
509 			    TEST_DATA_LEN, 0, 0);
510 	if (fd < 0) {
511 		if (skip_unsupported_map(type))
512 			return -1;
513 		printf("Failed to create cgroup storage '%s'!\n",
514 		       strerror(errno));
515 	}
516 
517 	return fd;
518 }
519 
520 /* struct bpf_spin_lock {
521  *   int val;
522  * };
523  * struct val {
524  *   int cnt;
525  *   struct bpf_spin_lock l;
526  * };
527  */
528 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
529 static __u32 btf_raw_types[] = {
530 	/* int */
531 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
532 	/* struct bpf_spin_lock */                      /* [2] */
533 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
534 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
535 	/* struct val */                                /* [3] */
536 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
537 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
538 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
539 };
540 
541 static int load_btf(void)
542 {
543 	struct btf_header hdr = {
544 		.magic = BTF_MAGIC,
545 		.version = BTF_VERSION,
546 		.hdr_len = sizeof(struct btf_header),
547 		.type_len = sizeof(btf_raw_types),
548 		.str_off = sizeof(btf_raw_types),
549 		.str_len = sizeof(btf_str_sec),
550 	};
551 	void *ptr, *raw_btf;
552 	int btf_fd;
553 
554 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
555 			       sizeof(btf_str_sec));
556 
557 	memcpy(ptr, &hdr, sizeof(hdr));
558 	ptr += sizeof(hdr);
559 	memcpy(ptr, btf_raw_types, hdr.type_len);
560 	ptr += hdr.type_len;
561 	memcpy(ptr, btf_str_sec, hdr.str_len);
562 	ptr += hdr.str_len;
563 
564 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
565 	free(raw_btf);
566 	if (btf_fd < 0)
567 		return -1;
568 	return btf_fd;
569 }
570 
571 static int create_map_spin_lock(void)
572 {
573 	struct bpf_create_map_attr attr = {
574 		.name = "test_map",
575 		.map_type = BPF_MAP_TYPE_ARRAY,
576 		.key_size = 4,
577 		.value_size = 8,
578 		.max_entries = 1,
579 		.btf_key_type_id = 1,
580 		.btf_value_type_id = 3,
581 	};
582 	int fd, btf_fd;
583 
584 	btf_fd = load_btf();
585 	if (btf_fd < 0)
586 		return -1;
587 	attr.btf_fd = btf_fd;
588 	fd = bpf_create_map_xattr(&attr);
589 	if (fd < 0)
590 		printf("Failed to create map with spin_lock\n");
591 	return fd;
592 }
593 
594 static int create_sk_storage_map(void)
595 {
596 	struct bpf_create_map_attr attr = {
597 		.name = "test_map",
598 		.map_type = BPF_MAP_TYPE_SK_STORAGE,
599 		.key_size = 4,
600 		.value_size = 8,
601 		.max_entries = 0,
602 		.map_flags = BPF_F_NO_PREALLOC,
603 		.btf_key_type_id = 1,
604 		.btf_value_type_id = 3,
605 	};
606 	int fd, btf_fd;
607 
608 	btf_fd = load_btf();
609 	if (btf_fd < 0)
610 		return -1;
611 	attr.btf_fd = btf_fd;
612 	fd = bpf_create_map_xattr(&attr);
613 	close(attr.btf_fd);
614 	if (fd < 0)
615 		printf("Failed to create sk_storage_map\n");
616 	return fd;
617 }
618 
619 static char bpf_vlog[UINT_MAX >> 8];
620 
621 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
622 			  struct bpf_insn *prog, int *map_fds)
623 {
624 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
625 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
626 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
627 	int *fixup_map_array_48b = test->fixup_map_array_48b;
628 	int *fixup_map_sockmap = test->fixup_map_sockmap;
629 	int *fixup_map_sockhash = test->fixup_map_sockhash;
630 	int *fixup_map_xskmap = test->fixup_map_xskmap;
631 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
632 	int *fixup_prog1 = test->fixup_prog1;
633 	int *fixup_prog2 = test->fixup_prog2;
634 	int *fixup_map_in_map = test->fixup_map_in_map;
635 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
636 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
637 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
638 	int *fixup_map_array_ro = test->fixup_map_array_ro;
639 	int *fixup_map_array_wo = test->fixup_map_array_wo;
640 	int *fixup_map_array_small = test->fixup_map_array_small;
641 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
642 	int *fixup_map_event_output = test->fixup_map_event_output;
643 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
644 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
645 
646 	if (test->fill_helper) {
647 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
648 		test->fill_helper(test);
649 	}
650 
651 	/* Allocating HTs with 1 elem is fine here, since we only test
652 	 * for verifier and not do a runtime lookup, so the only thing
653 	 * that really matters is value size in this case.
654 	 */
655 	if (*fixup_map_hash_8b) {
656 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
657 					sizeof(long long), 1);
658 		do {
659 			prog[*fixup_map_hash_8b].imm = map_fds[0];
660 			fixup_map_hash_8b++;
661 		} while (*fixup_map_hash_8b);
662 	}
663 
664 	if (*fixup_map_hash_48b) {
665 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
666 					sizeof(struct test_val), 1);
667 		do {
668 			prog[*fixup_map_hash_48b].imm = map_fds[1];
669 			fixup_map_hash_48b++;
670 		} while (*fixup_map_hash_48b);
671 	}
672 
673 	if (*fixup_map_hash_16b) {
674 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
675 					sizeof(struct other_val), 1);
676 		do {
677 			prog[*fixup_map_hash_16b].imm = map_fds[2];
678 			fixup_map_hash_16b++;
679 		} while (*fixup_map_hash_16b);
680 	}
681 
682 	if (*fixup_map_array_48b) {
683 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
684 					sizeof(struct test_val), 1);
685 		update_map(map_fds[3], 0);
686 		do {
687 			prog[*fixup_map_array_48b].imm = map_fds[3];
688 			fixup_map_array_48b++;
689 		} while (*fixup_map_array_48b);
690 	}
691 
692 	if (*fixup_prog1) {
693 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
694 		do {
695 			prog[*fixup_prog1].imm = map_fds[4];
696 			fixup_prog1++;
697 		} while (*fixup_prog1);
698 	}
699 
700 	if (*fixup_prog2) {
701 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
702 		do {
703 			prog[*fixup_prog2].imm = map_fds[5];
704 			fixup_prog2++;
705 		} while (*fixup_prog2);
706 	}
707 
708 	if (*fixup_map_in_map) {
709 		map_fds[6] = create_map_in_map();
710 		do {
711 			prog[*fixup_map_in_map].imm = map_fds[6];
712 			fixup_map_in_map++;
713 		} while (*fixup_map_in_map);
714 	}
715 
716 	if (*fixup_cgroup_storage) {
717 		map_fds[7] = create_cgroup_storage(false);
718 		do {
719 			prog[*fixup_cgroup_storage].imm = map_fds[7];
720 			fixup_cgroup_storage++;
721 		} while (*fixup_cgroup_storage);
722 	}
723 
724 	if (*fixup_percpu_cgroup_storage) {
725 		map_fds[8] = create_cgroup_storage(true);
726 		do {
727 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
728 			fixup_percpu_cgroup_storage++;
729 		} while (*fixup_percpu_cgroup_storage);
730 	}
731 	if (*fixup_map_sockmap) {
732 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
733 					sizeof(int), 1);
734 		do {
735 			prog[*fixup_map_sockmap].imm = map_fds[9];
736 			fixup_map_sockmap++;
737 		} while (*fixup_map_sockmap);
738 	}
739 	if (*fixup_map_sockhash) {
740 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
741 					sizeof(int), 1);
742 		do {
743 			prog[*fixup_map_sockhash].imm = map_fds[10];
744 			fixup_map_sockhash++;
745 		} while (*fixup_map_sockhash);
746 	}
747 	if (*fixup_map_xskmap) {
748 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
749 					sizeof(int), 1);
750 		do {
751 			prog[*fixup_map_xskmap].imm = map_fds[11];
752 			fixup_map_xskmap++;
753 		} while (*fixup_map_xskmap);
754 	}
755 	if (*fixup_map_stacktrace) {
756 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
757 					 sizeof(u64), 1);
758 		do {
759 			prog[*fixup_map_stacktrace].imm = map_fds[12];
760 			fixup_map_stacktrace++;
761 		} while (*fixup_map_stacktrace);
762 	}
763 	if (*fixup_map_spin_lock) {
764 		map_fds[13] = create_map_spin_lock();
765 		do {
766 			prog[*fixup_map_spin_lock].imm = map_fds[13];
767 			fixup_map_spin_lock++;
768 		} while (*fixup_map_spin_lock);
769 	}
770 	if (*fixup_map_array_ro) {
771 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
772 					   sizeof(struct test_val), 1,
773 					   BPF_F_RDONLY_PROG);
774 		update_map(map_fds[14], 0);
775 		do {
776 			prog[*fixup_map_array_ro].imm = map_fds[14];
777 			fixup_map_array_ro++;
778 		} while (*fixup_map_array_ro);
779 	}
780 	if (*fixup_map_array_wo) {
781 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
782 					   sizeof(struct test_val), 1,
783 					   BPF_F_WRONLY_PROG);
784 		update_map(map_fds[15], 0);
785 		do {
786 			prog[*fixup_map_array_wo].imm = map_fds[15];
787 			fixup_map_array_wo++;
788 		} while (*fixup_map_array_wo);
789 	}
790 	if (*fixup_map_array_small) {
791 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
792 					   1, 1, 0);
793 		update_map(map_fds[16], 0);
794 		do {
795 			prog[*fixup_map_array_small].imm = map_fds[16];
796 			fixup_map_array_small++;
797 		} while (*fixup_map_array_small);
798 	}
799 	if (*fixup_sk_storage_map) {
800 		map_fds[17] = create_sk_storage_map();
801 		do {
802 			prog[*fixup_sk_storage_map].imm = map_fds[17];
803 			fixup_sk_storage_map++;
804 		} while (*fixup_sk_storage_map);
805 	}
806 	if (*fixup_map_event_output) {
807 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
808 					   sizeof(int), sizeof(int), 1, 0);
809 		do {
810 			prog[*fixup_map_event_output].imm = map_fds[18];
811 			fixup_map_event_output++;
812 		} while (*fixup_map_event_output);
813 	}
814 	if (*fixup_map_reuseport_array) {
815 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
816 					   sizeof(u32), sizeof(u64), 1, 0);
817 		do {
818 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
819 			fixup_map_reuseport_array++;
820 		} while (*fixup_map_reuseport_array);
821 	}
822 	if (*fixup_map_ringbuf) {
823 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
824 					   0, 4096);
825 		do {
826 			prog[*fixup_map_ringbuf].imm = map_fds[20];
827 			fixup_map_ringbuf++;
828 		} while (*fixup_map_ringbuf);
829 	}
830 }
831 
832 struct libcap {
833 	struct __user_cap_header_struct hdr;
834 	struct __user_cap_data_struct data[2];
835 };
836 
837 static int set_admin(bool admin)
838 {
839 	cap_t caps;
840 	/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
841 	const cap_value_t cap_net_admin = CAP_NET_ADMIN;
842 	const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
843 	struct libcap *cap;
844 	int ret = -1;
845 
846 	caps = cap_get_proc();
847 	if (!caps) {
848 		perror("cap_get_proc");
849 		return -1;
850 	}
851 	cap = (struct libcap *)caps;
852 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
853 		perror("cap_set_flag clear admin");
854 		goto out;
855 	}
856 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
857 				admin ? CAP_SET : CAP_CLEAR)) {
858 		perror("cap_set_flag set_or_clear net");
859 		goto out;
860 	}
861 	/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
862 	 * so update effective bits manually
863 	 */
864 	if (admin) {
865 		cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
866 		cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
867 	} else {
868 		cap->data[1].effective &= ~(1 << (38 - 32));
869 		cap->data[1].effective &= ~(1 << (39 - 32));
870 	}
871 	if (cap_set_proc(caps)) {
872 		perror("cap_set_proc");
873 		goto out;
874 	}
875 	ret = 0;
876 out:
877 	if (cap_free(caps))
878 		perror("cap_free");
879 	return ret;
880 }
881 
882 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
883 			    void *data, size_t size_data)
884 {
885 	__u8 tmp[TEST_DATA_LEN << 2];
886 	__u32 size_tmp = sizeof(tmp);
887 	uint32_t retval;
888 	int err, saved_errno;
889 
890 	if (unpriv)
891 		set_admin(true);
892 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
893 				tmp, &size_tmp, &retval, NULL);
894 	saved_errno = errno;
895 
896 	if (unpriv)
897 		set_admin(false);
898 
899 	if (err) {
900 		switch (saved_errno) {
901 		case 524/*ENOTSUPP*/:
902 			printf("Did not run the program (not supported) ");
903 			return 0;
904 		case EPERM:
905 			if (unpriv) {
906 				printf("Did not run the program (no permission) ");
907 				return 0;
908 			}
909 			/* fallthrough; */
910 		default:
911 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
912 				strerror(saved_errno));
913 			return err;
914 		}
915 	}
916 
917 	if (retval != expected_val &&
918 	    expected_val != POINTER_VALUE) {
919 		printf("FAIL retval %d != %d ", retval, expected_val);
920 		return 1;
921 	}
922 
923 	return 0;
924 }
925 
926 static bool cmp_str_seq(const char *log, const char *exp)
927 {
928 	char needle[80];
929 	const char *p, *q;
930 	int len;
931 
932 	do {
933 		p = strchr(exp, '\t');
934 		if (!p)
935 			p = exp + strlen(exp);
936 
937 		len = p - exp;
938 		if (len >= sizeof(needle) || !len) {
939 			printf("FAIL\nTestcase bug\n");
940 			return false;
941 		}
942 		strncpy(needle, exp, len);
943 		needle[len] = 0;
944 		q = strstr(log, needle);
945 		if (!q) {
946 			printf("FAIL\nUnexpected verifier log in successful load!\n"
947 			       "EXP: %s\nRES:\n", needle);
948 			return false;
949 		}
950 		log = q + len;
951 		exp = p + 1;
952 	} while (*p);
953 	return true;
954 }
955 
956 static void do_test_single(struct bpf_test *test, bool unpriv,
957 			   int *passes, int *errors)
958 {
959 	int fd_prog, expected_ret, alignment_prevented_execution;
960 	int prog_len, prog_type = test->prog_type;
961 	struct bpf_insn *prog = test->insns;
962 	struct bpf_load_program_attr attr;
963 	int run_errs, run_successes;
964 	int map_fds[MAX_NR_MAPS];
965 	const char *expected_err;
966 	int saved_errno;
967 	int fixup_skips;
968 	__u32 pflags;
969 	int i, err;
970 
971 	for (i = 0; i < MAX_NR_MAPS; i++)
972 		map_fds[i] = -1;
973 
974 	if (!prog_type)
975 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
976 	fixup_skips = skips;
977 	do_test_fixup(test, prog_type, prog, map_fds);
978 	if (test->fill_insns) {
979 		prog = test->fill_insns;
980 		prog_len = test->prog_len;
981 	} else {
982 		prog_len = probe_filter_length(prog);
983 	}
984 	/* If there were some map skips during fixup due to missing bpf
985 	 * features, skip this test.
986 	 */
987 	if (fixup_skips != skips)
988 		return;
989 
990 	pflags = BPF_F_TEST_RND_HI32;
991 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
992 		pflags |= BPF_F_STRICT_ALIGNMENT;
993 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
994 		pflags |= BPF_F_ANY_ALIGNMENT;
995 	if (test->flags & ~3)
996 		pflags |= test->flags;
997 
998 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
999 		       test->result_unpriv : test->result;
1000 	expected_err = unpriv && test->errstr_unpriv ?
1001 		       test->errstr_unpriv : test->errstr;
1002 	memset(&attr, 0, sizeof(attr));
1003 	attr.prog_type = prog_type;
1004 	attr.expected_attach_type = test->expected_attach_type;
1005 	attr.insns = prog;
1006 	attr.insns_cnt = prog_len;
1007 	attr.license = "GPL";
1008 	if (verbose)
1009 		attr.log_level = 1;
1010 	else if (expected_ret == VERBOSE_ACCEPT)
1011 		attr.log_level = 2;
1012 	else
1013 		attr.log_level = 4;
1014 	attr.prog_flags = pflags;
1015 
1016 	if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1017 		attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1018 						attr.expected_attach_type);
1019 		if (attr.attach_btf_id < 0) {
1020 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1021 				test->kfunc);
1022 			(*errors)++;
1023 			return;
1024 		}
1025 	}
1026 
1027 	fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
1028 	saved_errno = errno;
1029 
1030 	/* BPF_PROG_TYPE_TRACING requires more setup and
1031 	 * bpf_probe_prog_type won't give correct answer
1032 	 */
1033 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1034 	    !bpf_probe_prog_type(prog_type, 0)) {
1035 		printf("SKIP (unsupported program type %d)\n", prog_type);
1036 		skips++;
1037 		goto close_fds;
1038 	}
1039 
1040 	alignment_prevented_execution = 0;
1041 
1042 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1043 		if (fd_prog < 0) {
1044 			printf("FAIL\nFailed to load prog '%s'!\n",
1045 			       strerror(saved_errno));
1046 			goto fail_log;
1047 		}
1048 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1049 		if (fd_prog >= 0 &&
1050 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1051 			alignment_prevented_execution = 1;
1052 #endif
1053 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1054 			goto fail_log;
1055 		}
1056 	} else {
1057 		if (fd_prog >= 0) {
1058 			printf("FAIL\nUnexpected success to load!\n");
1059 			goto fail_log;
1060 		}
1061 		if (!expected_err || !strstr(bpf_vlog, expected_err)) {
1062 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1063 			      expected_err, bpf_vlog);
1064 			goto fail_log;
1065 		}
1066 	}
1067 
1068 	if (test->insn_processed) {
1069 		uint32_t insn_processed;
1070 		char *proc;
1071 
1072 		proc = strstr(bpf_vlog, "processed ");
1073 		insn_processed = atoi(proc + 10);
1074 		if (test->insn_processed != insn_processed) {
1075 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1076 			       insn_processed, test->insn_processed);
1077 			goto fail_log;
1078 		}
1079 	}
1080 
1081 	if (verbose)
1082 		printf(", verifier log:\n%s", bpf_vlog);
1083 
1084 	run_errs = 0;
1085 	run_successes = 0;
1086 	if (!alignment_prevented_execution && fd_prog >= 0) {
1087 		uint32_t expected_val;
1088 		int i;
1089 
1090 		if (!test->runs)
1091 			test->runs = 1;
1092 
1093 		for (i = 0; i < test->runs; i++) {
1094 			if (unpriv && test->retvals[i].retval_unpriv)
1095 				expected_val = test->retvals[i].retval_unpriv;
1096 			else
1097 				expected_val = test->retvals[i].retval;
1098 
1099 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1100 					       test->retvals[i].data,
1101 					       sizeof(test->retvals[i].data));
1102 			if (err) {
1103 				printf("(run %d/%d) ", i + 1, test->runs);
1104 				run_errs++;
1105 			} else {
1106 				run_successes++;
1107 			}
1108 		}
1109 	}
1110 
1111 	if (!run_errs) {
1112 		(*passes)++;
1113 		if (run_successes > 1)
1114 			printf("%d cases ", run_successes);
1115 		printf("OK");
1116 		if (alignment_prevented_execution)
1117 			printf(" (NOTE: not executed due to unknown alignment)");
1118 		printf("\n");
1119 	} else {
1120 		printf("\n");
1121 		goto fail_log;
1122 	}
1123 close_fds:
1124 	if (test->fill_insns)
1125 		free(test->fill_insns);
1126 	close(fd_prog);
1127 	for (i = 0; i < MAX_NR_MAPS; i++)
1128 		close(map_fds[i]);
1129 	sched_yield();
1130 	return;
1131 fail_log:
1132 	(*errors)++;
1133 	printf("%s", bpf_vlog);
1134 	goto close_fds;
1135 }
1136 
1137 static bool is_admin(void)
1138 {
1139 	cap_flag_value_t net_priv = CAP_CLEAR;
1140 	bool perfmon_priv = false;
1141 	bool bpf_priv = false;
1142 	struct libcap *cap;
1143 	cap_t caps;
1144 
1145 #ifdef CAP_IS_SUPPORTED
1146 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1147 		perror("cap_get_flag");
1148 		return false;
1149 	}
1150 #endif
1151 	caps = cap_get_proc();
1152 	if (!caps) {
1153 		perror("cap_get_proc");
1154 		return false;
1155 	}
1156 	cap = (struct libcap *)caps;
1157 	bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1158 	perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1159 	if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1160 		perror("cap_get_flag NET");
1161 	if (cap_free(caps))
1162 		perror("cap_free");
1163 	return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1164 }
1165 
1166 static void get_unpriv_disabled()
1167 {
1168 	char buf[2];
1169 	FILE *fd;
1170 
1171 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1172 	if (!fd) {
1173 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1174 		unpriv_disabled = true;
1175 		return;
1176 	}
1177 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1178 		unpriv_disabled = true;
1179 	fclose(fd);
1180 }
1181 
1182 static bool test_as_unpriv(struct bpf_test *test)
1183 {
1184 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1185 	/* Some architectures have strict alignment requirements. In
1186 	 * that case, the BPF verifier detects if a program has
1187 	 * unaligned accesses and rejects them. A user can pass
1188 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1189 	 * check. That, however, will only work when a privileged user
1190 	 * loads a program. An unprivileged user loading a program
1191 	 * with this flag will be rejected prior entering the
1192 	 * verifier.
1193 	 */
1194 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1195 		return false;
1196 #endif
1197 	return !test->prog_type ||
1198 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1199 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1200 }
1201 
1202 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1203 {
1204 	int i, passes = 0, errors = 0;
1205 
1206 	for (i = from; i < to; i++) {
1207 		struct bpf_test *test = &tests[i];
1208 
1209 		/* Program types that are not supported by non-root we
1210 		 * skip right away.
1211 		 */
1212 		if (test_as_unpriv(test) && unpriv_disabled) {
1213 			printf("#%d/u %s SKIP\n", i, test->descr);
1214 			skips++;
1215 		} else if (test_as_unpriv(test)) {
1216 			if (!unpriv)
1217 				set_admin(false);
1218 			printf("#%d/u %s ", i, test->descr);
1219 			do_test_single(test, true, &passes, &errors);
1220 			if (!unpriv)
1221 				set_admin(true);
1222 		}
1223 
1224 		if (unpriv) {
1225 			printf("#%d/p %s SKIP\n", i, test->descr);
1226 			skips++;
1227 		} else {
1228 			printf("#%d/p %s ", i, test->descr);
1229 			do_test_single(test, false, &passes, &errors);
1230 		}
1231 	}
1232 
1233 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1234 	       skips, errors);
1235 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1236 }
1237 
1238 int main(int argc, char **argv)
1239 {
1240 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1241 	bool unpriv = !is_admin();
1242 	int arg = 1;
1243 
1244 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1245 		arg++;
1246 		verbose = true;
1247 		argc--;
1248 	}
1249 
1250 	if (argc == 3) {
1251 		unsigned int l = atoi(argv[arg]);
1252 		unsigned int u = atoi(argv[arg + 1]);
1253 
1254 		if (l < to && u < to) {
1255 			from = l;
1256 			to   = u + 1;
1257 		}
1258 	} else if (argc == 2) {
1259 		unsigned int t = atoi(argv[arg]);
1260 
1261 		if (t < to) {
1262 			from = t;
1263 			to   = t + 1;
1264 		}
1265 	}
1266 
1267 	get_unpriv_disabled();
1268 	if (unpriv && unpriv_disabled) {
1269 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1270 		       UNPRIV_SYSCTL);
1271 		return EXIT_FAILURE;
1272 	}
1273 
1274 	bpf_semi_rand_init();
1275 	return do_test(unpriv, from, to);
1276 }
1277