1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 21 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 static bool verbose = false; 65 66 struct bpf_test { 67 const char *descr; 68 struct bpf_insn insns[MAX_INSNS]; 69 struct bpf_insn *fill_insns; 70 int fixup_map_hash_8b[MAX_FIXUPS]; 71 int fixup_map_hash_48b[MAX_FIXUPS]; 72 int fixup_map_hash_16b[MAX_FIXUPS]; 73 int fixup_map_array_48b[MAX_FIXUPS]; 74 int fixup_map_sockmap[MAX_FIXUPS]; 75 int fixup_map_sockhash[MAX_FIXUPS]; 76 int fixup_map_xskmap[MAX_FIXUPS]; 77 int fixup_map_stacktrace[MAX_FIXUPS]; 78 int fixup_prog1[MAX_FIXUPS]; 79 int fixup_prog2[MAX_FIXUPS]; 80 int fixup_map_in_map[MAX_FIXUPS]; 81 int fixup_cgroup_storage[MAX_FIXUPS]; 82 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 83 int fixup_map_spin_lock[MAX_FIXUPS]; 84 int fixup_map_array_ro[MAX_FIXUPS]; 85 int fixup_map_array_wo[MAX_FIXUPS]; 86 int fixup_map_array_small[MAX_FIXUPS]; 87 int fixup_sk_storage_map[MAX_FIXUPS]; 88 int fixup_map_event_output[MAX_FIXUPS]; 89 int fixup_map_reuseport_array[MAX_FIXUPS]; 90 int fixup_map_ringbuf[MAX_FIXUPS]; 91 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 92 * Can be a tab-separated sequence of expected strings. An empty string 93 * means no log verification. 94 */ 95 const char *errstr; 96 const char *errstr_unpriv; 97 uint32_t insn_processed; 98 int prog_len; 99 enum { 100 UNDEF, 101 ACCEPT, 102 REJECT, 103 VERBOSE_ACCEPT, 104 } result, result_unpriv; 105 enum bpf_prog_type prog_type; 106 uint8_t flags; 107 void (*fill_helper)(struct bpf_test *self); 108 int runs; 109 #define bpf_testdata_struct_t \ 110 struct { \ 111 uint32_t retval, retval_unpriv; \ 112 union { \ 113 __u8 data[TEST_DATA_LEN]; \ 114 __u64 data64[TEST_DATA_LEN / 8]; \ 115 }; \ 116 } 117 union { 118 bpf_testdata_struct_t; 119 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 120 }; 121 enum bpf_attach_type expected_attach_type; 122 const char *kfunc; 123 }; 124 125 /* Note we want this to be 64 bit aligned so that the end of our array is 126 * actually the end of the structure. 127 */ 128 #define MAX_ENTRIES 11 129 130 struct test_val { 131 unsigned int index; 132 int foo[MAX_ENTRIES]; 133 }; 134 135 struct other_val { 136 long long foo; 137 long long bar; 138 }; 139 140 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 141 { 142 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 143 #define PUSH_CNT 51 144 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 145 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 146 struct bpf_insn *insn = self->fill_insns; 147 int i = 0, j, k = 0; 148 149 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 150 loop: 151 for (j = 0; j < PUSH_CNT; j++) { 152 insn[i++] = BPF_LD_ABS(BPF_B, 0); 153 /* jump to error label */ 154 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 155 i++; 156 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 157 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 158 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 159 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 160 BPF_FUNC_skb_vlan_push), 161 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 162 i++; 163 } 164 165 for (j = 0; j < PUSH_CNT; j++) { 166 insn[i++] = BPF_LD_ABS(BPF_B, 0); 167 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 168 i++; 169 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 170 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 171 BPF_FUNC_skb_vlan_pop), 172 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 173 i++; 174 } 175 if (++k < 5) 176 goto loop; 177 178 for (; i < len - 3; i++) 179 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 180 insn[len - 3] = BPF_JMP_A(1); 181 /* error label */ 182 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 183 insn[len - 1] = BPF_EXIT_INSN(); 184 self->prog_len = len; 185 } 186 187 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 188 { 189 struct bpf_insn *insn = self->fill_insns; 190 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 191 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 192 * to extend the error value of the inlined ld_abs sequence which then 193 * contains 7 insns. so, set the dividend to 7 so the testcase could 194 * work on all arches. 195 */ 196 unsigned int len = (1 << 15) / 7; 197 int i = 0; 198 199 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 200 insn[i++] = BPF_LD_ABS(BPF_B, 0); 201 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 202 i++; 203 while (i < len - 1) 204 insn[i++] = BPF_LD_ABS(BPF_B, 1); 205 insn[i] = BPF_EXIT_INSN(); 206 self->prog_len = i + 1; 207 } 208 209 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 210 { 211 struct bpf_insn *insn = self->fill_insns; 212 uint64_t res = 0; 213 int i = 0; 214 215 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 216 while (i < self->retval) { 217 uint64_t val = bpf_semi_rand_get(); 218 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 219 220 res ^= val; 221 insn[i++] = tmp[0]; 222 insn[i++] = tmp[1]; 223 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 224 } 225 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 226 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 227 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 228 insn[i] = BPF_EXIT_INSN(); 229 self->prog_len = i + 1; 230 res ^= (res >> 32); 231 self->retval = (uint32_t)res; 232 } 233 234 #define MAX_JMP_SEQ 8192 235 236 /* test the sequence of 8k jumps */ 237 static void bpf_fill_scale1(struct bpf_test *self) 238 { 239 struct bpf_insn *insn = self->fill_insns; 240 int i = 0, k = 0; 241 242 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 243 /* test to check that the long sequence of jumps is acceptable */ 244 while (k++ < MAX_JMP_SEQ) { 245 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 246 BPF_FUNC_get_prandom_u32); 247 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 248 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 249 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 250 -8 * (k % 64 + 1)); 251 } 252 /* is_state_visited() doesn't allocate state for pruning for every jump. 253 * Hence multiply jmps by 4 to accommodate that heuristic 254 */ 255 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 256 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 257 insn[i] = BPF_EXIT_INSN(); 258 self->prog_len = i + 1; 259 self->retval = 42; 260 } 261 262 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 263 static void bpf_fill_scale2(struct bpf_test *self) 264 { 265 struct bpf_insn *insn = self->fill_insns; 266 int i = 0, k = 0; 267 268 #define FUNC_NEST 7 269 for (k = 0; k < FUNC_NEST; k++) { 270 insn[i++] = BPF_CALL_REL(1); 271 insn[i++] = BPF_EXIT_INSN(); 272 } 273 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 274 /* test to check that the long sequence of jumps is acceptable */ 275 k = 0; 276 while (k++ < MAX_JMP_SEQ) { 277 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 278 BPF_FUNC_get_prandom_u32); 279 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 280 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 281 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 282 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 283 } 284 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 285 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 286 insn[i] = BPF_EXIT_INSN(); 287 self->prog_len = i + 1; 288 self->retval = 42; 289 } 290 291 static void bpf_fill_scale(struct bpf_test *self) 292 { 293 switch (self->retval) { 294 case 1: 295 return bpf_fill_scale1(self); 296 case 2: 297 return bpf_fill_scale2(self); 298 default: 299 self->prog_len = 0; 300 break; 301 } 302 } 303 304 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 305 { 306 unsigned int len = 259, hlen = 128; 307 int i; 308 309 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 310 for (i = 1; i <= hlen; i++) { 311 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 312 insn[i + hlen] = BPF_JMP_A(hlen - i); 313 } 314 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 315 insn[len - 1] = BPF_EXIT_INSN(); 316 317 return len; 318 } 319 320 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 321 { 322 unsigned int len = 4100, jmp_off = 2048; 323 int i, j; 324 325 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 326 for (i = 1; i <= jmp_off; i++) { 327 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 328 } 329 insn[i++] = BPF_JMP_A(jmp_off); 330 for (; i <= jmp_off * 2 + 1; i+=16) { 331 for (j = 0; j < 16; j++) { 332 insn[i + j] = BPF_JMP_A(16 - j - 1); 333 } 334 } 335 336 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 337 insn[len - 1] = BPF_EXIT_INSN(); 338 339 return len; 340 } 341 342 static void bpf_fill_torturous_jumps(struct bpf_test *self) 343 { 344 struct bpf_insn *insn = self->fill_insns; 345 int i = 0; 346 347 switch (self->retval) { 348 case 1: 349 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 350 return; 351 case 2: 352 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 353 return; 354 case 3: 355 /* main */ 356 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 357 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 358 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 359 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 360 insn[i++] = BPF_EXIT_INSN(); 361 362 /* subprog 1 */ 363 i += bpf_fill_torturous_jumps_insn_1(insn + i); 364 365 /* subprog 2 */ 366 i += bpf_fill_torturous_jumps_insn_2(insn + i); 367 368 self->prog_len = i; 369 return; 370 default: 371 self->prog_len = 0; 372 break; 373 } 374 } 375 376 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 377 #define BPF_SK_LOOKUP(func) \ 378 /* struct bpf_sock_tuple tuple = {} */ \ 379 BPF_MOV64_IMM(BPF_REG_2, 0), \ 380 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 381 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 382 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 383 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 384 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 385 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 386 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 387 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 388 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 389 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 390 BPF_MOV64_IMM(BPF_REG_4, 0), \ 391 BPF_MOV64_IMM(BPF_REG_5, 0), \ 392 BPF_EMIT_CALL(BPF_FUNC_ ## func) 393 394 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 395 * value into 0 and does necessary preparation for direct packet access 396 * through r2. The allowed access range is 8 bytes. 397 */ 398 #define BPF_DIRECT_PKT_R2 \ 399 BPF_MOV64_IMM(BPF_REG_0, 0), \ 400 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 401 offsetof(struct __sk_buff, data)), \ 402 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 403 offsetof(struct __sk_buff, data_end)), \ 404 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 405 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 406 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 407 BPF_EXIT_INSN() 408 409 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 410 * positive u32, and zero-extend it into 64-bit. 411 */ 412 #define BPF_RAND_UEXT_R7 \ 413 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 414 BPF_FUNC_get_prandom_u32), \ 415 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 416 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 417 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 418 419 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 420 * negative u32, and sign-extend it into 64-bit. 421 */ 422 #define BPF_RAND_SEXT_R7 \ 423 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 424 BPF_FUNC_get_prandom_u32), \ 425 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 426 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 427 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 428 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 429 430 static struct bpf_test tests[] = { 431 #define FILL_ARRAY 432 #include <verifier/tests.h> 433 #undef FILL_ARRAY 434 }; 435 436 static int probe_filter_length(const struct bpf_insn *fp) 437 { 438 int len; 439 440 for (len = MAX_INSNS - 1; len > 0; --len) 441 if (fp[len].code != 0 || fp[len].imm != 0) 442 break; 443 return len + 1; 444 } 445 446 static bool skip_unsupported_map(enum bpf_map_type map_type) 447 { 448 if (!bpf_probe_map_type(map_type, 0)) { 449 printf("SKIP (unsupported map type %d)\n", map_type); 450 skips++; 451 return true; 452 } 453 return false; 454 } 455 456 static int __create_map(uint32_t type, uint32_t size_key, 457 uint32_t size_value, uint32_t max_elem, 458 uint32_t extra_flags) 459 { 460 int fd; 461 462 fd = bpf_create_map(type, size_key, size_value, max_elem, 463 (type == BPF_MAP_TYPE_HASH ? 464 BPF_F_NO_PREALLOC : 0) | extra_flags); 465 if (fd < 0) { 466 if (skip_unsupported_map(type)) 467 return -1; 468 printf("Failed to create hash map '%s'!\n", strerror(errno)); 469 } 470 471 return fd; 472 } 473 474 static int create_map(uint32_t type, uint32_t size_key, 475 uint32_t size_value, uint32_t max_elem) 476 { 477 return __create_map(type, size_key, size_value, max_elem, 0); 478 } 479 480 static void update_map(int fd, int index) 481 { 482 struct test_val value = { 483 .index = (6 + 1) * sizeof(int), 484 .foo[6] = 0xabcdef12, 485 }; 486 487 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 488 } 489 490 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 491 { 492 struct bpf_insn prog[] = { 493 BPF_MOV64_IMM(BPF_REG_0, ret), 494 BPF_EXIT_INSN(), 495 }; 496 497 return bpf_load_program(prog_type, prog, 498 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 499 } 500 501 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 502 int idx, int ret) 503 { 504 struct bpf_insn prog[] = { 505 BPF_MOV64_IMM(BPF_REG_3, idx), 506 BPF_LD_MAP_FD(BPF_REG_2, mfd), 507 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 508 BPF_FUNC_tail_call), 509 BPF_MOV64_IMM(BPF_REG_0, ret), 510 BPF_EXIT_INSN(), 511 }; 512 513 return bpf_load_program(prog_type, prog, 514 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 515 } 516 517 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 518 int p1key, int p2key, int p3key) 519 { 520 int mfd, p1fd, p2fd, p3fd; 521 522 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 523 sizeof(int), max_elem, 0); 524 if (mfd < 0) { 525 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 526 return -1; 527 printf("Failed to create prog array '%s'!\n", strerror(errno)); 528 return -1; 529 } 530 531 p1fd = create_prog_dummy_simple(prog_type, 42); 532 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 533 p3fd = create_prog_dummy_simple(prog_type, 24); 534 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 535 goto err; 536 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 537 goto err; 538 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 539 goto err; 540 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 541 err: 542 close(mfd); 543 mfd = -1; 544 } 545 close(p3fd); 546 close(p2fd); 547 close(p1fd); 548 return mfd; 549 } 550 551 static int create_map_in_map(void) 552 { 553 int inner_map_fd, outer_map_fd; 554 555 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 556 sizeof(int), 1, 0); 557 if (inner_map_fd < 0) { 558 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 559 return -1; 560 printf("Failed to create array '%s'!\n", strerror(errno)); 561 return inner_map_fd; 562 } 563 564 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 565 sizeof(int), inner_map_fd, 1, 0); 566 if (outer_map_fd < 0) { 567 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 568 return -1; 569 printf("Failed to create array of maps '%s'!\n", 570 strerror(errno)); 571 } 572 573 close(inner_map_fd); 574 575 return outer_map_fd; 576 } 577 578 static int create_cgroup_storage(bool percpu) 579 { 580 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 581 BPF_MAP_TYPE_CGROUP_STORAGE; 582 int fd; 583 584 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 585 TEST_DATA_LEN, 0, 0); 586 if (fd < 0) { 587 if (skip_unsupported_map(type)) 588 return -1; 589 printf("Failed to create cgroup storage '%s'!\n", 590 strerror(errno)); 591 } 592 593 return fd; 594 } 595 596 /* struct bpf_spin_lock { 597 * int val; 598 * }; 599 * struct val { 600 * int cnt; 601 * struct bpf_spin_lock l; 602 * }; 603 */ 604 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 605 static __u32 btf_raw_types[] = { 606 /* int */ 607 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 608 /* struct bpf_spin_lock */ /* [2] */ 609 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 610 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 611 /* struct val */ /* [3] */ 612 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 613 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 614 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 615 }; 616 617 static int load_btf(void) 618 { 619 struct btf_header hdr = { 620 .magic = BTF_MAGIC, 621 .version = BTF_VERSION, 622 .hdr_len = sizeof(struct btf_header), 623 .type_len = sizeof(btf_raw_types), 624 .str_off = sizeof(btf_raw_types), 625 .str_len = sizeof(btf_str_sec), 626 }; 627 void *ptr, *raw_btf; 628 int btf_fd; 629 630 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 631 sizeof(btf_str_sec)); 632 633 memcpy(ptr, &hdr, sizeof(hdr)); 634 ptr += sizeof(hdr); 635 memcpy(ptr, btf_raw_types, hdr.type_len); 636 ptr += hdr.type_len; 637 memcpy(ptr, btf_str_sec, hdr.str_len); 638 ptr += hdr.str_len; 639 640 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 641 free(raw_btf); 642 if (btf_fd < 0) 643 return -1; 644 return btf_fd; 645 } 646 647 static int create_map_spin_lock(void) 648 { 649 struct bpf_create_map_attr attr = { 650 .name = "test_map", 651 .map_type = BPF_MAP_TYPE_ARRAY, 652 .key_size = 4, 653 .value_size = 8, 654 .max_entries = 1, 655 .btf_key_type_id = 1, 656 .btf_value_type_id = 3, 657 }; 658 int fd, btf_fd; 659 660 btf_fd = load_btf(); 661 if (btf_fd < 0) 662 return -1; 663 attr.btf_fd = btf_fd; 664 fd = bpf_create_map_xattr(&attr); 665 if (fd < 0) 666 printf("Failed to create map with spin_lock\n"); 667 return fd; 668 } 669 670 static int create_sk_storage_map(void) 671 { 672 struct bpf_create_map_attr attr = { 673 .name = "test_map", 674 .map_type = BPF_MAP_TYPE_SK_STORAGE, 675 .key_size = 4, 676 .value_size = 8, 677 .max_entries = 0, 678 .map_flags = BPF_F_NO_PREALLOC, 679 .btf_key_type_id = 1, 680 .btf_value_type_id = 3, 681 }; 682 int fd, btf_fd; 683 684 btf_fd = load_btf(); 685 if (btf_fd < 0) 686 return -1; 687 attr.btf_fd = btf_fd; 688 fd = bpf_create_map_xattr(&attr); 689 close(attr.btf_fd); 690 if (fd < 0) 691 printf("Failed to create sk_storage_map\n"); 692 return fd; 693 } 694 695 static char bpf_vlog[UINT_MAX >> 8]; 696 697 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 698 struct bpf_insn *prog, int *map_fds) 699 { 700 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 701 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 702 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 703 int *fixup_map_array_48b = test->fixup_map_array_48b; 704 int *fixup_map_sockmap = test->fixup_map_sockmap; 705 int *fixup_map_sockhash = test->fixup_map_sockhash; 706 int *fixup_map_xskmap = test->fixup_map_xskmap; 707 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 708 int *fixup_prog1 = test->fixup_prog1; 709 int *fixup_prog2 = test->fixup_prog2; 710 int *fixup_map_in_map = test->fixup_map_in_map; 711 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 712 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 713 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 714 int *fixup_map_array_ro = test->fixup_map_array_ro; 715 int *fixup_map_array_wo = test->fixup_map_array_wo; 716 int *fixup_map_array_small = test->fixup_map_array_small; 717 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 718 int *fixup_map_event_output = test->fixup_map_event_output; 719 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 720 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 721 722 if (test->fill_helper) { 723 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 724 test->fill_helper(test); 725 } 726 727 /* Allocating HTs with 1 elem is fine here, since we only test 728 * for verifier and not do a runtime lookup, so the only thing 729 * that really matters is value size in this case. 730 */ 731 if (*fixup_map_hash_8b) { 732 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 733 sizeof(long long), 1); 734 do { 735 prog[*fixup_map_hash_8b].imm = map_fds[0]; 736 fixup_map_hash_8b++; 737 } while (*fixup_map_hash_8b); 738 } 739 740 if (*fixup_map_hash_48b) { 741 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 742 sizeof(struct test_val), 1); 743 do { 744 prog[*fixup_map_hash_48b].imm = map_fds[1]; 745 fixup_map_hash_48b++; 746 } while (*fixup_map_hash_48b); 747 } 748 749 if (*fixup_map_hash_16b) { 750 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 751 sizeof(struct other_val), 1); 752 do { 753 prog[*fixup_map_hash_16b].imm = map_fds[2]; 754 fixup_map_hash_16b++; 755 } while (*fixup_map_hash_16b); 756 } 757 758 if (*fixup_map_array_48b) { 759 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 760 sizeof(struct test_val), 1); 761 update_map(map_fds[3], 0); 762 do { 763 prog[*fixup_map_array_48b].imm = map_fds[3]; 764 fixup_map_array_48b++; 765 } while (*fixup_map_array_48b); 766 } 767 768 if (*fixup_prog1) { 769 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 770 do { 771 prog[*fixup_prog1].imm = map_fds[4]; 772 fixup_prog1++; 773 } while (*fixup_prog1); 774 } 775 776 if (*fixup_prog2) { 777 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 778 do { 779 prog[*fixup_prog2].imm = map_fds[5]; 780 fixup_prog2++; 781 } while (*fixup_prog2); 782 } 783 784 if (*fixup_map_in_map) { 785 map_fds[6] = create_map_in_map(); 786 do { 787 prog[*fixup_map_in_map].imm = map_fds[6]; 788 fixup_map_in_map++; 789 } while (*fixup_map_in_map); 790 } 791 792 if (*fixup_cgroup_storage) { 793 map_fds[7] = create_cgroup_storage(false); 794 do { 795 prog[*fixup_cgroup_storage].imm = map_fds[7]; 796 fixup_cgroup_storage++; 797 } while (*fixup_cgroup_storage); 798 } 799 800 if (*fixup_percpu_cgroup_storage) { 801 map_fds[8] = create_cgroup_storage(true); 802 do { 803 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 804 fixup_percpu_cgroup_storage++; 805 } while (*fixup_percpu_cgroup_storage); 806 } 807 if (*fixup_map_sockmap) { 808 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 809 sizeof(int), 1); 810 do { 811 prog[*fixup_map_sockmap].imm = map_fds[9]; 812 fixup_map_sockmap++; 813 } while (*fixup_map_sockmap); 814 } 815 if (*fixup_map_sockhash) { 816 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 817 sizeof(int), 1); 818 do { 819 prog[*fixup_map_sockhash].imm = map_fds[10]; 820 fixup_map_sockhash++; 821 } while (*fixup_map_sockhash); 822 } 823 if (*fixup_map_xskmap) { 824 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 825 sizeof(int), 1); 826 do { 827 prog[*fixup_map_xskmap].imm = map_fds[11]; 828 fixup_map_xskmap++; 829 } while (*fixup_map_xskmap); 830 } 831 if (*fixup_map_stacktrace) { 832 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 833 sizeof(u64), 1); 834 do { 835 prog[*fixup_map_stacktrace].imm = map_fds[12]; 836 fixup_map_stacktrace++; 837 } while (*fixup_map_stacktrace); 838 } 839 if (*fixup_map_spin_lock) { 840 map_fds[13] = create_map_spin_lock(); 841 do { 842 prog[*fixup_map_spin_lock].imm = map_fds[13]; 843 fixup_map_spin_lock++; 844 } while (*fixup_map_spin_lock); 845 } 846 if (*fixup_map_array_ro) { 847 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 848 sizeof(struct test_val), 1, 849 BPF_F_RDONLY_PROG); 850 update_map(map_fds[14], 0); 851 do { 852 prog[*fixup_map_array_ro].imm = map_fds[14]; 853 fixup_map_array_ro++; 854 } while (*fixup_map_array_ro); 855 } 856 if (*fixup_map_array_wo) { 857 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 858 sizeof(struct test_val), 1, 859 BPF_F_WRONLY_PROG); 860 update_map(map_fds[15], 0); 861 do { 862 prog[*fixup_map_array_wo].imm = map_fds[15]; 863 fixup_map_array_wo++; 864 } while (*fixup_map_array_wo); 865 } 866 if (*fixup_map_array_small) { 867 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 868 1, 1, 0); 869 update_map(map_fds[16], 0); 870 do { 871 prog[*fixup_map_array_small].imm = map_fds[16]; 872 fixup_map_array_small++; 873 } while (*fixup_map_array_small); 874 } 875 if (*fixup_sk_storage_map) { 876 map_fds[17] = create_sk_storage_map(); 877 do { 878 prog[*fixup_sk_storage_map].imm = map_fds[17]; 879 fixup_sk_storage_map++; 880 } while (*fixup_sk_storage_map); 881 } 882 if (*fixup_map_event_output) { 883 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 884 sizeof(int), sizeof(int), 1, 0); 885 do { 886 prog[*fixup_map_event_output].imm = map_fds[18]; 887 fixup_map_event_output++; 888 } while (*fixup_map_event_output); 889 } 890 if (*fixup_map_reuseport_array) { 891 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 892 sizeof(u32), sizeof(u64), 1, 0); 893 do { 894 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 895 fixup_map_reuseport_array++; 896 } while (*fixup_map_reuseport_array); 897 } 898 if (*fixup_map_ringbuf) { 899 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 900 0, 4096); 901 do { 902 prog[*fixup_map_ringbuf].imm = map_fds[20]; 903 fixup_map_ringbuf++; 904 } while (*fixup_map_ringbuf); 905 } 906 } 907 908 struct libcap { 909 struct __user_cap_header_struct hdr; 910 struct __user_cap_data_struct data[2]; 911 }; 912 913 static int set_admin(bool admin) 914 { 915 cap_t caps; 916 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 917 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 918 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 919 struct libcap *cap; 920 int ret = -1; 921 922 caps = cap_get_proc(); 923 if (!caps) { 924 perror("cap_get_proc"); 925 return -1; 926 } 927 cap = (struct libcap *)caps; 928 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 929 perror("cap_set_flag clear admin"); 930 goto out; 931 } 932 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 933 admin ? CAP_SET : CAP_CLEAR)) { 934 perror("cap_set_flag set_or_clear net"); 935 goto out; 936 } 937 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 938 * so update effective bits manually 939 */ 940 if (admin) { 941 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 942 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 943 } else { 944 cap->data[1].effective &= ~(1 << (38 - 32)); 945 cap->data[1].effective &= ~(1 << (39 - 32)); 946 } 947 if (cap_set_proc(caps)) { 948 perror("cap_set_proc"); 949 goto out; 950 } 951 ret = 0; 952 out: 953 if (cap_free(caps)) 954 perror("cap_free"); 955 return ret; 956 } 957 958 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 959 void *data, size_t size_data) 960 { 961 __u8 tmp[TEST_DATA_LEN << 2]; 962 __u32 size_tmp = sizeof(tmp); 963 uint32_t retval; 964 int err, saved_errno; 965 966 if (unpriv) 967 set_admin(true); 968 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 969 tmp, &size_tmp, &retval, NULL); 970 saved_errno = errno; 971 972 if (unpriv) 973 set_admin(false); 974 975 if (err) { 976 switch (saved_errno) { 977 case 524/*ENOTSUPP*/: 978 printf("Did not run the program (not supported) "); 979 return 0; 980 case EPERM: 981 if (unpriv) { 982 printf("Did not run the program (no permission) "); 983 return 0; 984 } 985 /* fallthrough; */ 986 default: 987 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 988 strerror(saved_errno)); 989 return err; 990 } 991 } 992 993 if (retval != expected_val && 994 expected_val != POINTER_VALUE) { 995 printf("FAIL retval %d != %d ", retval, expected_val); 996 return 1; 997 } 998 999 return 0; 1000 } 1001 1002 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1003 * 1004 * If exp is an empty string, returns true. 1005 */ 1006 static bool cmp_str_seq(const char *log, const char *exp) 1007 { 1008 char needle[200]; 1009 const char *p, *q; 1010 int len; 1011 1012 do { 1013 if (!strlen(exp)) 1014 break; 1015 p = strchr(exp, '\t'); 1016 if (!p) 1017 p = exp + strlen(exp); 1018 1019 len = p - exp; 1020 if (len >= sizeof(needle) || !len) { 1021 printf("FAIL\nTestcase bug\n"); 1022 return false; 1023 } 1024 strncpy(needle, exp, len); 1025 needle[len] = 0; 1026 q = strstr(log, needle); 1027 if (!q) { 1028 printf("FAIL\nUnexpected verifier log!\n" 1029 "EXP: %s\nRES:\n", needle); 1030 return false; 1031 } 1032 log = q + len; 1033 exp = p + 1; 1034 } while (*p); 1035 return true; 1036 } 1037 1038 static void do_test_single(struct bpf_test *test, bool unpriv, 1039 int *passes, int *errors) 1040 { 1041 int fd_prog, expected_ret, alignment_prevented_execution; 1042 int prog_len, prog_type = test->prog_type; 1043 struct bpf_insn *prog = test->insns; 1044 struct bpf_load_program_attr attr; 1045 int run_errs, run_successes; 1046 int map_fds[MAX_NR_MAPS]; 1047 const char *expected_err; 1048 int saved_errno; 1049 int fixup_skips; 1050 __u32 pflags; 1051 int i, err; 1052 1053 for (i = 0; i < MAX_NR_MAPS; i++) 1054 map_fds[i] = -1; 1055 1056 if (!prog_type) 1057 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1058 fixup_skips = skips; 1059 do_test_fixup(test, prog_type, prog, map_fds); 1060 if (test->fill_insns) { 1061 prog = test->fill_insns; 1062 prog_len = test->prog_len; 1063 } else { 1064 prog_len = probe_filter_length(prog); 1065 } 1066 /* If there were some map skips during fixup due to missing bpf 1067 * features, skip this test. 1068 */ 1069 if (fixup_skips != skips) 1070 return; 1071 1072 pflags = BPF_F_TEST_RND_HI32; 1073 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1074 pflags |= BPF_F_STRICT_ALIGNMENT; 1075 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1076 pflags |= BPF_F_ANY_ALIGNMENT; 1077 if (test->flags & ~3) 1078 pflags |= test->flags; 1079 1080 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1081 test->result_unpriv : test->result; 1082 expected_err = unpriv && test->errstr_unpriv ? 1083 test->errstr_unpriv : test->errstr; 1084 memset(&attr, 0, sizeof(attr)); 1085 attr.prog_type = prog_type; 1086 attr.expected_attach_type = test->expected_attach_type; 1087 attr.insns = prog; 1088 attr.insns_cnt = prog_len; 1089 attr.license = "GPL"; 1090 if (verbose) 1091 attr.log_level = 1; 1092 else if (expected_ret == VERBOSE_ACCEPT) 1093 attr.log_level = 2; 1094 else 1095 attr.log_level = 4; 1096 attr.prog_flags = pflags; 1097 1098 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1099 attr.attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1100 attr.expected_attach_type); 1101 if (attr.attach_btf_id < 0) { 1102 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1103 test->kfunc); 1104 (*errors)++; 1105 return; 1106 } 1107 } 1108 1109 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 1110 saved_errno = errno; 1111 1112 /* BPF_PROG_TYPE_TRACING requires more setup and 1113 * bpf_probe_prog_type won't give correct answer 1114 */ 1115 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1116 !bpf_probe_prog_type(prog_type, 0)) { 1117 printf("SKIP (unsupported program type %d)\n", prog_type); 1118 skips++; 1119 goto close_fds; 1120 } 1121 1122 alignment_prevented_execution = 0; 1123 1124 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1125 if (fd_prog < 0) { 1126 printf("FAIL\nFailed to load prog '%s'!\n", 1127 strerror(saved_errno)); 1128 goto fail_log; 1129 } 1130 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1131 if (fd_prog >= 0 && 1132 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1133 alignment_prevented_execution = 1; 1134 #endif 1135 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1136 goto fail_log; 1137 } 1138 } else { 1139 if (fd_prog >= 0) { 1140 printf("FAIL\nUnexpected success to load!\n"); 1141 goto fail_log; 1142 } 1143 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1144 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1145 expected_err, bpf_vlog); 1146 goto fail_log; 1147 } 1148 } 1149 1150 if (!unpriv && test->insn_processed) { 1151 uint32_t insn_processed; 1152 char *proc; 1153 1154 proc = strstr(bpf_vlog, "processed "); 1155 insn_processed = atoi(proc + 10); 1156 if (test->insn_processed != insn_processed) { 1157 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1158 insn_processed, test->insn_processed); 1159 goto fail_log; 1160 } 1161 } 1162 1163 if (verbose) 1164 printf(", verifier log:\n%s", bpf_vlog); 1165 1166 run_errs = 0; 1167 run_successes = 0; 1168 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1169 uint32_t expected_val; 1170 int i; 1171 1172 if (!test->runs) 1173 test->runs = 1; 1174 1175 for (i = 0; i < test->runs; i++) { 1176 if (unpriv && test->retvals[i].retval_unpriv) 1177 expected_val = test->retvals[i].retval_unpriv; 1178 else 1179 expected_val = test->retvals[i].retval; 1180 1181 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1182 test->retvals[i].data, 1183 sizeof(test->retvals[i].data)); 1184 if (err) { 1185 printf("(run %d/%d) ", i + 1, test->runs); 1186 run_errs++; 1187 } else { 1188 run_successes++; 1189 } 1190 } 1191 } 1192 1193 if (!run_errs) { 1194 (*passes)++; 1195 if (run_successes > 1) 1196 printf("%d cases ", run_successes); 1197 printf("OK"); 1198 if (alignment_prevented_execution) 1199 printf(" (NOTE: not executed due to unknown alignment)"); 1200 printf("\n"); 1201 } else { 1202 printf("\n"); 1203 goto fail_log; 1204 } 1205 close_fds: 1206 if (test->fill_insns) 1207 free(test->fill_insns); 1208 close(fd_prog); 1209 for (i = 0; i < MAX_NR_MAPS; i++) 1210 close(map_fds[i]); 1211 sched_yield(); 1212 return; 1213 fail_log: 1214 (*errors)++; 1215 printf("%s", bpf_vlog); 1216 goto close_fds; 1217 } 1218 1219 static bool is_admin(void) 1220 { 1221 cap_flag_value_t net_priv = CAP_CLEAR; 1222 bool perfmon_priv = false; 1223 bool bpf_priv = false; 1224 struct libcap *cap; 1225 cap_t caps; 1226 1227 #ifdef CAP_IS_SUPPORTED 1228 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1229 perror("cap_get_flag"); 1230 return false; 1231 } 1232 #endif 1233 caps = cap_get_proc(); 1234 if (!caps) { 1235 perror("cap_get_proc"); 1236 return false; 1237 } 1238 cap = (struct libcap *)caps; 1239 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1240 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1241 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1242 perror("cap_get_flag NET"); 1243 if (cap_free(caps)) 1244 perror("cap_free"); 1245 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1246 } 1247 1248 static void get_unpriv_disabled() 1249 { 1250 char buf[2]; 1251 FILE *fd; 1252 1253 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1254 if (!fd) { 1255 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1256 unpriv_disabled = true; 1257 return; 1258 } 1259 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1260 unpriv_disabled = true; 1261 fclose(fd); 1262 } 1263 1264 static bool test_as_unpriv(struct bpf_test *test) 1265 { 1266 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1267 /* Some architectures have strict alignment requirements. In 1268 * that case, the BPF verifier detects if a program has 1269 * unaligned accesses and rejects them. A user can pass 1270 * BPF_F_ANY_ALIGNMENT to a program to override this 1271 * check. That, however, will only work when a privileged user 1272 * loads a program. An unprivileged user loading a program 1273 * with this flag will be rejected prior entering the 1274 * verifier. 1275 */ 1276 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1277 return false; 1278 #endif 1279 return !test->prog_type || 1280 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1281 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1282 } 1283 1284 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1285 { 1286 int i, passes = 0, errors = 0; 1287 1288 for (i = from; i < to; i++) { 1289 struct bpf_test *test = &tests[i]; 1290 1291 /* Program types that are not supported by non-root we 1292 * skip right away. 1293 */ 1294 if (test_as_unpriv(test) && unpriv_disabled) { 1295 printf("#%d/u %s SKIP\n", i, test->descr); 1296 skips++; 1297 } else if (test_as_unpriv(test)) { 1298 if (!unpriv) 1299 set_admin(false); 1300 printf("#%d/u %s ", i, test->descr); 1301 do_test_single(test, true, &passes, &errors); 1302 if (!unpriv) 1303 set_admin(true); 1304 } 1305 1306 if (unpriv) { 1307 printf("#%d/p %s SKIP\n", i, test->descr); 1308 skips++; 1309 } else { 1310 printf("#%d/p %s ", i, test->descr); 1311 do_test_single(test, false, &passes, &errors); 1312 } 1313 } 1314 1315 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1316 skips, errors); 1317 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1318 } 1319 1320 int main(int argc, char **argv) 1321 { 1322 unsigned int from = 0, to = ARRAY_SIZE(tests); 1323 bool unpriv = !is_admin(); 1324 int arg = 1; 1325 1326 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1327 arg++; 1328 verbose = true; 1329 argc--; 1330 } 1331 1332 if (argc == 3) { 1333 unsigned int l = atoi(argv[arg]); 1334 unsigned int u = atoi(argv[arg + 1]); 1335 1336 if (l < to && u < to) { 1337 from = l; 1338 to = u + 1; 1339 } 1340 } else if (argc == 2) { 1341 unsigned int t = atoi(argv[arg]); 1342 1343 if (t < to) { 1344 from = t; 1345 to = t + 1; 1346 } 1347 } 1348 1349 get_unpriv_disabled(); 1350 if (unpriv && unpriv_disabled) { 1351 printf("Cannot run as unprivileged user with sysctl %s.\n", 1352 UNPRIV_SYSCTL); 1353 return EXIT_FAILURE; 1354 } 1355 1356 bpf_semi_rand_init(); 1357 return do_test(unpriv, from, to); 1358 } 1359