1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <linux/unistd.h> 26 #include <linux/filter.h> 27 #include <linux/bpf_perf_event.h> 28 #include <linux/bpf.h> 29 #include <linux/if_ether.h> 30 #include <linux/btf.h> 31 32 #include <bpf/btf.h> 33 #include <bpf/bpf.h> 34 #include <bpf/libbpf.h> 35 36 #ifdef HAVE_GENHDR 37 # include "autoconf.h" 38 #else 39 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 40 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 41 # endif 42 #endif 43 #include "cap_helpers.h" 44 #include "bpf_rand.h" 45 #include "bpf_util.h" 46 #include "test_btf.h" 47 #include "../../../include/linux/filter.h" 48 49 #ifndef ENOTSUPP 50 #define ENOTSUPP 524 51 #endif 52 53 #define MAX_INSNS BPF_MAXINSNS 54 #define MAX_TEST_INSNS 1000000 55 #define MAX_FIXUPS 8 56 #define MAX_NR_MAPS 23 57 #define MAX_TEST_RUNS 8 58 #define POINTER_VALUE 0xcafe4all 59 #define TEST_DATA_LEN 64 60 61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 62 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 63 64 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 65 #define ADMIN_CAPS (1ULL << CAP_NET_ADMIN | \ 66 1ULL << CAP_PERFMON | \ 67 1ULL << CAP_BPF) 68 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 69 static bool unpriv_disabled = false; 70 static int skips; 71 static bool verbose = false; 72 73 struct kfunc_btf_id_pair { 74 const char *kfunc; 75 int insn_idx; 76 }; 77 78 struct bpf_test { 79 const char *descr; 80 struct bpf_insn insns[MAX_INSNS]; 81 struct bpf_insn *fill_insns; 82 int fixup_map_hash_8b[MAX_FIXUPS]; 83 int fixup_map_hash_48b[MAX_FIXUPS]; 84 int fixup_map_hash_16b[MAX_FIXUPS]; 85 int fixup_map_array_48b[MAX_FIXUPS]; 86 int fixup_map_sockmap[MAX_FIXUPS]; 87 int fixup_map_sockhash[MAX_FIXUPS]; 88 int fixup_map_xskmap[MAX_FIXUPS]; 89 int fixup_map_stacktrace[MAX_FIXUPS]; 90 int fixup_prog1[MAX_FIXUPS]; 91 int fixup_prog2[MAX_FIXUPS]; 92 int fixup_map_in_map[MAX_FIXUPS]; 93 int fixup_cgroup_storage[MAX_FIXUPS]; 94 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 95 int fixup_map_spin_lock[MAX_FIXUPS]; 96 int fixup_map_array_ro[MAX_FIXUPS]; 97 int fixup_map_array_wo[MAX_FIXUPS]; 98 int fixup_map_array_small[MAX_FIXUPS]; 99 int fixup_sk_storage_map[MAX_FIXUPS]; 100 int fixup_map_event_output[MAX_FIXUPS]; 101 int fixup_map_reuseport_array[MAX_FIXUPS]; 102 int fixup_map_ringbuf[MAX_FIXUPS]; 103 int fixup_map_timer[MAX_FIXUPS]; 104 int fixup_map_kptr[MAX_FIXUPS]; 105 struct kfunc_btf_id_pair fixup_kfunc_btf_id[MAX_FIXUPS]; 106 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 107 * Can be a tab-separated sequence of expected strings. An empty string 108 * means no log verification. 109 */ 110 const char *errstr; 111 const char *errstr_unpriv; 112 uint32_t insn_processed; 113 int prog_len; 114 enum { 115 UNDEF, 116 ACCEPT, 117 REJECT, 118 VERBOSE_ACCEPT, 119 } result, result_unpriv; 120 enum bpf_prog_type prog_type; 121 uint8_t flags; 122 void (*fill_helper)(struct bpf_test *self); 123 int runs; 124 #define bpf_testdata_struct_t \ 125 struct { \ 126 uint32_t retval, retval_unpriv; \ 127 union { \ 128 __u8 data[TEST_DATA_LEN]; \ 129 __u64 data64[TEST_DATA_LEN / 8]; \ 130 }; \ 131 } 132 union { 133 bpf_testdata_struct_t; 134 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 135 }; 136 enum bpf_attach_type expected_attach_type; 137 const char *kfunc; 138 }; 139 140 /* Note we want this to be 64 bit aligned so that the end of our array is 141 * actually the end of the structure. 142 */ 143 #define MAX_ENTRIES 11 144 145 struct test_val { 146 unsigned int index; 147 int foo[MAX_ENTRIES]; 148 }; 149 150 struct other_val { 151 long long foo; 152 long long bar; 153 }; 154 155 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 156 { 157 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 158 #define PUSH_CNT 51 159 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 160 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 161 struct bpf_insn *insn = self->fill_insns; 162 int i = 0, j, k = 0; 163 164 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 165 loop: 166 for (j = 0; j < PUSH_CNT; j++) { 167 insn[i++] = BPF_LD_ABS(BPF_B, 0); 168 /* jump to error label */ 169 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 170 i++; 171 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 172 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 173 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 174 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 175 BPF_FUNC_skb_vlan_push), 176 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 177 i++; 178 } 179 180 for (j = 0; j < PUSH_CNT; j++) { 181 insn[i++] = BPF_LD_ABS(BPF_B, 0); 182 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 183 i++; 184 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 185 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 186 BPF_FUNC_skb_vlan_pop), 187 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 188 i++; 189 } 190 if (++k < 5) 191 goto loop; 192 193 for (; i < len - 3; i++) 194 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 195 insn[len - 3] = BPF_JMP_A(1); 196 /* error label */ 197 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 198 insn[len - 1] = BPF_EXIT_INSN(); 199 self->prog_len = len; 200 } 201 202 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 203 { 204 struct bpf_insn *insn = self->fill_insns; 205 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 206 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 207 * to extend the error value of the inlined ld_abs sequence which then 208 * contains 7 insns. so, set the dividend to 7 so the testcase could 209 * work on all arches. 210 */ 211 unsigned int len = (1 << 15) / 7; 212 int i = 0; 213 214 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 215 insn[i++] = BPF_LD_ABS(BPF_B, 0); 216 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 217 i++; 218 while (i < len - 1) 219 insn[i++] = BPF_LD_ABS(BPF_B, 1); 220 insn[i] = BPF_EXIT_INSN(); 221 self->prog_len = i + 1; 222 } 223 224 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 225 { 226 struct bpf_insn *insn = self->fill_insns; 227 uint64_t res = 0; 228 int i = 0; 229 230 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 231 while (i < self->retval) { 232 uint64_t val = bpf_semi_rand_get(); 233 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 234 235 res ^= val; 236 insn[i++] = tmp[0]; 237 insn[i++] = tmp[1]; 238 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 239 } 240 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 241 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 242 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 243 insn[i] = BPF_EXIT_INSN(); 244 self->prog_len = i + 1; 245 res ^= (res >> 32); 246 self->retval = (uint32_t)res; 247 } 248 249 #define MAX_JMP_SEQ 8192 250 251 /* test the sequence of 8k jumps */ 252 static void bpf_fill_scale1(struct bpf_test *self) 253 { 254 struct bpf_insn *insn = self->fill_insns; 255 int i = 0, k = 0; 256 257 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 258 /* test to check that the long sequence of jumps is acceptable */ 259 while (k++ < MAX_JMP_SEQ) { 260 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 261 BPF_FUNC_get_prandom_u32); 262 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 263 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 264 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 265 -8 * (k % 64 + 1)); 266 } 267 /* is_state_visited() doesn't allocate state for pruning for every jump. 268 * Hence multiply jmps by 4 to accommodate that heuristic 269 */ 270 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 271 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 272 insn[i] = BPF_EXIT_INSN(); 273 self->prog_len = i + 1; 274 self->retval = 42; 275 } 276 277 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 278 static void bpf_fill_scale2(struct bpf_test *self) 279 { 280 struct bpf_insn *insn = self->fill_insns; 281 int i = 0, k = 0; 282 283 #define FUNC_NEST 7 284 for (k = 0; k < FUNC_NEST; k++) { 285 insn[i++] = BPF_CALL_REL(1); 286 insn[i++] = BPF_EXIT_INSN(); 287 } 288 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 289 /* test to check that the long sequence of jumps is acceptable */ 290 k = 0; 291 while (k++ < MAX_JMP_SEQ) { 292 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 293 BPF_FUNC_get_prandom_u32); 294 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 295 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 296 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 297 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 298 } 299 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 300 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 301 insn[i] = BPF_EXIT_INSN(); 302 self->prog_len = i + 1; 303 self->retval = 42; 304 } 305 306 static void bpf_fill_scale(struct bpf_test *self) 307 { 308 switch (self->retval) { 309 case 1: 310 return bpf_fill_scale1(self); 311 case 2: 312 return bpf_fill_scale2(self); 313 default: 314 self->prog_len = 0; 315 break; 316 } 317 } 318 319 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 320 { 321 unsigned int len = 259, hlen = 128; 322 int i; 323 324 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 325 for (i = 1; i <= hlen; i++) { 326 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 327 insn[i + hlen] = BPF_JMP_A(hlen - i); 328 } 329 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 330 insn[len - 1] = BPF_EXIT_INSN(); 331 332 return len; 333 } 334 335 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 336 { 337 unsigned int len = 4100, jmp_off = 2048; 338 int i, j; 339 340 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 341 for (i = 1; i <= jmp_off; i++) { 342 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 343 } 344 insn[i++] = BPF_JMP_A(jmp_off); 345 for (; i <= jmp_off * 2 + 1; i+=16) { 346 for (j = 0; j < 16; j++) { 347 insn[i + j] = BPF_JMP_A(16 - j - 1); 348 } 349 } 350 351 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 352 insn[len - 1] = BPF_EXIT_INSN(); 353 354 return len; 355 } 356 357 static void bpf_fill_torturous_jumps(struct bpf_test *self) 358 { 359 struct bpf_insn *insn = self->fill_insns; 360 int i = 0; 361 362 switch (self->retval) { 363 case 1: 364 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 365 return; 366 case 2: 367 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 368 return; 369 case 3: 370 /* main */ 371 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 372 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 373 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 374 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 375 insn[i++] = BPF_EXIT_INSN(); 376 377 /* subprog 1 */ 378 i += bpf_fill_torturous_jumps_insn_1(insn + i); 379 380 /* subprog 2 */ 381 i += bpf_fill_torturous_jumps_insn_2(insn + i); 382 383 self->prog_len = i; 384 return; 385 default: 386 self->prog_len = 0; 387 break; 388 } 389 } 390 391 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 392 #define BPF_SK_LOOKUP(func) \ 393 /* struct bpf_sock_tuple tuple = {} */ \ 394 BPF_MOV64_IMM(BPF_REG_2, 0), \ 395 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 396 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 397 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 398 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 399 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 400 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 401 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 402 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 403 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 404 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 405 BPF_MOV64_IMM(BPF_REG_4, 0), \ 406 BPF_MOV64_IMM(BPF_REG_5, 0), \ 407 BPF_EMIT_CALL(BPF_FUNC_ ## func) 408 409 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 410 * value into 0 and does necessary preparation for direct packet access 411 * through r2. The allowed access range is 8 bytes. 412 */ 413 #define BPF_DIRECT_PKT_R2 \ 414 BPF_MOV64_IMM(BPF_REG_0, 0), \ 415 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 416 offsetof(struct __sk_buff, data)), \ 417 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 418 offsetof(struct __sk_buff, data_end)), \ 419 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 420 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 421 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 422 BPF_EXIT_INSN() 423 424 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 425 * positive u32, and zero-extend it into 64-bit. 426 */ 427 #define BPF_RAND_UEXT_R7 \ 428 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 429 BPF_FUNC_get_prandom_u32), \ 430 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 431 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 432 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 433 434 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 435 * negative u32, and sign-extend it into 64-bit. 436 */ 437 #define BPF_RAND_SEXT_R7 \ 438 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 439 BPF_FUNC_get_prandom_u32), \ 440 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 441 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 442 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 443 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 444 445 static struct bpf_test tests[] = { 446 #define FILL_ARRAY 447 #include <verifier/tests.h> 448 #undef FILL_ARRAY 449 }; 450 451 static int probe_filter_length(const struct bpf_insn *fp) 452 { 453 int len; 454 455 for (len = MAX_INSNS - 1; len > 0; --len) 456 if (fp[len].code != 0 || fp[len].imm != 0) 457 break; 458 return len + 1; 459 } 460 461 static bool skip_unsupported_map(enum bpf_map_type map_type) 462 { 463 if (!libbpf_probe_bpf_map_type(map_type, NULL)) { 464 printf("SKIP (unsupported map type %d)\n", map_type); 465 skips++; 466 return true; 467 } 468 return false; 469 } 470 471 static int __create_map(uint32_t type, uint32_t size_key, 472 uint32_t size_value, uint32_t max_elem, 473 uint32_t extra_flags) 474 { 475 LIBBPF_OPTS(bpf_map_create_opts, opts); 476 int fd; 477 478 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 479 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 480 if (fd < 0) { 481 if (skip_unsupported_map(type)) 482 return -1; 483 printf("Failed to create hash map '%s'!\n", strerror(errno)); 484 } 485 486 return fd; 487 } 488 489 static int create_map(uint32_t type, uint32_t size_key, 490 uint32_t size_value, uint32_t max_elem) 491 { 492 return __create_map(type, size_key, size_value, max_elem, 0); 493 } 494 495 static void update_map(int fd, int index) 496 { 497 struct test_val value = { 498 .index = (6 + 1) * sizeof(int), 499 .foo[6] = 0xabcdef12, 500 }; 501 502 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 503 } 504 505 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 506 { 507 struct bpf_insn prog[] = { 508 BPF_MOV64_IMM(BPF_REG_0, ret), 509 BPF_EXIT_INSN(), 510 }; 511 512 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 513 } 514 515 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 516 int idx, int ret) 517 { 518 struct bpf_insn prog[] = { 519 BPF_MOV64_IMM(BPF_REG_3, idx), 520 BPF_LD_MAP_FD(BPF_REG_2, mfd), 521 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 522 BPF_FUNC_tail_call), 523 BPF_MOV64_IMM(BPF_REG_0, ret), 524 BPF_EXIT_INSN(), 525 }; 526 527 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 528 } 529 530 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 531 int p1key, int p2key, int p3key) 532 { 533 int mfd, p1fd, p2fd, p3fd; 534 535 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 536 sizeof(int), max_elem, NULL); 537 if (mfd < 0) { 538 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 539 return -1; 540 printf("Failed to create prog array '%s'!\n", strerror(errno)); 541 return -1; 542 } 543 544 p1fd = create_prog_dummy_simple(prog_type, 42); 545 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 546 p3fd = create_prog_dummy_simple(prog_type, 24); 547 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 548 goto err; 549 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 550 goto err; 551 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 552 goto err; 553 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 554 err: 555 close(mfd); 556 mfd = -1; 557 } 558 close(p3fd); 559 close(p2fd); 560 close(p1fd); 561 return mfd; 562 } 563 564 static int create_map_in_map(void) 565 { 566 LIBBPF_OPTS(bpf_map_create_opts, opts); 567 int inner_map_fd, outer_map_fd; 568 569 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 570 sizeof(int), 1, NULL); 571 if (inner_map_fd < 0) { 572 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 573 return -1; 574 printf("Failed to create array '%s'!\n", strerror(errno)); 575 return inner_map_fd; 576 } 577 578 opts.inner_map_fd = inner_map_fd; 579 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 580 sizeof(int), sizeof(int), 1, &opts); 581 if (outer_map_fd < 0) { 582 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 583 return -1; 584 printf("Failed to create array of maps '%s'!\n", 585 strerror(errno)); 586 } 587 588 close(inner_map_fd); 589 590 return outer_map_fd; 591 } 592 593 static int create_cgroup_storage(bool percpu) 594 { 595 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 596 BPF_MAP_TYPE_CGROUP_STORAGE; 597 int fd; 598 599 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 600 TEST_DATA_LEN, 0, NULL); 601 if (fd < 0) { 602 if (skip_unsupported_map(type)) 603 return -1; 604 printf("Failed to create cgroup storage '%s'!\n", 605 strerror(errno)); 606 } 607 608 return fd; 609 } 610 611 /* struct bpf_spin_lock { 612 * int val; 613 * }; 614 * struct val { 615 * int cnt; 616 * struct bpf_spin_lock l; 617 * }; 618 * struct bpf_timer { 619 * __u64 :64; 620 * __u64 :64; 621 * } __attribute__((aligned(8))); 622 * struct timer { 623 * struct bpf_timer t; 624 * }; 625 * struct btf_ptr { 626 * struct prog_test_ref_kfunc __kptr *ptr; 627 * struct prog_test_ref_kfunc __kptr_ref *ptr; 628 * struct prog_test_member __kptr_ref *ptr; 629 * } 630 */ 631 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t" 632 "\0btf_ptr\0prog_test_ref_kfunc\0ptr\0kptr\0kptr_ref" 633 "\0prog_test_member"; 634 static __u32 btf_raw_types[] = { 635 /* int */ 636 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 637 /* struct bpf_spin_lock */ /* [2] */ 638 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 639 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 640 /* struct val */ /* [3] */ 641 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 642 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 643 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 644 /* struct bpf_timer */ /* [4] */ 645 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 646 /* struct timer */ /* [5] */ 647 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 648 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 649 /* struct prog_test_ref_kfunc */ /* [6] */ 650 BTF_STRUCT_ENC(51, 0, 0), 651 BTF_STRUCT_ENC(89, 0, 0), /* [7] */ 652 /* type tag "kptr" */ 653 BTF_TYPE_TAG_ENC(75, 6), /* [8] */ 654 /* type tag "kptr_ref" */ 655 BTF_TYPE_TAG_ENC(80, 6), /* [9] */ 656 BTF_TYPE_TAG_ENC(80, 7), /* [10] */ 657 BTF_PTR_ENC(8), /* [11] */ 658 BTF_PTR_ENC(9), /* [12] */ 659 BTF_PTR_ENC(10), /* [13] */ 660 /* struct btf_ptr */ /* [14] */ 661 BTF_STRUCT_ENC(43, 3, 24), 662 BTF_MEMBER_ENC(71, 11, 0), /* struct prog_test_ref_kfunc __kptr *ptr; */ 663 BTF_MEMBER_ENC(71, 12, 64), /* struct prog_test_ref_kfunc __kptr_ref *ptr; */ 664 BTF_MEMBER_ENC(71, 13, 128), /* struct prog_test_member __kptr_ref *ptr; */ 665 }; 666 667 static int load_btf(void) 668 { 669 struct btf_header hdr = { 670 .magic = BTF_MAGIC, 671 .version = BTF_VERSION, 672 .hdr_len = sizeof(struct btf_header), 673 .type_len = sizeof(btf_raw_types), 674 .str_off = sizeof(btf_raw_types), 675 .str_len = sizeof(btf_str_sec), 676 }; 677 void *ptr, *raw_btf; 678 int btf_fd; 679 680 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 681 sizeof(btf_str_sec)); 682 683 memcpy(ptr, &hdr, sizeof(hdr)); 684 ptr += sizeof(hdr); 685 memcpy(ptr, btf_raw_types, hdr.type_len); 686 ptr += hdr.type_len; 687 memcpy(ptr, btf_str_sec, hdr.str_len); 688 ptr += hdr.str_len; 689 690 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, NULL); 691 free(raw_btf); 692 if (btf_fd < 0) 693 return -1; 694 return btf_fd; 695 } 696 697 static int create_map_spin_lock(void) 698 { 699 LIBBPF_OPTS(bpf_map_create_opts, opts, 700 .btf_key_type_id = 1, 701 .btf_value_type_id = 3, 702 ); 703 int fd, btf_fd; 704 705 btf_fd = load_btf(); 706 if (btf_fd < 0) 707 return -1; 708 opts.btf_fd = btf_fd; 709 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 710 if (fd < 0) 711 printf("Failed to create map with spin_lock\n"); 712 return fd; 713 } 714 715 static int create_sk_storage_map(void) 716 { 717 LIBBPF_OPTS(bpf_map_create_opts, opts, 718 .map_flags = BPF_F_NO_PREALLOC, 719 .btf_key_type_id = 1, 720 .btf_value_type_id = 3, 721 ); 722 int fd, btf_fd; 723 724 btf_fd = load_btf(); 725 if (btf_fd < 0) 726 return -1; 727 opts.btf_fd = btf_fd; 728 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 729 close(opts.btf_fd); 730 if (fd < 0) 731 printf("Failed to create sk_storage_map\n"); 732 return fd; 733 } 734 735 static int create_map_timer(void) 736 { 737 LIBBPF_OPTS(bpf_map_create_opts, opts, 738 .btf_key_type_id = 1, 739 .btf_value_type_id = 5, 740 ); 741 int fd, btf_fd; 742 743 btf_fd = load_btf(); 744 if (btf_fd < 0) 745 return -1; 746 747 opts.btf_fd = btf_fd; 748 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 749 if (fd < 0) 750 printf("Failed to create map with timer\n"); 751 return fd; 752 } 753 754 static int create_map_kptr(void) 755 { 756 LIBBPF_OPTS(bpf_map_create_opts, opts, 757 .btf_key_type_id = 1, 758 .btf_value_type_id = 14, 759 ); 760 int fd, btf_fd; 761 762 btf_fd = load_btf(); 763 if (btf_fd < 0) 764 return -1; 765 766 opts.btf_fd = btf_fd; 767 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 24, 1, &opts); 768 if (fd < 0) 769 printf("Failed to create map with btf_id pointer\n"); 770 return fd; 771 } 772 773 static char bpf_vlog[UINT_MAX >> 8]; 774 775 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 776 struct bpf_insn *prog, int *map_fds) 777 { 778 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 779 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 780 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 781 int *fixup_map_array_48b = test->fixup_map_array_48b; 782 int *fixup_map_sockmap = test->fixup_map_sockmap; 783 int *fixup_map_sockhash = test->fixup_map_sockhash; 784 int *fixup_map_xskmap = test->fixup_map_xskmap; 785 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 786 int *fixup_prog1 = test->fixup_prog1; 787 int *fixup_prog2 = test->fixup_prog2; 788 int *fixup_map_in_map = test->fixup_map_in_map; 789 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 790 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 791 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 792 int *fixup_map_array_ro = test->fixup_map_array_ro; 793 int *fixup_map_array_wo = test->fixup_map_array_wo; 794 int *fixup_map_array_small = test->fixup_map_array_small; 795 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 796 int *fixup_map_event_output = test->fixup_map_event_output; 797 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 798 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 799 int *fixup_map_timer = test->fixup_map_timer; 800 int *fixup_map_kptr = test->fixup_map_kptr; 801 struct kfunc_btf_id_pair *fixup_kfunc_btf_id = test->fixup_kfunc_btf_id; 802 803 if (test->fill_helper) { 804 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 805 test->fill_helper(test); 806 } 807 808 /* Allocating HTs with 1 elem is fine here, since we only test 809 * for verifier and not do a runtime lookup, so the only thing 810 * that really matters is value size in this case. 811 */ 812 if (*fixup_map_hash_8b) { 813 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 814 sizeof(long long), 1); 815 do { 816 prog[*fixup_map_hash_8b].imm = map_fds[0]; 817 fixup_map_hash_8b++; 818 } while (*fixup_map_hash_8b); 819 } 820 821 if (*fixup_map_hash_48b) { 822 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 823 sizeof(struct test_val), 1); 824 do { 825 prog[*fixup_map_hash_48b].imm = map_fds[1]; 826 fixup_map_hash_48b++; 827 } while (*fixup_map_hash_48b); 828 } 829 830 if (*fixup_map_hash_16b) { 831 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 832 sizeof(struct other_val), 1); 833 do { 834 prog[*fixup_map_hash_16b].imm = map_fds[2]; 835 fixup_map_hash_16b++; 836 } while (*fixup_map_hash_16b); 837 } 838 839 if (*fixup_map_array_48b) { 840 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 841 sizeof(struct test_val), 1); 842 update_map(map_fds[3], 0); 843 do { 844 prog[*fixup_map_array_48b].imm = map_fds[3]; 845 fixup_map_array_48b++; 846 } while (*fixup_map_array_48b); 847 } 848 849 if (*fixup_prog1) { 850 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 851 do { 852 prog[*fixup_prog1].imm = map_fds[4]; 853 fixup_prog1++; 854 } while (*fixup_prog1); 855 } 856 857 if (*fixup_prog2) { 858 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 859 do { 860 prog[*fixup_prog2].imm = map_fds[5]; 861 fixup_prog2++; 862 } while (*fixup_prog2); 863 } 864 865 if (*fixup_map_in_map) { 866 map_fds[6] = create_map_in_map(); 867 do { 868 prog[*fixup_map_in_map].imm = map_fds[6]; 869 fixup_map_in_map++; 870 } while (*fixup_map_in_map); 871 } 872 873 if (*fixup_cgroup_storage) { 874 map_fds[7] = create_cgroup_storage(false); 875 do { 876 prog[*fixup_cgroup_storage].imm = map_fds[7]; 877 fixup_cgroup_storage++; 878 } while (*fixup_cgroup_storage); 879 } 880 881 if (*fixup_percpu_cgroup_storage) { 882 map_fds[8] = create_cgroup_storage(true); 883 do { 884 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 885 fixup_percpu_cgroup_storage++; 886 } while (*fixup_percpu_cgroup_storage); 887 } 888 if (*fixup_map_sockmap) { 889 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 890 sizeof(int), 1); 891 do { 892 prog[*fixup_map_sockmap].imm = map_fds[9]; 893 fixup_map_sockmap++; 894 } while (*fixup_map_sockmap); 895 } 896 if (*fixup_map_sockhash) { 897 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 898 sizeof(int), 1); 899 do { 900 prog[*fixup_map_sockhash].imm = map_fds[10]; 901 fixup_map_sockhash++; 902 } while (*fixup_map_sockhash); 903 } 904 if (*fixup_map_xskmap) { 905 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 906 sizeof(int), 1); 907 do { 908 prog[*fixup_map_xskmap].imm = map_fds[11]; 909 fixup_map_xskmap++; 910 } while (*fixup_map_xskmap); 911 } 912 if (*fixup_map_stacktrace) { 913 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 914 sizeof(u64), 1); 915 do { 916 prog[*fixup_map_stacktrace].imm = map_fds[12]; 917 fixup_map_stacktrace++; 918 } while (*fixup_map_stacktrace); 919 } 920 if (*fixup_map_spin_lock) { 921 map_fds[13] = create_map_spin_lock(); 922 do { 923 prog[*fixup_map_spin_lock].imm = map_fds[13]; 924 fixup_map_spin_lock++; 925 } while (*fixup_map_spin_lock); 926 } 927 if (*fixup_map_array_ro) { 928 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 929 sizeof(struct test_val), 1, 930 BPF_F_RDONLY_PROG); 931 update_map(map_fds[14], 0); 932 do { 933 prog[*fixup_map_array_ro].imm = map_fds[14]; 934 fixup_map_array_ro++; 935 } while (*fixup_map_array_ro); 936 } 937 if (*fixup_map_array_wo) { 938 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 939 sizeof(struct test_val), 1, 940 BPF_F_WRONLY_PROG); 941 update_map(map_fds[15], 0); 942 do { 943 prog[*fixup_map_array_wo].imm = map_fds[15]; 944 fixup_map_array_wo++; 945 } while (*fixup_map_array_wo); 946 } 947 if (*fixup_map_array_small) { 948 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 949 1, 1, 0); 950 update_map(map_fds[16], 0); 951 do { 952 prog[*fixup_map_array_small].imm = map_fds[16]; 953 fixup_map_array_small++; 954 } while (*fixup_map_array_small); 955 } 956 if (*fixup_sk_storage_map) { 957 map_fds[17] = create_sk_storage_map(); 958 do { 959 prog[*fixup_sk_storage_map].imm = map_fds[17]; 960 fixup_sk_storage_map++; 961 } while (*fixup_sk_storage_map); 962 } 963 if (*fixup_map_event_output) { 964 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 965 sizeof(int), sizeof(int), 1, 0); 966 do { 967 prog[*fixup_map_event_output].imm = map_fds[18]; 968 fixup_map_event_output++; 969 } while (*fixup_map_event_output); 970 } 971 if (*fixup_map_reuseport_array) { 972 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 973 sizeof(u32), sizeof(u64), 1, 0); 974 do { 975 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 976 fixup_map_reuseport_array++; 977 } while (*fixup_map_reuseport_array); 978 } 979 if (*fixup_map_ringbuf) { 980 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 981 0, 4096); 982 do { 983 prog[*fixup_map_ringbuf].imm = map_fds[20]; 984 fixup_map_ringbuf++; 985 } while (*fixup_map_ringbuf); 986 } 987 if (*fixup_map_timer) { 988 map_fds[21] = create_map_timer(); 989 do { 990 prog[*fixup_map_timer].imm = map_fds[21]; 991 fixup_map_timer++; 992 } while (*fixup_map_timer); 993 } 994 if (*fixup_map_kptr) { 995 map_fds[22] = create_map_kptr(); 996 do { 997 prog[*fixup_map_kptr].imm = map_fds[22]; 998 fixup_map_kptr++; 999 } while (*fixup_map_kptr); 1000 } 1001 1002 /* Patch in kfunc BTF IDs */ 1003 if (fixup_kfunc_btf_id->kfunc) { 1004 struct btf *btf; 1005 int btf_id; 1006 1007 do { 1008 btf_id = 0; 1009 btf = btf__load_vmlinux_btf(); 1010 if (btf) { 1011 btf_id = btf__find_by_name_kind(btf, 1012 fixup_kfunc_btf_id->kfunc, 1013 BTF_KIND_FUNC); 1014 btf_id = btf_id < 0 ? 0 : btf_id; 1015 } 1016 btf__free(btf); 1017 prog[fixup_kfunc_btf_id->insn_idx].imm = btf_id; 1018 fixup_kfunc_btf_id++; 1019 } while (fixup_kfunc_btf_id->kfunc); 1020 } 1021 } 1022 1023 struct libcap { 1024 struct __user_cap_header_struct hdr; 1025 struct __user_cap_data_struct data[2]; 1026 }; 1027 1028 static int set_admin(bool admin) 1029 { 1030 int err; 1031 1032 if (admin) { 1033 err = cap_enable_effective(ADMIN_CAPS, NULL); 1034 if (err) 1035 perror("cap_enable_effective(ADMIN_CAPS)"); 1036 } else { 1037 err = cap_disable_effective(ADMIN_CAPS, NULL); 1038 if (err) 1039 perror("cap_disable_effective(ADMIN_CAPS)"); 1040 } 1041 1042 return err; 1043 } 1044 1045 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 1046 void *data, size_t size_data) 1047 { 1048 __u8 tmp[TEST_DATA_LEN << 2]; 1049 __u32 size_tmp = sizeof(tmp); 1050 int err, saved_errno; 1051 LIBBPF_OPTS(bpf_test_run_opts, topts, 1052 .data_in = data, 1053 .data_size_in = size_data, 1054 .data_out = tmp, 1055 .data_size_out = size_tmp, 1056 .repeat = 1, 1057 ); 1058 1059 if (unpriv) 1060 set_admin(true); 1061 err = bpf_prog_test_run_opts(fd_prog, &topts); 1062 saved_errno = errno; 1063 1064 if (unpriv) 1065 set_admin(false); 1066 1067 if (err) { 1068 switch (saved_errno) { 1069 case ENOTSUPP: 1070 printf("Did not run the program (not supported) "); 1071 return 0; 1072 case EPERM: 1073 if (unpriv) { 1074 printf("Did not run the program (no permission) "); 1075 return 0; 1076 } 1077 /* fallthrough; */ 1078 default: 1079 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1080 strerror(saved_errno)); 1081 return err; 1082 } 1083 } 1084 1085 if (topts.retval != expected_val && expected_val != POINTER_VALUE) { 1086 printf("FAIL retval %d != %d ", topts.retval, expected_val); 1087 return 1; 1088 } 1089 1090 return 0; 1091 } 1092 1093 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1094 * 1095 * If exp is an empty string, returns true. 1096 */ 1097 static bool cmp_str_seq(const char *log, const char *exp) 1098 { 1099 char needle[200]; 1100 const char *p, *q; 1101 int len; 1102 1103 do { 1104 if (!strlen(exp)) 1105 break; 1106 p = strchr(exp, '\t'); 1107 if (!p) 1108 p = exp + strlen(exp); 1109 1110 len = p - exp; 1111 if (len >= sizeof(needle) || !len) { 1112 printf("FAIL\nTestcase bug\n"); 1113 return false; 1114 } 1115 strncpy(needle, exp, len); 1116 needle[len] = 0; 1117 q = strstr(log, needle); 1118 if (!q) { 1119 printf("FAIL\nUnexpected verifier log!\n" 1120 "EXP: %s\nRES:\n", needle); 1121 return false; 1122 } 1123 log = q + len; 1124 exp = p + 1; 1125 } while (*p); 1126 return true; 1127 } 1128 1129 static void do_test_single(struct bpf_test *test, bool unpriv, 1130 int *passes, int *errors) 1131 { 1132 int fd_prog, expected_ret, alignment_prevented_execution; 1133 int prog_len, prog_type = test->prog_type; 1134 struct bpf_insn *prog = test->insns; 1135 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1136 int run_errs, run_successes; 1137 int map_fds[MAX_NR_MAPS]; 1138 const char *expected_err; 1139 int saved_errno; 1140 int fixup_skips; 1141 __u32 pflags; 1142 int i, err; 1143 1144 for (i = 0; i < MAX_NR_MAPS; i++) 1145 map_fds[i] = -1; 1146 1147 if (!prog_type) 1148 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1149 fixup_skips = skips; 1150 do_test_fixup(test, prog_type, prog, map_fds); 1151 if (test->fill_insns) { 1152 prog = test->fill_insns; 1153 prog_len = test->prog_len; 1154 } else { 1155 prog_len = probe_filter_length(prog); 1156 } 1157 /* If there were some map skips during fixup due to missing bpf 1158 * features, skip this test. 1159 */ 1160 if (fixup_skips != skips) 1161 return; 1162 1163 pflags = BPF_F_TEST_RND_HI32; 1164 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1165 pflags |= BPF_F_STRICT_ALIGNMENT; 1166 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1167 pflags |= BPF_F_ANY_ALIGNMENT; 1168 if (test->flags & ~3) 1169 pflags |= test->flags; 1170 1171 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1172 test->result_unpriv : test->result; 1173 expected_err = unpriv && test->errstr_unpriv ? 1174 test->errstr_unpriv : test->errstr; 1175 1176 opts.expected_attach_type = test->expected_attach_type; 1177 if (verbose) 1178 opts.log_level = 1; 1179 else if (expected_ret == VERBOSE_ACCEPT) 1180 opts.log_level = 2; 1181 else 1182 opts.log_level = 4; 1183 opts.prog_flags = pflags; 1184 1185 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1186 int attach_btf_id; 1187 1188 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1189 opts.expected_attach_type); 1190 if (attach_btf_id < 0) { 1191 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1192 test->kfunc); 1193 (*errors)++; 1194 return; 1195 } 1196 1197 opts.attach_btf_id = attach_btf_id; 1198 } 1199 1200 opts.log_buf = bpf_vlog; 1201 opts.log_size = sizeof(bpf_vlog); 1202 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1203 saved_errno = errno; 1204 1205 /* BPF_PROG_TYPE_TRACING requires more setup and 1206 * bpf_probe_prog_type won't give correct answer 1207 */ 1208 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1209 !libbpf_probe_bpf_prog_type(prog_type, NULL)) { 1210 printf("SKIP (unsupported program type %d)\n", prog_type); 1211 skips++; 1212 goto close_fds; 1213 } 1214 1215 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1216 printf("SKIP (program uses an unsupported feature)\n"); 1217 skips++; 1218 goto close_fds; 1219 } 1220 1221 alignment_prevented_execution = 0; 1222 1223 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1224 if (fd_prog < 0) { 1225 printf("FAIL\nFailed to load prog '%s'!\n", 1226 strerror(saved_errno)); 1227 goto fail_log; 1228 } 1229 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1230 if (fd_prog >= 0 && 1231 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1232 alignment_prevented_execution = 1; 1233 #endif 1234 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1235 goto fail_log; 1236 } 1237 } else { 1238 if (fd_prog >= 0) { 1239 printf("FAIL\nUnexpected success to load!\n"); 1240 goto fail_log; 1241 } 1242 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1243 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1244 expected_err, bpf_vlog); 1245 goto fail_log; 1246 } 1247 } 1248 1249 if (!unpriv && test->insn_processed) { 1250 uint32_t insn_processed; 1251 char *proc; 1252 1253 proc = strstr(bpf_vlog, "processed "); 1254 insn_processed = atoi(proc + 10); 1255 if (test->insn_processed != insn_processed) { 1256 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1257 insn_processed, test->insn_processed); 1258 goto fail_log; 1259 } 1260 } 1261 1262 if (verbose) 1263 printf(", verifier log:\n%s", bpf_vlog); 1264 1265 run_errs = 0; 1266 run_successes = 0; 1267 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1268 uint32_t expected_val; 1269 int i; 1270 1271 if (!test->runs) 1272 test->runs = 1; 1273 1274 for (i = 0; i < test->runs; i++) { 1275 if (unpriv && test->retvals[i].retval_unpriv) 1276 expected_val = test->retvals[i].retval_unpriv; 1277 else 1278 expected_val = test->retvals[i].retval; 1279 1280 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1281 test->retvals[i].data, 1282 sizeof(test->retvals[i].data)); 1283 if (err) { 1284 printf("(run %d/%d) ", i + 1, test->runs); 1285 run_errs++; 1286 } else { 1287 run_successes++; 1288 } 1289 } 1290 } 1291 1292 if (!run_errs) { 1293 (*passes)++; 1294 if (run_successes > 1) 1295 printf("%d cases ", run_successes); 1296 printf("OK"); 1297 if (alignment_prevented_execution) 1298 printf(" (NOTE: not executed due to unknown alignment)"); 1299 printf("\n"); 1300 } else { 1301 printf("\n"); 1302 goto fail_log; 1303 } 1304 close_fds: 1305 if (test->fill_insns) 1306 free(test->fill_insns); 1307 close(fd_prog); 1308 for (i = 0; i < MAX_NR_MAPS; i++) 1309 close(map_fds[i]); 1310 sched_yield(); 1311 return; 1312 fail_log: 1313 (*errors)++; 1314 printf("%s", bpf_vlog); 1315 goto close_fds; 1316 } 1317 1318 static bool is_admin(void) 1319 { 1320 __u64 caps; 1321 1322 /* The test checks for finer cap as CAP_NET_ADMIN, 1323 * CAP_PERFMON, and CAP_BPF instead of CAP_SYS_ADMIN. 1324 * Thus, disable CAP_SYS_ADMIN at the beginning. 1325 */ 1326 if (cap_disable_effective(1ULL << CAP_SYS_ADMIN, &caps)) { 1327 perror("cap_disable_effective(CAP_SYS_ADMIN)"); 1328 return false; 1329 } 1330 1331 return (caps & ADMIN_CAPS) == ADMIN_CAPS; 1332 } 1333 1334 static void get_unpriv_disabled() 1335 { 1336 char buf[2]; 1337 FILE *fd; 1338 1339 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1340 if (!fd) { 1341 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1342 unpriv_disabled = true; 1343 return; 1344 } 1345 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1346 unpriv_disabled = true; 1347 fclose(fd); 1348 } 1349 1350 static bool test_as_unpriv(struct bpf_test *test) 1351 { 1352 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1353 /* Some architectures have strict alignment requirements. In 1354 * that case, the BPF verifier detects if a program has 1355 * unaligned accesses and rejects them. A user can pass 1356 * BPF_F_ANY_ALIGNMENT to a program to override this 1357 * check. That, however, will only work when a privileged user 1358 * loads a program. An unprivileged user loading a program 1359 * with this flag will be rejected prior entering the 1360 * verifier. 1361 */ 1362 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1363 return false; 1364 #endif 1365 return !test->prog_type || 1366 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1367 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1368 } 1369 1370 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1371 { 1372 int i, passes = 0, errors = 0; 1373 1374 for (i = from; i < to; i++) { 1375 struct bpf_test *test = &tests[i]; 1376 1377 /* Program types that are not supported by non-root we 1378 * skip right away. 1379 */ 1380 if (test_as_unpriv(test) && unpriv_disabled) { 1381 printf("#%d/u %s SKIP\n", i, test->descr); 1382 skips++; 1383 } else if (test_as_unpriv(test)) { 1384 if (!unpriv) 1385 set_admin(false); 1386 printf("#%d/u %s ", i, test->descr); 1387 do_test_single(test, true, &passes, &errors); 1388 if (!unpriv) 1389 set_admin(true); 1390 } 1391 1392 if (unpriv) { 1393 printf("#%d/p %s SKIP\n", i, test->descr); 1394 skips++; 1395 } else { 1396 printf("#%d/p %s ", i, test->descr); 1397 do_test_single(test, false, &passes, &errors); 1398 } 1399 } 1400 1401 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1402 skips, errors); 1403 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1404 } 1405 1406 int main(int argc, char **argv) 1407 { 1408 unsigned int from = 0, to = ARRAY_SIZE(tests); 1409 bool unpriv = !is_admin(); 1410 int arg = 1; 1411 1412 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1413 arg++; 1414 verbose = true; 1415 argc--; 1416 } 1417 1418 if (argc == 3) { 1419 unsigned int l = atoi(argv[arg]); 1420 unsigned int u = atoi(argv[arg + 1]); 1421 1422 if (l < to && u < to) { 1423 from = l; 1424 to = u + 1; 1425 } 1426 } else if (argc == 2) { 1427 unsigned int t = atoi(argv[arg]); 1428 1429 if (t < to) { 1430 from = t; 1431 to = t + 1; 1432 } 1433 } 1434 1435 get_unpriv_disabled(); 1436 if (unpriv && unpriv_disabled) { 1437 printf("Cannot run as unprivileged user with sysctl %s.\n", 1438 UNPRIV_SYSCTL); 1439 return EXIT_FAILURE; 1440 } 1441 1442 /* Use libbpf 1.0 API mode */ 1443 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1444 1445 bpf_semi_rand_init(); 1446 return do_test(unpriv, from, to); 1447 } 1448