1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rand.h"
45 #include "bpf_util.h"
46 #include "test_btf.h"
47 #include "../../../include/linux/filter.h"
48 
49 #ifndef ENOTSUPP
50 #define ENOTSUPP 524
51 #endif
52 
53 #define MAX_INSNS	BPF_MAXINSNS
54 #define MAX_TEST_INSNS	1000000
55 #define MAX_FIXUPS	8
56 #define MAX_NR_MAPS	22
57 #define MAX_TEST_RUNS	8
58 #define POINTER_VALUE	0xcafe4all
59 #define TEST_DATA_LEN	64
60 
61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
62 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
63 
64 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
65 static bool unpriv_disabled = false;
66 static int skips;
67 static bool verbose = false;
68 
69 struct bpf_test {
70 	const char *descr;
71 	struct bpf_insn	insns[MAX_INSNS];
72 	struct bpf_insn	*fill_insns;
73 	int fixup_map_hash_8b[MAX_FIXUPS];
74 	int fixup_map_hash_48b[MAX_FIXUPS];
75 	int fixup_map_hash_16b[MAX_FIXUPS];
76 	int fixup_map_array_48b[MAX_FIXUPS];
77 	int fixup_map_sockmap[MAX_FIXUPS];
78 	int fixup_map_sockhash[MAX_FIXUPS];
79 	int fixup_map_xskmap[MAX_FIXUPS];
80 	int fixup_map_stacktrace[MAX_FIXUPS];
81 	int fixup_prog1[MAX_FIXUPS];
82 	int fixup_prog2[MAX_FIXUPS];
83 	int fixup_map_in_map[MAX_FIXUPS];
84 	int fixup_cgroup_storage[MAX_FIXUPS];
85 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
86 	int fixup_map_spin_lock[MAX_FIXUPS];
87 	int fixup_map_array_ro[MAX_FIXUPS];
88 	int fixup_map_array_wo[MAX_FIXUPS];
89 	int fixup_map_array_small[MAX_FIXUPS];
90 	int fixup_sk_storage_map[MAX_FIXUPS];
91 	int fixup_map_event_output[MAX_FIXUPS];
92 	int fixup_map_reuseport_array[MAX_FIXUPS];
93 	int fixup_map_ringbuf[MAX_FIXUPS];
94 	int fixup_map_timer[MAX_FIXUPS];
95 	/* Expected verifier log output for result REJECT or VERBOSE_ACCEPT.
96 	 * Can be a tab-separated sequence of expected strings. An empty string
97 	 * means no log verification.
98 	 */
99 	const char *errstr;
100 	const char *errstr_unpriv;
101 	uint32_t insn_processed;
102 	int prog_len;
103 	enum {
104 		UNDEF,
105 		ACCEPT,
106 		REJECT,
107 		VERBOSE_ACCEPT,
108 	} result, result_unpriv;
109 	enum bpf_prog_type prog_type;
110 	uint8_t flags;
111 	void (*fill_helper)(struct bpf_test *self);
112 	int runs;
113 #define bpf_testdata_struct_t					\
114 	struct {						\
115 		uint32_t retval, retval_unpriv;			\
116 		union {						\
117 			__u8 data[TEST_DATA_LEN];		\
118 			__u64 data64[TEST_DATA_LEN / 8];	\
119 		};						\
120 	}
121 	union {
122 		bpf_testdata_struct_t;
123 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
124 	};
125 	enum bpf_attach_type expected_attach_type;
126 	const char *kfunc;
127 };
128 
129 /* Note we want this to be 64 bit aligned so that the end of our array is
130  * actually the end of the structure.
131  */
132 #define MAX_ENTRIES 11
133 
134 struct test_val {
135 	unsigned int index;
136 	int foo[MAX_ENTRIES];
137 };
138 
139 struct other_val {
140 	long long foo;
141 	long long bar;
142 };
143 
144 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
145 {
146 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
147 #define PUSH_CNT 51
148 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
149 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
150 	struct bpf_insn *insn = self->fill_insns;
151 	int i = 0, j, k = 0;
152 
153 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
154 loop:
155 	for (j = 0; j < PUSH_CNT; j++) {
156 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
157 		/* jump to error label */
158 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
159 		i++;
160 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
161 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
162 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
163 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
164 					 BPF_FUNC_skb_vlan_push),
165 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
166 		i++;
167 	}
168 
169 	for (j = 0; j < PUSH_CNT; j++) {
170 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
171 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
172 		i++;
173 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
174 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
175 					 BPF_FUNC_skb_vlan_pop),
176 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
177 		i++;
178 	}
179 	if (++k < 5)
180 		goto loop;
181 
182 	for (; i < len - 3; i++)
183 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
184 	insn[len - 3] = BPF_JMP_A(1);
185 	/* error label */
186 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
187 	insn[len - 1] = BPF_EXIT_INSN();
188 	self->prog_len = len;
189 }
190 
191 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
192 {
193 	struct bpf_insn *insn = self->fill_insns;
194 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
195 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
196 	 * to extend the error value of the inlined ld_abs sequence which then
197 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
198 	 * work on all arches.
199 	 */
200 	unsigned int len = (1 << 15) / 7;
201 	int i = 0;
202 
203 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
204 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
205 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
206 	i++;
207 	while (i < len - 1)
208 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
209 	insn[i] = BPF_EXIT_INSN();
210 	self->prog_len = i + 1;
211 }
212 
213 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
214 {
215 	struct bpf_insn *insn = self->fill_insns;
216 	uint64_t res = 0;
217 	int i = 0;
218 
219 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
220 	while (i < self->retval) {
221 		uint64_t val = bpf_semi_rand_get();
222 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
223 
224 		res ^= val;
225 		insn[i++] = tmp[0];
226 		insn[i++] = tmp[1];
227 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
228 	}
229 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
230 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
231 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
232 	insn[i] = BPF_EXIT_INSN();
233 	self->prog_len = i + 1;
234 	res ^= (res >> 32);
235 	self->retval = (uint32_t)res;
236 }
237 
238 #define MAX_JMP_SEQ 8192
239 
240 /* test the sequence of 8k jumps */
241 static void bpf_fill_scale1(struct bpf_test *self)
242 {
243 	struct bpf_insn *insn = self->fill_insns;
244 	int i = 0, k = 0;
245 
246 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
247 	/* test to check that the long sequence of jumps is acceptable */
248 	while (k++ < MAX_JMP_SEQ) {
249 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
250 					 BPF_FUNC_get_prandom_u32);
251 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
252 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
253 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
254 					-8 * (k % 64 + 1));
255 	}
256 	/* is_state_visited() doesn't allocate state for pruning for every jump.
257 	 * Hence multiply jmps by 4 to accommodate that heuristic
258 	 */
259 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
260 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
261 	insn[i] = BPF_EXIT_INSN();
262 	self->prog_len = i + 1;
263 	self->retval = 42;
264 }
265 
266 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
267 static void bpf_fill_scale2(struct bpf_test *self)
268 {
269 	struct bpf_insn *insn = self->fill_insns;
270 	int i = 0, k = 0;
271 
272 #define FUNC_NEST 7
273 	for (k = 0; k < FUNC_NEST; k++) {
274 		insn[i++] = BPF_CALL_REL(1);
275 		insn[i++] = BPF_EXIT_INSN();
276 	}
277 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
278 	/* test to check that the long sequence of jumps is acceptable */
279 	k = 0;
280 	while (k++ < MAX_JMP_SEQ) {
281 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
282 					 BPF_FUNC_get_prandom_u32);
283 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
284 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
285 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
286 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
287 	}
288 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
289 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
290 	insn[i] = BPF_EXIT_INSN();
291 	self->prog_len = i + 1;
292 	self->retval = 42;
293 }
294 
295 static void bpf_fill_scale(struct bpf_test *self)
296 {
297 	switch (self->retval) {
298 	case 1:
299 		return bpf_fill_scale1(self);
300 	case 2:
301 		return bpf_fill_scale2(self);
302 	default:
303 		self->prog_len = 0;
304 		break;
305 	}
306 }
307 
308 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn)
309 {
310 	unsigned int len = 259, hlen = 128;
311 	int i;
312 
313 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
314 	for (i = 1; i <= hlen; i++) {
315 		insn[i]        = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen);
316 		insn[i + hlen] = BPF_JMP_A(hlen - i);
317 	}
318 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1);
319 	insn[len - 1] = BPF_EXIT_INSN();
320 
321 	return len;
322 }
323 
324 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn)
325 {
326 	unsigned int len = 4100, jmp_off = 2048;
327 	int i, j;
328 
329 	insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32);
330 	for (i = 1; i <= jmp_off; i++) {
331 		insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off);
332 	}
333 	insn[i++] = BPF_JMP_A(jmp_off);
334 	for (; i <= jmp_off * 2 + 1; i+=16) {
335 		for (j = 0; j < 16; j++) {
336 			insn[i + j] = BPF_JMP_A(16 - j - 1);
337 		}
338 	}
339 
340 	insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2);
341 	insn[len - 1] = BPF_EXIT_INSN();
342 
343 	return len;
344 }
345 
346 static void bpf_fill_torturous_jumps(struct bpf_test *self)
347 {
348 	struct bpf_insn *insn = self->fill_insns;
349 	int i = 0;
350 
351 	switch (self->retval) {
352 	case 1:
353 		self->prog_len = bpf_fill_torturous_jumps_insn_1(insn);
354 		return;
355 	case 2:
356 		self->prog_len = bpf_fill_torturous_jumps_insn_2(insn);
357 		return;
358 	case 3:
359 		/* main */
360 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4);
361 		insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262);
362 		insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0);
363 		insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3);
364 		insn[i++] = BPF_EXIT_INSN();
365 
366 		/* subprog 1 */
367 		i += bpf_fill_torturous_jumps_insn_1(insn + i);
368 
369 		/* subprog 2 */
370 		i += bpf_fill_torturous_jumps_insn_2(insn + i);
371 
372 		self->prog_len = i;
373 		return;
374 	default:
375 		self->prog_len = 0;
376 		break;
377 	}
378 }
379 
380 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
381 #define BPF_SK_LOOKUP(func)						\
382 	/* struct bpf_sock_tuple tuple = {} */				\
383 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
384 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
385 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
386 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
387 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
388 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
389 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
390 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
391 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
392 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
393 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
394 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
395 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
396 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
397 
398 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
399  * value into 0 and does necessary preparation for direct packet access
400  * through r2. The allowed access range is 8 bytes.
401  */
402 #define BPF_DIRECT_PKT_R2						\
403 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
404 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
405 		    offsetof(struct __sk_buff, data)),			\
406 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
407 		    offsetof(struct __sk_buff, data_end)),		\
408 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
409 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
410 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
411 	BPF_EXIT_INSN()
412 
413 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
414  * positive u32, and zero-extend it into 64-bit.
415  */
416 #define BPF_RAND_UEXT_R7						\
417 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
418 		     BPF_FUNC_get_prandom_u32),				\
419 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
420 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
421 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
422 
423 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
424  * negative u32, and sign-extend it into 64-bit.
425  */
426 #define BPF_RAND_SEXT_R7						\
427 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
428 		     BPF_FUNC_get_prandom_u32),				\
429 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
430 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
431 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
432 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
433 
434 static struct bpf_test tests[] = {
435 #define FILL_ARRAY
436 #include <verifier/tests.h>
437 #undef FILL_ARRAY
438 };
439 
440 static int probe_filter_length(const struct bpf_insn *fp)
441 {
442 	int len;
443 
444 	for (len = MAX_INSNS - 1; len > 0; --len)
445 		if (fp[len].code != 0 || fp[len].imm != 0)
446 			break;
447 	return len + 1;
448 }
449 
450 static bool skip_unsupported_map(enum bpf_map_type map_type)
451 {
452 	if (!bpf_probe_map_type(map_type, 0)) {
453 		printf("SKIP (unsupported map type %d)\n", map_type);
454 		skips++;
455 		return true;
456 	}
457 	return false;
458 }
459 
460 static int __create_map(uint32_t type, uint32_t size_key,
461 			uint32_t size_value, uint32_t max_elem,
462 			uint32_t extra_flags)
463 {
464 	LIBBPF_OPTS(bpf_map_create_opts, opts);
465 	int fd;
466 
467 	opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags;
468 	fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts);
469 	if (fd < 0) {
470 		if (skip_unsupported_map(type))
471 			return -1;
472 		printf("Failed to create hash map '%s'!\n", strerror(errno));
473 	}
474 
475 	return fd;
476 }
477 
478 static int create_map(uint32_t type, uint32_t size_key,
479 		      uint32_t size_value, uint32_t max_elem)
480 {
481 	return __create_map(type, size_key, size_value, max_elem, 0);
482 }
483 
484 static void update_map(int fd, int index)
485 {
486 	struct test_val value = {
487 		.index = (6 + 1) * sizeof(int),
488 		.foo[6] = 0xabcdef12,
489 	};
490 
491 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
492 }
493 
494 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
495 {
496 	struct bpf_insn prog[] = {
497 		BPF_MOV64_IMM(BPF_REG_0, ret),
498 		BPF_EXIT_INSN(),
499 	};
500 
501 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
502 }
503 
504 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
505 				  int idx, int ret)
506 {
507 	struct bpf_insn prog[] = {
508 		BPF_MOV64_IMM(BPF_REG_3, idx),
509 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
510 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
511 			     BPF_FUNC_tail_call),
512 		BPF_MOV64_IMM(BPF_REG_0, ret),
513 		BPF_EXIT_INSN(),
514 	};
515 
516 	return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL);
517 }
518 
519 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
520 			     int p1key, int p2key, int p3key)
521 {
522 	int mfd, p1fd, p2fd, p3fd;
523 
524 	mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int),
525 			     sizeof(int), max_elem, NULL);
526 	if (mfd < 0) {
527 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
528 			return -1;
529 		printf("Failed to create prog array '%s'!\n", strerror(errno));
530 		return -1;
531 	}
532 
533 	p1fd = create_prog_dummy_simple(prog_type, 42);
534 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
535 	p3fd = create_prog_dummy_simple(prog_type, 24);
536 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
537 		goto err;
538 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
539 		goto err;
540 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
541 		goto err;
542 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
543 err:
544 		close(mfd);
545 		mfd = -1;
546 	}
547 	close(p3fd);
548 	close(p2fd);
549 	close(p1fd);
550 	return mfd;
551 }
552 
553 static int create_map_in_map(void)
554 {
555 	LIBBPF_OPTS(bpf_map_create_opts, opts);
556 	int inner_map_fd, outer_map_fd;
557 
558 	inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int),
559 				      sizeof(int), 1, NULL);
560 	if (inner_map_fd < 0) {
561 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
562 			return -1;
563 		printf("Failed to create array '%s'!\n", strerror(errno));
564 		return inner_map_fd;
565 	}
566 
567 	opts.inner_map_fd = inner_map_fd;
568 	outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
569 				      sizeof(int), sizeof(int), 1, &opts);
570 	if (outer_map_fd < 0) {
571 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
572 			return -1;
573 		printf("Failed to create array of maps '%s'!\n",
574 		       strerror(errno));
575 	}
576 
577 	close(inner_map_fd);
578 
579 	return outer_map_fd;
580 }
581 
582 static int create_cgroup_storage(bool percpu)
583 {
584 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
585 		BPF_MAP_TYPE_CGROUP_STORAGE;
586 	int fd;
587 
588 	fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key),
589 			    TEST_DATA_LEN, 0, NULL);
590 	if (fd < 0) {
591 		if (skip_unsupported_map(type))
592 			return -1;
593 		printf("Failed to create cgroup storage '%s'!\n",
594 		       strerror(errno));
595 	}
596 
597 	return fd;
598 }
599 
600 /* struct bpf_spin_lock {
601  *   int val;
602  * };
603  * struct val {
604  *   int cnt;
605  *   struct bpf_spin_lock l;
606  * };
607  * struct bpf_timer {
608  *   __u64 :64;
609  *   __u64 :64;
610  * } __attribute__((aligned(8)));
611  * struct timer {
612  *   struct bpf_timer t;
613  * };
614  */
615 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t";
616 static __u32 btf_raw_types[] = {
617 	/* int */
618 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
619 	/* struct bpf_spin_lock */                      /* [2] */
620 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
621 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
622 	/* struct val */                                /* [3] */
623 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
624 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
625 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
626 	/* struct bpf_timer */                          /* [4] */
627 	BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16),
628 	/* struct timer */                              /* [5] */
629 	BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16),
630 	BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */
631 };
632 
633 static int load_btf(void)
634 {
635 	struct btf_header hdr = {
636 		.magic = BTF_MAGIC,
637 		.version = BTF_VERSION,
638 		.hdr_len = sizeof(struct btf_header),
639 		.type_len = sizeof(btf_raw_types),
640 		.str_off = sizeof(btf_raw_types),
641 		.str_len = sizeof(btf_str_sec),
642 	};
643 	void *ptr, *raw_btf;
644 	int btf_fd;
645 
646 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
647 			       sizeof(btf_str_sec));
648 
649 	memcpy(ptr, &hdr, sizeof(hdr));
650 	ptr += sizeof(hdr);
651 	memcpy(ptr, btf_raw_types, hdr.type_len);
652 	ptr += hdr.type_len;
653 	memcpy(ptr, btf_str_sec, hdr.str_len);
654 	ptr += hdr.str_len;
655 
656 	btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, NULL);
657 	free(raw_btf);
658 	if (btf_fd < 0)
659 		return -1;
660 	return btf_fd;
661 }
662 
663 static int create_map_spin_lock(void)
664 {
665 	LIBBPF_OPTS(bpf_map_create_opts, opts,
666 		.btf_key_type_id = 1,
667 		.btf_value_type_id = 3,
668 	);
669 	int fd, btf_fd;
670 
671 	btf_fd = load_btf();
672 	if (btf_fd < 0)
673 		return -1;
674 	opts.btf_fd = btf_fd;
675 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts);
676 	if (fd < 0)
677 		printf("Failed to create map with spin_lock\n");
678 	return fd;
679 }
680 
681 static int create_sk_storage_map(void)
682 {
683 	LIBBPF_OPTS(bpf_map_create_opts, opts,
684 		.map_flags = BPF_F_NO_PREALLOC,
685 		.btf_key_type_id = 1,
686 		.btf_value_type_id = 3,
687 	);
688 	int fd, btf_fd;
689 
690 	btf_fd = load_btf();
691 	if (btf_fd < 0)
692 		return -1;
693 	opts.btf_fd = btf_fd;
694 	fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts);
695 	close(opts.btf_fd);
696 	if (fd < 0)
697 		printf("Failed to create sk_storage_map\n");
698 	return fd;
699 }
700 
701 static int create_map_timer(void)
702 {
703 	LIBBPF_OPTS(bpf_map_create_opts, opts,
704 		.btf_key_type_id = 1,
705 		.btf_value_type_id = 5,
706 	);
707 	int fd, btf_fd;
708 
709 	btf_fd = load_btf();
710 	if (btf_fd < 0)
711 		return -1;
712 
713 	opts.btf_fd = btf_fd;
714 	fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts);
715 	if (fd < 0)
716 		printf("Failed to create map with timer\n");
717 	return fd;
718 }
719 
720 static char bpf_vlog[UINT_MAX >> 8];
721 
722 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
723 			  struct bpf_insn *prog, int *map_fds)
724 {
725 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
726 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
727 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
728 	int *fixup_map_array_48b = test->fixup_map_array_48b;
729 	int *fixup_map_sockmap = test->fixup_map_sockmap;
730 	int *fixup_map_sockhash = test->fixup_map_sockhash;
731 	int *fixup_map_xskmap = test->fixup_map_xskmap;
732 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
733 	int *fixup_prog1 = test->fixup_prog1;
734 	int *fixup_prog2 = test->fixup_prog2;
735 	int *fixup_map_in_map = test->fixup_map_in_map;
736 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
737 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
738 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
739 	int *fixup_map_array_ro = test->fixup_map_array_ro;
740 	int *fixup_map_array_wo = test->fixup_map_array_wo;
741 	int *fixup_map_array_small = test->fixup_map_array_small;
742 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
743 	int *fixup_map_event_output = test->fixup_map_event_output;
744 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
745 	int *fixup_map_ringbuf = test->fixup_map_ringbuf;
746 	int *fixup_map_timer = test->fixup_map_timer;
747 
748 	if (test->fill_helper) {
749 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
750 		test->fill_helper(test);
751 	}
752 
753 	/* Allocating HTs with 1 elem is fine here, since we only test
754 	 * for verifier and not do a runtime lookup, so the only thing
755 	 * that really matters is value size in this case.
756 	 */
757 	if (*fixup_map_hash_8b) {
758 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
759 					sizeof(long long), 1);
760 		do {
761 			prog[*fixup_map_hash_8b].imm = map_fds[0];
762 			fixup_map_hash_8b++;
763 		} while (*fixup_map_hash_8b);
764 	}
765 
766 	if (*fixup_map_hash_48b) {
767 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
768 					sizeof(struct test_val), 1);
769 		do {
770 			prog[*fixup_map_hash_48b].imm = map_fds[1];
771 			fixup_map_hash_48b++;
772 		} while (*fixup_map_hash_48b);
773 	}
774 
775 	if (*fixup_map_hash_16b) {
776 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
777 					sizeof(struct other_val), 1);
778 		do {
779 			prog[*fixup_map_hash_16b].imm = map_fds[2];
780 			fixup_map_hash_16b++;
781 		} while (*fixup_map_hash_16b);
782 	}
783 
784 	if (*fixup_map_array_48b) {
785 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
786 					sizeof(struct test_val), 1);
787 		update_map(map_fds[3], 0);
788 		do {
789 			prog[*fixup_map_array_48b].imm = map_fds[3];
790 			fixup_map_array_48b++;
791 		} while (*fixup_map_array_48b);
792 	}
793 
794 	if (*fixup_prog1) {
795 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
796 		do {
797 			prog[*fixup_prog1].imm = map_fds[4];
798 			fixup_prog1++;
799 		} while (*fixup_prog1);
800 	}
801 
802 	if (*fixup_prog2) {
803 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
804 		do {
805 			prog[*fixup_prog2].imm = map_fds[5];
806 			fixup_prog2++;
807 		} while (*fixup_prog2);
808 	}
809 
810 	if (*fixup_map_in_map) {
811 		map_fds[6] = create_map_in_map();
812 		do {
813 			prog[*fixup_map_in_map].imm = map_fds[6];
814 			fixup_map_in_map++;
815 		} while (*fixup_map_in_map);
816 	}
817 
818 	if (*fixup_cgroup_storage) {
819 		map_fds[7] = create_cgroup_storage(false);
820 		do {
821 			prog[*fixup_cgroup_storage].imm = map_fds[7];
822 			fixup_cgroup_storage++;
823 		} while (*fixup_cgroup_storage);
824 	}
825 
826 	if (*fixup_percpu_cgroup_storage) {
827 		map_fds[8] = create_cgroup_storage(true);
828 		do {
829 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
830 			fixup_percpu_cgroup_storage++;
831 		} while (*fixup_percpu_cgroup_storage);
832 	}
833 	if (*fixup_map_sockmap) {
834 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
835 					sizeof(int), 1);
836 		do {
837 			prog[*fixup_map_sockmap].imm = map_fds[9];
838 			fixup_map_sockmap++;
839 		} while (*fixup_map_sockmap);
840 	}
841 	if (*fixup_map_sockhash) {
842 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
843 					sizeof(int), 1);
844 		do {
845 			prog[*fixup_map_sockhash].imm = map_fds[10];
846 			fixup_map_sockhash++;
847 		} while (*fixup_map_sockhash);
848 	}
849 	if (*fixup_map_xskmap) {
850 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
851 					sizeof(int), 1);
852 		do {
853 			prog[*fixup_map_xskmap].imm = map_fds[11];
854 			fixup_map_xskmap++;
855 		} while (*fixup_map_xskmap);
856 	}
857 	if (*fixup_map_stacktrace) {
858 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
859 					 sizeof(u64), 1);
860 		do {
861 			prog[*fixup_map_stacktrace].imm = map_fds[12];
862 			fixup_map_stacktrace++;
863 		} while (*fixup_map_stacktrace);
864 	}
865 	if (*fixup_map_spin_lock) {
866 		map_fds[13] = create_map_spin_lock();
867 		do {
868 			prog[*fixup_map_spin_lock].imm = map_fds[13];
869 			fixup_map_spin_lock++;
870 		} while (*fixup_map_spin_lock);
871 	}
872 	if (*fixup_map_array_ro) {
873 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
874 					   sizeof(struct test_val), 1,
875 					   BPF_F_RDONLY_PROG);
876 		update_map(map_fds[14], 0);
877 		do {
878 			prog[*fixup_map_array_ro].imm = map_fds[14];
879 			fixup_map_array_ro++;
880 		} while (*fixup_map_array_ro);
881 	}
882 	if (*fixup_map_array_wo) {
883 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
884 					   sizeof(struct test_val), 1,
885 					   BPF_F_WRONLY_PROG);
886 		update_map(map_fds[15], 0);
887 		do {
888 			prog[*fixup_map_array_wo].imm = map_fds[15];
889 			fixup_map_array_wo++;
890 		} while (*fixup_map_array_wo);
891 	}
892 	if (*fixup_map_array_small) {
893 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
894 					   1, 1, 0);
895 		update_map(map_fds[16], 0);
896 		do {
897 			prog[*fixup_map_array_small].imm = map_fds[16];
898 			fixup_map_array_small++;
899 		} while (*fixup_map_array_small);
900 	}
901 	if (*fixup_sk_storage_map) {
902 		map_fds[17] = create_sk_storage_map();
903 		do {
904 			prog[*fixup_sk_storage_map].imm = map_fds[17];
905 			fixup_sk_storage_map++;
906 		} while (*fixup_sk_storage_map);
907 	}
908 	if (*fixup_map_event_output) {
909 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
910 					   sizeof(int), sizeof(int), 1, 0);
911 		do {
912 			prog[*fixup_map_event_output].imm = map_fds[18];
913 			fixup_map_event_output++;
914 		} while (*fixup_map_event_output);
915 	}
916 	if (*fixup_map_reuseport_array) {
917 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
918 					   sizeof(u32), sizeof(u64), 1, 0);
919 		do {
920 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
921 			fixup_map_reuseport_array++;
922 		} while (*fixup_map_reuseport_array);
923 	}
924 	if (*fixup_map_ringbuf) {
925 		map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0,
926 					   0, 4096);
927 		do {
928 			prog[*fixup_map_ringbuf].imm = map_fds[20];
929 			fixup_map_ringbuf++;
930 		} while (*fixup_map_ringbuf);
931 	}
932 	if (*fixup_map_timer) {
933 		map_fds[21] = create_map_timer();
934 		do {
935 			prog[*fixup_map_timer].imm = map_fds[21];
936 			fixup_map_timer++;
937 		} while (*fixup_map_timer);
938 	}
939 }
940 
941 struct libcap {
942 	struct __user_cap_header_struct hdr;
943 	struct __user_cap_data_struct data[2];
944 };
945 
946 static int set_admin(bool admin)
947 {
948 	cap_t caps;
949 	/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
950 	const cap_value_t cap_net_admin = CAP_NET_ADMIN;
951 	const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
952 	struct libcap *cap;
953 	int ret = -1;
954 
955 	caps = cap_get_proc();
956 	if (!caps) {
957 		perror("cap_get_proc");
958 		return -1;
959 	}
960 	cap = (struct libcap *)caps;
961 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
962 		perror("cap_set_flag clear admin");
963 		goto out;
964 	}
965 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
966 				admin ? CAP_SET : CAP_CLEAR)) {
967 		perror("cap_set_flag set_or_clear net");
968 		goto out;
969 	}
970 	/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
971 	 * so update effective bits manually
972 	 */
973 	if (admin) {
974 		cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
975 		cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
976 	} else {
977 		cap->data[1].effective &= ~(1 << (38 - 32));
978 		cap->data[1].effective &= ~(1 << (39 - 32));
979 	}
980 	if (cap_set_proc(caps)) {
981 		perror("cap_set_proc");
982 		goto out;
983 	}
984 	ret = 0;
985 out:
986 	if (cap_free(caps))
987 		perror("cap_free");
988 	return ret;
989 }
990 
991 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
992 			    void *data, size_t size_data)
993 {
994 	__u8 tmp[TEST_DATA_LEN << 2];
995 	__u32 size_tmp = sizeof(tmp);
996 	uint32_t retval;
997 	int err, saved_errno;
998 
999 	if (unpriv)
1000 		set_admin(true);
1001 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
1002 				tmp, &size_tmp, &retval, NULL);
1003 	saved_errno = errno;
1004 
1005 	if (unpriv)
1006 		set_admin(false);
1007 
1008 	if (err) {
1009 		switch (saved_errno) {
1010 		case ENOTSUPP:
1011 			printf("Did not run the program (not supported) ");
1012 			return 0;
1013 		case EPERM:
1014 			if (unpriv) {
1015 				printf("Did not run the program (no permission) ");
1016 				return 0;
1017 			}
1018 			/* fallthrough; */
1019 		default:
1020 			printf("FAIL: Unexpected bpf_prog_test_run error (%s) ",
1021 				strerror(saved_errno));
1022 			return err;
1023 		}
1024 	}
1025 
1026 	if (retval != expected_val &&
1027 	    expected_val != POINTER_VALUE) {
1028 		printf("FAIL retval %d != %d ", retval, expected_val);
1029 		return 1;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 /* Returns true if every part of exp (tab-separated) appears in log, in order.
1036  *
1037  * If exp is an empty string, returns true.
1038  */
1039 static bool cmp_str_seq(const char *log, const char *exp)
1040 {
1041 	char needle[200];
1042 	const char *p, *q;
1043 	int len;
1044 
1045 	do {
1046 		if (!strlen(exp))
1047 			break;
1048 		p = strchr(exp, '\t');
1049 		if (!p)
1050 			p = exp + strlen(exp);
1051 
1052 		len = p - exp;
1053 		if (len >= sizeof(needle) || !len) {
1054 			printf("FAIL\nTestcase bug\n");
1055 			return false;
1056 		}
1057 		strncpy(needle, exp, len);
1058 		needle[len] = 0;
1059 		q = strstr(log, needle);
1060 		if (!q) {
1061 			printf("FAIL\nUnexpected verifier log!\n"
1062 			       "EXP: %s\nRES:\n", needle);
1063 			return false;
1064 		}
1065 		log = q + len;
1066 		exp = p + 1;
1067 	} while (*p);
1068 	return true;
1069 }
1070 
1071 static void do_test_single(struct bpf_test *test, bool unpriv,
1072 			   int *passes, int *errors)
1073 {
1074 	int fd_prog, expected_ret, alignment_prevented_execution;
1075 	int prog_len, prog_type = test->prog_type;
1076 	struct bpf_insn *prog = test->insns;
1077 	LIBBPF_OPTS(bpf_prog_load_opts, opts);
1078 	int run_errs, run_successes;
1079 	int map_fds[MAX_NR_MAPS];
1080 	const char *expected_err;
1081 	int saved_errno;
1082 	int fixup_skips;
1083 	__u32 pflags;
1084 	int i, err;
1085 
1086 	for (i = 0; i < MAX_NR_MAPS; i++)
1087 		map_fds[i] = -1;
1088 
1089 	if (!prog_type)
1090 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
1091 	fixup_skips = skips;
1092 	do_test_fixup(test, prog_type, prog, map_fds);
1093 	if (test->fill_insns) {
1094 		prog = test->fill_insns;
1095 		prog_len = test->prog_len;
1096 	} else {
1097 		prog_len = probe_filter_length(prog);
1098 	}
1099 	/* If there were some map skips during fixup due to missing bpf
1100 	 * features, skip this test.
1101 	 */
1102 	if (fixup_skips != skips)
1103 		return;
1104 
1105 	pflags = BPF_F_TEST_RND_HI32;
1106 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
1107 		pflags |= BPF_F_STRICT_ALIGNMENT;
1108 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1109 		pflags |= BPF_F_ANY_ALIGNMENT;
1110 	if (test->flags & ~3)
1111 		pflags |= test->flags;
1112 
1113 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
1114 		       test->result_unpriv : test->result;
1115 	expected_err = unpriv && test->errstr_unpriv ?
1116 		       test->errstr_unpriv : test->errstr;
1117 
1118 	opts.expected_attach_type = test->expected_attach_type;
1119 	if (verbose)
1120 		opts.log_level = 1;
1121 	else if (expected_ret == VERBOSE_ACCEPT)
1122 		opts.log_level = 2;
1123 	else
1124 		opts.log_level = 4;
1125 	opts.prog_flags = pflags;
1126 
1127 	if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) {
1128 		int attach_btf_id;
1129 
1130 		attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc,
1131 						opts.expected_attach_type);
1132 		if (attach_btf_id < 0) {
1133 			printf("FAIL\nFailed to find BTF ID for '%s'!\n",
1134 				test->kfunc);
1135 			(*errors)++;
1136 			return;
1137 		}
1138 
1139 		opts.attach_btf_id = attach_btf_id;
1140 	}
1141 
1142 	opts.log_buf = bpf_vlog;
1143 	opts.log_size = sizeof(bpf_vlog);
1144 	fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts);
1145 	saved_errno = errno;
1146 
1147 	/* BPF_PROG_TYPE_TRACING requires more setup and
1148 	 * bpf_probe_prog_type won't give correct answer
1149 	 */
1150 	if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING &&
1151 	    !bpf_probe_prog_type(prog_type, 0)) {
1152 		printf("SKIP (unsupported program type %d)\n", prog_type);
1153 		skips++;
1154 		goto close_fds;
1155 	}
1156 
1157 	if (fd_prog < 0 && saved_errno == ENOTSUPP) {
1158 		printf("SKIP (program uses an unsupported feature)\n");
1159 		skips++;
1160 		goto close_fds;
1161 	}
1162 
1163 	alignment_prevented_execution = 0;
1164 
1165 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
1166 		if (fd_prog < 0) {
1167 			printf("FAIL\nFailed to load prog '%s'!\n",
1168 			       strerror(saved_errno));
1169 			goto fail_log;
1170 		}
1171 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1172 		if (fd_prog >= 0 &&
1173 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1174 			alignment_prevented_execution = 1;
1175 #endif
1176 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1177 			goto fail_log;
1178 		}
1179 	} else {
1180 		if (fd_prog >= 0) {
1181 			printf("FAIL\nUnexpected success to load!\n");
1182 			goto fail_log;
1183 		}
1184 		if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) {
1185 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1186 			      expected_err, bpf_vlog);
1187 			goto fail_log;
1188 		}
1189 	}
1190 
1191 	if (!unpriv && test->insn_processed) {
1192 		uint32_t insn_processed;
1193 		char *proc;
1194 
1195 		proc = strstr(bpf_vlog, "processed ");
1196 		insn_processed = atoi(proc + 10);
1197 		if (test->insn_processed != insn_processed) {
1198 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1199 			       insn_processed, test->insn_processed);
1200 			goto fail_log;
1201 		}
1202 	}
1203 
1204 	if (verbose)
1205 		printf(", verifier log:\n%s", bpf_vlog);
1206 
1207 	run_errs = 0;
1208 	run_successes = 0;
1209 	if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) {
1210 		uint32_t expected_val;
1211 		int i;
1212 
1213 		if (!test->runs)
1214 			test->runs = 1;
1215 
1216 		for (i = 0; i < test->runs; i++) {
1217 			if (unpriv && test->retvals[i].retval_unpriv)
1218 				expected_val = test->retvals[i].retval_unpriv;
1219 			else
1220 				expected_val = test->retvals[i].retval;
1221 
1222 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1223 					       test->retvals[i].data,
1224 					       sizeof(test->retvals[i].data));
1225 			if (err) {
1226 				printf("(run %d/%d) ", i + 1, test->runs);
1227 				run_errs++;
1228 			} else {
1229 				run_successes++;
1230 			}
1231 		}
1232 	}
1233 
1234 	if (!run_errs) {
1235 		(*passes)++;
1236 		if (run_successes > 1)
1237 			printf("%d cases ", run_successes);
1238 		printf("OK");
1239 		if (alignment_prevented_execution)
1240 			printf(" (NOTE: not executed due to unknown alignment)");
1241 		printf("\n");
1242 	} else {
1243 		printf("\n");
1244 		goto fail_log;
1245 	}
1246 close_fds:
1247 	if (test->fill_insns)
1248 		free(test->fill_insns);
1249 	close(fd_prog);
1250 	for (i = 0; i < MAX_NR_MAPS; i++)
1251 		close(map_fds[i]);
1252 	sched_yield();
1253 	return;
1254 fail_log:
1255 	(*errors)++;
1256 	printf("%s", bpf_vlog);
1257 	goto close_fds;
1258 }
1259 
1260 static bool is_admin(void)
1261 {
1262 	cap_flag_value_t net_priv = CAP_CLEAR;
1263 	bool perfmon_priv = false;
1264 	bool bpf_priv = false;
1265 	struct libcap *cap;
1266 	cap_t caps;
1267 
1268 #ifdef CAP_IS_SUPPORTED
1269 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1270 		perror("cap_get_flag");
1271 		return false;
1272 	}
1273 #endif
1274 	caps = cap_get_proc();
1275 	if (!caps) {
1276 		perror("cap_get_proc");
1277 		return false;
1278 	}
1279 	cap = (struct libcap *)caps;
1280 	bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1281 	perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1282 	if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1283 		perror("cap_get_flag NET");
1284 	if (cap_free(caps))
1285 		perror("cap_free");
1286 	return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1287 }
1288 
1289 static void get_unpriv_disabled()
1290 {
1291 	char buf[2];
1292 	FILE *fd;
1293 
1294 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1295 	if (!fd) {
1296 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1297 		unpriv_disabled = true;
1298 		return;
1299 	}
1300 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1301 		unpriv_disabled = true;
1302 	fclose(fd);
1303 }
1304 
1305 static bool test_as_unpriv(struct bpf_test *test)
1306 {
1307 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1308 	/* Some architectures have strict alignment requirements. In
1309 	 * that case, the BPF verifier detects if a program has
1310 	 * unaligned accesses and rejects them. A user can pass
1311 	 * BPF_F_ANY_ALIGNMENT to a program to override this
1312 	 * check. That, however, will only work when a privileged user
1313 	 * loads a program. An unprivileged user loading a program
1314 	 * with this flag will be rejected prior entering the
1315 	 * verifier.
1316 	 */
1317 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
1318 		return false;
1319 #endif
1320 	return !test->prog_type ||
1321 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1322 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1323 }
1324 
1325 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1326 {
1327 	int i, passes = 0, errors = 0;
1328 
1329 	for (i = from; i < to; i++) {
1330 		struct bpf_test *test = &tests[i];
1331 
1332 		/* Program types that are not supported by non-root we
1333 		 * skip right away.
1334 		 */
1335 		if (test_as_unpriv(test) && unpriv_disabled) {
1336 			printf("#%d/u %s SKIP\n", i, test->descr);
1337 			skips++;
1338 		} else if (test_as_unpriv(test)) {
1339 			if (!unpriv)
1340 				set_admin(false);
1341 			printf("#%d/u %s ", i, test->descr);
1342 			do_test_single(test, true, &passes, &errors);
1343 			if (!unpriv)
1344 				set_admin(true);
1345 		}
1346 
1347 		if (unpriv) {
1348 			printf("#%d/p %s SKIP\n", i, test->descr);
1349 			skips++;
1350 		} else {
1351 			printf("#%d/p %s ", i, test->descr);
1352 			do_test_single(test, false, &passes, &errors);
1353 		}
1354 	}
1355 
1356 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1357 	       skips, errors);
1358 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1359 }
1360 
1361 int main(int argc, char **argv)
1362 {
1363 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1364 	bool unpriv = !is_admin();
1365 	int arg = 1;
1366 
1367 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1368 		arg++;
1369 		verbose = true;
1370 		argc--;
1371 	}
1372 
1373 	if (argc == 3) {
1374 		unsigned int l = atoi(argv[arg]);
1375 		unsigned int u = atoi(argv[arg + 1]);
1376 
1377 		if (l < to && u < to) {
1378 			from = l;
1379 			to   = u + 1;
1380 		}
1381 	} else if (argc == 2) {
1382 		unsigned int t = atoi(argv[arg]);
1383 
1384 		if (t < to) {
1385 			from = t;
1386 			to   = t + 1;
1387 		}
1388 	}
1389 
1390 	get_unpriv_disabled();
1391 	if (unpriv && unpriv_disabled) {
1392 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1393 		       UNPRIV_SYSCTL);
1394 		return EXIT_FAILURE;
1395 	}
1396 
1397 	/* Use libbpf 1.0 API mode */
1398 	libbpf_set_strict_mode(LIBBPF_STRICT_ALL);
1399 
1400 	bpf_semi_rand_init();
1401 	return do_test(unpriv, from, to);
1402 }
1403