1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rand.h" 45 #include "bpf_util.h" 46 #include "test_btf.h" 47 #include "../../../include/linux/filter.h" 48 49 #ifndef ENOTSUPP 50 #define ENOTSUPP 524 51 #endif 52 53 #define MAX_INSNS BPF_MAXINSNS 54 #define MAX_TEST_INSNS 1000000 55 #define MAX_FIXUPS 8 56 #define MAX_NR_MAPS 22 57 #define MAX_TEST_RUNS 8 58 #define POINTER_VALUE 0xcafe4all 59 #define TEST_DATA_LEN 64 60 61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 62 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 63 64 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 65 static bool unpriv_disabled = false; 66 static int skips; 67 static bool verbose = false; 68 69 struct bpf_test { 70 const char *descr; 71 struct bpf_insn insns[MAX_INSNS]; 72 struct bpf_insn *fill_insns; 73 int fixup_map_hash_8b[MAX_FIXUPS]; 74 int fixup_map_hash_48b[MAX_FIXUPS]; 75 int fixup_map_hash_16b[MAX_FIXUPS]; 76 int fixup_map_array_48b[MAX_FIXUPS]; 77 int fixup_map_sockmap[MAX_FIXUPS]; 78 int fixup_map_sockhash[MAX_FIXUPS]; 79 int fixup_map_xskmap[MAX_FIXUPS]; 80 int fixup_map_stacktrace[MAX_FIXUPS]; 81 int fixup_prog1[MAX_FIXUPS]; 82 int fixup_prog2[MAX_FIXUPS]; 83 int fixup_map_in_map[MAX_FIXUPS]; 84 int fixup_cgroup_storage[MAX_FIXUPS]; 85 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 86 int fixup_map_spin_lock[MAX_FIXUPS]; 87 int fixup_map_array_ro[MAX_FIXUPS]; 88 int fixup_map_array_wo[MAX_FIXUPS]; 89 int fixup_map_array_small[MAX_FIXUPS]; 90 int fixup_sk_storage_map[MAX_FIXUPS]; 91 int fixup_map_event_output[MAX_FIXUPS]; 92 int fixup_map_reuseport_array[MAX_FIXUPS]; 93 int fixup_map_ringbuf[MAX_FIXUPS]; 94 int fixup_map_timer[MAX_FIXUPS]; 95 /* Expected verifier log output for result REJECT or VERBOSE_ACCEPT. 96 * Can be a tab-separated sequence of expected strings. An empty string 97 * means no log verification. 98 */ 99 const char *errstr; 100 const char *errstr_unpriv; 101 uint32_t insn_processed; 102 int prog_len; 103 enum { 104 UNDEF, 105 ACCEPT, 106 REJECT, 107 VERBOSE_ACCEPT, 108 } result, result_unpriv; 109 enum bpf_prog_type prog_type; 110 uint8_t flags; 111 void (*fill_helper)(struct bpf_test *self); 112 int runs; 113 #define bpf_testdata_struct_t \ 114 struct { \ 115 uint32_t retval, retval_unpriv; \ 116 union { \ 117 __u8 data[TEST_DATA_LEN]; \ 118 __u64 data64[TEST_DATA_LEN / 8]; \ 119 }; \ 120 } 121 union { 122 bpf_testdata_struct_t; 123 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 124 }; 125 enum bpf_attach_type expected_attach_type; 126 const char *kfunc; 127 }; 128 129 /* Note we want this to be 64 bit aligned so that the end of our array is 130 * actually the end of the structure. 131 */ 132 #define MAX_ENTRIES 11 133 134 struct test_val { 135 unsigned int index; 136 int foo[MAX_ENTRIES]; 137 }; 138 139 struct other_val { 140 long long foo; 141 long long bar; 142 }; 143 144 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 145 { 146 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 147 #define PUSH_CNT 51 148 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 149 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 150 struct bpf_insn *insn = self->fill_insns; 151 int i = 0, j, k = 0; 152 153 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 154 loop: 155 for (j = 0; j < PUSH_CNT; j++) { 156 insn[i++] = BPF_LD_ABS(BPF_B, 0); 157 /* jump to error label */ 158 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 159 i++; 160 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 161 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 162 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 163 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 164 BPF_FUNC_skb_vlan_push), 165 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 166 i++; 167 } 168 169 for (j = 0; j < PUSH_CNT; j++) { 170 insn[i++] = BPF_LD_ABS(BPF_B, 0); 171 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 172 i++; 173 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 174 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 175 BPF_FUNC_skb_vlan_pop), 176 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 177 i++; 178 } 179 if (++k < 5) 180 goto loop; 181 182 for (; i < len - 3; i++) 183 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 184 insn[len - 3] = BPF_JMP_A(1); 185 /* error label */ 186 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 187 insn[len - 1] = BPF_EXIT_INSN(); 188 self->prog_len = len; 189 } 190 191 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 192 { 193 struct bpf_insn *insn = self->fill_insns; 194 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 195 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 196 * to extend the error value of the inlined ld_abs sequence which then 197 * contains 7 insns. so, set the dividend to 7 so the testcase could 198 * work on all arches. 199 */ 200 unsigned int len = (1 << 15) / 7; 201 int i = 0; 202 203 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 204 insn[i++] = BPF_LD_ABS(BPF_B, 0); 205 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 206 i++; 207 while (i < len - 1) 208 insn[i++] = BPF_LD_ABS(BPF_B, 1); 209 insn[i] = BPF_EXIT_INSN(); 210 self->prog_len = i + 1; 211 } 212 213 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 214 { 215 struct bpf_insn *insn = self->fill_insns; 216 uint64_t res = 0; 217 int i = 0; 218 219 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 220 while (i < self->retval) { 221 uint64_t val = bpf_semi_rand_get(); 222 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 223 224 res ^= val; 225 insn[i++] = tmp[0]; 226 insn[i++] = tmp[1]; 227 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 228 } 229 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 230 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 231 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 232 insn[i] = BPF_EXIT_INSN(); 233 self->prog_len = i + 1; 234 res ^= (res >> 32); 235 self->retval = (uint32_t)res; 236 } 237 238 #define MAX_JMP_SEQ 8192 239 240 /* test the sequence of 8k jumps */ 241 static void bpf_fill_scale1(struct bpf_test *self) 242 { 243 struct bpf_insn *insn = self->fill_insns; 244 int i = 0, k = 0; 245 246 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 247 /* test to check that the long sequence of jumps is acceptable */ 248 while (k++ < MAX_JMP_SEQ) { 249 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 250 BPF_FUNC_get_prandom_u32); 251 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 252 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 253 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 254 -8 * (k % 64 + 1)); 255 } 256 /* is_state_visited() doesn't allocate state for pruning for every jump. 257 * Hence multiply jmps by 4 to accommodate that heuristic 258 */ 259 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 260 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 261 insn[i] = BPF_EXIT_INSN(); 262 self->prog_len = i + 1; 263 self->retval = 42; 264 } 265 266 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 267 static void bpf_fill_scale2(struct bpf_test *self) 268 { 269 struct bpf_insn *insn = self->fill_insns; 270 int i = 0, k = 0; 271 272 #define FUNC_NEST 7 273 for (k = 0; k < FUNC_NEST; k++) { 274 insn[i++] = BPF_CALL_REL(1); 275 insn[i++] = BPF_EXIT_INSN(); 276 } 277 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 278 /* test to check that the long sequence of jumps is acceptable */ 279 k = 0; 280 while (k++ < MAX_JMP_SEQ) { 281 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 282 BPF_FUNC_get_prandom_u32); 283 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 284 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 285 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 286 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 287 } 288 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 289 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 290 insn[i] = BPF_EXIT_INSN(); 291 self->prog_len = i + 1; 292 self->retval = 42; 293 } 294 295 static void bpf_fill_scale(struct bpf_test *self) 296 { 297 switch (self->retval) { 298 case 1: 299 return bpf_fill_scale1(self); 300 case 2: 301 return bpf_fill_scale2(self); 302 default: 303 self->prog_len = 0; 304 break; 305 } 306 } 307 308 static int bpf_fill_torturous_jumps_insn_1(struct bpf_insn *insn) 309 { 310 unsigned int len = 259, hlen = 128; 311 int i; 312 313 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 314 for (i = 1; i <= hlen; i++) { 315 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, hlen); 316 insn[i + hlen] = BPF_JMP_A(hlen - i); 317 } 318 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 1); 319 insn[len - 1] = BPF_EXIT_INSN(); 320 321 return len; 322 } 323 324 static int bpf_fill_torturous_jumps_insn_2(struct bpf_insn *insn) 325 { 326 unsigned int len = 4100, jmp_off = 2048; 327 int i, j; 328 329 insn[0] = BPF_EMIT_CALL(BPF_FUNC_get_prandom_u32); 330 for (i = 1; i <= jmp_off; i++) { 331 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, i, jmp_off); 332 } 333 insn[i++] = BPF_JMP_A(jmp_off); 334 for (; i <= jmp_off * 2 + 1; i+=16) { 335 for (j = 0; j < 16; j++) { 336 insn[i + j] = BPF_JMP_A(16 - j - 1); 337 } 338 } 339 340 insn[len - 2] = BPF_MOV64_IMM(BPF_REG_0, 2); 341 insn[len - 1] = BPF_EXIT_INSN(); 342 343 return len; 344 } 345 346 static void bpf_fill_torturous_jumps(struct bpf_test *self) 347 { 348 struct bpf_insn *insn = self->fill_insns; 349 int i = 0; 350 351 switch (self->retval) { 352 case 1: 353 self->prog_len = bpf_fill_torturous_jumps_insn_1(insn); 354 return; 355 case 2: 356 self->prog_len = bpf_fill_torturous_jumps_insn_2(insn); 357 return; 358 case 3: 359 /* main */ 360 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 4); 361 insn[i++] = BPF_RAW_INSN(BPF_JMP|BPF_CALL, 0, 1, 0, 262); 362 insn[i++] = BPF_ST_MEM(BPF_B, BPF_REG_10, -32, 0); 363 insn[i++] = BPF_MOV64_IMM(BPF_REG_0, 3); 364 insn[i++] = BPF_EXIT_INSN(); 365 366 /* subprog 1 */ 367 i += bpf_fill_torturous_jumps_insn_1(insn + i); 368 369 /* subprog 2 */ 370 i += bpf_fill_torturous_jumps_insn_2(insn + i); 371 372 self->prog_len = i; 373 return; 374 default: 375 self->prog_len = 0; 376 break; 377 } 378 } 379 380 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 381 #define BPF_SK_LOOKUP(func) \ 382 /* struct bpf_sock_tuple tuple = {} */ \ 383 BPF_MOV64_IMM(BPF_REG_2, 0), \ 384 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 385 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 386 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 387 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 388 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 389 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 390 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 391 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 392 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 393 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 394 BPF_MOV64_IMM(BPF_REG_4, 0), \ 395 BPF_MOV64_IMM(BPF_REG_5, 0), \ 396 BPF_EMIT_CALL(BPF_FUNC_ ## func) 397 398 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 399 * value into 0 and does necessary preparation for direct packet access 400 * through r2. The allowed access range is 8 bytes. 401 */ 402 #define BPF_DIRECT_PKT_R2 \ 403 BPF_MOV64_IMM(BPF_REG_0, 0), \ 404 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 405 offsetof(struct __sk_buff, data)), \ 406 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 407 offsetof(struct __sk_buff, data_end)), \ 408 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 409 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 410 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 411 BPF_EXIT_INSN() 412 413 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 414 * positive u32, and zero-extend it into 64-bit. 415 */ 416 #define BPF_RAND_UEXT_R7 \ 417 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 418 BPF_FUNC_get_prandom_u32), \ 419 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 420 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 421 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 422 423 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 424 * negative u32, and sign-extend it into 64-bit. 425 */ 426 #define BPF_RAND_SEXT_R7 \ 427 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 428 BPF_FUNC_get_prandom_u32), \ 429 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 430 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 431 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 432 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 433 434 static struct bpf_test tests[] = { 435 #define FILL_ARRAY 436 #include <verifier/tests.h> 437 #undef FILL_ARRAY 438 }; 439 440 static int probe_filter_length(const struct bpf_insn *fp) 441 { 442 int len; 443 444 for (len = MAX_INSNS - 1; len > 0; --len) 445 if (fp[len].code != 0 || fp[len].imm != 0) 446 break; 447 return len + 1; 448 } 449 450 static bool skip_unsupported_map(enum bpf_map_type map_type) 451 { 452 if (!bpf_probe_map_type(map_type, 0)) { 453 printf("SKIP (unsupported map type %d)\n", map_type); 454 skips++; 455 return true; 456 } 457 return false; 458 } 459 460 static int __create_map(uint32_t type, uint32_t size_key, 461 uint32_t size_value, uint32_t max_elem, 462 uint32_t extra_flags) 463 { 464 LIBBPF_OPTS(bpf_map_create_opts, opts); 465 int fd; 466 467 opts.map_flags = (type == BPF_MAP_TYPE_HASH ? BPF_F_NO_PREALLOC : 0) | extra_flags; 468 fd = bpf_map_create(type, NULL, size_key, size_value, max_elem, &opts); 469 if (fd < 0) { 470 if (skip_unsupported_map(type)) 471 return -1; 472 printf("Failed to create hash map '%s'!\n", strerror(errno)); 473 } 474 475 return fd; 476 } 477 478 static int create_map(uint32_t type, uint32_t size_key, 479 uint32_t size_value, uint32_t max_elem) 480 { 481 return __create_map(type, size_key, size_value, max_elem, 0); 482 } 483 484 static void update_map(int fd, int index) 485 { 486 struct test_val value = { 487 .index = (6 + 1) * sizeof(int), 488 .foo[6] = 0xabcdef12, 489 }; 490 491 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 492 } 493 494 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 495 { 496 struct bpf_insn prog[] = { 497 BPF_MOV64_IMM(BPF_REG_0, ret), 498 BPF_EXIT_INSN(), 499 }; 500 501 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 502 } 503 504 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 505 int idx, int ret) 506 { 507 struct bpf_insn prog[] = { 508 BPF_MOV64_IMM(BPF_REG_3, idx), 509 BPF_LD_MAP_FD(BPF_REG_2, mfd), 510 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 511 BPF_FUNC_tail_call), 512 BPF_MOV64_IMM(BPF_REG_0, ret), 513 BPF_EXIT_INSN(), 514 }; 515 516 return bpf_prog_load(prog_type, NULL, "GPL", prog, ARRAY_SIZE(prog), NULL); 517 } 518 519 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 520 int p1key, int p2key, int p3key) 521 { 522 int mfd, p1fd, p2fd, p3fd; 523 524 mfd = bpf_map_create(BPF_MAP_TYPE_PROG_ARRAY, NULL, sizeof(int), 525 sizeof(int), max_elem, NULL); 526 if (mfd < 0) { 527 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 528 return -1; 529 printf("Failed to create prog array '%s'!\n", strerror(errno)); 530 return -1; 531 } 532 533 p1fd = create_prog_dummy_simple(prog_type, 42); 534 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 535 p3fd = create_prog_dummy_simple(prog_type, 24); 536 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 537 goto err; 538 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 539 goto err; 540 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 541 goto err; 542 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 543 err: 544 close(mfd); 545 mfd = -1; 546 } 547 close(p3fd); 548 close(p2fd); 549 close(p1fd); 550 return mfd; 551 } 552 553 static int create_map_in_map(void) 554 { 555 LIBBPF_OPTS(bpf_map_create_opts, opts); 556 int inner_map_fd, outer_map_fd; 557 558 inner_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, NULL, sizeof(int), 559 sizeof(int), 1, NULL); 560 if (inner_map_fd < 0) { 561 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 562 return -1; 563 printf("Failed to create array '%s'!\n", strerror(errno)); 564 return inner_map_fd; 565 } 566 567 opts.inner_map_fd = inner_map_fd; 568 outer_map_fd = bpf_map_create(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 569 sizeof(int), sizeof(int), 1, &opts); 570 if (outer_map_fd < 0) { 571 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 572 return -1; 573 printf("Failed to create array of maps '%s'!\n", 574 strerror(errno)); 575 } 576 577 close(inner_map_fd); 578 579 return outer_map_fd; 580 } 581 582 static int create_cgroup_storage(bool percpu) 583 { 584 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 585 BPF_MAP_TYPE_CGROUP_STORAGE; 586 int fd; 587 588 fd = bpf_map_create(type, NULL, sizeof(struct bpf_cgroup_storage_key), 589 TEST_DATA_LEN, 0, NULL); 590 if (fd < 0) { 591 if (skip_unsupported_map(type)) 592 return -1; 593 printf("Failed to create cgroup storage '%s'!\n", 594 strerror(errno)); 595 } 596 597 return fd; 598 } 599 600 /* struct bpf_spin_lock { 601 * int val; 602 * }; 603 * struct val { 604 * int cnt; 605 * struct bpf_spin_lock l; 606 * }; 607 * struct bpf_timer { 608 * __u64 :64; 609 * __u64 :64; 610 * } __attribute__((aligned(8))); 611 * struct timer { 612 * struct bpf_timer t; 613 * }; 614 */ 615 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l\0bpf_timer\0timer\0t"; 616 static __u32 btf_raw_types[] = { 617 /* int */ 618 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 619 /* struct bpf_spin_lock */ /* [2] */ 620 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 621 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 622 /* struct val */ /* [3] */ 623 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 624 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 625 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 626 /* struct bpf_timer */ /* [4] */ 627 BTF_TYPE_ENC(25, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0), 16), 628 /* struct timer */ /* [5] */ 629 BTF_TYPE_ENC(35, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 16), 630 BTF_MEMBER_ENC(41, 4, 0), /* struct bpf_timer t; */ 631 }; 632 633 static int load_btf(void) 634 { 635 struct btf_header hdr = { 636 .magic = BTF_MAGIC, 637 .version = BTF_VERSION, 638 .hdr_len = sizeof(struct btf_header), 639 .type_len = sizeof(btf_raw_types), 640 .str_off = sizeof(btf_raw_types), 641 .str_len = sizeof(btf_str_sec), 642 }; 643 void *ptr, *raw_btf; 644 int btf_fd; 645 646 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 647 sizeof(btf_str_sec)); 648 649 memcpy(ptr, &hdr, sizeof(hdr)); 650 ptr += sizeof(hdr); 651 memcpy(ptr, btf_raw_types, hdr.type_len); 652 ptr += hdr.type_len; 653 memcpy(ptr, btf_str_sec, hdr.str_len); 654 ptr += hdr.str_len; 655 656 btf_fd = bpf_btf_load(raw_btf, ptr - raw_btf, NULL); 657 free(raw_btf); 658 if (btf_fd < 0) 659 return -1; 660 return btf_fd; 661 } 662 663 static int create_map_spin_lock(void) 664 { 665 LIBBPF_OPTS(bpf_map_create_opts, opts, 666 .btf_key_type_id = 1, 667 .btf_value_type_id = 3, 668 ); 669 int fd, btf_fd; 670 671 btf_fd = load_btf(); 672 if (btf_fd < 0) 673 return -1; 674 opts.btf_fd = btf_fd; 675 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 8, 1, &opts); 676 if (fd < 0) 677 printf("Failed to create map with spin_lock\n"); 678 return fd; 679 } 680 681 static int create_sk_storage_map(void) 682 { 683 LIBBPF_OPTS(bpf_map_create_opts, opts, 684 .map_flags = BPF_F_NO_PREALLOC, 685 .btf_key_type_id = 1, 686 .btf_value_type_id = 3, 687 ); 688 int fd, btf_fd; 689 690 btf_fd = load_btf(); 691 if (btf_fd < 0) 692 return -1; 693 opts.btf_fd = btf_fd; 694 fd = bpf_map_create(BPF_MAP_TYPE_SK_STORAGE, "test_map", 4, 8, 0, &opts); 695 close(opts.btf_fd); 696 if (fd < 0) 697 printf("Failed to create sk_storage_map\n"); 698 return fd; 699 } 700 701 static int create_map_timer(void) 702 { 703 LIBBPF_OPTS(bpf_map_create_opts, opts, 704 .btf_key_type_id = 1, 705 .btf_value_type_id = 5, 706 ); 707 int fd, btf_fd; 708 709 btf_fd = load_btf(); 710 if (btf_fd < 0) 711 return -1; 712 713 opts.btf_fd = btf_fd; 714 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "test_map", 4, 16, 1, &opts); 715 if (fd < 0) 716 printf("Failed to create map with timer\n"); 717 return fd; 718 } 719 720 static char bpf_vlog[UINT_MAX >> 8]; 721 722 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 723 struct bpf_insn *prog, int *map_fds) 724 { 725 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 726 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 727 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 728 int *fixup_map_array_48b = test->fixup_map_array_48b; 729 int *fixup_map_sockmap = test->fixup_map_sockmap; 730 int *fixup_map_sockhash = test->fixup_map_sockhash; 731 int *fixup_map_xskmap = test->fixup_map_xskmap; 732 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 733 int *fixup_prog1 = test->fixup_prog1; 734 int *fixup_prog2 = test->fixup_prog2; 735 int *fixup_map_in_map = test->fixup_map_in_map; 736 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 737 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 738 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 739 int *fixup_map_array_ro = test->fixup_map_array_ro; 740 int *fixup_map_array_wo = test->fixup_map_array_wo; 741 int *fixup_map_array_small = test->fixup_map_array_small; 742 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 743 int *fixup_map_event_output = test->fixup_map_event_output; 744 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 745 int *fixup_map_ringbuf = test->fixup_map_ringbuf; 746 int *fixup_map_timer = test->fixup_map_timer; 747 748 if (test->fill_helper) { 749 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 750 test->fill_helper(test); 751 } 752 753 /* Allocating HTs with 1 elem is fine here, since we only test 754 * for verifier and not do a runtime lookup, so the only thing 755 * that really matters is value size in this case. 756 */ 757 if (*fixup_map_hash_8b) { 758 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 759 sizeof(long long), 1); 760 do { 761 prog[*fixup_map_hash_8b].imm = map_fds[0]; 762 fixup_map_hash_8b++; 763 } while (*fixup_map_hash_8b); 764 } 765 766 if (*fixup_map_hash_48b) { 767 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 768 sizeof(struct test_val), 1); 769 do { 770 prog[*fixup_map_hash_48b].imm = map_fds[1]; 771 fixup_map_hash_48b++; 772 } while (*fixup_map_hash_48b); 773 } 774 775 if (*fixup_map_hash_16b) { 776 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 777 sizeof(struct other_val), 1); 778 do { 779 prog[*fixup_map_hash_16b].imm = map_fds[2]; 780 fixup_map_hash_16b++; 781 } while (*fixup_map_hash_16b); 782 } 783 784 if (*fixup_map_array_48b) { 785 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 786 sizeof(struct test_val), 1); 787 update_map(map_fds[3], 0); 788 do { 789 prog[*fixup_map_array_48b].imm = map_fds[3]; 790 fixup_map_array_48b++; 791 } while (*fixup_map_array_48b); 792 } 793 794 if (*fixup_prog1) { 795 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 796 do { 797 prog[*fixup_prog1].imm = map_fds[4]; 798 fixup_prog1++; 799 } while (*fixup_prog1); 800 } 801 802 if (*fixup_prog2) { 803 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 804 do { 805 prog[*fixup_prog2].imm = map_fds[5]; 806 fixup_prog2++; 807 } while (*fixup_prog2); 808 } 809 810 if (*fixup_map_in_map) { 811 map_fds[6] = create_map_in_map(); 812 do { 813 prog[*fixup_map_in_map].imm = map_fds[6]; 814 fixup_map_in_map++; 815 } while (*fixup_map_in_map); 816 } 817 818 if (*fixup_cgroup_storage) { 819 map_fds[7] = create_cgroup_storage(false); 820 do { 821 prog[*fixup_cgroup_storage].imm = map_fds[7]; 822 fixup_cgroup_storage++; 823 } while (*fixup_cgroup_storage); 824 } 825 826 if (*fixup_percpu_cgroup_storage) { 827 map_fds[8] = create_cgroup_storage(true); 828 do { 829 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 830 fixup_percpu_cgroup_storage++; 831 } while (*fixup_percpu_cgroup_storage); 832 } 833 if (*fixup_map_sockmap) { 834 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 835 sizeof(int), 1); 836 do { 837 prog[*fixup_map_sockmap].imm = map_fds[9]; 838 fixup_map_sockmap++; 839 } while (*fixup_map_sockmap); 840 } 841 if (*fixup_map_sockhash) { 842 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 843 sizeof(int), 1); 844 do { 845 prog[*fixup_map_sockhash].imm = map_fds[10]; 846 fixup_map_sockhash++; 847 } while (*fixup_map_sockhash); 848 } 849 if (*fixup_map_xskmap) { 850 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 851 sizeof(int), 1); 852 do { 853 prog[*fixup_map_xskmap].imm = map_fds[11]; 854 fixup_map_xskmap++; 855 } while (*fixup_map_xskmap); 856 } 857 if (*fixup_map_stacktrace) { 858 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 859 sizeof(u64), 1); 860 do { 861 prog[*fixup_map_stacktrace].imm = map_fds[12]; 862 fixup_map_stacktrace++; 863 } while (*fixup_map_stacktrace); 864 } 865 if (*fixup_map_spin_lock) { 866 map_fds[13] = create_map_spin_lock(); 867 do { 868 prog[*fixup_map_spin_lock].imm = map_fds[13]; 869 fixup_map_spin_lock++; 870 } while (*fixup_map_spin_lock); 871 } 872 if (*fixup_map_array_ro) { 873 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 874 sizeof(struct test_val), 1, 875 BPF_F_RDONLY_PROG); 876 update_map(map_fds[14], 0); 877 do { 878 prog[*fixup_map_array_ro].imm = map_fds[14]; 879 fixup_map_array_ro++; 880 } while (*fixup_map_array_ro); 881 } 882 if (*fixup_map_array_wo) { 883 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 884 sizeof(struct test_val), 1, 885 BPF_F_WRONLY_PROG); 886 update_map(map_fds[15], 0); 887 do { 888 prog[*fixup_map_array_wo].imm = map_fds[15]; 889 fixup_map_array_wo++; 890 } while (*fixup_map_array_wo); 891 } 892 if (*fixup_map_array_small) { 893 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 894 1, 1, 0); 895 update_map(map_fds[16], 0); 896 do { 897 prog[*fixup_map_array_small].imm = map_fds[16]; 898 fixup_map_array_small++; 899 } while (*fixup_map_array_small); 900 } 901 if (*fixup_sk_storage_map) { 902 map_fds[17] = create_sk_storage_map(); 903 do { 904 prog[*fixup_sk_storage_map].imm = map_fds[17]; 905 fixup_sk_storage_map++; 906 } while (*fixup_sk_storage_map); 907 } 908 if (*fixup_map_event_output) { 909 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 910 sizeof(int), sizeof(int), 1, 0); 911 do { 912 prog[*fixup_map_event_output].imm = map_fds[18]; 913 fixup_map_event_output++; 914 } while (*fixup_map_event_output); 915 } 916 if (*fixup_map_reuseport_array) { 917 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 918 sizeof(u32), sizeof(u64), 1, 0); 919 do { 920 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 921 fixup_map_reuseport_array++; 922 } while (*fixup_map_reuseport_array); 923 } 924 if (*fixup_map_ringbuf) { 925 map_fds[20] = create_map(BPF_MAP_TYPE_RINGBUF, 0, 926 0, 4096); 927 do { 928 prog[*fixup_map_ringbuf].imm = map_fds[20]; 929 fixup_map_ringbuf++; 930 } while (*fixup_map_ringbuf); 931 } 932 if (*fixup_map_timer) { 933 map_fds[21] = create_map_timer(); 934 do { 935 prog[*fixup_map_timer].imm = map_fds[21]; 936 fixup_map_timer++; 937 } while (*fixup_map_timer); 938 } 939 } 940 941 struct libcap { 942 struct __user_cap_header_struct hdr; 943 struct __user_cap_data_struct data[2]; 944 }; 945 946 static int set_admin(bool admin) 947 { 948 cap_t caps; 949 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 950 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 951 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 952 struct libcap *cap; 953 int ret = -1; 954 955 caps = cap_get_proc(); 956 if (!caps) { 957 perror("cap_get_proc"); 958 return -1; 959 } 960 cap = (struct libcap *)caps; 961 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 962 perror("cap_set_flag clear admin"); 963 goto out; 964 } 965 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 966 admin ? CAP_SET : CAP_CLEAR)) { 967 perror("cap_set_flag set_or_clear net"); 968 goto out; 969 } 970 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 971 * so update effective bits manually 972 */ 973 if (admin) { 974 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 975 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 976 } else { 977 cap->data[1].effective &= ~(1 << (38 - 32)); 978 cap->data[1].effective &= ~(1 << (39 - 32)); 979 } 980 if (cap_set_proc(caps)) { 981 perror("cap_set_proc"); 982 goto out; 983 } 984 ret = 0; 985 out: 986 if (cap_free(caps)) 987 perror("cap_free"); 988 return ret; 989 } 990 991 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 992 void *data, size_t size_data) 993 { 994 __u8 tmp[TEST_DATA_LEN << 2]; 995 __u32 size_tmp = sizeof(tmp); 996 uint32_t retval; 997 int err, saved_errno; 998 999 if (unpriv) 1000 set_admin(true); 1001 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 1002 tmp, &size_tmp, &retval, NULL); 1003 saved_errno = errno; 1004 1005 if (unpriv) 1006 set_admin(false); 1007 1008 if (err) { 1009 switch (saved_errno) { 1010 case ENOTSUPP: 1011 printf("Did not run the program (not supported) "); 1012 return 0; 1013 case EPERM: 1014 if (unpriv) { 1015 printf("Did not run the program (no permission) "); 1016 return 0; 1017 } 1018 /* fallthrough; */ 1019 default: 1020 printf("FAIL: Unexpected bpf_prog_test_run error (%s) ", 1021 strerror(saved_errno)); 1022 return err; 1023 } 1024 } 1025 1026 if (retval != expected_val && 1027 expected_val != POINTER_VALUE) { 1028 printf("FAIL retval %d != %d ", retval, expected_val); 1029 return 1; 1030 } 1031 1032 return 0; 1033 } 1034 1035 /* Returns true if every part of exp (tab-separated) appears in log, in order. 1036 * 1037 * If exp is an empty string, returns true. 1038 */ 1039 static bool cmp_str_seq(const char *log, const char *exp) 1040 { 1041 char needle[200]; 1042 const char *p, *q; 1043 int len; 1044 1045 do { 1046 if (!strlen(exp)) 1047 break; 1048 p = strchr(exp, '\t'); 1049 if (!p) 1050 p = exp + strlen(exp); 1051 1052 len = p - exp; 1053 if (len >= sizeof(needle) || !len) { 1054 printf("FAIL\nTestcase bug\n"); 1055 return false; 1056 } 1057 strncpy(needle, exp, len); 1058 needle[len] = 0; 1059 q = strstr(log, needle); 1060 if (!q) { 1061 printf("FAIL\nUnexpected verifier log!\n" 1062 "EXP: %s\nRES:\n", needle); 1063 return false; 1064 } 1065 log = q + len; 1066 exp = p + 1; 1067 } while (*p); 1068 return true; 1069 } 1070 1071 static void do_test_single(struct bpf_test *test, bool unpriv, 1072 int *passes, int *errors) 1073 { 1074 int fd_prog, expected_ret, alignment_prevented_execution; 1075 int prog_len, prog_type = test->prog_type; 1076 struct bpf_insn *prog = test->insns; 1077 LIBBPF_OPTS(bpf_prog_load_opts, opts); 1078 int run_errs, run_successes; 1079 int map_fds[MAX_NR_MAPS]; 1080 const char *expected_err; 1081 int saved_errno; 1082 int fixup_skips; 1083 __u32 pflags; 1084 int i, err; 1085 1086 for (i = 0; i < MAX_NR_MAPS; i++) 1087 map_fds[i] = -1; 1088 1089 if (!prog_type) 1090 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 1091 fixup_skips = skips; 1092 do_test_fixup(test, prog_type, prog, map_fds); 1093 if (test->fill_insns) { 1094 prog = test->fill_insns; 1095 prog_len = test->prog_len; 1096 } else { 1097 prog_len = probe_filter_length(prog); 1098 } 1099 /* If there were some map skips during fixup due to missing bpf 1100 * features, skip this test. 1101 */ 1102 if (fixup_skips != skips) 1103 return; 1104 1105 pflags = BPF_F_TEST_RND_HI32; 1106 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 1107 pflags |= BPF_F_STRICT_ALIGNMENT; 1108 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1109 pflags |= BPF_F_ANY_ALIGNMENT; 1110 if (test->flags & ~3) 1111 pflags |= test->flags; 1112 1113 expected_ret = unpriv && test->result_unpriv != UNDEF ? 1114 test->result_unpriv : test->result; 1115 expected_err = unpriv && test->errstr_unpriv ? 1116 test->errstr_unpriv : test->errstr; 1117 1118 opts.expected_attach_type = test->expected_attach_type; 1119 if (verbose) 1120 opts.log_level = 1; 1121 else if (expected_ret == VERBOSE_ACCEPT) 1122 opts.log_level = 2; 1123 else 1124 opts.log_level = 4; 1125 opts.prog_flags = pflags; 1126 1127 if (prog_type == BPF_PROG_TYPE_TRACING && test->kfunc) { 1128 int attach_btf_id; 1129 1130 attach_btf_id = libbpf_find_vmlinux_btf_id(test->kfunc, 1131 opts.expected_attach_type); 1132 if (attach_btf_id < 0) { 1133 printf("FAIL\nFailed to find BTF ID for '%s'!\n", 1134 test->kfunc); 1135 (*errors)++; 1136 return; 1137 } 1138 1139 opts.attach_btf_id = attach_btf_id; 1140 } 1141 1142 opts.log_buf = bpf_vlog; 1143 opts.log_size = sizeof(bpf_vlog); 1144 fd_prog = bpf_prog_load(prog_type, NULL, "GPL", prog, prog_len, &opts); 1145 saved_errno = errno; 1146 1147 /* BPF_PROG_TYPE_TRACING requires more setup and 1148 * bpf_probe_prog_type won't give correct answer 1149 */ 1150 if (fd_prog < 0 && prog_type != BPF_PROG_TYPE_TRACING && 1151 !bpf_probe_prog_type(prog_type, 0)) { 1152 printf("SKIP (unsupported program type %d)\n", prog_type); 1153 skips++; 1154 goto close_fds; 1155 } 1156 1157 if (fd_prog < 0 && saved_errno == ENOTSUPP) { 1158 printf("SKIP (program uses an unsupported feature)\n"); 1159 skips++; 1160 goto close_fds; 1161 } 1162 1163 alignment_prevented_execution = 0; 1164 1165 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 1166 if (fd_prog < 0) { 1167 printf("FAIL\nFailed to load prog '%s'!\n", 1168 strerror(saved_errno)); 1169 goto fail_log; 1170 } 1171 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1172 if (fd_prog >= 0 && 1173 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1174 alignment_prevented_execution = 1; 1175 #endif 1176 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1177 goto fail_log; 1178 } 1179 } else { 1180 if (fd_prog >= 0) { 1181 printf("FAIL\nUnexpected success to load!\n"); 1182 goto fail_log; 1183 } 1184 if (!expected_err || !cmp_str_seq(bpf_vlog, expected_err)) { 1185 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1186 expected_err, bpf_vlog); 1187 goto fail_log; 1188 } 1189 } 1190 1191 if (!unpriv && test->insn_processed) { 1192 uint32_t insn_processed; 1193 char *proc; 1194 1195 proc = strstr(bpf_vlog, "processed "); 1196 insn_processed = atoi(proc + 10); 1197 if (test->insn_processed != insn_processed) { 1198 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1199 insn_processed, test->insn_processed); 1200 goto fail_log; 1201 } 1202 } 1203 1204 if (verbose) 1205 printf(", verifier log:\n%s", bpf_vlog); 1206 1207 run_errs = 0; 1208 run_successes = 0; 1209 if (!alignment_prevented_execution && fd_prog >= 0 && test->runs >= 0) { 1210 uint32_t expected_val; 1211 int i; 1212 1213 if (!test->runs) 1214 test->runs = 1; 1215 1216 for (i = 0; i < test->runs; i++) { 1217 if (unpriv && test->retvals[i].retval_unpriv) 1218 expected_val = test->retvals[i].retval_unpriv; 1219 else 1220 expected_val = test->retvals[i].retval; 1221 1222 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1223 test->retvals[i].data, 1224 sizeof(test->retvals[i].data)); 1225 if (err) { 1226 printf("(run %d/%d) ", i + 1, test->runs); 1227 run_errs++; 1228 } else { 1229 run_successes++; 1230 } 1231 } 1232 } 1233 1234 if (!run_errs) { 1235 (*passes)++; 1236 if (run_successes > 1) 1237 printf("%d cases ", run_successes); 1238 printf("OK"); 1239 if (alignment_prevented_execution) 1240 printf(" (NOTE: not executed due to unknown alignment)"); 1241 printf("\n"); 1242 } else { 1243 printf("\n"); 1244 goto fail_log; 1245 } 1246 close_fds: 1247 if (test->fill_insns) 1248 free(test->fill_insns); 1249 close(fd_prog); 1250 for (i = 0; i < MAX_NR_MAPS; i++) 1251 close(map_fds[i]); 1252 sched_yield(); 1253 return; 1254 fail_log: 1255 (*errors)++; 1256 printf("%s", bpf_vlog); 1257 goto close_fds; 1258 } 1259 1260 static bool is_admin(void) 1261 { 1262 cap_flag_value_t net_priv = CAP_CLEAR; 1263 bool perfmon_priv = false; 1264 bool bpf_priv = false; 1265 struct libcap *cap; 1266 cap_t caps; 1267 1268 #ifdef CAP_IS_SUPPORTED 1269 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1270 perror("cap_get_flag"); 1271 return false; 1272 } 1273 #endif 1274 caps = cap_get_proc(); 1275 if (!caps) { 1276 perror("cap_get_proc"); 1277 return false; 1278 } 1279 cap = (struct libcap *)caps; 1280 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1281 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1282 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1283 perror("cap_get_flag NET"); 1284 if (cap_free(caps)) 1285 perror("cap_free"); 1286 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1287 } 1288 1289 static void get_unpriv_disabled() 1290 { 1291 char buf[2]; 1292 FILE *fd; 1293 1294 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1295 if (!fd) { 1296 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1297 unpriv_disabled = true; 1298 return; 1299 } 1300 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1301 unpriv_disabled = true; 1302 fclose(fd); 1303 } 1304 1305 static bool test_as_unpriv(struct bpf_test *test) 1306 { 1307 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1308 /* Some architectures have strict alignment requirements. In 1309 * that case, the BPF verifier detects if a program has 1310 * unaligned accesses and rejects them. A user can pass 1311 * BPF_F_ANY_ALIGNMENT to a program to override this 1312 * check. That, however, will only work when a privileged user 1313 * loads a program. An unprivileged user loading a program 1314 * with this flag will be rejected prior entering the 1315 * verifier. 1316 */ 1317 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 1318 return false; 1319 #endif 1320 return !test->prog_type || 1321 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1322 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1323 } 1324 1325 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1326 { 1327 int i, passes = 0, errors = 0; 1328 1329 for (i = from; i < to; i++) { 1330 struct bpf_test *test = &tests[i]; 1331 1332 /* Program types that are not supported by non-root we 1333 * skip right away. 1334 */ 1335 if (test_as_unpriv(test) && unpriv_disabled) { 1336 printf("#%d/u %s SKIP\n", i, test->descr); 1337 skips++; 1338 } else if (test_as_unpriv(test)) { 1339 if (!unpriv) 1340 set_admin(false); 1341 printf("#%d/u %s ", i, test->descr); 1342 do_test_single(test, true, &passes, &errors); 1343 if (!unpriv) 1344 set_admin(true); 1345 } 1346 1347 if (unpriv) { 1348 printf("#%d/p %s SKIP\n", i, test->descr); 1349 skips++; 1350 } else { 1351 printf("#%d/p %s ", i, test->descr); 1352 do_test_single(test, false, &passes, &errors); 1353 } 1354 } 1355 1356 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1357 skips, errors); 1358 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1359 } 1360 1361 int main(int argc, char **argv) 1362 { 1363 unsigned int from = 0, to = ARRAY_SIZE(tests); 1364 bool unpriv = !is_admin(); 1365 int arg = 1; 1366 1367 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1368 arg++; 1369 verbose = true; 1370 argc--; 1371 } 1372 1373 if (argc == 3) { 1374 unsigned int l = atoi(argv[arg]); 1375 unsigned int u = atoi(argv[arg + 1]); 1376 1377 if (l < to && u < to) { 1378 from = l; 1379 to = u + 1; 1380 } 1381 } else if (argc == 2) { 1382 unsigned int t = atoi(argv[arg]); 1383 1384 if (t < to) { 1385 from = t; 1386 to = t + 1; 1387 } 1388 } 1389 1390 get_unpriv_disabled(); 1391 if (unpriv && unpriv_disabled) { 1392 printf("Cannot run as unprivileged user with sysctl %s.\n", 1393 UNPRIV_SYSCTL); 1394 return EXIT_FAILURE; 1395 } 1396 1397 /* Use libbpf 1.0 API mode */ 1398 libbpf_set_strict_mode(LIBBPF_STRICT_ALL); 1399 1400 bpf_semi_rand_init(); 1401 return do_test(unpriv, from, to); 1402 } 1403