xref: /openbmc/linux/tools/testing/selftests/bpf/test_verifier.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Testsuite for eBPF verifier
4  *
5  * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
6  * Copyright (c) 2017 Facebook
7  * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
8  */
9 
10 #include <endian.h>
11 #include <asm/types.h>
12 #include <linux/types.h>
13 #include <stdint.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <unistd.h>
17 #include <errno.h>
18 #include <string.h>
19 #include <stddef.h>
20 #include <stdbool.h>
21 #include <sched.h>
22 #include <limits.h>
23 #include <assert.h>
24 
25 #include <sys/capability.h>
26 
27 #include <linux/unistd.h>
28 #include <linux/filter.h>
29 #include <linux/bpf_perf_event.h>
30 #include <linux/bpf.h>
31 #include <linux/if_ether.h>
32 #include <linux/btf.h>
33 
34 #include <bpf/bpf.h>
35 #include <bpf/libbpf.h>
36 
37 #ifdef HAVE_GENHDR
38 # include "autoconf.h"
39 #else
40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
41 #  define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
42 # endif
43 #endif
44 #include "bpf_rlimit.h"
45 #include "bpf_rand.h"
46 #include "bpf_util.h"
47 #include "test_btf.h"
48 #include "../../../include/linux/filter.h"
49 
50 #define MAX_INSNS	BPF_MAXINSNS
51 #define MAX_TEST_INSNS	1000000
52 #define MAX_FIXUPS	8
53 #define MAX_NR_MAPS	20
54 #define MAX_TEST_RUNS	8
55 #define POINTER_VALUE	0xcafe4all
56 #define TEST_DATA_LEN	64
57 
58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS	(1 << 0)
59 #define F_LOAD_WITH_STRICT_ALIGNMENT		(1 << 1)
60 
61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
62 static bool unpriv_disabled = false;
63 static int skips;
64 static bool verbose = false;
65 
66 struct bpf_test {
67 	const char *descr;
68 	struct bpf_insn	insns[MAX_INSNS];
69 	struct bpf_insn	*fill_insns;
70 	int fixup_map_hash_8b[MAX_FIXUPS];
71 	int fixup_map_hash_48b[MAX_FIXUPS];
72 	int fixup_map_hash_16b[MAX_FIXUPS];
73 	int fixup_map_array_48b[MAX_FIXUPS];
74 	int fixup_map_sockmap[MAX_FIXUPS];
75 	int fixup_map_sockhash[MAX_FIXUPS];
76 	int fixup_map_xskmap[MAX_FIXUPS];
77 	int fixup_map_stacktrace[MAX_FIXUPS];
78 	int fixup_prog1[MAX_FIXUPS];
79 	int fixup_prog2[MAX_FIXUPS];
80 	int fixup_map_in_map[MAX_FIXUPS];
81 	int fixup_cgroup_storage[MAX_FIXUPS];
82 	int fixup_percpu_cgroup_storage[MAX_FIXUPS];
83 	int fixup_map_spin_lock[MAX_FIXUPS];
84 	int fixup_map_array_ro[MAX_FIXUPS];
85 	int fixup_map_array_wo[MAX_FIXUPS];
86 	int fixup_map_array_small[MAX_FIXUPS];
87 	int fixup_sk_storage_map[MAX_FIXUPS];
88 	int fixup_map_event_output[MAX_FIXUPS];
89 	int fixup_map_reuseport_array[MAX_FIXUPS];
90 	const char *errstr;
91 	const char *errstr_unpriv;
92 	uint32_t insn_processed;
93 	int prog_len;
94 	enum {
95 		UNDEF,
96 		ACCEPT,
97 		REJECT,
98 		VERBOSE_ACCEPT,
99 	} result, result_unpriv;
100 	enum bpf_prog_type prog_type;
101 	uint8_t flags;
102 	void (*fill_helper)(struct bpf_test *self);
103 	uint8_t runs;
104 #define bpf_testdata_struct_t					\
105 	struct {						\
106 		uint32_t retval, retval_unpriv;			\
107 		union {						\
108 			__u8 data[TEST_DATA_LEN];		\
109 			__u64 data64[TEST_DATA_LEN / 8];	\
110 		};						\
111 	}
112 	union {
113 		bpf_testdata_struct_t;
114 		bpf_testdata_struct_t retvals[MAX_TEST_RUNS];
115 	};
116 	enum bpf_attach_type expected_attach_type;
117 };
118 
119 /* Note we want this to be 64 bit aligned so that the end of our array is
120  * actually the end of the structure.
121  */
122 #define MAX_ENTRIES 11
123 
124 struct test_val {
125 	unsigned int index;
126 	int foo[MAX_ENTRIES];
127 };
128 
129 struct other_val {
130 	long long foo;
131 	long long bar;
132 };
133 
134 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
135 {
136 	/* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
137 #define PUSH_CNT 51
138 	/* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
139 	unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
140 	struct bpf_insn *insn = self->fill_insns;
141 	int i = 0, j, k = 0;
142 
143 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
144 loop:
145 	for (j = 0; j < PUSH_CNT; j++) {
146 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
147 		/* jump to error label */
148 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
149 		i++;
150 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
151 		insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
152 		insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
153 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
154 					 BPF_FUNC_skb_vlan_push),
155 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
156 		i++;
157 	}
158 
159 	for (j = 0; j < PUSH_CNT; j++) {
160 		insn[i++] = BPF_LD_ABS(BPF_B, 0);
161 		insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3);
162 		i++;
163 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
164 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
165 					 BPF_FUNC_skb_vlan_pop),
166 		insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3);
167 		i++;
168 	}
169 	if (++k < 5)
170 		goto loop;
171 
172 	for (; i < len - 3; i++)
173 		insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef);
174 	insn[len - 3] = BPF_JMP_A(1);
175 	/* error label */
176 	insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0);
177 	insn[len - 1] = BPF_EXIT_INSN();
178 	self->prog_len = len;
179 }
180 
181 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
182 {
183 	struct bpf_insn *insn = self->fill_insns;
184 	/* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns,
185 	 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted
186 	 * to extend the error value of the inlined ld_abs sequence which then
187 	 * contains 7 insns. so, set the dividend to 7 so the testcase could
188 	 * work on all arches.
189 	 */
190 	unsigned int len = (1 << 15) / 7;
191 	int i = 0;
192 
193 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
194 	insn[i++] = BPF_LD_ABS(BPF_B, 0);
195 	insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
196 	i++;
197 	while (i < len - 1)
198 		insn[i++] = BPF_LD_ABS(BPF_B, 1);
199 	insn[i] = BPF_EXIT_INSN();
200 	self->prog_len = i + 1;
201 }
202 
203 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
204 {
205 	struct bpf_insn *insn = self->fill_insns;
206 	uint64_t res = 0;
207 	int i = 0;
208 
209 	insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
210 	while (i < self->retval) {
211 		uint64_t val = bpf_semi_rand_get();
212 		struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
213 
214 		res ^= val;
215 		insn[i++] = tmp[0];
216 		insn[i++] = tmp[1];
217 		insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
218 	}
219 	insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
220 	insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
221 	insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
222 	insn[i] = BPF_EXIT_INSN();
223 	self->prog_len = i + 1;
224 	res ^= (res >> 32);
225 	self->retval = (uint32_t)res;
226 }
227 
228 #define MAX_JMP_SEQ 8192
229 
230 /* test the sequence of 8k jumps */
231 static void bpf_fill_scale1(struct bpf_test *self)
232 {
233 	struct bpf_insn *insn = self->fill_insns;
234 	int i = 0, k = 0;
235 
236 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
237 	/* test to check that the long sequence of jumps is acceptable */
238 	while (k++ < MAX_JMP_SEQ) {
239 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
240 					 BPF_FUNC_get_prandom_u32);
241 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
242 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
243 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
244 					-8 * (k % 64 + 1));
245 	}
246 	/* is_state_visited() doesn't allocate state for pruning for every jump.
247 	 * Hence multiply jmps by 4 to accommodate that heuristic
248 	 */
249 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
250 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
251 	insn[i] = BPF_EXIT_INSN();
252 	self->prog_len = i + 1;
253 	self->retval = 42;
254 }
255 
256 /* test the sequence of 8k jumps in inner most function (function depth 8)*/
257 static void bpf_fill_scale2(struct bpf_test *self)
258 {
259 	struct bpf_insn *insn = self->fill_insns;
260 	int i = 0, k = 0;
261 
262 #define FUNC_NEST 7
263 	for (k = 0; k < FUNC_NEST; k++) {
264 		insn[i++] = BPF_CALL_REL(1);
265 		insn[i++] = BPF_EXIT_INSN();
266 	}
267 	insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
268 	/* test to check that the long sequence of jumps is acceptable */
269 	k = 0;
270 	while (k++ < MAX_JMP_SEQ) {
271 		insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
272 					 BPF_FUNC_get_prandom_u32);
273 		insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2);
274 		insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
275 		insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
276 					-8 * (k % (64 - 4 * FUNC_NEST) + 1));
277 	}
278 	while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4)
279 		insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42);
280 	insn[i] = BPF_EXIT_INSN();
281 	self->prog_len = i + 1;
282 	self->retval = 42;
283 }
284 
285 static void bpf_fill_scale(struct bpf_test *self)
286 {
287 	switch (self->retval) {
288 	case 1:
289 		return bpf_fill_scale1(self);
290 	case 2:
291 		return bpf_fill_scale2(self);
292 	default:
293 		self->prog_len = 0;
294 		break;
295 	}
296 }
297 
298 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
299 #define BPF_SK_LOOKUP(func)						\
300 	/* struct bpf_sock_tuple tuple = {} */				\
301 	BPF_MOV64_IMM(BPF_REG_2, 0),					\
302 	BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8),			\
303 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16),		\
304 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24),		\
305 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32),		\
306 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40),		\
307 	BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48),		\
308 	/* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */		\
309 	BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),				\
310 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48),				\
311 	BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)),	\
312 	BPF_MOV64_IMM(BPF_REG_4, 0),					\
313 	BPF_MOV64_IMM(BPF_REG_5, 0),					\
314 	BPF_EMIT_CALL(BPF_FUNC_ ## func)
315 
316 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
317  * value into 0 and does necessary preparation for direct packet access
318  * through r2. The allowed access range is 8 bytes.
319  */
320 #define BPF_DIRECT_PKT_R2						\
321 	BPF_MOV64_IMM(BPF_REG_0, 0),					\
322 	BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1,			\
323 		    offsetof(struct __sk_buff, data)),			\
324 	BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1,			\
325 		    offsetof(struct __sk_buff, data_end)),		\
326 	BPF_MOV64_REG(BPF_REG_4, BPF_REG_2),				\
327 	BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8),				\
328 	BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1),			\
329 	BPF_EXIT_INSN()
330 
331 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
332  * positive u32, and zero-extend it into 64-bit.
333  */
334 #define BPF_RAND_UEXT_R7						\
335 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
336 		     BPF_FUNC_get_prandom_u32),				\
337 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
338 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33),				\
339 	BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
340 
341 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
342  * negative u32, and sign-extend it into 64-bit.
343  */
344 #define BPF_RAND_SEXT_R7						\
345 	BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,			\
346 		     BPF_FUNC_get_prandom_u32),				\
347 	BPF_MOV64_REG(BPF_REG_7, BPF_REG_0),				\
348 	BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000),			\
349 	BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32),				\
350 	BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
351 
352 static struct bpf_test tests[] = {
353 #define FILL_ARRAY
354 #include <verifier/tests.h>
355 #undef FILL_ARRAY
356 };
357 
358 static int probe_filter_length(const struct bpf_insn *fp)
359 {
360 	int len;
361 
362 	for (len = MAX_INSNS - 1; len > 0; --len)
363 		if (fp[len].code != 0 || fp[len].imm != 0)
364 			break;
365 	return len + 1;
366 }
367 
368 static bool skip_unsupported_map(enum bpf_map_type map_type)
369 {
370 	if (!bpf_probe_map_type(map_type, 0)) {
371 		printf("SKIP (unsupported map type %d)\n", map_type);
372 		skips++;
373 		return true;
374 	}
375 	return false;
376 }
377 
378 static int __create_map(uint32_t type, uint32_t size_key,
379 			uint32_t size_value, uint32_t max_elem,
380 			uint32_t extra_flags)
381 {
382 	int fd;
383 
384 	fd = bpf_create_map(type, size_key, size_value, max_elem,
385 			    (type == BPF_MAP_TYPE_HASH ?
386 			     BPF_F_NO_PREALLOC : 0) | extra_flags);
387 	if (fd < 0) {
388 		if (skip_unsupported_map(type))
389 			return -1;
390 		printf("Failed to create hash map '%s'!\n", strerror(errno));
391 	}
392 
393 	return fd;
394 }
395 
396 static int create_map(uint32_t type, uint32_t size_key,
397 		      uint32_t size_value, uint32_t max_elem)
398 {
399 	return __create_map(type, size_key, size_value, max_elem, 0);
400 }
401 
402 static void update_map(int fd, int index)
403 {
404 	struct test_val value = {
405 		.index = (6 + 1) * sizeof(int),
406 		.foo[6] = 0xabcdef12,
407 	};
408 
409 	assert(!bpf_map_update_elem(fd, &index, &value, 0));
410 }
411 
412 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret)
413 {
414 	struct bpf_insn prog[] = {
415 		BPF_MOV64_IMM(BPF_REG_0, ret),
416 		BPF_EXIT_INSN(),
417 	};
418 
419 	return bpf_load_program(prog_type, prog,
420 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
421 }
422 
423 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd,
424 				  int idx, int ret)
425 {
426 	struct bpf_insn prog[] = {
427 		BPF_MOV64_IMM(BPF_REG_3, idx),
428 		BPF_LD_MAP_FD(BPF_REG_2, mfd),
429 		BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
430 			     BPF_FUNC_tail_call),
431 		BPF_MOV64_IMM(BPF_REG_0, ret),
432 		BPF_EXIT_INSN(),
433 	};
434 
435 	return bpf_load_program(prog_type, prog,
436 				ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
437 }
438 
439 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
440 			     int p1key, int p2key, int p3key)
441 {
442 	int mfd, p1fd, p2fd, p3fd;
443 
444 	mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
445 			     sizeof(int), max_elem, 0);
446 	if (mfd < 0) {
447 		if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
448 			return -1;
449 		printf("Failed to create prog array '%s'!\n", strerror(errno));
450 		return -1;
451 	}
452 
453 	p1fd = create_prog_dummy_simple(prog_type, 42);
454 	p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41);
455 	p3fd = create_prog_dummy_simple(prog_type, 24);
456 	if (p1fd < 0 || p2fd < 0 || p3fd < 0)
457 		goto err;
458 	if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
459 		goto err;
460 	if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
461 		goto err;
462 	if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) {
463 err:
464 		close(mfd);
465 		mfd = -1;
466 	}
467 	close(p3fd);
468 	close(p2fd);
469 	close(p1fd);
470 	return mfd;
471 }
472 
473 static int create_map_in_map(void)
474 {
475 	int inner_map_fd, outer_map_fd;
476 
477 	inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
478 				      sizeof(int), 1, 0);
479 	if (inner_map_fd < 0) {
480 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
481 			return -1;
482 		printf("Failed to create array '%s'!\n", strerror(errno));
483 		return inner_map_fd;
484 	}
485 
486 	outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
487 					     sizeof(int), inner_map_fd, 1, 0);
488 	if (outer_map_fd < 0) {
489 		if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
490 			return -1;
491 		printf("Failed to create array of maps '%s'!\n",
492 		       strerror(errno));
493 	}
494 
495 	close(inner_map_fd);
496 
497 	return outer_map_fd;
498 }
499 
500 static int create_cgroup_storage(bool percpu)
501 {
502 	enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
503 		BPF_MAP_TYPE_CGROUP_STORAGE;
504 	int fd;
505 
506 	fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
507 			    TEST_DATA_LEN, 0, 0);
508 	if (fd < 0) {
509 		if (skip_unsupported_map(type))
510 			return -1;
511 		printf("Failed to create cgroup storage '%s'!\n",
512 		       strerror(errno));
513 	}
514 
515 	return fd;
516 }
517 
518 /* struct bpf_spin_lock {
519  *   int val;
520  * };
521  * struct val {
522  *   int cnt;
523  *   struct bpf_spin_lock l;
524  * };
525  */
526 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
527 static __u32 btf_raw_types[] = {
528 	/* int */
529 	BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4),  /* [1] */
530 	/* struct bpf_spin_lock */                      /* [2] */
531 	BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
532 	BTF_MEMBER_ENC(15, 1, 0), /* int val; */
533 	/* struct val */                                /* [3] */
534 	BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
535 	BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
536 	BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
537 };
538 
539 static int load_btf(void)
540 {
541 	struct btf_header hdr = {
542 		.magic = BTF_MAGIC,
543 		.version = BTF_VERSION,
544 		.hdr_len = sizeof(struct btf_header),
545 		.type_len = sizeof(btf_raw_types),
546 		.str_off = sizeof(btf_raw_types),
547 		.str_len = sizeof(btf_str_sec),
548 	};
549 	void *ptr, *raw_btf;
550 	int btf_fd;
551 
552 	ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
553 			       sizeof(btf_str_sec));
554 
555 	memcpy(ptr, &hdr, sizeof(hdr));
556 	ptr += sizeof(hdr);
557 	memcpy(ptr, btf_raw_types, hdr.type_len);
558 	ptr += hdr.type_len;
559 	memcpy(ptr, btf_str_sec, hdr.str_len);
560 	ptr += hdr.str_len;
561 
562 	btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
563 	free(raw_btf);
564 	if (btf_fd < 0)
565 		return -1;
566 	return btf_fd;
567 }
568 
569 static int create_map_spin_lock(void)
570 {
571 	struct bpf_create_map_attr attr = {
572 		.name = "test_map",
573 		.map_type = BPF_MAP_TYPE_ARRAY,
574 		.key_size = 4,
575 		.value_size = 8,
576 		.max_entries = 1,
577 		.btf_key_type_id = 1,
578 		.btf_value_type_id = 3,
579 	};
580 	int fd, btf_fd;
581 
582 	btf_fd = load_btf();
583 	if (btf_fd < 0)
584 		return -1;
585 	attr.btf_fd = btf_fd;
586 	fd = bpf_create_map_xattr(&attr);
587 	if (fd < 0)
588 		printf("Failed to create map with spin_lock\n");
589 	return fd;
590 }
591 
592 static int create_sk_storage_map(void)
593 {
594 	struct bpf_create_map_attr attr = {
595 		.name = "test_map",
596 		.map_type = BPF_MAP_TYPE_SK_STORAGE,
597 		.key_size = 4,
598 		.value_size = 8,
599 		.max_entries = 0,
600 		.map_flags = BPF_F_NO_PREALLOC,
601 		.btf_key_type_id = 1,
602 		.btf_value_type_id = 3,
603 	};
604 	int fd, btf_fd;
605 
606 	btf_fd = load_btf();
607 	if (btf_fd < 0)
608 		return -1;
609 	attr.btf_fd = btf_fd;
610 	fd = bpf_create_map_xattr(&attr);
611 	close(attr.btf_fd);
612 	if (fd < 0)
613 		printf("Failed to create sk_storage_map\n");
614 	return fd;
615 }
616 
617 static char bpf_vlog[UINT_MAX >> 8];
618 
619 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
620 			  struct bpf_insn *prog, int *map_fds)
621 {
622 	int *fixup_map_hash_8b = test->fixup_map_hash_8b;
623 	int *fixup_map_hash_48b = test->fixup_map_hash_48b;
624 	int *fixup_map_hash_16b = test->fixup_map_hash_16b;
625 	int *fixup_map_array_48b = test->fixup_map_array_48b;
626 	int *fixup_map_sockmap = test->fixup_map_sockmap;
627 	int *fixup_map_sockhash = test->fixup_map_sockhash;
628 	int *fixup_map_xskmap = test->fixup_map_xskmap;
629 	int *fixup_map_stacktrace = test->fixup_map_stacktrace;
630 	int *fixup_prog1 = test->fixup_prog1;
631 	int *fixup_prog2 = test->fixup_prog2;
632 	int *fixup_map_in_map = test->fixup_map_in_map;
633 	int *fixup_cgroup_storage = test->fixup_cgroup_storage;
634 	int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
635 	int *fixup_map_spin_lock = test->fixup_map_spin_lock;
636 	int *fixup_map_array_ro = test->fixup_map_array_ro;
637 	int *fixup_map_array_wo = test->fixup_map_array_wo;
638 	int *fixup_map_array_small = test->fixup_map_array_small;
639 	int *fixup_sk_storage_map = test->fixup_sk_storage_map;
640 	int *fixup_map_event_output = test->fixup_map_event_output;
641 	int *fixup_map_reuseport_array = test->fixup_map_reuseport_array;
642 
643 	if (test->fill_helper) {
644 		test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
645 		test->fill_helper(test);
646 	}
647 
648 	/* Allocating HTs with 1 elem is fine here, since we only test
649 	 * for verifier and not do a runtime lookup, so the only thing
650 	 * that really matters is value size in this case.
651 	 */
652 	if (*fixup_map_hash_8b) {
653 		map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
654 					sizeof(long long), 1);
655 		do {
656 			prog[*fixup_map_hash_8b].imm = map_fds[0];
657 			fixup_map_hash_8b++;
658 		} while (*fixup_map_hash_8b);
659 	}
660 
661 	if (*fixup_map_hash_48b) {
662 		map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
663 					sizeof(struct test_val), 1);
664 		do {
665 			prog[*fixup_map_hash_48b].imm = map_fds[1];
666 			fixup_map_hash_48b++;
667 		} while (*fixup_map_hash_48b);
668 	}
669 
670 	if (*fixup_map_hash_16b) {
671 		map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
672 					sizeof(struct other_val), 1);
673 		do {
674 			prog[*fixup_map_hash_16b].imm = map_fds[2];
675 			fixup_map_hash_16b++;
676 		} while (*fixup_map_hash_16b);
677 	}
678 
679 	if (*fixup_map_array_48b) {
680 		map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
681 					sizeof(struct test_val), 1);
682 		update_map(map_fds[3], 0);
683 		do {
684 			prog[*fixup_map_array_48b].imm = map_fds[3];
685 			fixup_map_array_48b++;
686 		} while (*fixup_map_array_48b);
687 	}
688 
689 	if (*fixup_prog1) {
690 		map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2);
691 		do {
692 			prog[*fixup_prog1].imm = map_fds[4];
693 			fixup_prog1++;
694 		} while (*fixup_prog1);
695 	}
696 
697 	if (*fixup_prog2) {
698 		map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2);
699 		do {
700 			prog[*fixup_prog2].imm = map_fds[5];
701 			fixup_prog2++;
702 		} while (*fixup_prog2);
703 	}
704 
705 	if (*fixup_map_in_map) {
706 		map_fds[6] = create_map_in_map();
707 		do {
708 			prog[*fixup_map_in_map].imm = map_fds[6];
709 			fixup_map_in_map++;
710 		} while (*fixup_map_in_map);
711 	}
712 
713 	if (*fixup_cgroup_storage) {
714 		map_fds[7] = create_cgroup_storage(false);
715 		do {
716 			prog[*fixup_cgroup_storage].imm = map_fds[7];
717 			fixup_cgroup_storage++;
718 		} while (*fixup_cgroup_storage);
719 	}
720 
721 	if (*fixup_percpu_cgroup_storage) {
722 		map_fds[8] = create_cgroup_storage(true);
723 		do {
724 			prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
725 			fixup_percpu_cgroup_storage++;
726 		} while (*fixup_percpu_cgroup_storage);
727 	}
728 	if (*fixup_map_sockmap) {
729 		map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
730 					sizeof(int), 1);
731 		do {
732 			prog[*fixup_map_sockmap].imm = map_fds[9];
733 			fixup_map_sockmap++;
734 		} while (*fixup_map_sockmap);
735 	}
736 	if (*fixup_map_sockhash) {
737 		map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
738 					sizeof(int), 1);
739 		do {
740 			prog[*fixup_map_sockhash].imm = map_fds[10];
741 			fixup_map_sockhash++;
742 		} while (*fixup_map_sockhash);
743 	}
744 	if (*fixup_map_xskmap) {
745 		map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
746 					sizeof(int), 1);
747 		do {
748 			prog[*fixup_map_xskmap].imm = map_fds[11];
749 			fixup_map_xskmap++;
750 		} while (*fixup_map_xskmap);
751 	}
752 	if (*fixup_map_stacktrace) {
753 		map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
754 					 sizeof(u64), 1);
755 		do {
756 			prog[*fixup_map_stacktrace].imm = map_fds[12];
757 			fixup_map_stacktrace++;
758 		} while (*fixup_map_stacktrace);
759 	}
760 	if (*fixup_map_spin_lock) {
761 		map_fds[13] = create_map_spin_lock();
762 		do {
763 			prog[*fixup_map_spin_lock].imm = map_fds[13];
764 			fixup_map_spin_lock++;
765 		} while (*fixup_map_spin_lock);
766 	}
767 	if (*fixup_map_array_ro) {
768 		map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
769 					   sizeof(struct test_val), 1,
770 					   BPF_F_RDONLY_PROG);
771 		update_map(map_fds[14], 0);
772 		do {
773 			prog[*fixup_map_array_ro].imm = map_fds[14];
774 			fixup_map_array_ro++;
775 		} while (*fixup_map_array_ro);
776 	}
777 	if (*fixup_map_array_wo) {
778 		map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
779 					   sizeof(struct test_val), 1,
780 					   BPF_F_WRONLY_PROG);
781 		update_map(map_fds[15], 0);
782 		do {
783 			prog[*fixup_map_array_wo].imm = map_fds[15];
784 			fixup_map_array_wo++;
785 		} while (*fixup_map_array_wo);
786 	}
787 	if (*fixup_map_array_small) {
788 		map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
789 					   1, 1, 0);
790 		update_map(map_fds[16], 0);
791 		do {
792 			prog[*fixup_map_array_small].imm = map_fds[16];
793 			fixup_map_array_small++;
794 		} while (*fixup_map_array_small);
795 	}
796 	if (*fixup_sk_storage_map) {
797 		map_fds[17] = create_sk_storage_map();
798 		do {
799 			prog[*fixup_sk_storage_map].imm = map_fds[17];
800 			fixup_sk_storage_map++;
801 		} while (*fixup_sk_storage_map);
802 	}
803 	if (*fixup_map_event_output) {
804 		map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY,
805 					   sizeof(int), sizeof(int), 1, 0);
806 		do {
807 			prog[*fixup_map_event_output].imm = map_fds[18];
808 			fixup_map_event_output++;
809 		} while (*fixup_map_event_output);
810 	}
811 	if (*fixup_map_reuseport_array) {
812 		map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
813 					   sizeof(u32), sizeof(u64), 1, 0);
814 		do {
815 			prog[*fixup_map_reuseport_array].imm = map_fds[19];
816 			fixup_map_reuseport_array++;
817 		} while (*fixup_map_reuseport_array);
818 	}
819 }
820 
821 struct libcap {
822 	struct __user_cap_header_struct hdr;
823 	struct __user_cap_data_struct data[2];
824 };
825 
826 static int set_admin(bool admin)
827 {
828 	cap_t caps;
829 	/* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */
830 	const cap_value_t cap_net_admin = CAP_NET_ADMIN;
831 	const cap_value_t cap_sys_admin = CAP_SYS_ADMIN;
832 	struct libcap *cap;
833 	int ret = -1;
834 
835 	caps = cap_get_proc();
836 	if (!caps) {
837 		perror("cap_get_proc");
838 		return -1;
839 	}
840 	cap = (struct libcap *)caps;
841 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) {
842 		perror("cap_set_flag clear admin");
843 		goto out;
844 	}
845 	if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin,
846 				admin ? CAP_SET : CAP_CLEAR)) {
847 		perror("cap_set_flag set_or_clear net");
848 		goto out;
849 	}
850 	/* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON,
851 	 * so update effective bits manually
852 	 */
853 	if (admin) {
854 		cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32);
855 		cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32);
856 	} else {
857 		cap->data[1].effective &= ~(1 << (38 - 32));
858 		cap->data[1].effective &= ~(1 << (39 - 32));
859 	}
860 	if (cap_set_proc(caps)) {
861 		perror("cap_set_proc");
862 		goto out;
863 	}
864 	ret = 0;
865 out:
866 	if (cap_free(caps))
867 		perror("cap_free");
868 	return ret;
869 }
870 
871 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
872 			    void *data, size_t size_data)
873 {
874 	__u8 tmp[TEST_DATA_LEN << 2];
875 	__u32 size_tmp = sizeof(tmp);
876 	uint32_t retval;
877 	int err;
878 
879 	if (unpriv)
880 		set_admin(true);
881 	err = bpf_prog_test_run(fd_prog, 1, data, size_data,
882 				tmp, &size_tmp, &retval, NULL);
883 	if (unpriv)
884 		set_admin(false);
885 	if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
886 		printf("Unexpected bpf_prog_test_run error ");
887 		return err;
888 	}
889 	if (!err && retval != expected_val &&
890 	    expected_val != POINTER_VALUE) {
891 		printf("FAIL retval %d != %d ", retval, expected_val);
892 		return 1;
893 	}
894 
895 	return 0;
896 }
897 
898 static bool cmp_str_seq(const char *log, const char *exp)
899 {
900 	char needle[80];
901 	const char *p, *q;
902 	int len;
903 
904 	do {
905 		p = strchr(exp, '\t');
906 		if (!p)
907 			p = exp + strlen(exp);
908 
909 		len = p - exp;
910 		if (len >= sizeof(needle) || !len) {
911 			printf("FAIL\nTestcase bug\n");
912 			return false;
913 		}
914 		strncpy(needle, exp, len);
915 		needle[len] = 0;
916 		q = strstr(log, needle);
917 		if (!q) {
918 			printf("FAIL\nUnexpected verifier log in successful load!\n"
919 			       "EXP: %s\nRES:\n", needle);
920 			return false;
921 		}
922 		log = q + len;
923 		exp = p + 1;
924 	} while (*p);
925 	return true;
926 }
927 
928 static void do_test_single(struct bpf_test *test, bool unpriv,
929 			   int *passes, int *errors)
930 {
931 	int fd_prog, expected_ret, alignment_prevented_execution;
932 	int prog_len, prog_type = test->prog_type;
933 	struct bpf_insn *prog = test->insns;
934 	struct bpf_load_program_attr attr;
935 	int run_errs, run_successes;
936 	int map_fds[MAX_NR_MAPS];
937 	const char *expected_err;
938 	int fixup_skips;
939 	__u32 pflags;
940 	int i, err;
941 
942 	for (i = 0; i < MAX_NR_MAPS; i++)
943 		map_fds[i] = -1;
944 
945 	if (!prog_type)
946 		prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
947 	fixup_skips = skips;
948 	do_test_fixup(test, prog_type, prog, map_fds);
949 	if (test->fill_insns) {
950 		prog = test->fill_insns;
951 		prog_len = test->prog_len;
952 	} else {
953 		prog_len = probe_filter_length(prog);
954 	}
955 	/* If there were some map skips during fixup due to missing bpf
956 	 * features, skip this test.
957 	 */
958 	if (fixup_skips != skips)
959 		return;
960 
961 	pflags = BPF_F_TEST_RND_HI32;
962 	if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
963 		pflags |= BPF_F_STRICT_ALIGNMENT;
964 	if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
965 		pflags |= BPF_F_ANY_ALIGNMENT;
966 	if (test->flags & ~3)
967 		pflags |= test->flags;
968 
969 	expected_ret = unpriv && test->result_unpriv != UNDEF ?
970 		       test->result_unpriv : test->result;
971 	expected_err = unpriv && test->errstr_unpriv ?
972 		       test->errstr_unpriv : test->errstr;
973 	memset(&attr, 0, sizeof(attr));
974 	attr.prog_type = prog_type;
975 	attr.expected_attach_type = test->expected_attach_type;
976 	attr.insns = prog;
977 	attr.insns_cnt = prog_len;
978 	attr.license = "GPL";
979 	if (verbose)
980 		attr.log_level = 1;
981 	else if (expected_ret == VERBOSE_ACCEPT)
982 		attr.log_level = 2;
983 	else
984 		attr.log_level = 4;
985 	attr.prog_flags = pflags;
986 
987 	fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog));
988 	if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
989 		printf("SKIP (unsupported program type %d)\n", prog_type);
990 		skips++;
991 		goto close_fds;
992 	}
993 
994 	alignment_prevented_execution = 0;
995 
996 	if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) {
997 		if (fd_prog < 0) {
998 			printf("FAIL\nFailed to load prog '%s'!\n",
999 			       strerror(errno));
1000 			goto fail_log;
1001 		}
1002 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1003 		if (fd_prog >= 0 &&
1004 		    (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
1005 			alignment_prevented_execution = 1;
1006 #endif
1007 		if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) {
1008 			goto fail_log;
1009 		}
1010 	} else {
1011 		if (fd_prog >= 0) {
1012 			printf("FAIL\nUnexpected success to load!\n");
1013 			goto fail_log;
1014 		}
1015 		if (!expected_err || !strstr(bpf_vlog, expected_err)) {
1016 			printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
1017 			      expected_err, bpf_vlog);
1018 			goto fail_log;
1019 		}
1020 	}
1021 
1022 	if (test->insn_processed) {
1023 		uint32_t insn_processed;
1024 		char *proc;
1025 
1026 		proc = strstr(bpf_vlog, "processed ");
1027 		insn_processed = atoi(proc + 10);
1028 		if (test->insn_processed != insn_processed) {
1029 			printf("FAIL\nUnexpected insn_processed %u vs %u\n",
1030 			       insn_processed, test->insn_processed);
1031 			goto fail_log;
1032 		}
1033 	}
1034 
1035 	if (verbose)
1036 		printf(", verifier log:\n%s", bpf_vlog);
1037 
1038 	run_errs = 0;
1039 	run_successes = 0;
1040 	if (!alignment_prevented_execution && fd_prog >= 0) {
1041 		uint32_t expected_val;
1042 		int i;
1043 
1044 		if (!test->runs)
1045 			test->runs = 1;
1046 
1047 		for (i = 0; i < test->runs; i++) {
1048 			if (unpriv && test->retvals[i].retval_unpriv)
1049 				expected_val = test->retvals[i].retval_unpriv;
1050 			else
1051 				expected_val = test->retvals[i].retval;
1052 
1053 			err = do_prog_test_run(fd_prog, unpriv, expected_val,
1054 					       test->retvals[i].data,
1055 					       sizeof(test->retvals[i].data));
1056 			if (err) {
1057 				printf("(run %d/%d) ", i + 1, test->runs);
1058 				run_errs++;
1059 			} else {
1060 				run_successes++;
1061 			}
1062 		}
1063 	}
1064 
1065 	if (!run_errs) {
1066 		(*passes)++;
1067 		if (run_successes > 1)
1068 			printf("%d cases ", run_successes);
1069 		printf("OK");
1070 		if (alignment_prevented_execution)
1071 			printf(" (NOTE: not executed due to unknown alignment)");
1072 		printf("\n");
1073 	} else {
1074 		printf("\n");
1075 		goto fail_log;
1076 	}
1077 close_fds:
1078 	if (test->fill_insns)
1079 		free(test->fill_insns);
1080 	close(fd_prog);
1081 	for (i = 0; i < MAX_NR_MAPS; i++)
1082 		close(map_fds[i]);
1083 	sched_yield();
1084 	return;
1085 fail_log:
1086 	(*errors)++;
1087 	printf("%s", bpf_vlog);
1088 	goto close_fds;
1089 }
1090 
1091 static bool is_admin(void)
1092 {
1093 	cap_flag_value_t net_priv = CAP_CLEAR;
1094 	bool perfmon_priv = false;
1095 	bool bpf_priv = false;
1096 	struct libcap *cap;
1097 	cap_t caps;
1098 
1099 #ifdef CAP_IS_SUPPORTED
1100 	if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
1101 		perror("cap_get_flag");
1102 		return false;
1103 	}
1104 #endif
1105 	caps = cap_get_proc();
1106 	if (!caps) {
1107 		perror("cap_get_proc");
1108 		return false;
1109 	}
1110 	cap = (struct libcap *)caps;
1111 	bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32));
1112 	perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32));
1113 	if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv))
1114 		perror("cap_get_flag NET");
1115 	if (cap_free(caps))
1116 		perror("cap_free");
1117 	return bpf_priv && perfmon_priv && net_priv == CAP_SET;
1118 }
1119 
1120 static void get_unpriv_disabled()
1121 {
1122 	char buf[2];
1123 	FILE *fd;
1124 
1125 	fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1126 	if (!fd) {
1127 		perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1128 		unpriv_disabled = true;
1129 		return;
1130 	}
1131 	if (fgets(buf, 2, fd) == buf && atoi(buf))
1132 		unpriv_disabled = true;
1133 	fclose(fd);
1134 }
1135 
1136 static bool test_as_unpriv(struct bpf_test *test)
1137 {
1138 	return !test->prog_type ||
1139 	       test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1140 	       test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1141 }
1142 
1143 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1144 {
1145 	int i, passes = 0, errors = 0;
1146 
1147 	for (i = from; i < to; i++) {
1148 		struct bpf_test *test = &tests[i];
1149 
1150 		/* Program types that are not supported by non-root we
1151 		 * skip right away.
1152 		 */
1153 		if (test_as_unpriv(test) && unpriv_disabled) {
1154 			printf("#%d/u %s SKIP\n", i, test->descr);
1155 			skips++;
1156 		} else if (test_as_unpriv(test)) {
1157 			if (!unpriv)
1158 				set_admin(false);
1159 			printf("#%d/u %s ", i, test->descr);
1160 			do_test_single(test, true, &passes, &errors);
1161 			if (!unpriv)
1162 				set_admin(true);
1163 		}
1164 
1165 		if (unpriv) {
1166 			printf("#%d/p %s SKIP\n", i, test->descr);
1167 			skips++;
1168 		} else {
1169 			printf("#%d/p %s ", i, test->descr);
1170 			do_test_single(test, false, &passes, &errors);
1171 		}
1172 	}
1173 
1174 	printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1175 	       skips, errors);
1176 	return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1177 }
1178 
1179 int main(int argc, char **argv)
1180 {
1181 	unsigned int from = 0, to = ARRAY_SIZE(tests);
1182 	bool unpriv = !is_admin();
1183 	int arg = 1;
1184 
1185 	if (argc > 1 && strcmp(argv[1], "-v") == 0) {
1186 		arg++;
1187 		verbose = true;
1188 		argc--;
1189 	}
1190 
1191 	if (argc == 3) {
1192 		unsigned int l = atoi(argv[arg]);
1193 		unsigned int u = atoi(argv[arg + 1]);
1194 
1195 		if (l < to && u < to) {
1196 			from = l;
1197 			to   = u + 1;
1198 		}
1199 	} else if (argc == 2) {
1200 		unsigned int t = atoi(argv[arg]);
1201 
1202 		if (t < to) {
1203 			from = t;
1204 			to   = t + 1;
1205 		}
1206 	}
1207 
1208 	get_unpriv_disabled();
1209 	if (unpriv && unpriv_disabled) {
1210 		printf("Cannot run as unprivileged user with sysctl %s.\n",
1211 		       UNPRIV_SYSCTL);
1212 		return EXIT_FAILURE;
1213 	}
1214 
1215 	bpf_semi_rand_init();
1216 	return do_test(unpriv, from, to);
1217 }
1218