1 /* 2 * Testsuite for eBPF verifier 3 * 4 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 5 * Copyright (c) 2017 Facebook 6 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of version 2 of the GNU General Public 10 * License as published by the Free Software Foundation. 11 */ 12 13 #include <endian.h> 14 #include <asm/types.h> 15 #include <linux/types.h> 16 #include <stdint.h> 17 #include <stdio.h> 18 #include <stdlib.h> 19 #include <unistd.h> 20 #include <errno.h> 21 #include <string.h> 22 #include <stddef.h> 23 #include <stdbool.h> 24 #include <sched.h> 25 #include <limits.h> 26 #include <assert.h> 27 28 #include <sys/capability.h> 29 30 #include <linux/unistd.h> 31 #include <linux/filter.h> 32 #include <linux/bpf_perf_event.h> 33 #include <linux/bpf.h> 34 #include <linux/if_ether.h> 35 #include <linux/btf.h> 36 37 #include <bpf/bpf.h> 38 #include <bpf/libbpf.h> 39 40 #ifdef HAVE_GENHDR 41 # include "autoconf.h" 42 #else 43 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 44 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 45 # endif 46 #endif 47 #include "bpf_rlimit.h" 48 #include "bpf_rand.h" 49 #include "bpf_util.h" 50 #include "test_btf.h" 51 #include "../../../include/linux/filter.h" 52 53 #define MAX_INSNS BPF_MAXINSNS 54 #define MAX_TEST_INSNS 1000000 55 #define MAX_FIXUPS 8 56 #define MAX_NR_MAPS 18 57 #define MAX_TEST_RUNS 8 58 #define POINTER_VALUE 0xcafe4all 59 #define TEST_DATA_LEN 64 60 61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 62 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 63 64 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 65 static bool unpriv_disabled = false; 66 static int skips; 67 68 struct bpf_test { 69 const char *descr; 70 struct bpf_insn insns[MAX_INSNS]; 71 struct bpf_insn *fill_insns; 72 int fixup_map_hash_8b[MAX_FIXUPS]; 73 int fixup_map_hash_48b[MAX_FIXUPS]; 74 int fixup_map_hash_16b[MAX_FIXUPS]; 75 int fixup_map_array_48b[MAX_FIXUPS]; 76 int fixup_map_sockmap[MAX_FIXUPS]; 77 int fixup_map_sockhash[MAX_FIXUPS]; 78 int fixup_map_xskmap[MAX_FIXUPS]; 79 int fixup_map_stacktrace[MAX_FIXUPS]; 80 int fixup_prog1[MAX_FIXUPS]; 81 int fixup_prog2[MAX_FIXUPS]; 82 int fixup_map_in_map[MAX_FIXUPS]; 83 int fixup_cgroup_storage[MAX_FIXUPS]; 84 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 85 int fixup_map_spin_lock[MAX_FIXUPS]; 86 int fixup_map_array_ro[MAX_FIXUPS]; 87 int fixup_map_array_wo[MAX_FIXUPS]; 88 int fixup_map_array_small[MAX_FIXUPS]; 89 int fixup_sk_storage_map[MAX_FIXUPS]; 90 const char *errstr; 91 const char *errstr_unpriv; 92 uint32_t retval, retval_unpriv, insn_processed; 93 int prog_len; 94 enum { 95 UNDEF, 96 ACCEPT, 97 REJECT 98 } result, result_unpriv; 99 enum bpf_prog_type prog_type; 100 uint8_t flags; 101 __u8 data[TEST_DATA_LEN]; 102 void (*fill_helper)(struct bpf_test *self); 103 uint8_t runs; 104 struct { 105 uint32_t retval, retval_unpriv; 106 union { 107 __u8 data[TEST_DATA_LEN]; 108 __u64 data64[TEST_DATA_LEN / 8]; 109 }; 110 } retvals[MAX_TEST_RUNS]; 111 }; 112 113 /* Note we want this to be 64 bit aligned so that the end of our array is 114 * actually the end of the structure. 115 */ 116 #define MAX_ENTRIES 11 117 118 struct test_val { 119 unsigned int index; 120 int foo[MAX_ENTRIES]; 121 }; 122 123 struct other_val { 124 long long foo; 125 long long bar; 126 }; 127 128 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 129 { 130 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 131 #define PUSH_CNT 51 132 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 133 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 134 struct bpf_insn *insn = self->fill_insns; 135 int i = 0, j, k = 0; 136 137 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 138 loop: 139 for (j = 0; j < PUSH_CNT; j++) { 140 insn[i++] = BPF_LD_ABS(BPF_B, 0); 141 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2); 142 i++; 143 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 144 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 145 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 146 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 147 BPF_FUNC_skb_vlan_push), 148 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2); 149 i++; 150 } 151 152 for (j = 0; j < PUSH_CNT; j++) { 153 insn[i++] = BPF_LD_ABS(BPF_B, 0); 154 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2); 155 i++; 156 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 157 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 158 BPF_FUNC_skb_vlan_pop), 159 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2); 160 i++; 161 } 162 if (++k < 5) 163 goto loop; 164 165 for (; i < len - 1; i++) 166 insn[i] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 0xbef); 167 insn[len - 1] = BPF_EXIT_INSN(); 168 self->prog_len = len; 169 } 170 171 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 172 { 173 struct bpf_insn *insn = self->fill_insns; 174 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns */ 175 unsigned int len = (1 << 15) / 6; 176 int i = 0; 177 178 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 179 insn[i++] = BPF_LD_ABS(BPF_B, 0); 180 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 181 i++; 182 while (i < len - 1) 183 insn[i++] = BPF_LD_ABS(BPF_B, 1); 184 insn[i] = BPF_EXIT_INSN(); 185 self->prog_len = i + 1; 186 } 187 188 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 189 { 190 struct bpf_insn *insn = self->fill_insns; 191 uint64_t res = 0; 192 int i = 0; 193 194 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 195 while (i < self->retval) { 196 uint64_t val = bpf_semi_rand_get(); 197 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 198 199 res ^= val; 200 insn[i++] = tmp[0]; 201 insn[i++] = tmp[1]; 202 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 203 } 204 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 205 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 206 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 207 insn[i] = BPF_EXIT_INSN(); 208 self->prog_len = i + 1; 209 res ^= (res >> 32); 210 self->retval = (uint32_t)res; 211 } 212 213 /* test the sequence of 1k jumps */ 214 static void bpf_fill_scale1(struct bpf_test *self) 215 { 216 struct bpf_insn *insn = self->fill_insns; 217 int i = 0, k = 0; 218 219 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 220 /* test to check that the sequence of 1024 jumps is acceptable */ 221 while (k++ < 1024) { 222 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 223 BPF_FUNC_get_prandom_u32); 224 insn[i++] = BPF_JMP_IMM(BPF_JGT, BPF_REG_0, bpf_semi_rand_get(), 2); 225 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 226 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 227 -8 * (k % 64 + 1)); 228 } 229 /* every jump adds 1024 steps to insn_processed, so to stay exactly 230 * within 1m limit add MAX_TEST_INSNS - 1025 MOVs and 1 EXIT 231 */ 232 while (i < MAX_TEST_INSNS - 1025) 233 insn[i++] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 42); 234 insn[i] = BPF_EXIT_INSN(); 235 self->prog_len = i + 1; 236 self->retval = 42; 237 } 238 239 /* test the sequence of 1k jumps in inner most function (function depth 8)*/ 240 static void bpf_fill_scale2(struct bpf_test *self) 241 { 242 struct bpf_insn *insn = self->fill_insns; 243 int i = 0, k = 0; 244 245 #define FUNC_NEST 7 246 for (k = 0; k < FUNC_NEST; k++) { 247 insn[i++] = BPF_CALL_REL(1); 248 insn[i++] = BPF_EXIT_INSN(); 249 } 250 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 251 /* test to check that the sequence of 1024 jumps is acceptable */ 252 while (k++ < 1024) { 253 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 254 BPF_FUNC_get_prandom_u32); 255 insn[i++] = BPF_JMP_IMM(BPF_JGT, BPF_REG_0, bpf_semi_rand_get(), 2); 256 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 257 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 258 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 259 } 260 /* every jump adds 1024 steps to insn_processed, so to stay exactly 261 * within 1m limit add MAX_TEST_INSNS - 1025 MOVs and 1 EXIT 262 */ 263 while (i < MAX_TEST_INSNS - 1025) 264 insn[i++] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 42); 265 insn[i] = BPF_EXIT_INSN(); 266 self->prog_len = i + 1; 267 self->retval = 42; 268 } 269 270 static void bpf_fill_scale(struct bpf_test *self) 271 { 272 switch (self->retval) { 273 case 1: 274 return bpf_fill_scale1(self); 275 case 2: 276 return bpf_fill_scale2(self); 277 default: 278 self->prog_len = 0; 279 break; 280 } 281 } 282 283 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 284 #define BPF_SK_LOOKUP(func) \ 285 /* struct bpf_sock_tuple tuple = {} */ \ 286 BPF_MOV64_IMM(BPF_REG_2, 0), \ 287 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 288 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 289 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 290 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 291 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 292 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 293 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 294 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 295 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 296 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 297 BPF_MOV64_IMM(BPF_REG_4, 0), \ 298 BPF_MOV64_IMM(BPF_REG_5, 0), \ 299 BPF_EMIT_CALL(BPF_FUNC_ ## func) 300 301 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 302 * value into 0 and does necessary preparation for direct packet access 303 * through r2. The allowed access range is 8 bytes. 304 */ 305 #define BPF_DIRECT_PKT_R2 \ 306 BPF_MOV64_IMM(BPF_REG_0, 0), \ 307 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 308 offsetof(struct __sk_buff, data)), \ 309 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 310 offsetof(struct __sk_buff, data_end)), \ 311 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 312 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 313 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 314 BPF_EXIT_INSN() 315 316 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 317 * positive u32, and zero-extend it into 64-bit. 318 */ 319 #define BPF_RAND_UEXT_R7 \ 320 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 321 BPF_FUNC_get_prandom_u32), \ 322 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 323 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 324 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 325 326 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 327 * negative u32, and sign-extend it into 64-bit. 328 */ 329 #define BPF_RAND_SEXT_R7 \ 330 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 331 BPF_FUNC_get_prandom_u32), \ 332 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 333 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 334 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 335 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 336 337 static struct bpf_test tests[] = { 338 #define FILL_ARRAY 339 #include <verifier/tests.h> 340 #undef FILL_ARRAY 341 }; 342 343 static int probe_filter_length(const struct bpf_insn *fp) 344 { 345 int len; 346 347 for (len = MAX_INSNS - 1; len > 0; --len) 348 if (fp[len].code != 0 || fp[len].imm != 0) 349 break; 350 return len + 1; 351 } 352 353 static bool skip_unsupported_map(enum bpf_map_type map_type) 354 { 355 if (!bpf_probe_map_type(map_type, 0)) { 356 printf("SKIP (unsupported map type %d)\n", map_type); 357 skips++; 358 return true; 359 } 360 return false; 361 } 362 363 static int __create_map(uint32_t type, uint32_t size_key, 364 uint32_t size_value, uint32_t max_elem, 365 uint32_t extra_flags) 366 { 367 int fd; 368 369 fd = bpf_create_map(type, size_key, size_value, max_elem, 370 (type == BPF_MAP_TYPE_HASH ? 371 BPF_F_NO_PREALLOC : 0) | extra_flags); 372 if (fd < 0) { 373 if (skip_unsupported_map(type)) 374 return -1; 375 printf("Failed to create hash map '%s'!\n", strerror(errno)); 376 } 377 378 return fd; 379 } 380 381 static int create_map(uint32_t type, uint32_t size_key, 382 uint32_t size_value, uint32_t max_elem) 383 { 384 return __create_map(type, size_key, size_value, max_elem, 0); 385 } 386 387 static void update_map(int fd, int index) 388 { 389 struct test_val value = { 390 .index = (6 + 1) * sizeof(int), 391 .foo[6] = 0xabcdef12, 392 }; 393 394 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 395 } 396 397 static int create_prog_dummy1(enum bpf_prog_type prog_type) 398 { 399 struct bpf_insn prog[] = { 400 BPF_MOV64_IMM(BPF_REG_0, 42), 401 BPF_EXIT_INSN(), 402 }; 403 404 return bpf_load_program(prog_type, prog, 405 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 406 } 407 408 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) 409 { 410 struct bpf_insn prog[] = { 411 BPF_MOV64_IMM(BPF_REG_3, idx), 412 BPF_LD_MAP_FD(BPF_REG_2, mfd), 413 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 414 BPF_FUNC_tail_call), 415 BPF_MOV64_IMM(BPF_REG_0, 41), 416 BPF_EXIT_INSN(), 417 }; 418 419 return bpf_load_program(prog_type, prog, 420 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 421 } 422 423 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 424 int p1key) 425 { 426 int p2key = 1; 427 int mfd, p1fd, p2fd; 428 429 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 430 sizeof(int), max_elem, 0); 431 if (mfd < 0) { 432 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 433 return -1; 434 printf("Failed to create prog array '%s'!\n", strerror(errno)); 435 return -1; 436 } 437 438 p1fd = create_prog_dummy1(prog_type); 439 p2fd = create_prog_dummy2(prog_type, mfd, p2key); 440 if (p1fd < 0 || p2fd < 0) 441 goto out; 442 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 443 goto out; 444 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 445 goto out; 446 close(p2fd); 447 close(p1fd); 448 449 return mfd; 450 out: 451 close(p2fd); 452 close(p1fd); 453 close(mfd); 454 return -1; 455 } 456 457 static int create_map_in_map(void) 458 { 459 int inner_map_fd, outer_map_fd; 460 461 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 462 sizeof(int), 1, 0); 463 if (inner_map_fd < 0) { 464 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 465 return -1; 466 printf("Failed to create array '%s'!\n", strerror(errno)); 467 return inner_map_fd; 468 } 469 470 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 471 sizeof(int), inner_map_fd, 1, 0); 472 if (outer_map_fd < 0) { 473 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 474 return -1; 475 printf("Failed to create array of maps '%s'!\n", 476 strerror(errno)); 477 } 478 479 close(inner_map_fd); 480 481 return outer_map_fd; 482 } 483 484 static int create_cgroup_storage(bool percpu) 485 { 486 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 487 BPF_MAP_TYPE_CGROUP_STORAGE; 488 int fd; 489 490 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 491 TEST_DATA_LEN, 0, 0); 492 if (fd < 0) { 493 if (skip_unsupported_map(type)) 494 return -1; 495 printf("Failed to create cgroup storage '%s'!\n", 496 strerror(errno)); 497 } 498 499 return fd; 500 } 501 502 /* struct bpf_spin_lock { 503 * int val; 504 * }; 505 * struct val { 506 * int cnt; 507 * struct bpf_spin_lock l; 508 * }; 509 */ 510 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 511 static __u32 btf_raw_types[] = { 512 /* int */ 513 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 514 /* struct bpf_spin_lock */ /* [2] */ 515 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 516 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 517 /* struct val */ /* [3] */ 518 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 519 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 520 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 521 }; 522 523 static int load_btf(void) 524 { 525 struct btf_header hdr = { 526 .magic = BTF_MAGIC, 527 .version = BTF_VERSION, 528 .hdr_len = sizeof(struct btf_header), 529 .type_len = sizeof(btf_raw_types), 530 .str_off = sizeof(btf_raw_types), 531 .str_len = sizeof(btf_str_sec), 532 }; 533 void *ptr, *raw_btf; 534 int btf_fd; 535 536 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 537 sizeof(btf_str_sec)); 538 539 memcpy(ptr, &hdr, sizeof(hdr)); 540 ptr += sizeof(hdr); 541 memcpy(ptr, btf_raw_types, hdr.type_len); 542 ptr += hdr.type_len; 543 memcpy(ptr, btf_str_sec, hdr.str_len); 544 ptr += hdr.str_len; 545 546 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 547 free(raw_btf); 548 if (btf_fd < 0) 549 return -1; 550 return btf_fd; 551 } 552 553 static int create_map_spin_lock(void) 554 { 555 struct bpf_create_map_attr attr = { 556 .name = "test_map", 557 .map_type = BPF_MAP_TYPE_ARRAY, 558 .key_size = 4, 559 .value_size = 8, 560 .max_entries = 1, 561 .btf_key_type_id = 1, 562 .btf_value_type_id = 3, 563 }; 564 int fd, btf_fd; 565 566 btf_fd = load_btf(); 567 if (btf_fd < 0) 568 return -1; 569 attr.btf_fd = btf_fd; 570 fd = bpf_create_map_xattr(&attr); 571 if (fd < 0) 572 printf("Failed to create map with spin_lock\n"); 573 return fd; 574 } 575 576 static int create_sk_storage_map(void) 577 { 578 struct bpf_create_map_attr attr = { 579 .name = "test_map", 580 .map_type = BPF_MAP_TYPE_SK_STORAGE, 581 .key_size = 4, 582 .value_size = 8, 583 .max_entries = 0, 584 .map_flags = BPF_F_NO_PREALLOC, 585 .btf_key_type_id = 1, 586 .btf_value_type_id = 3, 587 }; 588 int fd, btf_fd; 589 590 btf_fd = load_btf(); 591 if (btf_fd < 0) 592 return -1; 593 attr.btf_fd = btf_fd; 594 fd = bpf_create_map_xattr(&attr); 595 close(attr.btf_fd); 596 if (fd < 0) 597 printf("Failed to create sk_storage_map\n"); 598 return fd; 599 } 600 601 static char bpf_vlog[UINT_MAX >> 8]; 602 603 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 604 struct bpf_insn *prog, int *map_fds) 605 { 606 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 607 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 608 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 609 int *fixup_map_array_48b = test->fixup_map_array_48b; 610 int *fixup_map_sockmap = test->fixup_map_sockmap; 611 int *fixup_map_sockhash = test->fixup_map_sockhash; 612 int *fixup_map_xskmap = test->fixup_map_xskmap; 613 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 614 int *fixup_prog1 = test->fixup_prog1; 615 int *fixup_prog2 = test->fixup_prog2; 616 int *fixup_map_in_map = test->fixup_map_in_map; 617 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 618 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 619 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 620 int *fixup_map_array_ro = test->fixup_map_array_ro; 621 int *fixup_map_array_wo = test->fixup_map_array_wo; 622 int *fixup_map_array_small = test->fixup_map_array_small; 623 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 624 625 if (test->fill_helper) { 626 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 627 test->fill_helper(test); 628 } 629 630 /* Allocating HTs with 1 elem is fine here, since we only test 631 * for verifier and not do a runtime lookup, so the only thing 632 * that really matters is value size in this case. 633 */ 634 if (*fixup_map_hash_8b) { 635 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 636 sizeof(long long), 1); 637 do { 638 prog[*fixup_map_hash_8b].imm = map_fds[0]; 639 fixup_map_hash_8b++; 640 } while (*fixup_map_hash_8b); 641 } 642 643 if (*fixup_map_hash_48b) { 644 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 645 sizeof(struct test_val), 1); 646 do { 647 prog[*fixup_map_hash_48b].imm = map_fds[1]; 648 fixup_map_hash_48b++; 649 } while (*fixup_map_hash_48b); 650 } 651 652 if (*fixup_map_hash_16b) { 653 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 654 sizeof(struct other_val), 1); 655 do { 656 prog[*fixup_map_hash_16b].imm = map_fds[2]; 657 fixup_map_hash_16b++; 658 } while (*fixup_map_hash_16b); 659 } 660 661 if (*fixup_map_array_48b) { 662 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 663 sizeof(struct test_val), 1); 664 update_map(map_fds[3], 0); 665 do { 666 prog[*fixup_map_array_48b].imm = map_fds[3]; 667 fixup_map_array_48b++; 668 } while (*fixup_map_array_48b); 669 } 670 671 if (*fixup_prog1) { 672 map_fds[4] = create_prog_array(prog_type, 4, 0); 673 do { 674 prog[*fixup_prog1].imm = map_fds[4]; 675 fixup_prog1++; 676 } while (*fixup_prog1); 677 } 678 679 if (*fixup_prog2) { 680 map_fds[5] = create_prog_array(prog_type, 8, 7); 681 do { 682 prog[*fixup_prog2].imm = map_fds[5]; 683 fixup_prog2++; 684 } while (*fixup_prog2); 685 } 686 687 if (*fixup_map_in_map) { 688 map_fds[6] = create_map_in_map(); 689 do { 690 prog[*fixup_map_in_map].imm = map_fds[6]; 691 fixup_map_in_map++; 692 } while (*fixup_map_in_map); 693 } 694 695 if (*fixup_cgroup_storage) { 696 map_fds[7] = create_cgroup_storage(false); 697 do { 698 prog[*fixup_cgroup_storage].imm = map_fds[7]; 699 fixup_cgroup_storage++; 700 } while (*fixup_cgroup_storage); 701 } 702 703 if (*fixup_percpu_cgroup_storage) { 704 map_fds[8] = create_cgroup_storage(true); 705 do { 706 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 707 fixup_percpu_cgroup_storage++; 708 } while (*fixup_percpu_cgroup_storage); 709 } 710 if (*fixup_map_sockmap) { 711 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 712 sizeof(int), 1); 713 do { 714 prog[*fixup_map_sockmap].imm = map_fds[9]; 715 fixup_map_sockmap++; 716 } while (*fixup_map_sockmap); 717 } 718 if (*fixup_map_sockhash) { 719 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 720 sizeof(int), 1); 721 do { 722 prog[*fixup_map_sockhash].imm = map_fds[10]; 723 fixup_map_sockhash++; 724 } while (*fixup_map_sockhash); 725 } 726 if (*fixup_map_xskmap) { 727 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 728 sizeof(int), 1); 729 do { 730 prog[*fixup_map_xskmap].imm = map_fds[11]; 731 fixup_map_xskmap++; 732 } while (*fixup_map_xskmap); 733 } 734 if (*fixup_map_stacktrace) { 735 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 736 sizeof(u64), 1); 737 do { 738 prog[*fixup_map_stacktrace].imm = map_fds[12]; 739 fixup_map_stacktrace++; 740 } while (*fixup_map_stacktrace); 741 } 742 if (*fixup_map_spin_lock) { 743 map_fds[13] = create_map_spin_lock(); 744 do { 745 prog[*fixup_map_spin_lock].imm = map_fds[13]; 746 fixup_map_spin_lock++; 747 } while (*fixup_map_spin_lock); 748 } 749 if (*fixup_map_array_ro) { 750 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 751 sizeof(struct test_val), 1, 752 BPF_F_RDONLY_PROG); 753 update_map(map_fds[14], 0); 754 do { 755 prog[*fixup_map_array_ro].imm = map_fds[14]; 756 fixup_map_array_ro++; 757 } while (*fixup_map_array_ro); 758 } 759 if (*fixup_map_array_wo) { 760 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 761 sizeof(struct test_val), 1, 762 BPF_F_WRONLY_PROG); 763 update_map(map_fds[15], 0); 764 do { 765 prog[*fixup_map_array_wo].imm = map_fds[15]; 766 fixup_map_array_wo++; 767 } while (*fixup_map_array_wo); 768 } 769 if (*fixup_map_array_small) { 770 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 771 1, 1, 0); 772 update_map(map_fds[16], 0); 773 do { 774 prog[*fixup_map_array_small].imm = map_fds[16]; 775 fixup_map_array_small++; 776 } while (*fixup_map_array_small); 777 } 778 if (*fixup_sk_storage_map) { 779 map_fds[17] = create_sk_storage_map(); 780 do { 781 prog[*fixup_sk_storage_map].imm = map_fds[17]; 782 fixup_sk_storage_map++; 783 } while (*fixup_sk_storage_map); 784 } 785 } 786 787 static int set_admin(bool admin) 788 { 789 cap_t caps; 790 const cap_value_t cap_val = CAP_SYS_ADMIN; 791 int ret = -1; 792 793 caps = cap_get_proc(); 794 if (!caps) { 795 perror("cap_get_proc"); 796 return -1; 797 } 798 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, 799 admin ? CAP_SET : CAP_CLEAR)) { 800 perror("cap_set_flag"); 801 goto out; 802 } 803 if (cap_set_proc(caps)) { 804 perror("cap_set_proc"); 805 goto out; 806 } 807 ret = 0; 808 out: 809 if (cap_free(caps)) 810 perror("cap_free"); 811 return ret; 812 } 813 814 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 815 void *data, size_t size_data) 816 { 817 __u8 tmp[TEST_DATA_LEN << 2]; 818 __u32 size_tmp = sizeof(tmp); 819 uint32_t retval; 820 int err; 821 822 if (unpriv) 823 set_admin(true); 824 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 825 tmp, &size_tmp, &retval, NULL); 826 if (unpriv) 827 set_admin(false); 828 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { 829 printf("Unexpected bpf_prog_test_run error "); 830 return err; 831 } 832 if (!err && retval != expected_val && 833 expected_val != POINTER_VALUE) { 834 printf("FAIL retval %d != %d ", retval, expected_val); 835 return 1; 836 } 837 838 return 0; 839 } 840 841 static void do_test_single(struct bpf_test *test, bool unpriv, 842 int *passes, int *errors) 843 { 844 int fd_prog, expected_ret, alignment_prevented_execution; 845 int prog_len, prog_type = test->prog_type; 846 struct bpf_insn *prog = test->insns; 847 int run_errs, run_successes; 848 int map_fds[MAX_NR_MAPS]; 849 const char *expected_err; 850 int fixup_skips; 851 __u32 pflags; 852 int i, err; 853 854 for (i = 0; i < MAX_NR_MAPS; i++) 855 map_fds[i] = -1; 856 857 if (!prog_type) 858 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 859 fixup_skips = skips; 860 do_test_fixup(test, prog_type, prog, map_fds); 861 if (test->fill_insns) { 862 prog = test->fill_insns; 863 prog_len = test->prog_len; 864 } else { 865 prog_len = probe_filter_length(prog); 866 } 867 /* If there were some map skips during fixup due to missing bpf 868 * features, skip this test. 869 */ 870 if (fixup_skips != skips) 871 return; 872 873 pflags = 0; 874 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 875 pflags |= BPF_F_STRICT_ALIGNMENT; 876 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 877 pflags |= BPF_F_ANY_ALIGNMENT; 878 fd_prog = bpf_verify_program(prog_type, prog, prog_len, pflags, 879 "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 4); 880 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { 881 printf("SKIP (unsupported program type %d)\n", prog_type); 882 skips++; 883 goto close_fds; 884 } 885 886 expected_ret = unpriv && test->result_unpriv != UNDEF ? 887 test->result_unpriv : test->result; 888 expected_err = unpriv && test->errstr_unpriv ? 889 test->errstr_unpriv : test->errstr; 890 891 alignment_prevented_execution = 0; 892 893 if (expected_ret == ACCEPT) { 894 if (fd_prog < 0) { 895 printf("FAIL\nFailed to load prog '%s'!\n", 896 strerror(errno)); 897 goto fail_log; 898 } 899 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 900 if (fd_prog >= 0 && 901 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 902 alignment_prevented_execution = 1; 903 #endif 904 } else { 905 if (fd_prog >= 0) { 906 printf("FAIL\nUnexpected success to load!\n"); 907 goto fail_log; 908 } 909 if (!strstr(bpf_vlog, expected_err)) { 910 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 911 expected_err, bpf_vlog); 912 goto fail_log; 913 } 914 } 915 916 if (test->insn_processed) { 917 uint32_t insn_processed; 918 char *proc; 919 920 proc = strstr(bpf_vlog, "processed "); 921 insn_processed = atoi(proc + 10); 922 if (test->insn_processed != insn_processed) { 923 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 924 insn_processed, test->insn_processed); 925 goto fail_log; 926 } 927 } 928 929 run_errs = 0; 930 run_successes = 0; 931 if (!alignment_prevented_execution && fd_prog >= 0) { 932 uint32_t expected_val; 933 int i; 934 935 if (!test->runs) { 936 expected_val = unpriv && test->retval_unpriv ? 937 test->retval_unpriv : test->retval; 938 939 err = do_prog_test_run(fd_prog, unpriv, expected_val, 940 test->data, sizeof(test->data)); 941 if (err) 942 run_errs++; 943 else 944 run_successes++; 945 } 946 947 for (i = 0; i < test->runs; i++) { 948 if (unpriv && test->retvals[i].retval_unpriv) 949 expected_val = test->retvals[i].retval_unpriv; 950 else 951 expected_val = test->retvals[i].retval; 952 953 err = do_prog_test_run(fd_prog, unpriv, expected_val, 954 test->retvals[i].data, 955 sizeof(test->retvals[i].data)); 956 if (err) { 957 printf("(run %d/%d) ", i + 1, test->runs); 958 run_errs++; 959 } else { 960 run_successes++; 961 } 962 } 963 } 964 965 if (!run_errs) { 966 (*passes)++; 967 if (run_successes > 1) 968 printf("%d cases ", run_successes); 969 printf("OK"); 970 if (alignment_prevented_execution) 971 printf(" (NOTE: not executed due to unknown alignment)"); 972 printf("\n"); 973 } else { 974 printf("\n"); 975 goto fail_log; 976 } 977 close_fds: 978 if (test->fill_insns) 979 free(test->fill_insns); 980 close(fd_prog); 981 for (i = 0; i < MAX_NR_MAPS; i++) 982 close(map_fds[i]); 983 sched_yield(); 984 return; 985 fail_log: 986 (*errors)++; 987 printf("%s", bpf_vlog); 988 goto close_fds; 989 } 990 991 static bool is_admin(void) 992 { 993 cap_t caps; 994 cap_flag_value_t sysadmin = CAP_CLEAR; 995 const cap_value_t cap_val = CAP_SYS_ADMIN; 996 997 #ifdef CAP_IS_SUPPORTED 998 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 999 perror("cap_get_flag"); 1000 return false; 1001 } 1002 #endif 1003 caps = cap_get_proc(); 1004 if (!caps) { 1005 perror("cap_get_proc"); 1006 return false; 1007 } 1008 if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) 1009 perror("cap_get_flag"); 1010 if (cap_free(caps)) 1011 perror("cap_free"); 1012 return (sysadmin == CAP_SET); 1013 } 1014 1015 static void get_unpriv_disabled() 1016 { 1017 char buf[2]; 1018 FILE *fd; 1019 1020 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1021 if (!fd) { 1022 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1023 unpriv_disabled = true; 1024 return; 1025 } 1026 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1027 unpriv_disabled = true; 1028 fclose(fd); 1029 } 1030 1031 static bool test_as_unpriv(struct bpf_test *test) 1032 { 1033 return !test->prog_type || 1034 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1035 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1036 } 1037 1038 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1039 { 1040 int i, passes = 0, errors = 0; 1041 1042 for (i = from; i < to; i++) { 1043 struct bpf_test *test = &tests[i]; 1044 1045 /* Program types that are not supported by non-root we 1046 * skip right away. 1047 */ 1048 if (test_as_unpriv(test) && unpriv_disabled) { 1049 printf("#%d/u %s SKIP\n", i, test->descr); 1050 skips++; 1051 } else if (test_as_unpriv(test)) { 1052 if (!unpriv) 1053 set_admin(false); 1054 printf("#%d/u %s ", i, test->descr); 1055 do_test_single(test, true, &passes, &errors); 1056 if (!unpriv) 1057 set_admin(true); 1058 } 1059 1060 if (unpriv) { 1061 printf("#%d/p %s SKIP\n", i, test->descr); 1062 skips++; 1063 } else { 1064 printf("#%d/p %s ", i, test->descr); 1065 do_test_single(test, false, &passes, &errors); 1066 } 1067 } 1068 1069 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1070 skips, errors); 1071 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1072 } 1073 1074 int main(int argc, char **argv) 1075 { 1076 unsigned int from = 0, to = ARRAY_SIZE(tests); 1077 bool unpriv = !is_admin(); 1078 1079 if (argc == 3) { 1080 unsigned int l = atoi(argv[argc - 2]); 1081 unsigned int u = atoi(argv[argc - 1]); 1082 1083 if (l < to && u < to) { 1084 from = l; 1085 to = u + 1; 1086 } 1087 } else if (argc == 2) { 1088 unsigned int t = atoi(argv[argc - 1]); 1089 1090 if (t < to) { 1091 from = t; 1092 to = t + 1; 1093 } 1094 } 1095 1096 get_unpriv_disabled(); 1097 if (unpriv && unpriv_disabled) { 1098 printf("Cannot run as unprivileged user with sysctl %s.\n", 1099 UNPRIV_SYSCTL); 1100 return EXIT_FAILURE; 1101 } 1102 1103 bpf_semi_rand_init(); 1104 return do_test(unpriv, from, to); 1105 } 1106