1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 18 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 65 struct bpf_test { 66 const char *descr; 67 struct bpf_insn insns[MAX_INSNS]; 68 struct bpf_insn *fill_insns; 69 int fixup_map_hash_8b[MAX_FIXUPS]; 70 int fixup_map_hash_48b[MAX_FIXUPS]; 71 int fixup_map_hash_16b[MAX_FIXUPS]; 72 int fixup_map_array_48b[MAX_FIXUPS]; 73 int fixup_map_sockmap[MAX_FIXUPS]; 74 int fixup_map_sockhash[MAX_FIXUPS]; 75 int fixup_map_xskmap[MAX_FIXUPS]; 76 int fixup_map_stacktrace[MAX_FIXUPS]; 77 int fixup_prog1[MAX_FIXUPS]; 78 int fixup_prog2[MAX_FIXUPS]; 79 int fixup_map_in_map[MAX_FIXUPS]; 80 int fixup_cgroup_storage[MAX_FIXUPS]; 81 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 82 int fixup_map_spin_lock[MAX_FIXUPS]; 83 int fixup_map_array_ro[MAX_FIXUPS]; 84 int fixup_map_array_wo[MAX_FIXUPS]; 85 int fixup_map_array_small[MAX_FIXUPS]; 86 int fixup_sk_storage_map[MAX_FIXUPS]; 87 const char *errstr; 88 const char *errstr_unpriv; 89 uint32_t retval, retval_unpriv, insn_processed; 90 int prog_len; 91 enum { 92 UNDEF, 93 ACCEPT, 94 REJECT 95 } result, result_unpriv; 96 enum bpf_prog_type prog_type; 97 uint8_t flags; 98 __u8 data[TEST_DATA_LEN]; 99 void (*fill_helper)(struct bpf_test *self); 100 uint8_t runs; 101 struct { 102 uint32_t retval, retval_unpriv; 103 union { 104 __u8 data[TEST_DATA_LEN]; 105 __u64 data64[TEST_DATA_LEN / 8]; 106 }; 107 } retvals[MAX_TEST_RUNS]; 108 enum bpf_attach_type expected_attach_type; 109 }; 110 111 /* Note we want this to be 64 bit aligned so that the end of our array is 112 * actually the end of the structure. 113 */ 114 #define MAX_ENTRIES 11 115 116 struct test_val { 117 unsigned int index; 118 int foo[MAX_ENTRIES]; 119 }; 120 121 struct other_val { 122 long long foo; 123 long long bar; 124 }; 125 126 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 127 { 128 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 129 #define PUSH_CNT 51 130 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 131 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 132 struct bpf_insn *insn = self->fill_insns; 133 int i = 0, j, k = 0; 134 135 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 136 loop: 137 for (j = 0; j < PUSH_CNT; j++) { 138 insn[i++] = BPF_LD_ABS(BPF_B, 0); 139 /* jump to error label */ 140 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 141 i++; 142 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 143 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 144 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 145 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 146 BPF_FUNC_skb_vlan_push), 147 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 148 i++; 149 } 150 151 for (j = 0; j < PUSH_CNT; j++) { 152 insn[i++] = BPF_LD_ABS(BPF_B, 0); 153 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 154 i++; 155 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 156 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 157 BPF_FUNC_skb_vlan_pop), 158 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 159 i++; 160 } 161 if (++k < 5) 162 goto loop; 163 164 for (; i < len - 3; i++) 165 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 166 insn[len - 3] = BPF_JMP_A(1); 167 /* error label */ 168 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 169 insn[len - 1] = BPF_EXIT_INSN(); 170 self->prog_len = len; 171 } 172 173 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 174 { 175 struct bpf_insn *insn = self->fill_insns; 176 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 177 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 178 * to extend the error value of the inlined ld_abs sequence which then 179 * contains 7 insns. so, set the dividend to 7 so the testcase could 180 * work on all arches. 181 */ 182 unsigned int len = (1 << 15) / 7; 183 int i = 0; 184 185 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 186 insn[i++] = BPF_LD_ABS(BPF_B, 0); 187 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 188 i++; 189 while (i < len - 1) 190 insn[i++] = BPF_LD_ABS(BPF_B, 1); 191 insn[i] = BPF_EXIT_INSN(); 192 self->prog_len = i + 1; 193 } 194 195 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 196 { 197 struct bpf_insn *insn = self->fill_insns; 198 uint64_t res = 0; 199 int i = 0; 200 201 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 202 while (i < self->retval) { 203 uint64_t val = bpf_semi_rand_get(); 204 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 205 206 res ^= val; 207 insn[i++] = tmp[0]; 208 insn[i++] = tmp[1]; 209 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 210 } 211 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 212 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 213 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 214 insn[i] = BPF_EXIT_INSN(); 215 self->prog_len = i + 1; 216 res ^= (res >> 32); 217 self->retval = (uint32_t)res; 218 } 219 220 #define MAX_JMP_SEQ 8192 221 222 /* test the sequence of 8k jumps */ 223 static void bpf_fill_scale1(struct bpf_test *self) 224 { 225 struct bpf_insn *insn = self->fill_insns; 226 int i = 0, k = 0; 227 228 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 229 /* test to check that the long sequence of jumps is acceptable */ 230 while (k++ < MAX_JMP_SEQ) { 231 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 232 BPF_FUNC_get_prandom_u32); 233 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 234 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 235 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 236 -8 * (k % 64 + 1)); 237 } 238 /* is_state_visited() doesn't allocate state for pruning for every jump. 239 * Hence multiply jmps by 4 to accommodate that heuristic 240 */ 241 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 242 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 243 insn[i] = BPF_EXIT_INSN(); 244 self->prog_len = i + 1; 245 self->retval = 42; 246 } 247 248 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 249 static void bpf_fill_scale2(struct bpf_test *self) 250 { 251 struct bpf_insn *insn = self->fill_insns; 252 int i = 0, k = 0; 253 254 #define FUNC_NEST 7 255 for (k = 0; k < FUNC_NEST; k++) { 256 insn[i++] = BPF_CALL_REL(1); 257 insn[i++] = BPF_EXIT_INSN(); 258 } 259 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 260 /* test to check that the long sequence of jumps is acceptable */ 261 k = 0; 262 while (k++ < MAX_JMP_SEQ) { 263 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 264 BPF_FUNC_get_prandom_u32); 265 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 266 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 267 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 268 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 269 } 270 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 271 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 272 insn[i] = BPF_EXIT_INSN(); 273 self->prog_len = i + 1; 274 self->retval = 42; 275 } 276 277 static void bpf_fill_scale(struct bpf_test *self) 278 { 279 switch (self->retval) { 280 case 1: 281 return bpf_fill_scale1(self); 282 case 2: 283 return bpf_fill_scale2(self); 284 default: 285 self->prog_len = 0; 286 break; 287 } 288 } 289 290 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 291 #define BPF_SK_LOOKUP(func) \ 292 /* struct bpf_sock_tuple tuple = {} */ \ 293 BPF_MOV64_IMM(BPF_REG_2, 0), \ 294 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 295 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 296 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 297 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 298 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 299 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 300 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 301 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 302 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 303 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 304 BPF_MOV64_IMM(BPF_REG_4, 0), \ 305 BPF_MOV64_IMM(BPF_REG_5, 0), \ 306 BPF_EMIT_CALL(BPF_FUNC_ ## func) 307 308 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 309 * value into 0 and does necessary preparation for direct packet access 310 * through r2. The allowed access range is 8 bytes. 311 */ 312 #define BPF_DIRECT_PKT_R2 \ 313 BPF_MOV64_IMM(BPF_REG_0, 0), \ 314 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 315 offsetof(struct __sk_buff, data)), \ 316 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 317 offsetof(struct __sk_buff, data_end)), \ 318 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 319 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 320 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 321 BPF_EXIT_INSN() 322 323 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 324 * positive u32, and zero-extend it into 64-bit. 325 */ 326 #define BPF_RAND_UEXT_R7 \ 327 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 328 BPF_FUNC_get_prandom_u32), \ 329 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 330 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 331 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 332 333 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 334 * negative u32, and sign-extend it into 64-bit. 335 */ 336 #define BPF_RAND_SEXT_R7 \ 337 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 338 BPF_FUNC_get_prandom_u32), \ 339 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 340 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 341 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 342 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 343 344 static struct bpf_test tests[] = { 345 #define FILL_ARRAY 346 #include <verifier/tests.h> 347 #undef FILL_ARRAY 348 }; 349 350 static int probe_filter_length(const struct bpf_insn *fp) 351 { 352 int len; 353 354 for (len = MAX_INSNS - 1; len > 0; --len) 355 if (fp[len].code != 0 || fp[len].imm != 0) 356 break; 357 return len + 1; 358 } 359 360 static bool skip_unsupported_map(enum bpf_map_type map_type) 361 { 362 if (!bpf_probe_map_type(map_type, 0)) { 363 printf("SKIP (unsupported map type %d)\n", map_type); 364 skips++; 365 return true; 366 } 367 return false; 368 } 369 370 static int __create_map(uint32_t type, uint32_t size_key, 371 uint32_t size_value, uint32_t max_elem, 372 uint32_t extra_flags) 373 { 374 int fd; 375 376 fd = bpf_create_map(type, size_key, size_value, max_elem, 377 (type == BPF_MAP_TYPE_HASH ? 378 BPF_F_NO_PREALLOC : 0) | extra_flags); 379 if (fd < 0) { 380 if (skip_unsupported_map(type)) 381 return -1; 382 printf("Failed to create hash map '%s'!\n", strerror(errno)); 383 } 384 385 return fd; 386 } 387 388 static int create_map(uint32_t type, uint32_t size_key, 389 uint32_t size_value, uint32_t max_elem) 390 { 391 return __create_map(type, size_key, size_value, max_elem, 0); 392 } 393 394 static void update_map(int fd, int index) 395 { 396 struct test_val value = { 397 .index = (6 + 1) * sizeof(int), 398 .foo[6] = 0xabcdef12, 399 }; 400 401 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 402 } 403 404 static int create_prog_dummy1(enum bpf_prog_type prog_type) 405 { 406 struct bpf_insn prog[] = { 407 BPF_MOV64_IMM(BPF_REG_0, 42), 408 BPF_EXIT_INSN(), 409 }; 410 411 return bpf_load_program(prog_type, prog, 412 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 413 } 414 415 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx) 416 { 417 struct bpf_insn prog[] = { 418 BPF_MOV64_IMM(BPF_REG_3, idx), 419 BPF_LD_MAP_FD(BPF_REG_2, mfd), 420 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 421 BPF_FUNC_tail_call), 422 BPF_MOV64_IMM(BPF_REG_0, 41), 423 BPF_EXIT_INSN(), 424 }; 425 426 return bpf_load_program(prog_type, prog, 427 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 428 } 429 430 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 431 int p1key) 432 { 433 int p2key = 1; 434 int mfd, p1fd, p2fd; 435 436 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 437 sizeof(int), max_elem, 0); 438 if (mfd < 0) { 439 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 440 return -1; 441 printf("Failed to create prog array '%s'!\n", strerror(errno)); 442 return -1; 443 } 444 445 p1fd = create_prog_dummy1(prog_type); 446 p2fd = create_prog_dummy2(prog_type, mfd, p2key); 447 if (p1fd < 0 || p2fd < 0) 448 goto out; 449 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 450 goto out; 451 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 452 goto out; 453 close(p2fd); 454 close(p1fd); 455 456 return mfd; 457 out: 458 close(p2fd); 459 close(p1fd); 460 close(mfd); 461 return -1; 462 } 463 464 static int create_map_in_map(void) 465 { 466 int inner_map_fd, outer_map_fd; 467 468 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 469 sizeof(int), 1, 0); 470 if (inner_map_fd < 0) { 471 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 472 return -1; 473 printf("Failed to create array '%s'!\n", strerror(errno)); 474 return inner_map_fd; 475 } 476 477 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 478 sizeof(int), inner_map_fd, 1, 0); 479 if (outer_map_fd < 0) { 480 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 481 return -1; 482 printf("Failed to create array of maps '%s'!\n", 483 strerror(errno)); 484 } 485 486 close(inner_map_fd); 487 488 return outer_map_fd; 489 } 490 491 static int create_cgroup_storage(bool percpu) 492 { 493 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 494 BPF_MAP_TYPE_CGROUP_STORAGE; 495 int fd; 496 497 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 498 TEST_DATA_LEN, 0, 0); 499 if (fd < 0) { 500 if (skip_unsupported_map(type)) 501 return -1; 502 printf("Failed to create cgroup storage '%s'!\n", 503 strerror(errno)); 504 } 505 506 return fd; 507 } 508 509 /* struct bpf_spin_lock { 510 * int val; 511 * }; 512 * struct val { 513 * int cnt; 514 * struct bpf_spin_lock l; 515 * }; 516 */ 517 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 518 static __u32 btf_raw_types[] = { 519 /* int */ 520 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 521 /* struct bpf_spin_lock */ /* [2] */ 522 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 523 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 524 /* struct val */ /* [3] */ 525 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 526 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 527 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 528 }; 529 530 static int load_btf(void) 531 { 532 struct btf_header hdr = { 533 .magic = BTF_MAGIC, 534 .version = BTF_VERSION, 535 .hdr_len = sizeof(struct btf_header), 536 .type_len = sizeof(btf_raw_types), 537 .str_off = sizeof(btf_raw_types), 538 .str_len = sizeof(btf_str_sec), 539 }; 540 void *ptr, *raw_btf; 541 int btf_fd; 542 543 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 544 sizeof(btf_str_sec)); 545 546 memcpy(ptr, &hdr, sizeof(hdr)); 547 ptr += sizeof(hdr); 548 memcpy(ptr, btf_raw_types, hdr.type_len); 549 ptr += hdr.type_len; 550 memcpy(ptr, btf_str_sec, hdr.str_len); 551 ptr += hdr.str_len; 552 553 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 554 free(raw_btf); 555 if (btf_fd < 0) 556 return -1; 557 return btf_fd; 558 } 559 560 static int create_map_spin_lock(void) 561 { 562 struct bpf_create_map_attr attr = { 563 .name = "test_map", 564 .map_type = BPF_MAP_TYPE_ARRAY, 565 .key_size = 4, 566 .value_size = 8, 567 .max_entries = 1, 568 .btf_key_type_id = 1, 569 .btf_value_type_id = 3, 570 }; 571 int fd, btf_fd; 572 573 btf_fd = load_btf(); 574 if (btf_fd < 0) 575 return -1; 576 attr.btf_fd = btf_fd; 577 fd = bpf_create_map_xattr(&attr); 578 if (fd < 0) 579 printf("Failed to create map with spin_lock\n"); 580 return fd; 581 } 582 583 static int create_sk_storage_map(void) 584 { 585 struct bpf_create_map_attr attr = { 586 .name = "test_map", 587 .map_type = BPF_MAP_TYPE_SK_STORAGE, 588 .key_size = 4, 589 .value_size = 8, 590 .max_entries = 0, 591 .map_flags = BPF_F_NO_PREALLOC, 592 .btf_key_type_id = 1, 593 .btf_value_type_id = 3, 594 }; 595 int fd, btf_fd; 596 597 btf_fd = load_btf(); 598 if (btf_fd < 0) 599 return -1; 600 attr.btf_fd = btf_fd; 601 fd = bpf_create_map_xattr(&attr); 602 close(attr.btf_fd); 603 if (fd < 0) 604 printf("Failed to create sk_storage_map\n"); 605 return fd; 606 } 607 608 static char bpf_vlog[UINT_MAX >> 8]; 609 610 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 611 struct bpf_insn *prog, int *map_fds) 612 { 613 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 614 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 615 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 616 int *fixup_map_array_48b = test->fixup_map_array_48b; 617 int *fixup_map_sockmap = test->fixup_map_sockmap; 618 int *fixup_map_sockhash = test->fixup_map_sockhash; 619 int *fixup_map_xskmap = test->fixup_map_xskmap; 620 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 621 int *fixup_prog1 = test->fixup_prog1; 622 int *fixup_prog2 = test->fixup_prog2; 623 int *fixup_map_in_map = test->fixup_map_in_map; 624 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 625 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 626 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 627 int *fixup_map_array_ro = test->fixup_map_array_ro; 628 int *fixup_map_array_wo = test->fixup_map_array_wo; 629 int *fixup_map_array_small = test->fixup_map_array_small; 630 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 631 632 if (test->fill_helper) { 633 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 634 test->fill_helper(test); 635 } 636 637 /* Allocating HTs with 1 elem is fine here, since we only test 638 * for verifier and not do a runtime lookup, so the only thing 639 * that really matters is value size in this case. 640 */ 641 if (*fixup_map_hash_8b) { 642 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 643 sizeof(long long), 1); 644 do { 645 prog[*fixup_map_hash_8b].imm = map_fds[0]; 646 fixup_map_hash_8b++; 647 } while (*fixup_map_hash_8b); 648 } 649 650 if (*fixup_map_hash_48b) { 651 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 652 sizeof(struct test_val), 1); 653 do { 654 prog[*fixup_map_hash_48b].imm = map_fds[1]; 655 fixup_map_hash_48b++; 656 } while (*fixup_map_hash_48b); 657 } 658 659 if (*fixup_map_hash_16b) { 660 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 661 sizeof(struct other_val), 1); 662 do { 663 prog[*fixup_map_hash_16b].imm = map_fds[2]; 664 fixup_map_hash_16b++; 665 } while (*fixup_map_hash_16b); 666 } 667 668 if (*fixup_map_array_48b) { 669 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 670 sizeof(struct test_val), 1); 671 update_map(map_fds[3], 0); 672 do { 673 prog[*fixup_map_array_48b].imm = map_fds[3]; 674 fixup_map_array_48b++; 675 } while (*fixup_map_array_48b); 676 } 677 678 if (*fixup_prog1) { 679 map_fds[4] = create_prog_array(prog_type, 4, 0); 680 do { 681 prog[*fixup_prog1].imm = map_fds[4]; 682 fixup_prog1++; 683 } while (*fixup_prog1); 684 } 685 686 if (*fixup_prog2) { 687 map_fds[5] = create_prog_array(prog_type, 8, 7); 688 do { 689 prog[*fixup_prog2].imm = map_fds[5]; 690 fixup_prog2++; 691 } while (*fixup_prog2); 692 } 693 694 if (*fixup_map_in_map) { 695 map_fds[6] = create_map_in_map(); 696 do { 697 prog[*fixup_map_in_map].imm = map_fds[6]; 698 fixup_map_in_map++; 699 } while (*fixup_map_in_map); 700 } 701 702 if (*fixup_cgroup_storage) { 703 map_fds[7] = create_cgroup_storage(false); 704 do { 705 prog[*fixup_cgroup_storage].imm = map_fds[7]; 706 fixup_cgroup_storage++; 707 } while (*fixup_cgroup_storage); 708 } 709 710 if (*fixup_percpu_cgroup_storage) { 711 map_fds[8] = create_cgroup_storage(true); 712 do { 713 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 714 fixup_percpu_cgroup_storage++; 715 } while (*fixup_percpu_cgroup_storage); 716 } 717 if (*fixup_map_sockmap) { 718 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 719 sizeof(int), 1); 720 do { 721 prog[*fixup_map_sockmap].imm = map_fds[9]; 722 fixup_map_sockmap++; 723 } while (*fixup_map_sockmap); 724 } 725 if (*fixup_map_sockhash) { 726 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 727 sizeof(int), 1); 728 do { 729 prog[*fixup_map_sockhash].imm = map_fds[10]; 730 fixup_map_sockhash++; 731 } while (*fixup_map_sockhash); 732 } 733 if (*fixup_map_xskmap) { 734 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 735 sizeof(int), 1); 736 do { 737 prog[*fixup_map_xskmap].imm = map_fds[11]; 738 fixup_map_xskmap++; 739 } while (*fixup_map_xskmap); 740 } 741 if (*fixup_map_stacktrace) { 742 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 743 sizeof(u64), 1); 744 do { 745 prog[*fixup_map_stacktrace].imm = map_fds[12]; 746 fixup_map_stacktrace++; 747 } while (*fixup_map_stacktrace); 748 } 749 if (*fixup_map_spin_lock) { 750 map_fds[13] = create_map_spin_lock(); 751 do { 752 prog[*fixup_map_spin_lock].imm = map_fds[13]; 753 fixup_map_spin_lock++; 754 } while (*fixup_map_spin_lock); 755 } 756 if (*fixup_map_array_ro) { 757 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 758 sizeof(struct test_val), 1, 759 BPF_F_RDONLY_PROG); 760 update_map(map_fds[14], 0); 761 do { 762 prog[*fixup_map_array_ro].imm = map_fds[14]; 763 fixup_map_array_ro++; 764 } while (*fixup_map_array_ro); 765 } 766 if (*fixup_map_array_wo) { 767 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 768 sizeof(struct test_val), 1, 769 BPF_F_WRONLY_PROG); 770 update_map(map_fds[15], 0); 771 do { 772 prog[*fixup_map_array_wo].imm = map_fds[15]; 773 fixup_map_array_wo++; 774 } while (*fixup_map_array_wo); 775 } 776 if (*fixup_map_array_small) { 777 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 778 1, 1, 0); 779 update_map(map_fds[16], 0); 780 do { 781 prog[*fixup_map_array_small].imm = map_fds[16]; 782 fixup_map_array_small++; 783 } while (*fixup_map_array_small); 784 } 785 if (*fixup_sk_storage_map) { 786 map_fds[17] = create_sk_storage_map(); 787 do { 788 prog[*fixup_sk_storage_map].imm = map_fds[17]; 789 fixup_sk_storage_map++; 790 } while (*fixup_sk_storage_map); 791 } 792 } 793 794 static int set_admin(bool admin) 795 { 796 cap_t caps; 797 const cap_value_t cap_val = CAP_SYS_ADMIN; 798 int ret = -1; 799 800 caps = cap_get_proc(); 801 if (!caps) { 802 perror("cap_get_proc"); 803 return -1; 804 } 805 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val, 806 admin ? CAP_SET : CAP_CLEAR)) { 807 perror("cap_set_flag"); 808 goto out; 809 } 810 if (cap_set_proc(caps)) { 811 perror("cap_set_proc"); 812 goto out; 813 } 814 ret = 0; 815 out: 816 if (cap_free(caps)) 817 perror("cap_free"); 818 return ret; 819 } 820 821 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 822 void *data, size_t size_data) 823 { 824 __u8 tmp[TEST_DATA_LEN << 2]; 825 __u32 size_tmp = sizeof(tmp); 826 uint32_t retval; 827 int err; 828 829 if (unpriv) 830 set_admin(true); 831 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 832 tmp, &size_tmp, &retval, NULL); 833 if (unpriv) 834 set_admin(false); 835 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { 836 printf("Unexpected bpf_prog_test_run error "); 837 return err; 838 } 839 if (!err && retval != expected_val && 840 expected_val != POINTER_VALUE) { 841 printf("FAIL retval %d != %d ", retval, expected_val); 842 return 1; 843 } 844 845 return 0; 846 } 847 848 static void do_test_single(struct bpf_test *test, bool unpriv, 849 int *passes, int *errors) 850 { 851 int fd_prog, expected_ret, alignment_prevented_execution; 852 int prog_len, prog_type = test->prog_type; 853 struct bpf_insn *prog = test->insns; 854 struct bpf_load_program_attr attr; 855 int run_errs, run_successes; 856 int map_fds[MAX_NR_MAPS]; 857 const char *expected_err; 858 int fixup_skips; 859 __u32 pflags; 860 int i, err; 861 862 for (i = 0; i < MAX_NR_MAPS; i++) 863 map_fds[i] = -1; 864 865 if (!prog_type) 866 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 867 fixup_skips = skips; 868 do_test_fixup(test, prog_type, prog, map_fds); 869 if (test->fill_insns) { 870 prog = test->fill_insns; 871 prog_len = test->prog_len; 872 } else { 873 prog_len = probe_filter_length(prog); 874 } 875 /* If there were some map skips during fixup due to missing bpf 876 * features, skip this test. 877 */ 878 if (fixup_skips != skips) 879 return; 880 881 pflags = BPF_F_TEST_RND_HI32; 882 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 883 pflags |= BPF_F_STRICT_ALIGNMENT; 884 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 885 pflags |= BPF_F_ANY_ALIGNMENT; 886 887 memset(&attr, 0, sizeof(attr)); 888 attr.prog_type = prog_type; 889 attr.expected_attach_type = test->expected_attach_type; 890 attr.insns = prog; 891 attr.insns_cnt = prog_len; 892 attr.license = "GPL"; 893 attr.log_level = 4; 894 attr.prog_flags = pflags; 895 896 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 897 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { 898 printf("SKIP (unsupported program type %d)\n", prog_type); 899 skips++; 900 goto close_fds; 901 } 902 903 expected_ret = unpriv && test->result_unpriv != UNDEF ? 904 test->result_unpriv : test->result; 905 expected_err = unpriv && test->errstr_unpriv ? 906 test->errstr_unpriv : test->errstr; 907 908 alignment_prevented_execution = 0; 909 910 if (expected_ret == ACCEPT) { 911 if (fd_prog < 0) { 912 printf("FAIL\nFailed to load prog '%s'!\n", 913 strerror(errno)); 914 goto fail_log; 915 } 916 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 917 if (fd_prog >= 0 && 918 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 919 alignment_prevented_execution = 1; 920 #endif 921 } else { 922 if (fd_prog >= 0) { 923 printf("FAIL\nUnexpected success to load!\n"); 924 goto fail_log; 925 } 926 if (!expected_err || !strstr(bpf_vlog, expected_err)) { 927 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 928 expected_err, bpf_vlog); 929 goto fail_log; 930 } 931 } 932 933 if (test->insn_processed) { 934 uint32_t insn_processed; 935 char *proc; 936 937 proc = strstr(bpf_vlog, "processed "); 938 insn_processed = atoi(proc + 10); 939 if (test->insn_processed != insn_processed) { 940 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 941 insn_processed, test->insn_processed); 942 goto fail_log; 943 } 944 } 945 946 run_errs = 0; 947 run_successes = 0; 948 if (!alignment_prevented_execution && fd_prog >= 0) { 949 uint32_t expected_val; 950 int i; 951 952 if (!test->runs) { 953 expected_val = unpriv && test->retval_unpriv ? 954 test->retval_unpriv : test->retval; 955 956 err = do_prog_test_run(fd_prog, unpriv, expected_val, 957 test->data, sizeof(test->data)); 958 if (err) 959 run_errs++; 960 else 961 run_successes++; 962 } 963 964 for (i = 0; i < test->runs; i++) { 965 if (unpriv && test->retvals[i].retval_unpriv) 966 expected_val = test->retvals[i].retval_unpriv; 967 else 968 expected_val = test->retvals[i].retval; 969 970 err = do_prog_test_run(fd_prog, unpriv, expected_val, 971 test->retvals[i].data, 972 sizeof(test->retvals[i].data)); 973 if (err) { 974 printf("(run %d/%d) ", i + 1, test->runs); 975 run_errs++; 976 } else { 977 run_successes++; 978 } 979 } 980 } 981 982 if (!run_errs) { 983 (*passes)++; 984 if (run_successes > 1) 985 printf("%d cases ", run_successes); 986 printf("OK"); 987 if (alignment_prevented_execution) 988 printf(" (NOTE: not executed due to unknown alignment)"); 989 printf("\n"); 990 } else { 991 printf("\n"); 992 goto fail_log; 993 } 994 close_fds: 995 if (test->fill_insns) 996 free(test->fill_insns); 997 close(fd_prog); 998 for (i = 0; i < MAX_NR_MAPS; i++) 999 close(map_fds[i]); 1000 sched_yield(); 1001 return; 1002 fail_log: 1003 (*errors)++; 1004 printf("%s", bpf_vlog); 1005 goto close_fds; 1006 } 1007 1008 static bool is_admin(void) 1009 { 1010 cap_t caps; 1011 cap_flag_value_t sysadmin = CAP_CLEAR; 1012 const cap_value_t cap_val = CAP_SYS_ADMIN; 1013 1014 #ifdef CAP_IS_SUPPORTED 1015 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1016 perror("cap_get_flag"); 1017 return false; 1018 } 1019 #endif 1020 caps = cap_get_proc(); 1021 if (!caps) { 1022 perror("cap_get_proc"); 1023 return false; 1024 } 1025 if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin)) 1026 perror("cap_get_flag"); 1027 if (cap_free(caps)) 1028 perror("cap_free"); 1029 return (sysadmin == CAP_SET); 1030 } 1031 1032 static void get_unpriv_disabled() 1033 { 1034 char buf[2]; 1035 FILE *fd; 1036 1037 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1038 if (!fd) { 1039 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1040 unpriv_disabled = true; 1041 return; 1042 } 1043 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1044 unpriv_disabled = true; 1045 fclose(fd); 1046 } 1047 1048 static bool test_as_unpriv(struct bpf_test *test) 1049 { 1050 return !test->prog_type || 1051 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1052 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1053 } 1054 1055 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1056 { 1057 int i, passes = 0, errors = 0; 1058 1059 for (i = from; i < to; i++) { 1060 struct bpf_test *test = &tests[i]; 1061 1062 /* Program types that are not supported by non-root we 1063 * skip right away. 1064 */ 1065 if (test_as_unpriv(test) && unpriv_disabled) { 1066 printf("#%d/u %s SKIP\n", i, test->descr); 1067 skips++; 1068 } else if (test_as_unpriv(test)) { 1069 if (!unpriv) 1070 set_admin(false); 1071 printf("#%d/u %s ", i, test->descr); 1072 do_test_single(test, true, &passes, &errors); 1073 if (!unpriv) 1074 set_admin(true); 1075 } 1076 1077 if (unpriv) { 1078 printf("#%d/p %s SKIP\n", i, test->descr); 1079 skips++; 1080 } else { 1081 printf("#%d/p %s ", i, test->descr); 1082 do_test_single(test, false, &passes, &errors); 1083 } 1084 } 1085 1086 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1087 skips, errors); 1088 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1089 } 1090 1091 int main(int argc, char **argv) 1092 { 1093 unsigned int from = 0, to = ARRAY_SIZE(tests); 1094 bool unpriv = !is_admin(); 1095 1096 if (argc == 3) { 1097 unsigned int l = atoi(argv[argc - 2]); 1098 unsigned int u = atoi(argv[argc - 1]); 1099 1100 if (l < to && u < to) { 1101 from = l; 1102 to = u + 1; 1103 } 1104 } else if (argc == 2) { 1105 unsigned int t = atoi(argv[argc - 1]); 1106 1107 if (t < to) { 1108 from = t; 1109 to = t + 1; 1110 } 1111 } 1112 1113 get_unpriv_disabled(); 1114 if (unpriv && unpriv_disabled) { 1115 printf("Cannot run as unprivileged user with sysctl %s.\n", 1116 UNPRIV_SYSCTL); 1117 return EXIT_FAILURE; 1118 } 1119 1120 bpf_semi_rand_init(); 1121 return do_test(unpriv, from, to); 1122 } 1123