1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Testsuite for eBPF verifier 4 * 5 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com 6 * Copyright (c) 2017 Facebook 7 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io 8 */ 9 10 #include <endian.h> 11 #include <asm/types.h> 12 #include <linux/types.h> 13 #include <stdint.h> 14 #include <stdio.h> 15 #include <stdlib.h> 16 #include <unistd.h> 17 #include <errno.h> 18 #include <string.h> 19 #include <stddef.h> 20 #include <stdbool.h> 21 #include <sched.h> 22 #include <limits.h> 23 #include <assert.h> 24 25 #include <sys/capability.h> 26 27 #include <linux/unistd.h> 28 #include <linux/filter.h> 29 #include <linux/bpf_perf_event.h> 30 #include <linux/bpf.h> 31 #include <linux/if_ether.h> 32 #include <linux/btf.h> 33 34 #include <bpf/bpf.h> 35 #include <bpf/libbpf.h> 36 37 #ifdef HAVE_GENHDR 38 # include "autoconf.h" 39 #else 40 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__) 41 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1 42 # endif 43 #endif 44 #include "bpf_rlimit.h" 45 #include "bpf_rand.h" 46 #include "bpf_util.h" 47 #include "test_btf.h" 48 #include "../../../include/linux/filter.h" 49 50 #define MAX_INSNS BPF_MAXINSNS 51 #define MAX_TEST_INSNS 1000000 52 #define MAX_FIXUPS 8 53 #define MAX_NR_MAPS 20 54 #define MAX_TEST_RUNS 8 55 #define POINTER_VALUE 0xcafe4all 56 #define TEST_DATA_LEN 64 57 58 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0) 59 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1) 60 61 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled" 62 static bool unpriv_disabled = false; 63 static int skips; 64 static bool verbose = false; 65 66 struct bpf_test { 67 const char *descr; 68 struct bpf_insn insns[MAX_INSNS]; 69 struct bpf_insn *fill_insns; 70 int fixup_map_hash_8b[MAX_FIXUPS]; 71 int fixup_map_hash_48b[MAX_FIXUPS]; 72 int fixup_map_hash_16b[MAX_FIXUPS]; 73 int fixup_map_array_48b[MAX_FIXUPS]; 74 int fixup_map_sockmap[MAX_FIXUPS]; 75 int fixup_map_sockhash[MAX_FIXUPS]; 76 int fixup_map_xskmap[MAX_FIXUPS]; 77 int fixup_map_stacktrace[MAX_FIXUPS]; 78 int fixup_prog1[MAX_FIXUPS]; 79 int fixup_prog2[MAX_FIXUPS]; 80 int fixup_map_in_map[MAX_FIXUPS]; 81 int fixup_cgroup_storage[MAX_FIXUPS]; 82 int fixup_percpu_cgroup_storage[MAX_FIXUPS]; 83 int fixup_map_spin_lock[MAX_FIXUPS]; 84 int fixup_map_array_ro[MAX_FIXUPS]; 85 int fixup_map_array_wo[MAX_FIXUPS]; 86 int fixup_map_array_small[MAX_FIXUPS]; 87 int fixup_sk_storage_map[MAX_FIXUPS]; 88 int fixup_map_event_output[MAX_FIXUPS]; 89 int fixup_map_reuseport_array[MAX_FIXUPS]; 90 const char *errstr; 91 const char *errstr_unpriv; 92 uint32_t insn_processed; 93 int prog_len; 94 enum { 95 UNDEF, 96 ACCEPT, 97 REJECT, 98 VERBOSE_ACCEPT, 99 } result, result_unpriv; 100 enum bpf_prog_type prog_type; 101 uint8_t flags; 102 void (*fill_helper)(struct bpf_test *self); 103 uint8_t runs; 104 #define bpf_testdata_struct_t \ 105 struct { \ 106 uint32_t retval, retval_unpriv; \ 107 union { \ 108 __u8 data[TEST_DATA_LEN]; \ 109 __u64 data64[TEST_DATA_LEN / 8]; \ 110 }; \ 111 } 112 union { 113 bpf_testdata_struct_t; 114 bpf_testdata_struct_t retvals[MAX_TEST_RUNS]; 115 }; 116 enum bpf_attach_type expected_attach_type; 117 }; 118 119 /* Note we want this to be 64 bit aligned so that the end of our array is 120 * actually the end of the structure. 121 */ 122 #define MAX_ENTRIES 11 123 124 struct test_val { 125 unsigned int index; 126 int foo[MAX_ENTRIES]; 127 }; 128 129 struct other_val { 130 long long foo; 131 long long bar; 132 }; 133 134 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self) 135 { 136 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */ 137 #define PUSH_CNT 51 138 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */ 139 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6; 140 struct bpf_insn *insn = self->fill_insns; 141 int i = 0, j, k = 0; 142 143 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 144 loop: 145 for (j = 0; j < PUSH_CNT; j++) { 146 insn[i++] = BPF_LD_ABS(BPF_B, 0); 147 /* jump to error label */ 148 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 149 i++; 150 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 151 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1); 152 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2); 153 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 154 BPF_FUNC_skb_vlan_push), 155 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 156 i++; 157 } 158 159 for (j = 0; j < PUSH_CNT; j++) { 160 insn[i++] = BPF_LD_ABS(BPF_B, 0); 161 insn[i] = BPF_JMP32_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 3); 162 i++; 163 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); 164 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 165 BPF_FUNC_skb_vlan_pop), 166 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 3); 167 i++; 168 } 169 if (++k < 5) 170 goto loop; 171 172 for (; i < len - 3; i++) 173 insn[i] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 0xbef); 174 insn[len - 3] = BPF_JMP_A(1); 175 /* error label */ 176 insn[len - 2] = BPF_MOV32_IMM(BPF_REG_0, 0); 177 insn[len - 1] = BPF_EXIT_INSN(); 178 self->prog_len = len; 179 } 180 181 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self) 182 { 183 struct bpf_insn *insn = self->fill_insns; 184 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns, 185 * but on arches like arm, ppc etc, there will be one BPF_ZEXT inserted 186 * to extend the error value of the inlined ld_abs sequence which then 187 * contains 7 insns. so, set the dividend to 7 so the testcase could 188 * work on all arches. 189 */ 190 unsigned int len = (1 << 15) / 7; 191 int i = 0; 192 193 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 194 insn[i++] = BPF_LD_ABS(BPF_B, 0); 195 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2); 196 i++; 197 while (i < len - 1) 198 insn[i++] = BPF_LD_ABS(BPF_B, 1); 199 insn[i] = BPF_EXIT_INSN(); 200 self->prog_len = i + 1; 201 } 202 203 static void bpf_fill_rand_ld_dw(struct bpf_test *self) 204 { 205 struct bpf_insn *insn = self->fill_insns; 206 uint64_t res = 0; 207 int i = 0; 208 209 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0); 210 while (i < self->retval) { 211 uint64_t val = bpf_semi_rand_get(); 212 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) }; 213 214 res ^= val; 215 insn[i++] = tmp[0]; 216 insn[i++] = tmp[1]; 217 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 218 } 219 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0); 220 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32); 221 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1); 222 insn[i] = BPF_EXIT_INSN(); 223 self->prog_len = i + 1; 224 res ^= (res >> 32); 225 self->retval = (uint32_t)res; 226 } 227 228 #define MAX_JMP_SEQ 8192 229 230 /* test the sequence of 8k jumps */ 231 static void bpf_fill_scale1(struct bpf_test *self) 232 { 233 struct bpf_insn *insn = self->fill_insns; 234 int i = 0, k = 0; 235 236 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 237 /* test to check that the long sequence of jumps is acceptable */ 238 while (k++ < MAX_JMP_SEQ) { 239 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 240 BPF_FUNC_get_prandom_u32); 241 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 242 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 243 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 244 -8 * (k % 64 + 1)); 245 } 246 /* is_state_visited() doesn't allocate state for pruning for every jump. 247 * Hence multiply jmps by 4 to accommodate that heuristic 248 */ 249 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 250 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 251 insn[i] = BPF_EXIT_INSN(); 252 self->prog_len = i + 1; 253 self->retval = 42; 254 } 255 256 /* test the sequence of 8k jumps in inner most function (function depth 8)*/ 257 static void bpf_fill_scale2(struct bpf_test *self) 258 { 259 struct bpf_insn *insn = self->fill_insns; 260 int i = 0, k = 0; 261 262 #define FUNC_NEST 7 263 for (k = 0; k < FUNC_NEST; k++) { 264 insn[i++] = BPF_CALL_REL(1); 265 insn[i++] = BPF_EXIT_INSN(); 266 } 267 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); 268 /* test to check that the long sequence of jumps is acceptable */ 269 k = 0; 270 while (k++ < MAX_JMP_SEQ) { 271 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 272 BPF_FUNC_get_prandom_u32); 273 insn[i++] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, bpf_semi_rand_get(), 2); 274 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10); 275 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6, 276 -8 * (k % (64 - 4 * FUNC_NEST) + 1)); 277 } 278 while (i < MAX_TEST_INSNS - MAX_JMP_SEQ * 4) 279 insn[i++] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_0, 42); 280 insn[i] = BPF_EXIT_INSN(); 281 self->prog_len = i + 1; 282 self->retval = 42; 283 } 284 285 static void bpf_fill_scale(struct bpf_test *self) 286 { 287 switch (self->retval) { 288 case 1: 289 return bpf_fill_scale1(self); 290 case 2: 291 return bpf_fill_scale2(self); 292 default: 293 self->prog_len = 0; 294 break; 295 } 296 } 297 298 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */ 299 #define BPF_SK_LOOKUP(func) \ 300 /* struct bpf_sock_tuple tuple = {} */ \ 301 BPF_MOV64_IMM(BPF_REG_2, 0), \ 302 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \ 303 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \ 304 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \ 305 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \ 306 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \ 307 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \ 308 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \ 309 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \ 310 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \ 311 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \ 312 BPF_MOV64_IMM(BPF_REG_4, 0), \ 313 BPF_MOV64_IMM(BPF_REG_5, 0), \ 314 BPF_EMIT_CALL(BPF_FUNC_ ## func) 315 316 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return 317 * value into 0 and does necessary preparation for direct packet access 318 * through r2. The allowed access range is 8 bytes. 319 */ 320 #define BPF_DIRECT_PKT_R2 \ 321 BPF_MOV64_IMM(BPF_REG_0, 0), \ 322 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ 323 offsetof(struct __sk_buff, data)), \ 324 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ 325 offsetof(struct __sk_buff, data_end)), \ 326 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \ 327 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \ 328 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \ 329 BPF_EXIT_INSN() 330 331 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random 332 * positive u32, and zero-extend it into 64-bit. 333 */ 334 #define BPF_RAND_UEXT_R7 \ 335 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 336 BPF_FUNC_get_prandom_u32), \ 337 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 338 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \ 339 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33) 340 341 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random 342 * negative u32, and sign-extend it into 64-bit. 343 */ 344 #define BPF_RAND_SEXT_R7 \ 345 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \ 346 BPF_FUNC_get_prandom_u32), \ 347 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \ 348 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \ 349 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \ 350 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32) 351 352 static struct bpf_test tests[] = { 353 #define FILL_ARRAY 354 #include <verifier/tests.h> 355 #undef FILL_ARRAY 356 }; 357 358 static int probe_filter_length(const struct bpf_insn *fp) 359 { 360 int len; 361 362 for (len = MAX_INSNS - 1; len > 0; --len) 363 if (fp[len].code != 0 || fp[len].imm != 0) 364 break; 365 return len + 1; 366 } 367 368 static bool skip_unsupported_map(enum bpf_map_type map_type) 369 { 370 if (!bpf_probe_map_type(map_type, 0)) { 371 printf("SKIP (unsupported map type %d)\n", map_type); 372 skips++; 373 return true; 374 } 375 return false; 376 } 377 378 static int __create_map(uint32_t type, uint32_t size_key, 379 uint32_t size_value, uint32_t max_elem, 380 uint32_t extra_flags) 381 { 382 int fd; 383 384 fd = bpf_create_map(type, size_key, size_value, max_elem, 385 (type == BPF_MAP_TYPE_HASH ? 386 BPF_F_NO_PREALLOC : 0) | extra_flags); 387 if (fd < 0) { 388 if (skip_unsupported_map(type)) 389 return -1; 390 printf("Failed to create hash map '%s'!\n", strerror(errno)); 391 } 392 393 return fd; 394 } 395 396 static int create_map(uint32_t type, uint32_t size_key, 397 uint32_t size_value, uint32_t max_elem) 398 { 399 return __create_map(type, size_key, size_value, max_elem, 0); 400 } 401 402 static void update_map(int fd, int index) 403 { 404 struct test_val value = { 405 .index = (6 + 1) * sizeof(int), 406 .foo[6] = 0xabcdef12, 407 }; 408 409 assert(!bpf_map_update_elem(fd, &index, &value, 0)); 410 } 411 412 static int create_prog_dummy_simple(enum bpf_prog_type prog_type, int ret) 413 { 414 struct bpf_insn prog[] = { 415 BPF_MOV64_IMM(BPF_REG_0, ret), 416 BPF_EXIT_INSN(), 417 }; 418 419 return bpf_load_program(prog_type, prog, 420 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 421 } 422 423 static int create_prog_dummy_loop(enum bpf_prog_type prog_type, int mfd, 424 int idx, int ret) 425 { 426 struct bpf_insn prog[] = { 427 BPF_MOV64_IMM(BPF_REG_3, idx), 428 BPF_LD_MAP_FD(BPF_REG_2, mfd), 429 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, 430 BPF_FUNC_tail_call), 431 BPF_MOV64_IMM(BPF_REG_0, ret), 432 BPF_EXIT_INSN(), 433 }; 434 435 return bpf_load_program(prog_type, prog, 436 ARRAY_SIZE(prog), "GPL", 0, NULL, 0); 437 } 438 439 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem, 440 int p1key, int p2key, int p3key) 441 { 442 int mfd, p1fd, p2fd, p3fd; 443 444 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int), 445 sizeof(int), max_elem, 0); 446 if (mfd < 0) { 447 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY)) 448 return -1; 449 printf("Failed to create prog array '%s'!\n", strerror(errno)); 450 return -1; 451 } 452 453 p1fd = create_prog_dummy_simple(prog_type, 42); 454 p2fd = create_prog_dummy_loop(prog_type, mfd, p2key, 41); 455 p3fd = create_prog_dummy_simple(prog_type, 24); 456 if (p1fd < 0 || p2fd < 0 || p3fd < 0) 457 goto err; 458 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0) 459 goto err; 460 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0) 461 goto err; 462 if (bpf_map_update_elem(mfd, &p3key, &p3fd, BPF_ANY) < 0) { 463 err: 464 close(mfd); 465 mfd = -1; 466 } 467 close(p3fd); 468 close(p2fd); 469 close(p1fd); 470 return mfd; 471 } 472 473 static int create_map_in_map(void) 474 { 475 int inner_map_fd, outer_map_fd; 476 477 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 478 sizeof(int), 1, 0); 479 if (inner_map_fd < 0) { 480 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY)) 481 return -1; 482 printf("Failed to create array '%s'!\n", strerror(errno)); 483 return inner_map_fd; 484 } 485 486 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL, 487 sizeof(int), inner_map_fd, 1, 0); 488 if (outer_map_fd < 0) { 489 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS)) 490 return -1; 491 printf("Failed to create array of maps '%s'!\n", 492 strerror(errno)); 493 } 494 495 close(inner_map_fd); 496 497 return outer_map_fd; 498 } 499 500 static int create_cgroup_storage(bool percpu) 501 { 502 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE : 503 BPF_MAP_TYPE_CGROUP_STORAGE; 504 int fd; 505 506 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key), 507 TEST_DATA_LEN, 0, 0); 508 if (fd < 0) { 509 if (skip_unsupported_map(type)) 510 return -1; 511 printf("Failed to create cgroup storage '%s'!\n", 512 strerror(errno)); 513 } 514 515 return fd; 516 } 517 518 /* struct bpf_spin_lock { 519 * int val; 520 * }; 521 * struct val { 522 * int cnt; 523 * struct bpf_spin_lock l; 524 * }; 525 */ 526 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l"; 527 static __u32 btf_raw_types[] = { 528 /* int */ 529 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 530 /* struct bpf_spin_lock */ /* [2] */ 531 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4), 532 BTF_MEMBER_ENC(15, 1, 0), /* int val; */ 533 /* struct val */ /* [3] */ 534 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8), 535 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */ 536 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */ 537 }; 538 539 static int load_btf(void) 540 { 541 struct btf_header hdr = { 542 .magic = BTF_MAGIC, 543 .version = BTF_VERSION, 544 .hdr_len = sizeof(struct btf_header), 545 .type_len = sizeof(btf_raw_types), 546 .str_off = sizeof(btf_raw_types), 547 .str_len = sizeof(btf_str_sec), 548 }; 549 void *ptr, *raw_btf; 550 int btf_fd; 551 552 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) + 553 sizeof(btf_str_sec)); 554 555 memcpy(ptr, &hdr, sizeof(hdr)); 556 ptr += sizeof(hdr); 557 memcpy(ptr, btf_raw_types, hdr.type_len); 558 ptr += hdr.type_len; 559 memcpy(ptr, btf_str_sec, hdr.str_len); 560 ptr += hdr.str_len; 561 562 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0); 563 free(raw_btf); 564 if (btf_fd < 0) 565 return -1; 566 return btf_fd; 567 } 568 569 static int create_map_spin_lock(void) 570 { 571 struct bpf_create_map_attr attr = { 572 .name = "test_map", 573 .map_type = BPF_MAP_TYPE_ARRAY, 574 .key_size = 4, 575 .value_size = 8, 576 .max_entries = 1, 577 .btf_key_type_id = 1, 578 .btf_value_type_id = 3, 579 }; 580 int fd, btf_fd; 581 582 btf_fd = load_btf(); 583 if (btf_fd < 0) 584 return -1; 585 attr.btf_fd = btf_fd; 586 fd = bpf_create_map_xattr(&attr); 587 if (fd < 0) 588 printf("Failed to create map with spin_lock\n"); 589 return fd; 590 } 591 592 static int create_sk_storage_map(void) 593 { 594 struct bpf_create_map_attr attr = { 595 .name = "test_map", 596 .map_type = BPF_MAP_TYPE_SK_STORAGE, 597 .key_size = 4, 598 .value_size = 8, 599 .max_entries = 0, 600 .map_flags = BPF_F_NO_PREALLOC, 601 .btf_key_type_id = 1, 602 .btf_value_type_id = 3, 603 }; 604 int fd, btf_fd; 605 606 btf_fd = load_btf(); 607 if (btf_fd < 0) 608 return -1; 609 attr.btf_fd = btf_fd; 610 fd = bpf_create_map_xattr(&attr); 611 close(attr.btf_fd); 612 if (fd < 0) 613 printf("Failed to create sk_storage_map\n"); 614 return fd; 615 } 616 617 static char bpf_vlog[UINT_MAX >> 8]; 618 619 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type, 620 struct bpf_insn *prog, int *map_fds) 621 { 622 int *fixup_map_hash_8b = test->fixup_map_hash_8b; 623 int *fixup_map_hash_48b = test->fixup_map_hash_48b; 624 int *fixup_map_hash_16b = test->fixup_map_hash_16b; 625 int *fixup_map_array_48b = test->fixup_map_array_48b; 626 int *fixup_map_sockmap = test->fixup_map_sockmap; 627 int *fixup_map_sockhash = test->fixup_map_sockhash; 628 int *fixup_map_xskmap = test->fixup_map_xskmap; 629 int *fixup_map_stacktrace = test->fixup_map_stacktrace; 630 int *fixup_prog1 = test->fixup_prog1; 631 int *fixup_prog2 = test->fixup_prog2; 632 int *fixup_map_in_map = test->fixup_map_in_map; 633 int *fixup_cgroup_storage = test->fixup_cgroup_storage; 634 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage; 635 int *fixup_map_spin_lock = test->fixup_map_spin_lock; 636 int *fixup_map_array_ro = test->fixup_map_array_ro; 637 int *fixup_map_array_wo = test->fixup_map_array_wo; 638 int *fixup_map_array_small = test->fixup_map_array_small; 639 int *fixup_sk_storage_map = test->fixup_sk_storage_map; 640 int *fixup_map_event_output = test->fixup_map_event_output; 641 int *fixup_map_reuseport_array = test->fixup_map_reuseport_array; 642 643 if (test->fill_helper) { 644 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn)); 645 test->fill_helper(test); 646 } 647 648 /* Allocating HTs with 1 elem is fine here, since we only test 649 * for verifier and not do a runtime lookup, so the only thing 650 * that really matters is value size in this case. 651 */ 652 if (*fixup_map_hash_8b) { 653 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 654 sizeof(long long), 1); 655 do { 656 prog[*fixup_map_hash_8b].imm = map_fds[0]; 657 fixup_map_hash_8b++; 658 } while (*fixup_map_hash_8b); 659 } 660 661 if (*fixup_map_hash_48b) { 662 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 663 sizeof(struct test_val), 1); 664 do { 665 prog[*fixup_map_hash_48b].imm = map_fds[1]; 666 fixup_map_hash_48b++; 667 } while (*fixup_map_hash_48b); 668 } 669 670 if (*fixup_map_hash_16b) { 671 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long), 672 sizeof(struct other_val), 1); 673 do { 674 prog[*fixup_map_hash_16b].imm = map_fds[2]; 675 fixup_map_hash_16b++; 676 } while (*fixup_map_hash_16b); 677 } 678 679 if (*fixup_map_array_48b) { 680 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 681 sizeof(struct test_val), 1); 682 update_map(map_fds[3], 0); 683 do { 684 prog[*fixup_map_array_48b].imm = map_fds[3]; 685 fixup_map_array_48b++; 686 } while (*fixup_map_array_48b); 687 } 688 689 if (*fixup_prog1) { 690 map_fds[4] = create_prog_array(prog_type, 4, 0, 1, 2); 691 do { 692 prog[*fixup_prog1].imm = map_fds[4]; 693 fixup_prog1++; 694 } while (*fixup_prog1); 695 } 696 697 if (*fixup_prog2) { 698 map_fds[5] = create_prog_array(prog_type, 8, 7, 1, 2); 699 do { 700 prog[*fixup_prog2].imm = map_fds[5]; 701 fixup_prog2++; 702 } while (*fixup_prog2); 703 } 704 705 if (*fixup_map_in_map) { 706 map_fds[6] = create_map_in_map(); 707 do { 708 prog[*fixup_map_in_map].imm = map_fds[6]; 709 fixup_map_in_map++; 710 } while (*fixup_map_in_map); 711 } 712 713 if (*fixup_cgroup_storage) { 714 map_fds[7] = create_cgroup_storage(false); 715 do { 716 prog[*fixup_cgroup_storage].imm = map_fds[7]; 717 fixup_cgroup_storage++; 718 } while (*fixup_cgroup_storage); 719 } 720 721 if (*fixup_percpu_cgroup_storage) { 722 map_fds[8] = create_cgroup_storage(true); 723 do { 724 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8]; 725 fixup_percpu_cgroup_storage++; 726 } while (*fixup_percpu_cgroup_storage); 727 } 728 if (*fixup_map_sockmap) { 729 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int), 730 sizeof(int), 1); 731 do { 732 prog[*fixup_map_sockmap].imm = map_fds[9]; 733 fixup_map_sockmap++; 734 } while (*fixup_map_sockmap); 735 } 736 if (*fixup_map_sockhash) { 737 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int), 738 sizeof(int), 1); 739 do { 740 prog[*fixup_map_sockhash].imm = map_fds[10]; 741 fixup_map_sockhash++; 742 } while (*fixup_map_sockhash); 743 } 744 if (*fixup_map_xskmap) { 745 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int), 746 sizeof(int), 1); 747 do { 748 prog[*fixup_map_xskmap].imm = map_fds[11]; 749 fixup_map_xskmap++; 750 } while (*fixup_map_xskmap); 751 } 752 if (*fixup_map_stacktrace) { 753 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32), 754 sizeof(u64), 1); 755 do { 756 prog[*fixup_map_stacktrace].imm = map_fds[12]; 757 fixup_map_stacktrace++; 758 } while (*fixup_map_stacktrace); 759 } 760 if (*fixup_map_spin_lock) { 761 map_fds[13] = create_map_spin_lock(); 762 do { 763 prog[*fixup_map_spin_lock].imm = map_fds[13]; 764 fixup_map_spin_lock++; 765 } while (*fixup_map_spin_lock); 766 } 767 if (*fixup_map_array_ro) { 768 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 769 sizeof(struct test_val), 1, 770 BPF_F_RDONLY_PROG); 771 update_map(map_fds[14], 0); 772 do { 773 prog[*fixup_map_array_ro].imm = map_fds[14]; 774 fixup_map_array_ro++; 775 } while (*fixup_map_array_ro); 776 } 777 if (*fixup_map_array_wo) { 778 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 779 sizeof(struct test_val), 1, 780 BPF_F_WRONLY_PROG); 781 update_map(map_fds[15], 0); 782 do { 783 prog[*fixup_map_array_wo].imm = map_fds[15]; 784 fixup_map_array_wo++; 785 } while (*fixup_map_array_wo); 786 } 787 if (*fixup_map_array_small) { 788 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int), 789 1, 1, 0); 790 update_map(map_fds[16], 0); 791 do { 792 prog[*fixup_map_array_small].imm = map_fds[16]; 793 fixup_map_array_small++; 794 } while (*fixup_map_array_small); 795 } 796 if (*fixup_sk_storage_map) { 797 map_fds[17] = create_sk_storage_map(); 798 do { 799 prog[*fixup_sk_storage_map].imm = map_fds[17]; 800 fixup_sk_storage_map++; 801 } while (*fixup_sk_storage_map); 802 } 803 if (*fixup_map_event_output) { 804 map_fds[18] = __create_map(BPF_MAP_TYPE_PERF_EVENT_ARRAY, 805 sizeof(int), sizeof(int), 1, 0); 806 do { 807 prog[*fixup_map_event_output].imm = map_fds[18]; 808 fixup_map_event_output++; 809 } while (*fixup_map_event_output); 810 } 811 if (*fixup_map_reuseport_array) { 812 map_fds[19] = __create_map(BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 813 sizeof(u32), sizeof(u64), 1, 0); 814 do { 815 prog[*fixup_map_reuseport_array].imm = map_fds[19]; 816 fixup_map_reuseport_array++; 817 } while (*fixup_map_reuseport_array); 818 } 819 } 820 821 struct libcap { 822 struct __user_cap_header_struct hdr; 823 struct __user_cap_data_struct data[2]; 824 }; 825 826 static int set_admin(bool admin) 827 { 828 cap_t caps; 829 /* need CAP_BPF, CAP_NET_ADMIN, CAP_PERFMON to load progs */ 830 const cap_value_t cap_net_admin = CAP_NET_ADMIN; 831 const cap_value_t cap_sys_admin = CAP_SYS_ADMIN; 832 struct libcap *cap; 833 int ret = -1; 834 835 caps = cap_get_proc(); 836 if (!caps) { 837 perror("cap_get_proc"); 838 return -1; 839 } 840 cap = (struct libcap *)caps; 841 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_sys_admin, CAP_CLEAR)) { 842 perror("cap_set_flag clear admin"); 843 goto out; 844 } 845 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_net_admin, 846 admin ? CAP_SET : CAP_CLEAR)) { 847 perror("cap_set_flag set_or_clear net"); 848 goto out; 849 } 850 /* libcap is likely old and simply ignores CAP_BPF and CAP_PERFMON, 851 * so update effective bits manually 852 */ 853 if (admin) { 854 cap->data[1].effective |= 1 << (38 /* CAP_PERFMON */ - 32); 855 cap->data[1].effective |= 1 << (39 /* CAP_BPF */ - 32); 856 } else { 857 cap->data[1].effective &= ~(1 << (38 - 32)); 858 cap->data[1].effective &= ~(1 << (39 - 32)); 859 } 860 if (cap_set_proc(caps)) { 861 perror("cap_set_proc"); 862 goto out; 863 } 864 ret = 0; 865 out: 866 if (cap_free(caps)) 867 perror("cap_free"); 868 return ret; 869 } 870 871 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val, 872 void *data, size_t size_data) 873 { 874 __u8 tmp[TEST_DATA_LEN << 2]; 875 __u32 size_tmp = sizeof(tmp); 876 uint32_t retval; 877 int err; 878 879 if (unpriv) 880 set_admin(true); 881 err = bpf_prog_test_run(fd_prog, 1, data, size_data, 882 tmp, &size_tmp, &retval, NULL); 883 if (unpriv) 884 set_admin(false); 885 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) { 886 printf("Unexpected bpf_prog_test_run error "); 887 return err; 888 } 889 if (!err && retval != expected_val && 890 expected_val != POINTER_VALUE) { 891 printf("FAIL retval %d != %d ", retval, expected_val); 892 return 1; 893 } 894 895 return 0; 896 } 897 898 static bool cmp_str_seq(const char *log, const char *exp) 899 { 900 char needle[80]; 901 const char *p, *q; 902 int len; 903 904 do { 905 p = strchr(exp, '\t'); 906 if (!p) 907 p = exp + strlen(exp); 908 909 len = p - exp; 910 if (len >= sizeof(needle) || !len) { 911 printf("FAIL\nTestcase bug\n"); 912 return false; 913 } 914 strncpy(needle, exp, len); 915 needle[len] = 0; 916 q = strstr(log, needle); 917 if (!q) { 918 printf("FAIL\nUnexpected verifier log in successful load!\n" 919 "EXP: %s\nRES:\n", needle); 920 return false; 921 } 922 log = q + len; 923 exp = p + 1; 924 } while (*p); 925 return true; 926 } 927 928 static void do_test_single(struct bpf_test *test, bool unpriv, 929 int *passes, int *errors) 930 { 931 int fd_prog, expected_ret, alignment_prevented_execution; 932 int prog_len, prog_type = test->prog_type; 933 struct bpf_insn *prog = test->insns; 934 struct bpf_load_program_attr attr; 935 int run_errs, run_successes; 936 int map_fds[MAX_NR_MAPS]; 937 const char *expected_err; 938 int fixup_skips; 939 __u32 pflags; 940 int i, err; 941 942 for (i = 0; i < MAX_NR_MAPS; i++) 943 map_fds[i] = -1; 944 945 if (!prog_type) 946 prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 947 fixup_skips = skips; 948 do_test_fixup(test, prog_type, prog, map_fds); 949 if (test->fill_insns) { 950 prog = test->fill_insns; 951 prog_len = test->prog_len; 952 } else { 953 prog_len = probe_filter_length(prog); 954 } 955 /* If there were some map skips during fixup due to missing bpf 956 * features, skip this test. 957 */ 958 if (fixup_skips != skips) 959 return; 960 961 pflags = BPF_F_TEST_RND_HI32; 962 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT) 963 pflags |= BPF_F_STRICT_ALIGNMENT; 964 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS) 965 pflags |= BPF_F_ANY_ALIGNMENT; 966 if (test->flags & ~3) 967 pflags |= test->flags; 968 969 expected_ret = unpriv && test->result_unpriv != UNDEF ? 970 test->result_unpriv : test->result; 971 expected_err = unpriv && test->errstr_unpriv ? 972 test->errstr_unpriv : test->errstr; 973 memset(&attr, 0, sizeof(attr)); 974 attr.prog_type = prog_type; 975 attr.expected_attach_type = test->expected_attach_type; 976 attr.insns = prog; 977 attr.insns_cnt = prog_len; 978 attr.license = "GPL"; 979 if (verbose) 980 attr.log_level = 1; 981 else if (expected_ret == VERBOSE_ACCEPT) 982 attr.log_level = 2; 983 else 984 attr.log_level = 4; 985 attr.prog_flags = pflags; 986 987 fd_prog = bpf_load_program_xattr(&attr, bpf_vlog, sizeof(bpf_vlog)); 988 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) { 989 printf("SKIP (unsupported program type %d)\n", prog_type); 990 skips++; 991 goto close_fds; 992 } 993 994 alignment_prevented_execution = 0; 995 996 if (expected_ret == ACCEPT || expected_ret == VERBOSE_ACCEPT) { 997 if (fd_prog < 0) { 998 printf("FAIL\nFailed to load prog '%s'!\n", 999 strerror(errno)); 1000 goto fail_log; 1001 } 1002 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1003 if (fd_prog >= 0 && 1004 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)) 1005 alignment_prevented_execution = 1; 1006 #endif 1007 if (expected_ret == VERBOSE_ACCEPT && !cmp_str_seq(bpf_vlog, expected_err)) { 1008 goto fail_log; 1009 } 1010 } else { 1011 if (fd_prog >= 0) { 1012 printf("FAIL\nUnexpected success to load!\n"); 1013 goto fail_log; 1014 } 1015 if (!expected_err || !strstr(bpf_vlog, expected_err)) { 1016 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n", 1017 expected_err, bpf_vlog); 1018 goto fail_log; 1019 } 1020 } 1021 1022 if (test->insn_processed) { 1023 uint32_t insn_processed; 1024 char *proc; 1025 1026 proc = strstr(bpf_vlog, "processed "); 1027 insn_processed = atoi(proc + 10); 1028 if (test->insn_processed != insn_processed) { 1029 printf("FAIL\nUnexpected insn_processed %u vs %u\n", 1030 insn_processed, test->insn_processed); 1031 goto fail_log; 1032 } 1033 } 1034 1035 if (verbose) 1036 printf(", verifier log:\n%s", bpf_vlog); 1037 1038 run_errs = 0; 1039 run_successes = 0; 1040 if (!alignment_prevented_execution && fd_prog >= 0) { 1041 uint32_t expected_val; 1042 int i; 1043 1044 if (!test->runs) 1045 test->runs = 1; 1046 1047 for (i = 0; i < test->runs; i++) { 1048 if (unpriv && test->retvals[i].retval_unpriv) 1049 expected_val = test->retvals[i].retval_unpriv; 1050 else 1051 expected_val = test->retvals[i].retval; 1052 1053 err = do_prog_test_run(fd_prog, unpriv, expected_val, 1054 test->retvals[i].data, 1055 sizeof(test->retvals[i].data)); 1056 if (err) { 1057 printf("(run %d/%d) ", i + 1, test->runs); 1058 run_errs++; 1059 } else { 1060 run_successes++; 1061 } 1062 } 1063 } 1064 1065 if (!run_errs) { 1066 (*passes)++; 1067 if (run_successes > 1) 1068 printf("%d cases ", run_successes); 1069 printf("OK"); 1070 if (alignment_prevented_execution) 1071 printf(" (NOTE: not executed due to unknown alignment)"); 1072 printf("\n"); 1073 } else { 1074 printf("\n"); 1075 goto fail_log; 1076 } 1077 close_fds: 1078 if (test->fill_insns) 1079 free(test->fill_insns); 1080 close(fd_prog); 1081 for (i = 0; i < MAX_NR_MAPS; i++) 1082 close(map_fds[i]); 1083 sched_yield(); 1084 return; 1085 fail_log: 1086 (*errors)++; 1087 printf("%s", bpf_vlog); 1088 goto close_fds; 1089 } 1090 1091 static bool is_admin(void) 1092 { 1093 cap_flag_value_t net_priv = CAP_CLEAR; 1094 bool perfmon_priv = false; 1095 bool bpf_priv = false; 1096 struct libcap *cap; 1097 cap_t caps; 1098 1099 #ifdef CAP_IS_SUPPORTED 1100 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) { 1101 perror("cap_get_flag"); 1102 return false; 1103 } 1104 #endif 1105 caps = cap_get_proc(); 1106 if (!caps) { 1107 perror("cap_get_proc"); 1108 return false; 1109 } 1110 cap = (struct libcap *)caps; 1111 bpf_priv = cap->data[1].effective & (1 << (39/* CAP_BPF */ - 32)); 1112 perfmon_priv = cap->data[1].effective & (1 << (38/* CAP_PERFMON */ - 32)); 1113 if (cap_get_flag(caps, CAP_NET_ADMIN, CAP_EFFECTIVE, &net_priv)) 1114 perror("cap_get_flag NET"); 1115 if (cap_free(caps)) 1116 perror("cap_free"); 1117 return bpf_priv && perfmon_priv && net_priv == CAP_SET; 1118 } 1119 1120 static void get_unpriv_disabled() 1121 { 1122 char buf[2]; 1123 FILE *fd; 1124 1125 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r"); 1126 if (!fd) { 1127 perror("fopen /proc/sys/"UNPRIV_SYSCTL); 1128 unpriv_disabled = true; 1129 return; 1130 } 1131 if (fgets(buf, 2, fd) == buf && atoi(buf)) 1132 unpriv_disabled = true; 1133 fclose(fd); 1134 } 1135 1136 static bool test_as_unpriv(struct bpf_test *test) 1137 { 1138 return !test->prog_type || 1139 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER || 1140 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB; 1141 } 1142 1143 static int do_test(bool unpriv, unsigned int from, unsigned int to) 1144 { 1145 int i, passes = 0, errors = 0; 1146 1147 for (i = from; i < to; i++) { 1148 struct bpf_test *test = &tests[i]; 1149 1150 /* Program types that are not supported by non-root we 1151 * skip right away. 1152 */ 1153 if (test_as_unpriv(test) && unpriv_disabled) { 1154 printf("#%d/u %s SKIP\n", i, test->descr); 1155 skips++; 1156 } else if (test_as_unpriv(test)) { 1157 if (!unpriv) 1158 set_admin(false); 1159 printf("#%d/u %s ", i, test->descr); 1160 do_test_single(test, true, &passes, &errors); 1161 if (!unpriv) 1162 set_admin(true); 1163 } 1164 1165 if (unpriv) { 1166 printf("#%d/p %s SKIP\n", i, test->descr); 1167 skips++; 1168 } else { 1169 printf("#%d/p %s ", i, test->descr); 1170 do_test_single(test, false, &passes, &errors); 1171 } 1172 } 1173 1174 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes, 1175 skips, errors); 1176 return errors ? EXIT_FAILURE : EXIT_SUCCESS; 1177 } 1178 1179 int main(int argc, char **argv) 1180 { 1181 unsigned int from = 0, to = ARRAY_SIZE(tests); 1182 bool unpriv = !is_admin(); 1183 int arg = 1; 1184 1185 if (argc > 1 && strcmp(argv[1], "-v") == 0) { 1186 arg++; 1187 verbose = true; 1188 argc--; 1189 } 1190 1191 if (argc == 3) { 1192 unsigned int l = atoi(argv[arg]); 1193 unsigned int u = atoi(argv[arg + 1]); 1194 1195 if (l < to && u < to) { 1196 from = l; 1197 to = u + 1; 1198 } 1199 } else if (argc == 2) { 1200 unsigned int t = atoi(argv[arg]); 1201 1202 if (t < to) { 1203 from = t; 1204 to = t + 1; 1205 } 1206 } 1207 1208 get_unpriv_disabled(); 1209 if (unpriv && unpriv_disabled) { 1210 printf("Cannot run as unprivileged user with sysctl %s.\n", 1211 UNPRIV_SYSCTL); 1212 return EXIT_FAILURE; 1213 } 1214 1215 bpf_semi_rand_init(); 1216 return do_test(unpriv, from, to); 1217 } 1218