1 /* 2 * Randomized tests for eBPF longest-prefix-match maps 3 * 4 * This program runs randomized tests against the lpm-bpf-map. It implements a 5 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 6 * lists. The implementation should be pretty straightforward. 7 * 8 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 9 * the trie-based bpf-map implementation behaves the same way as tlpm. 10 */ 11 12 #include <assert.h> 13 #include <errno.h> 14 #include <inttypes.h> 15 #include <linux/bpf.h> 16 #include <stdio.h> 17 #include <stdlib.h> 18 #include <string.h> 19 #include <time.h> 20 #include <unistd.h> 21 #include <arpa/inet.h> 22 #include <sys/time.h> 23 #include <sys/resource.h> 24 25 #include <bpf/bpf.h> 26 #include "bpf_util.h" 27 28 struct tlpm_node { 29 struct tlpm_node *next; 30 size_t n_bits; 31 uint8_t key[]; 32 }; 33 34 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 35 const uint8_t *key, 36 size_t n_bits) 37 { 38 struct tlpm_node *node; 39 size_t n; 40 41 /* add new entry with @key/@n_bits to @list and return new head */ 42 43 n = (n_bits + 7) / 8; 44 node = malloc(sizeof(*node) + n); 45 assert(node); 46 47 node->next = list; 48 node->n_bits = n_bits; 49 memcpy(node->key, key, n); 50 51 return node; 52 } 53 54 static void tlpm_clear(struct tlpm_node *list) 55 { 56 struct tlpm_node *node; 57 58 /* free all entries in @list */ 59 60 while ((node = list)) { 61 list = list->next; 62 free(node); 63 } 64 } 65 66 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 67 const uint8_t *key, 68 size_t n_bits) 69 { 70 struct tlpm_node *best = NULL; 71 size_t i; 72 73 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 74 * entries and match each prefix against @key. Remember the "best" 75 * entry we find (i.e., the longest prefix that matches) and return it 76 * to the caller when done. 77 */ 78 79 for ( ; list; list = list->next) { 80 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 81 if ((key[i / 8] & (1 << (7 - i % 8))) != 82 (list->key[i / 8] & (1 << (7 - i % 8)))) 83 break; 84 } 85 86 if (i >= list->n_bits) { 87 if (!best || i > best->n_bits) 88 best = list; 89 } 90 } 91 92 return best; 93 } 94 95 static void test_lpm_basic(void) 96 { 97 struct tlpm_node *list = NULL, *t1, *t2; 98 99 /* very basic, static tests to verify tlpm works as expected */ 100 101 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 102 103 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 104 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 105 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 106 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 107 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 108 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 109 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 110 111 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 112 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 113 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 114 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 115 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 116 117 tlpm_clear(list); 118 } 119 120 static void test_lpm_order(void) 121 { 122 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 123 size_t i, j; 124 125 /* Verify the tlpm implementation works correctly regardless of the 126 * order of entries. Insert a random set of entries into @l1, and copy 127 * the same data in reverse order into @l2. Then verify a lookup of 128 * random keys will yield the same result in both sets. 129 */ 130 131 for (i = 0; i < (1 << 12); ++i) 132 l1 = tlpm_add(l1, (uint8_t[]){ 133 rand() % 0xff, 134 rand() % 0xff, 135 }, rand() % 16 + 1); 136 137 for (t1 = l1; t1; t1 = t1->next) 138 l2 = tlpm_add(l2, t1->key, t1->n_bits); 139 140 for (i = 0; i < (1 << 8); ++i) { 141 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 142 143 t1 = tlpm_match(l1, key, 16); 144 t2 = tlpm_match(l2, key, 16); 145 146 assert(!t1 == !t2); 147 if (t1) { 148 assert(t1->n_bits == t2->n_bits); 149 for (j = 0; j < t1->n_bits; ++j) 150 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 151 (t2->key[j / 8] & (1 << (7 - j % 8)))); 152 } 153 } 154 155 tlpm_clear(l1); 156 tlpm_clear(l2); 157 } 158 159 static void test_lpm_map(int keysize) 160 { 161 size_t i, j, n_matches, n_nodes, n_lookups; 162 struct tlpm_node *t, *list = NULL; 163 struct bpf_lpm_trie_key *key; 164 uint8_t *data, *value; 165 int r, map; 166 167 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 168 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 169 * randomized lookups and verify both maps return the same result. 170 */ 171 172 n_matches = 0; 173 n_nodes = 1 << 8; 174 n_lookups = 1 << 16; 175 176 data = alloca(keysize); 177 memset(data, 0, keysize); 178 179 value = alloca(keysize + 1); 180 memset(value, 0, keysize + 1); 181 182 key = alloca(sizeof(*key) + keysize); 183 memset(key, 0, sizeof(*key) + keysize); 184 185 map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 186 sizeof(*key) + keysize, 187 keysize + 1, 188 4096, 189 BPF_F_NO_PREALLOC); 190 assert(map >= 0); 191 192 for (i = 0; i < n_nodes; ++i) { 193 for (j = 0; j < keysize; ++j) 194 value[j] = rand() & 0xff; 195 value[keysize] = rand() % (8 * keysize + 1); 196 197 list = tlpm_add(list, value, value[keysize]); 198 199 key->prefixlen = value[keysize]; 200 memcpy(key->data, value, keysize); 201 r = bpf_map_update_elem(map, key, value, 0); 202 assert(!r); 203 } 204 205 for (i = 0; i < n_lookups; ++i) { 206 for (j = 0; j < keysize; ++j) 207 data[j] = rand() & 0xff; 208 209 t = tlpm_match(list, data, 8 * keysize); 210 211 key->prefixlen = 8 * keysize; 212 memcpy(key->data, data, keysize); 213 r = bpf_map_lookup_elem(map, key, value); 214 assert(!r || errno == ENOENT); 215 assert(!t == !!r); 216 217 if (t) { 218 ++n_matches; 219 assert(t->n_bits == value[keysize]); 220 for (j = 0; j < t->n_bits; ++j) 221 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 222 (value[j / 8] & (1 << (7 - j % 8)))); 223 } 224 } 225 226 close(map); 227 tlpm_clear(list); 228 229 /* With 255 random nodes in the map, we are pretty likely to match 230 * something on every lookup. For statistics, use this: 231 * 232 * printf(" nodes: %zu\n" 233 * "lookups: %zu\n" 234 * "matches: %zu\n", n_nodes, n_lookups, n_matches); 235 */ 236 } 237 238 /* Test the implementation with some 'real world' examples */ 239 240 static void test_lpm_ipaddr(void) 241 { 242 struct bpf_lpm_trie_key *key_ipv4; 243 struct bpf_lpm_trie_key *key_ipv6; 244 size_t key_size_ipv4; 245 size_t key_size_ipv6; 246 int map_fd_ipv4; 247 int map_fd_ipv6; 248 __u64 value; 249 250 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 251 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 252 key_ipv4 = alloca(key_size_ipv4); 253 key_ipv6 = alloca(key_size_ipv6); 254 255 map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 256 key_size_ipv4, sizeof(value), 257 100, BPF_F_NO_PREALLOC); 258 assert(map_fd_ipv4 >= 0); 259 260 map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 261 key_size_ipv6, sizeof(value), 262 100, BPF_F_NO_PREALLOC); 263 assert(map_fd_ipv6 >= 0); 264 265 /* Fill data some IPv4 and IPv6 address ranges */ 266 value = 1; 267 key_ipv4->prefixlen = 16; 268 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 269 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 270 271 value = 2; 272 key_ipv4->prefixlen = 24; 273 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 274 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 275 276 value = 3; 277 key_ipv4->prefixlen = 24; 278 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 279 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 280 281 value = 5; 282 key_ipv4->prefixlen = 24; 283 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 284 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 285 286 value = 4; 287 key_ipv4->prefixlen = 23; 288 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 289 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 290 291 value = 0xdeadbeef; 292 key_ipv6->prefixlen = 64; 293 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 294 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 295 296 /* Set tprefixlen to maximum for lookups */ 297 key_ipv4->prefixlen = 32; 298 key_ipv6->prefixlen = 128; 299 300 /* Test some lookups that should come back with a value */ 301 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 302 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 303 assert(value == 3); 304 305 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 306 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 307 assert(value == 2); 308 309 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 310 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 311 assert(value == 0xdeadbeef); 312 313 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 314 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 315 assert(value == 0xdeadbeef); 316 317 /* Test some lookups that should not match any entry */ 318 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 319 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 320 errno == ENOENT); 321 322 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 323 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 324 errno == ENOENT); 325 326 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 327 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && 328 errno == ENOENT); 329 330 close(map_fd_ipv4); 331 close(map_fd_ipv6); 332 } 333 334 int main(void) 335 { 336 struct rlimit limit = { RLIM_INFINITY, RLIM_INFINITY }; 337 int i, ret; 338 339 /* we want predictable, pseudo random tests */ 340 srand(0xf00ba1); 341 342 /* allow unlimited locked memory */ 343 ret = setrlimit(RLIMIT_MEMLOCK, &limit); 344 if (ret < 0) 345 perror("Unable to lift memlock rlimit"); 346 347 test_lpm_basic(); 348 test_lpm_order(); 349 350 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 351 for (i = 1; i <= 16; ++i) 352 test_lpm_map(i); 353 354 test_lpm_ipaddr(); 355 356 printf("test_lpm: OK\n"); 357 return 0; 358 } 359