xref: /openbmc/linux/tools/testing/selftests/bpf/test_lpm_map.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Randomized tests for eBPF longest-prefix-match maps
4  *
5  * This program runs randomized tests against the lpm-bpf-map. It implements a
6  * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked
7  * lists. The implementation should be pretty straightforward.
8  *
9  * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies
10  * the trie-based bpf-map implementation behaves the same way as tlpm.
11  */
12 
13 #include <assert.h>
14 #include <errno.h>
15 #include <inttypes.h>
16 #include <linux/bpf.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <time.h>
21 #include <unistd.h>
22 #include <arpa/inet.h>
23 #include <sys/time.h>
24 #include <sys/resource.h>
25 
26 #include <bpf/bpf.h>
27 #include "bpf_util.h"
28 
29 struct tlpm_node {
30 	struct tlpm_node *next;
31 	size_t n_bits;
32 	uint8_t key[];
33 };
34 
35 static struct tlpm_node *tlpm_add(struct tlpm_node *list,
36 				  const uint8_t *key,
37 				  size_t n_bits)
38 {
39 	struct tlpm_node *node;
40 	size_t n;
41 
42 	/* add new entry with @key/@n_bits to @list and return new head */
43 
44 	n = (n_bits + 7) / 8;
45 	node = malloc(sizeof(*node) + n);
46 	assert(node);
47 
48 	node->next = list;
49 	node->n_bits = n_bits;
50 	memcpy(node->key, key, n);
51 
52 	return node;
53 }
54 
55 static void tlpm_clear(struct tlpm_node *list)
56 {
57 	struct tlpm_node *node;
58 
59 	/* free all entries in @list */
60 
61 	while ((node = list)) {
62 		list = list->next;
63 		free(node);
64 	}
65 }
66 
67 static struct tlpm_node *tlpm_match(struct tlpm_node *list,
68 				    const uint8_t *key,
69 				    size_t n_bits)
70 {
71 	struct tlpm_node *best = NULL;
72 	size_t i;
73 
74 	/* Perform longest prefix-match on @key/@n_bits. That is, iterate all
75 	 * entries and match each prefix against @key. Remember the "best"
76 	 * entry we find (i.e., the longest prefix that matches) and return it
77 	 * to the caller when done.
78 	 */
79 
80 	for ( ; list; list = list->next) {
81 		for (i = 0; i < n_bits && i < list->n_bits; ++i) {
82 			if ((key[i / 8] & (1 << (7 - i % 8))) !=
83 			    (list->key[i / 8] & (1 << (7 - i % 8))))
84 				break;
85 		}
86 
87 		if (i >= list->n_bits) {
88 			if (!best || i > best->n_bits)
89 				best = list;
90 		}
91 	}
92 
93 	return best;
94 }
95 
96 static void test_lpm_basic(void)
97 {
98 	struct tlpm_node *list = NULL, *t1, *t2;
99 
100 	/* very basic, static tests to verify tlpm works as expected */
101 
102 	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8));
103 
104 	t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8);
105 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
106 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
107 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16));
108 	assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8));
109 	assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8));
110 	assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7));
111 
112 	t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16);
113 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8));
114 	assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16));
115 	assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15));
116 	assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16));
117 
118 	tlpm_clear(list);
119 }
120 
121 static void test_lpm_order(void)
122 {
123 	struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL;
124 	size_t i, j;
125 
126 	/* Verify the tlpm implementation works correctly regardless of the
127 	 * order of entries. Insert a random set of entries into @l1, and copy
128 	 * the same data in reverse order into @l2. Then verify a lookup of
129 	 * random keys will yield the same result in both sets.
130 	 */
131 
132 	for (i = 0; i < (1 << 12); ++i)
133 		l1 = tlpm_add(l1, (uint8_t[]){
134 					rand() % 0xff,
135 					rand() % 0xff,
136 				}, rand() % 16 + 1);
137 
138 	for (t1 = l1; t1; t1 = t1->next)
139 		l2 = tlpm_add(l2, t1->key, t1->n_bits);
140 
141 	for (i = 0; i < (1 << 8); ++i) {
142 		uint8_t key[] = { rand() % 0xff, rand() % 0xff };
143 
144 		t1 = tlpm_match(l1, key, 16);
145 		t2 = tlpm_match(l2, key, 16);
146 
147 		assert(!t1 == !t2);
148 		if (t1) {
149 			assert(t1->n_bits == t2->n_bits);
150 			for (j = 0; j < t1->n_bits; ++j)
151 				assert((t1->key[j / 8] & (1 << (7 - j % 8))) ==
152 				       (t2->key[j / 8] & (1 << (7 - j % 8))));
153 		}
154 	}
155 
156 	tlpm_clear(l1);
157 	tlpm_clear(l2);
158 }
159 
160 static void test_lpm_map(int keysize)
161 {
162 	size_t i, j, n_matches, n_nodes, n_lookups;
163 	struct tlpm_node *t, *list = NULL;
164 	struct bpf_lpm_trie_key *key;
165 	uint8_t *data, *value;
166 	int r, map;
167 
168 	/* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of
169 	 * prefixes and insert it into both tlpm and bpf-lpm. Then run some
170 	 * randomized lookups and verify both maps return the same result.
171 	 */
172 
173 	n_matches = 0;
174 	n_nodes = 1 << 8;
175 	n_lookups = 1 << 16;
176 
177 	data = alloca(keysize);
178 	memset(data, 0, keysize);
179 
180 	value = alloca(keysize + 1);
181 	memset(value, 0, keysize + 1);
182 
183 	key = alloca(sizeof(*key) + keysize);
184 	memset(key, 0, sizeof(*key) + keysize);
185 
186 	map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
187 			     sizeof(*key) + keysize,
188 			     keysize + 1,
189 			     4096,
190 			     BPF_F_NO_PREALLOC);
191 	assert(map >= 0);
192 
193 	for (i = 0; i < n_nodes; ++i) {
194 		for (j = 0; j < keysize; ++j)
195 			value[j] = rand() & 0xff;
196 		value[keysize] = rand() % (8 * keysize + 1);
197 
198 		list = tlpm_add(list, value, value[keysize]);
199 
200 		key->prefixlen = value[keysize];
201 		memcpy(key->data, value, keysize);
202 		r = bpf_map_update_elem(map, key, value, 0);
203 		assert(!r);
204 	}
205 
206 	for (i = 0; i < n_lookups; ++i) {
207 		for (j = 0; j < keysize; ++j)
208 			data[j] = rand() & 0xff;
209 
210 		t = tlpm_match(list, data, 8 * keysize);
211 
212 		key->prefixlen = 8 * keysize;
213 		memcpy(key->data, data, keysize);
214 		r = bpf_map_lookup_elem(map, key, value);
215 		assert(!r || errno == ENOENT);
216 		assert(!t == !!r);
217 
218 		if (t) {
219 			++n_matches;
220 			assert(t->n_bits == value[keysize]);
221 			for (j = 0; j < t->n_bits; ++j)
222 				assert((t->key[j / 8] & (1 << (7 - j % 8))) ==
223 				       (value[j / 8] & (1 << (7 - j % 8))));
224 		}
225 	}
226 
227 	close(map);
228 	tlpm_clear(list);
229 
230 	/* With 255 random nodes in the map, we are pretty likely to match
231 	 * something on every lookup. For statistics, use this:
232 	 *
233 	 *     printf("  nodes: %zu\n"
234 	 *            "lookups: %zu\n"
235 	 *            "matches: %zu\n", n_nodes, n_lookups, n_matches);
236 	 */
237 }
238 
239 /* Test the implementation with some 'real world' examples */
240 
241 static void test_lpm_ipaddr(void)
242 {
243 	struct bpf_lpm_trie_key *key_ipv4;
244 	struct bpf_lpm_trie_key *key_ipv6;
245 	size_t key_size_ipv4;
246 	size_t key_size_ipv6;
247 	int map_fd_ipv4;
248 	int map_fd_ipv6;
249 	__u64 value;
250 
251 	key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32);
252 	key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4;
253 	key_ipv4 = alloca(key_size_ipv4);
254 	key_ipv6 = alloca(key_size_ipv6);
255 
256 	map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
257 				     key_size_ipv4, sizeof(value),
258 				     100, BPF_F_NO_PREALLOC);
259 	assert(map_fd_ipv4 >= 0);
260 
261 	map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE,
262 				     key_size_ipv6, sizeof(value),
263 				     100, BPF_F_NO_PREALLOC);
264 	assert(map_fd_ipv6 >= 0);
265 
266 	/* Fill data some IPv4 and IPv6 address ranges */
267 	value = 1;
268 	key_ipv4->prefixlen = 16;
269 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
270 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
271 
272 	value = 2;
273 	key_ipv4->prefixlen = 24;
274 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
275 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
276 
277 	value = 3;
278 	key_ipv4->prefixlen = 24;
279 	inet_pton(AF_INET, "192.168.128.0", key_ipv4->data);
280 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
281 
282 	value = 5;
283 	key_ipv4->prefixlen = 24;
284 	inet_pton(AF_INET, "192.168.1.0", key_ipv4->data);
285 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
286 
287 	value = 4;
288 	key_ipv4->prefixlen = 23;
289 	inet_pton(AF_INET, "192.168.0.0", key_ipv4->data);
290 	assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0);
291 
292 	value = 0xdeadbeef;
293 	key_ipv6->prefixlen = 64;
294 	inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data);
295 	assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0);
296 
297 	/* Set tprefixlen to maximum for lookups */
298 	key_ipv4->prefixlen = 32;
299 	key_ipv6->prefixlen = 128;
300 
301 	/* Test some lookups that should come back with a value */
302 	inet_pton(AF_INET, "192.168.128.23", key_ipv4->data);
303 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
304 	assert(value == 3);
305 
306 	inet_pton(AF_INET, "192.168.0.1", key_ipv4->data);
307 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0);
308 	assert(value == 2);
309 
310 	inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data);
311 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
312 	assert(value == 0xdeadbeef);
313 
314 	inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data);
315 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0);
316 	assert(value == 0xdeadbeef);
317 
318 	/* Test some lookups that should not match any entry */
319 	inet_pton(AF_INET, "10.0.0.1", key_ipv4->data);
320 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
321 	       errno == ENOENT);
322 
323 	inet_pton(AF_INET, "11.11.11.11", key_ipv4->data);
324 	assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 &&
325 	       errno == ENOENT);
326 
327 	inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data);
328 	assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 &&
329 	       errno == ENOENT);
330 
331 	close(map_fd_ipv4);
332 	close(map_fd_ipv6);
333 }
334 
335 int main(void)
336 {
337 	struct rlimit limit  = { RLIM_INFINITY, RLIM_INFINITY };
338 	int i, ret;
339 
340 	/* we want predictable, pseudo random tests */
341 	srand(0xf00ba1);
342 
343 	/* allow unlimited locked memory */
344 	ret = setrlimit(RLIMIT_MEMLOCK, &limit);
345 	if (ret < 0)
346 		perror("Unable to lift memlock rlimit");
347 
348 	test_lpm_basic();
349 	test_lpm_order();
350 
351 	/* Test with 8, 16, 24, 32, ... 128 bit prefix length */
352 	for (i = 1; i <= 16; ++i)
353 		test_lpm_map(i);
354 
355 	test_lpm_ipaddr();
356 
357 	printf("test_lpm: OK\n");
358 	return 0;
359 }
360