1 /* 2 * Randomized tests for eBPF longest-prefix-match maps 3 * 4 * This program runs randomized tests against the lpm-bpf-map. It implements a 5 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 6 * lists. The implementation should be pretty straightforward. 7 * 8 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 9 * the trie-based bpf-map implementation behaves the same way as tlpm. 10 */ 11 12 #include <assert.h> 13 #include <errno.h> 14 #include <inttypes.h> 15 #include <linux/bpf.h> 16 #include <stdio.h> 17 #include <stdlib.h> 18 #include <string.h> 19 #include <time.h> 20 #include <unistd.h> 21 #include <arpa/inet.h> 22 #include <sys/time.h> 23 #include <sys/resource.h> 24 25 #include <bpf/bpf.h> 26 #include "bpf_util.h" 27 28 struct tlpm_node { 29 struct tlpm_node *next; 30 size_t n_bits; 31 uint8_t key[]; 32 }; 33 34 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 35 const uint8_t *key, 36 size_t n_bits); 37 38 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 39 const uint8_t *key, 40 size_t n_bits) 41 { 42 struct tlpm_node *node; 43 size_t n; 44 45 n = (n_bits + 7) / 8; 46 47 /* 'overwrite' an equivalent entry if one already exists */ 48 node = tlpm_match(list, key, n_bits); 49 if (node && node->n_bits == n_bits) { 50 memcpy(node->key, key, n); 51 return list; 52 } 53 54 /* add new entry with @key/@n_bits to @list and return new head */ 55 56 node = malloc(sizeof(*node) + n); 57 assert(node); 58 59 node->next = list; 60 node->n_bits = n_bits; 61 memcpy(node->key, key, n); 62 63 return node; 64 } 65 66 static void tlpm_clear(struct tlpm_node *list) 67 { 68 struct tlpm_node *node; 69 70 /* free all entries in @list */ 71 72 while ((node = list)) { 73 list = list->next; 74 free(node); 75 } 76 } 77 78 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 79 const uint8_t *key, 80 size_t n_bits) 81 { 82 struct tlpm_node *best = NULL; 83 size_t i; 84 85 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 86 * entries and match each prefix against @key. Remember the "best" 87 * entry we find (i.e., the longest prefix that matches) and return it 88 * to the caller when done. 89 */ 90 91 for ( ; list; list = list->next) { 92 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 93 if ((key[i / 8] & (1 << (7 - i % 8))) != 94 (list->key[i / 8] & (1 << (7 - i % 8)))) 95 break; 96 } 97 98 if (i >= list->n_bits) { 99 if (!best || i > best->n_bits) 100 best = list; 101 } 102 } 103 104 return best; 105 } 106 107 static struct tlpm_node *tlpm_delete(struct tlpm_node *list, 108 const uint8_t *key, 109 size_t n_bits) 110 { 111 struct tlpm_node *best = tlpm_match(list, key, n_bits); 112 struct tlpm_node *node; 113 114 if (!best || best->n_bits != n_bits) 115 return list; 116 117 if (best == list) { 118 node = best->next; 119 free(best); 120 return node; 121 } 122 123 for (node = list; node; node = node->next) { 124 if (node->next == best) { 125 node->next = best->next; 126 free(best); 127 return list; 128 } 129 } 130 /* should never get here */ 131 assert(0); 132 return list; 133 } 134 135 static void test_lpm_basic(void) 136 { 137 struct tlpm_node *list = NULL, *t1, *t2; 138 139 /* very basic, static tests to verify tlpm works as expected */ 140 141 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 142 143 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 144 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 145 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 146 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 147 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 148 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 149 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 150 151 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 152 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 153 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 154 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 155 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 156 157 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); 158 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 159 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 160 161 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); 162 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 163 164 tlpm_clear(list); 165 } 166 167 static void test_lpm_order(void) 168 { 169 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 170 size_t i, j; 171 172 /* Verify the tlpm implementation works correctly regardless of the 173 * order of entries. Insert a random set of entries into @l1, and copy 174 * the same data in reverse order into @l2. Then verify a lookup of 175 * random keys will yield the same result in both sets. 176 */ 177 178 for (i = 0; i < (1 << 12); ++i) 179 l1 = tlpm_add(l1, (uint8_t[]){ 180 rand() % 0xff, 181 rand() % 0xff, 182 }, rand() % 16 + 1); 183 184 for (t1 = l1; t1; t1 = t1->next) 185 l2 = tlpm_add(l2, t1->key, t1->n_bits); 186 187 for (i = 0; i < (1 << 8); ++i) { 188 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 189 190 t1 = tlpm_match(l1, key, 16); 191 t2 = tlpm_match(l2, key, 16); 192 193 assert(!t1 == !t2); 194 if (t1) { 195 assert(t1->n_bits == t2->n_bits); 196 for (j = 0; j < t1->n_bits; ++j) 197 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 198 (t2->key[j / 8] & (1 << (7 - j % 8)))); 199 } 200 } 201 202 tlpm_clear(l1); 203 tlpm_clear(l2); 204 } 205 206 static void test_lpm_map(int keysize) 207 { 208 size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups; 209 struct tlpm_node *t, *list = NULL; 210 struct bpf_lpm_trie_key *key; 211 uint8_t *data, *value; 212 int r, map; 213 214 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 215 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 216 * randomized lookups and verify both maps return the same result. 217 */ 218 219 n_matches = 0; 220 n_matches_after_delete = 0; 221 n_nodes = 1 << 8; 222 n_lookups = 1 << 16; 223 224 data = alloca(keysize); 225 memset(data, 0, keysize); 226 227 value = alloca(keysize + 1); 228 memset(value, 0, keysize + 1); 229 230 key = alloca(sizeof(*key) + keysize); 231 memset(key, 0, sizeof(*key) + keysize); 232 233 map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 234 sizeof(*key) + keysize, 235 keysize + 1, 236 4096, 237 BPF_F_NO_PREALLOC); 238 assert(map >= 0); 239 240 for (i = 0; i < n_nodes; ++i) { 241 for (j = 0; j < keysize; ++j) 242 value[j] = rand() & 0xff; 243 value[keysize] = rand() % (8 * keysize + 1); 244 245 list = tlpm_add(list, value, value[keysize]); 246 247 key->prefixlen = value[keysize]; 248 memcpy(key->data, value, keysize); 249 r = bpf_map_update_elem(map, key, value, 0); 250 assert(!r); 251 } 252 253 for (i = 0; i < n_lookups; ++i) { 254 for (j = 0; j < keysize; ++j) 255 data[j] = rand() & 0xff; 256 257 t = tlpm_match(list, data, 8 * keysize); 258 259 key->prefixlen = 8 * keysize; 260 memcpy(key->data, data, keysize); 261 r = bpf_map_lookup_elem(map, key, value); 262 assert(!r || errno == ENOENT); 263 assert(!t == !!r); 264 265 if (t) { 266 ++n_matches; 267 assert(t->n_bits == value[keysize]); 268 for (j = 0; j < t->n_bits; ++j) 269 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 270 (value[j / 8] & (1 << (7 - j % 8)))); 271 } 272 } 273 274 /* Remove the first half of the elements in the tlpm and the 275 * corresponding nodes from the bpf-lpm. Then run the same 276 * large number of random lookups in both and make sure they match. 277 * Note: we need to count the number of nodes actually inserted 278 * since there may have been duplicates. 279 */ 280 for (i = 0, t = list; t; i++, t = t->next) 281 ; 282 for (j = 0; j < i / 2; ++j) { 283 key->prefixlen = list->n_bits; 284 memcpy(key->data, list->key, keysize); 285 r = bpf_map_delete_elem(map, key); 286 assert(!r); 287 list = tlpm_delete(list, list->key, list->n_bits); 288 assert(list); 289 } 290 for (i = 0; i < n_lookups; ++i) { 291 for (j = 0; j < keysize; ++j) 292 data[j] = rand() & 0xff; 293 294 t = tlpm_match(list, data, 8 * keysize); 295 296 key->prefixlen = 8 * keysize; 297 memcpy(key->data, data, keysize); 298 r = bpf_map_lookup_elem(map, key, value); 299 assert(!r || errno == ENOENT); 300 assert(!t == !!r); 301 302 if (t) { 303 ++n_matches_after_delete; 304 assert(t->n_bits == value[keysize]); 305 for (j = 0; j < t->n_bits; ++j) 306 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 307 (value[j / 8] & (1 << (7 - j % 8)))); 308 } 309 } 310 311 close(map); 312 tlpm_clear(list); 313 314 /* With 255 random nodes in the map, we are pretty likely to match 315 * something on every lookup. For statistics, use this: 316 * 317 * printf(" nodes: %zu\n" 318 * " lookups: %zu\n" 319 * " matches: %zu\n" 320 * "matches(delete): %zu\n", 321 * n_nodes, n_lookups, n_matches, n_matches_after_delete); 322 */ 323 } 324 325 /* Test the implementation with some 'real world' examples */ 326 327 static void test_lpm_ipaddr(void) 328 { 329 struct bpf_lpm_trie_key *key_ipv4; 330 struct bpf_lpm_trie_key *key_ipv6; 331 size_t key_size_ipv4; 332 size_t key_size_ipv6; 333 int map_fd_ipv4; 334 int map_fd_ipv6; 335 __u64 value; 336 337 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 338 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 339 key_ipv4 = alloca(key_size_ipv4); 340 key_ipv6 = alloca(key_size_ipv6); 341 342 map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 343 key_size_ipv4, sizeof(value), 344 100, BPF_F_NO_PREALLOC); 345 assert(map_fd_ipv4 >= 0); 346 347 map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 348 key_size_ipv6, sizeof(value), 349 100, BPF_F_NO_PREALLOC); 350 assert(map_fd_ipv6 >= 0); 351 352 /* Fill data some IPv4 and IPv6 address ranges */ 353 value = 1; 354 key_ipv4->prefixlen = 16; 355 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 356 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 357 358 value = 2; 359 key_ipv4->prefixlen = 24; 360 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 361 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 362 363 value = 3; 364 key_ipv4->prefixlen = 24; 365 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 366 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 367 368 value = 5; 369 key_ipv4->prefixlen = 24; 370 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 371 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 372 373 value = 4; 374 key_ipv4->prefixlen = 23; 375 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 376 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 377 378 value = 0xdeadbeef; 379 key_ipv6->prefixlen = 64; 380 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 381 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 382 383 /* Set tprefixlen to maximum for lookups */ 384 key_ipv4->prefixlen = 32; 385 key_ipv6->prefixlen = 128; 386 387 /* Test some lookups that should come back with a value */ 388 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 389 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 390 assert(value == 3); 391 392 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 393 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 394 assert(value == 2); 395 396 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 397 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 398 assert(value == 0xdeadbeef); 399 400 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 401 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 402 assert(value == 0xdeadbeef); 403 404 /* Test some lookups that should not match any entry */ 405 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 406 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 407 errno == ENOENT); 408 409 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 410 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 411 errno == ENOENT); 412 413 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 414 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && 415 errno == ENOENT); 416 417 close(map_fd_ipv4); 418 close(map_fd_ipv6); 419 } 420 421 static void test_lpm_delete(void) 422 { 423 struct bpf_lpm_trie_key *key; 424 size_t key_size; 425 int map_fd; 426 __u64 value; 427 428 key_size = sizeof(*key) + sizeof(__u32); 429 key = alloca(key_size); 430 431 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 432 key_size, sizeof(value), 433 100, BPF_F_NO_PREALLOC); 434 assert(map_fd >= 0); 435 436 /* Add nodes: 437 * 192.168.0.0/16 (1) 438 * 192.168.0.0/24 (2) 439 * 192.168.128.0/24 (3) 440 * 192.168.1.0/24 (4) 441 * 442 * (1) 443 * / \ 444 * (IM) (3) 445 * / \ 446 * (2) (4) 447 */ 448 value = 1; 449 key->prefixlen = 16; 450 inet_pton(AF_INET, "192.168.0.0", key->data); 451 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 452 453 value = 2; 454 key->prefixlen = 24; 455 inet_pton(AF_INET, "192.168.0.0", key->data); 456 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 457 458 value = 3; 459 key->prefixlen = 24; 460 inet_pton(AF_INET, "192.168.128.0", key->data); 461 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 462 463 value = 4; 464 key->prefixlen = 24; 465 inet_pton(AF_INET, "192.168.1.0", key->data); 466 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 467 468 /* remove non-existent node */ 469 key->prefixlen = 32; 470 inet_pton(AF_INET, "10.0.0.1", key->data); 471 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 472 errno == ENOENT); 473 474 /* assert initial lookup */ 475 key->prefixlen = 32; 476 inet_pton(AF_INET, "192.168.0.1", key->data); 477 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 478 assert(value == 2); 479 480 /* remove leaf node */ 481 key->prefixlen = 24; 482 inet_pton(AF_INET, "192.168.0.0", key->data); 483 assert(bpf_map_delete_elem(map_fd, key) == 0); 484 485 key->prefixlen = 32; 486 inet_pton(AF_INET, "192.168.0.1", key->data); 487 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 488 assert(value == 1); 489 490 /* remove leaf (and intermediary) node */ 491 key->prefixlen = 24; 492 inet_pton(AF_INET, "192.168.1.0", key->data); 493 assert(bpf_map_delete_elem(map_fd, key) == 0); 494 495 key->prefixlen = 32; 496 inet_pton(AF_INET, "192.168.1.1", key->data); 497 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 498 assert(value == 1); 499 500 /* remove root node */ 501 key->prefixlen = 16; 502 inet_pton(AF_INET, "192.168.0.0", key->data); 503 assert(bpf_map_delete_elem(map_fd, key) == 0); 504 505 key->prefixlen = 32; 506 inet_pton(AF_INET, "192.168.128.1", key->data); 507 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 508 assert(value == 3); 509 510 /* remove last node */ 511 key->prefixlen = 24; 512 inet_pton(AF_INET, "192.168.128.0", key->data); 513 assert(bpf_map_delete_elem(map_fd, key) == 0); 514 515 key->prefixlen = 32; 516 inet_pton(AF_INET, "192.168.128.1", key->data); 517 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 518 errno == ENOENT); 519 520 close(map_fd); 521 } 522 523 int main(void) 524 { 525 struct rlimit limit = { RLIM_INFINITY, RLIM_INFINITY }; 526 int i, ret; 527 528 /* we want predictable, pseudo random tests */ 529 srand(0xf00ba1); 530 531 /* allow unlimited locked memory */ 532 ret = setrlimit(RLIMIT_MEMLOCK, &limit); 533 if (ret < 0) 534 perror("Unable to lift memlock rlimit"); 535 536 test_lpm_basic(); 537 test_lpm_order(); 538 539 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 540 for (i = 1; i <= 16; ++i) 541 test_lpm_map(i); 542 543 test_lpm_ipaddr(); 544 545 test_lpm_delete(); 546 547 printf("test_lpm: OK\n"); 548 return 0; 549 } 550