1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Randomized tests for eBPF longest-prefix-match maps 4 * 5 * This program runs randomized tests against the lpm-bpf-map. It implements a 6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 7 * lists. The implementation should be pretty straightforward. 8 * 9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 10 * the trie-based bpf-map implementation behaves the same way as tlpm. 11 */ 12 13 #include <assert.h> 14 #include <errno.h> 15 #include <inttypes.h> 16 #include <linux/bpf.h> 17 #include <pthread.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <time.h> 22 #include <unistd.h> 23 #include <arpa/inet.h> 24 #include <sys/time.h> 25 26 #include <bpf/bpf.h> 27 28 #include "bpf_util.h" 29 #include "bpf_rlimit.h" 30 31 struct tlpm_node { 32 struct tlpm_node *next; 33 size_t n_bits; 34 uint8_t key[]; 35 }; 36 37 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 38 const uint8_t *key, 39 size_t n_bits); 40 41 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 42 const uint8_t *key, 43 size_t n_bits) 44 { 45 struct tlpm_node *node; 46 size_t n; 47 48 n = (n_bits + 7) / 8; 49 50 /* 'overwrite' an equivalent entry if one already exists */ 51 node = tlpm_match(list, key, n_bits); 52 if (node && node->n_bits == n_bits) { 53 memcpy(node->key, key, n); 54 return list; 55 } 56 57 /* add new entry with @key/@n_bits to @list and return new head */ 58 59 node = malloc(sizeof(*node) + n); 60 assert(node); 61 62 node->next = list; 63 node->n_bits = n_bits; 64 memcpy(node->key, key, n); 65 66 return node; 67 } 68 69 static void tlpm_clear(struct tlpm_node *list) 70 { 71 struct tlpm_node *node; 72 73 /* free all entries in @list */ 74 75 while ((node = list)) { 76 list = list->next; 77 free(node); 78 } 79 } 80 81 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 82 const uint8_t *key, 83 size_t n_bits) 84 { 85 struct tlpm_node *best = NULL; 86 size_t i; 87 88 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 89 * entries and match each prefix against @key. Remember the "best" 90 * entry we find (i.e., the longest prefix that matches) and return it 91 * to the caller when done. 92 */ 93 94 for ( ; list; list = list->next) { 95 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 96 if ((key[i / 8] & (1 << (7 - i % 8))) != 97 (list->key[i / 8] & (1 << (7 - i % 8)))) 98 break; 99 } 100 101 if (i >= list->n_bits) { 102 if (!best || i > best->n_bits) 103 best = list; 104 } 105 } 106 107 return best; 108 } 109 110 static struct tlpm_node *tlpm_delete(struct tlpm_node *list, 111 const uint8_t *key, 112 size_t n_bits) 113 { 114 struct tlpm_node *best = tlpm_match(list, key, n_bits); 115 struct tlpm_node *node; 116 117 if (!best || best->n_bits != n_bits) 118 return list; 119 120 if (best == list) { 121 node = best->next; 122 free(best); 123 return node; 124 } 125 126 for (node = list; node; node = node->next) { 127 if (node->next == best) { 128 node->next = best->next; 129 free(best); 130 return list; 131 } 132 } 133 /* should never get here */ 134 assert(0); 135 return list; 136 } 137 138 static void test_lpm_basic(void) 139 { 140 struct tlpm_node *list = NULL, *t1, *t2; 141 142 /* very basic, static tests to verify tlpm works as expected */ 143 144 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 145 146 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 149 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 150 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 151 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 152 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 153 154 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 155 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 156 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 157 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 158 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 159 160 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); 161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 162 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 163 164 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); 165 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 166 167 tlpm_clear(list); 168 } 169 170 static void test_lpm_order(void) 171 { 172 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 173 size_t i, j; 174 175 /* Verify the tlpm implementation works correctly regardless of the 176 * order of entries. Insert a random set of entries into @l1, and copy 177 * the same data in reverse order into @l2. Then verify a lookup of 178 * random keys will yield the same result in both sets. 179 */ 180 181 for (i = 0; i < (1 << 12); ++i) 182 l1 = tlpm_add(l1, (uint8_t[]){ 183 rand() % 0xff, 184 rand() % 0xff, 185 }, rand() % 16 + 1); 186 187 for (t1 = l1; t1; t1 = t1->next) 188 l2 = tlpm_add(l2, t1->key, t1->n_bits); 189 190 for (i = 0; i < (1 << 8); ++i) { 191 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 192 193 t1 = tlpm_match(l1, key, 16); 194 t2 = tlpm_match(l2, key, 16); 195 196 assert(!t1 == !t2); 197 if (t1) { 198 assert(t1->n_bits == t2->n_bits); 199 for (j = 0; j < t1->n_bits; ++j) 200 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 201 (t2->key[j / 8] & (1 << (7 - j % 8)))); 202 } 203 } 204 205 tlpm_clear(l1); 206 tlpm_clear(l2); 207 } 208 209 static void test_lpm_map(int keysize) 210 { 211 size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups; 212 struct tlpm_node *t, *list = NULL; 213 struct bpf_lpm_trie_key *key; 214 uint8_t *data, *value; 215 int r, map; 216 217 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 218 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 219 * randomized lookups and verify both maps return the same result. 220 */ 221 222 n_matches = 0; 223 n_matches_after_delete = 0; 224 n_nodes = 1 << 8; 225 n_lookups = 1 << 16; 226 227 data = alloca(keysize); 228 memset(data, 0, keysize); 229 230 value = alloca(keysize + 1); 231 memset(value, 0, keysize + 1); 232 233 key = alloca(sizeof(*key) + keysize); 234 memset(key, 0, sizeof(*key) + keysize); 235 236 map = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 237 sizeof(*key) + keysize, 238 keysize + 1, 239 4096, 240 BPF_F_NO_PREALLOC); 241 assert(map >= 0); 242 243 for (i = 0; i < n_nodes; ++i) { 244 for (j = 0; j < keysize; ++j) 245 value[j] = rand() & 0xff; 246 value[keysize] = rand() % (8 * keysize + 1); 247 248 list = tlpm_add(list, value, value[keysize]); 249 250 key->prefixlen = value[keysize]; 251 memcpy(key->data, value, keysize); 252 r = bpf_map_update_elem(map, key, value, 0); 253 assert(!r); 254 } 255 256 for (i = 0; i < n_lookups; ++i) { 257 for (j = 0; j < keysize; ++j) 258 data[j] = rand() & 0xff; 259 260 t = tlpm_match(list, data, 8 * keysize); 261 262 key->prefixlen = 8 * keysize; 263 memcpy(key->data, data, keysize); 264 r = bpf_map_lookup_elem(map, key, value); 265 assert(!r || errno == ENOENT); 266 assert(!t == !!r); 267 268 if (t) { 269 ++n_matches; 270 assert(t->n_bits == value[keysize]); 271 for (j = 0; j < t->n_bits; ++j) 272 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 273 (value[j / 8] & (1 << (7 - j % 8)))); 274 } 275 } 276 277 /* Remove the first half of the elements in the tlpm and the 278 * corresponding nodes from the bpf-lpm. Then run the same 279 * large number of random lookups in both and make sure they match. 280 * Note: we need to count the number of nodes actually inserted 281 * since there may have been duplicates. 282 */ 283 for (i = 0, t = list; t; i++, t = t->next) 284 ; 285 for (j = 0; j < i / 2; ++j) { 286 key->prefixlen = list->n_bits; 287 memcpy(key->data, list->key, keysize); 288 r = bpf_map_delete_elem(map, key); 289 assert(!r); 290 list = tlpm_delete(list, list->key, list->n_bits); 291 assert(list); 292 } 293 for (i = 0; i < n_lookups; ++i) { 294 for (j = 0; j < keysize; ++j) 295 data[j] = rand() & 0xff; 296 297 t = tlpm_match(list, data, 8 * keysize); 298 299 key->prefixlen = 8 * keysize; 300 memcpy(key->data, data, keysize); 301 r = bpf_map_lookup_elem(map, key, value); 302 assert(!r || errno == ENOENT); 303 assert(!t == !!r); 304 305 if (t) { 306 ++n_matches_after_delete; 307 assert(t->n_bits == value[keysize]); 308 for (j = 0; j < t->n_bits; ++j) 309 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 310 (value[j / 8] & (1 << (7 - j % 8)))); 311 } 312 } 313 314 close(map); 315 tlpm_clear(list); 316 317 /* With 255 random nodes in the map, we are pretty likely to match 318 * something on every lookup. For statistics, use this: 319 * 320 * printf(" nodes: %zu\n" 321 * " lookups: %zu\n" 322 * " matches: %zu\n" 323 * "matches(delete): %zu\n", 324 * n_nodes, n_lookups, n_matches, n_matches_after_delete); 325 */ 326 } 327 328 /* Test the implementation with some 'real world' examples */ 329 330 static void test_lpm_ipaddr(void) 331 { 332 struct bpf_lpm_trie_key *key_ipv4; 333 struct bpf_lpm_trie_key *key_ipv6; 334 size_t key_size_ipv4; 335 size_t key_size_ipv6; 336 int map_fd_ipv4; 337 int map_fd_ipv6; 338 __u64 value; 339 340 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 341 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 342 key_ipv4 = alloca(key_size_ipv4); 343 key_ipv6 = alloca(key_size_ipv6); 344 345 map_fd_ipv4 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 346 key_size_ipv4, sizeof(value), 347 100, BPF_F_NO_PREALLOC); 348 assert(map_fd_ipv4 >= 0); 349 350 map_fd_ipv6 = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 351 key_size_ipv6, sizeof(value), 352 100, BPF_F_NO_PREALLOC); 353 assert(map_fd_ipv6 >= 0); 354 355 /* Fill data some IPv4 and IPv6 address ranges */ 356 value = 1; 357 key_ipv4->prefixlen = 16; 358 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 359 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 360 361 value = 2; 362 key_ipv4->prefixlen = 24; 363 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 364 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 365 366 value = 3; 367 key_ipv4->prefixlen = 24; 368 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 369 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 370 371 value = 5; 372 key_ipv4->prefixlen = 24; 373 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 374 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 375 376 value = 4; 377 key_ipv4->prefixlen = 23; 378 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 379 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 380 381 value = 0xdeadbeef; 382 key_ipv6->prefixlen = 64; 383 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 384 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 385 386 /* Set tprefixlen to maximum for lookups */ 387 key_ipv4->prefixlen = 32; 388 key_ipv6->prefixlen = 128; 389 390 /* Test some lookups that should come back with a value */ 391 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 392 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 393 assert(value == 3); 394 395 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 396 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 397 assert(value == 2); 398 399 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 400 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 401 assert(value == 0xdeadbeef); 402 403 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 404 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 405 assert(value == 0xdeadbeef); 406 407 /* Test some lookups that should not match any entry */ 408 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 409 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 410 errno == ENOENT); 411 412 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 413 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 414 errno == ENOENT); 415 416 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 417 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && 418 errno == ENOENT); 419 420 close(map_fd_ipv4); 421 close(map_fd_ipv6); 422 } 423 424 static void test_lpm_delete(void) 425 { 426 struct bpf_lpm_trie_key *key; 427 size_t key_size; 428 int map_fd; 429 __u64 value; 430 431 key_size = sizeof(*key) + sizeof(__u32); 432 key = alloca(key_size); 433 434 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, 435 key_size, sizeof(value), 436 100, BPF_F_NO_PREALLOC); 437 assert(map_fd >= 0); 438 439 /* Add nodes: 440 * 192.168.0.0/16 (1) 441 * 192.168.0.0/24 (2) 442 * 192.168.128.0/24 (3) 443 * 192.168.1.0/24 (4) 444 * 445 * (1) 446 * / \ 447 * (IM) (3) 448 * / \ 449 * (2) (4) 450 */ 451 value = 1; 452 key->prefixlen = 16; 453 inet_pton(AF_INET, "192.168.0.0", key->data); 454 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 455 456 value = 2; 457 key->prefixlen = 24; 458 inet_pton(AF_INET, "192.168.0.0", key->data); 459 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 460 461 value = 3; 462 key->prefixlen = 24; 463 inet_pton(AF_INET, "192.168.128.0", key->data); 464 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 465 466 value = 4; 467 key->prefixlen = 24; 468 inet_pton(AF_INET, "192.168.1.0", key->data); 469 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 470 471 /* remove non-existent node */ 472 key->prefixlen = 32; 473 inet_pton(AF_INET, "10.0.0.1", key->data); 474 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 475 errno == ENOENT); 476 477 key->prefixlen = 30; // unused prefix so far 478 inet_pton(AF_INET, "192.255.0.0", key->data); 479 assert(bpf_map_delete_elem(map_fd, key) == -1 && 480 errno == ENOENT); 481 482 key->prefixlen = 16; // same prefix as the root node 483 inet_pton(AF_INET, "192.255.0.0", key->data); 484 assert(bpf_map_delete_elem(map_fd, key) == -1 && 485 errno == ENOENT); 486 487 /* assert initial lookup */ 488 key->prefixlen = 32; 489 inet_pton(AF_INET, "192.168.0.1", key->data); 490 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 491 assert(value == 2); 492 493 /* remove leaf node */ 494 key->prefixlen = 24; 495 inet_pton(AF_INET, "192.168.0.0", key->data); 496 assert(bpf_map_delete_elem(map_fd, key) == 0); 497 498 key->prefixlen = 32; 499 inet_pton(AF_INET, "192.168.0.1", key->data); 500 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 501 assert(value == 1); 502 503 /* remove leaf (and intermediary) node */ 504 key->prefixlen = 24; 505 inet_pton(AF_INET, "192.168.1.0", key->data); 506 assert(bpf_map_delete_elem(map_fd, key) == 0); 507 508 key->prefixlen = 32; 509 inet_pton(AF_INET, "192.168.1.1", key->data); 510 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 511 assert(value == 1); 512 513 /* remove root node */ 514 key->prefixlen = 16; 515 inet_pton(AF_INET, "192.168.0.0", key->data); 516 assert(bpf_map_delete_elem(map_fd, key) == 0); 517 518 key->prefixlen = 32; 519 inet_pton(AF_INET, "192.168.128.1", key->data); 520 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 521 assert(value == 3); 522 523 /* remove last node */ 524 key->prefixlen = 24; 525 inet_pton(AF_INET, "192.168.128.0", key->data); 526 assert(bpf_map_delete_elem(map_fd, key) == 0); 527 528 key->prefixlen = 32; 529 inet_pton(AF_INET, "192.168.128.1", key->data); 530 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 531 errno == ENOENT); 532 533 close(map_fd); 534 } 535 536 static void test_lpm_get_next_key(void) 537 { 538 struct bpf_lpm_trie_key *key_p, *next_key_p; 539 size_t key_size; 540 __u32 value = 0; 541 int map_fd; 542 543 key_size = sizeof(*key_p) + sizeof(__u32); 544 key_p = alloca(key_size); 545 next_key_p = alloca(key_size); 546 547 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, sizeof(value), 548 100, BPF_F_NO_PREALLOC); 549 assert(map_fd >= 0); 550 551 /* empty tree. get_next_key should return ENOENT */ 552 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 && 553 errno == ENOENT); 554 555 /* get and verify the first key, get the second one should fail. */ 556 key_p->prefixlen = 16; 557 inet_pton(AF_INET, "192.168.0.0", key_p->data); 558 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 559 560 memset(key_p, 0, key_size); 561 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 562 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 563 key_p->data[1] == 168); 564 565 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 566 errno == ENOENT); 567 568 /* no exact matching key should get the first one in post order. */ 569 key_p->prefixlen = 8; 570 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 571 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 572 key_p->data[1] == 168); 573 574 /* add one more element (total two) */ 575 key_p->prefixlen = 24; 576 inet_pton(AF_INET, "192.168.0.0", key_p->data); 577 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 578 579 memset(key_p, 0, key_size); 580 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 581 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 582 key_p->data[1] == 168 && key_p->data[2] == 0); 583 584 memset(next_key_p, 0, key_size); 585 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 586 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 587 next_key_p->data[1] == 168); 588 589 memcpy(key_p, next_key_p, key_size); 590 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 591 errno == ENOENT); 592 593 /* Add one more element (total three) */ 594 key_p->prefixlen = 24; 595 inet_pton(AF_INET, "192.168.128.0", key_p->data); 596 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 597 598 memset(key_p, 0, key_size); 599 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 600 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 601 key_p->data[1] == 168 && key_p->data[2] == 0); 602 603 memset(next_key_p, 0, key_size); 604 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 605 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 606 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 607 608 memcpy(key_p, next_key_p, key_size); 609 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 610 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 611 next_key_p->data[1] == 168); 612 613 memcpy(key_p, next_key_p, key_size); 614 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 615 errno == ENOENT); 616 617 /* Add one more element (total four) */ 618 key_p->prefixlen = 24; 619 inet_pton(AF_INET, "192.168.1.0", key_p->data); 620 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 621 622 memset(key_p, 0, key_size); 623 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 624 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 625 key_p->data[1] == 168 && key_p->data[2] == 0); 626 627 memset(next_key_p, 0, key_size); 628 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 629 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 630 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 631 632 memcpy(key_p, next_key_p, key_size); 633 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 634 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 635 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 636 637 memcpy(key_p, next_key_p, key_size); 638 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 639 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 640 next_key_p->data[1] == 168); 641 642 memcpy(key_p, next_key_p, key_size); 643 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 644 errno == ENOENT); 645 646 /* no exact matching key should return the first one in post order */ 647 key_p->prefixlen = 22; 648 inet_pton(AF_INET, "192.168.1.0", key_p->data); 649 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 650 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 651 next_key_p->data[1] == 168 && next_key_p->data[2] == 0); 652 653 close(map_fd); 654 } 655 656 #define MAX_TEST_KEYS 4 657 struct lpm_mt_test_info { 658 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ 659 int iter; 660 int map_fd; 661 struct { 662 __u32 prefixlen; 663 __u32 data; 664 } key[MAX_TEST_KEYS]; 665 }; 666 667 static void *lpm_test_command(void *arg) 668 { 669 int i, j, ret, iter, key_size; 670 struct lpm_mt_test_info *info = arg; 671 struct bpf_lpm_trie_key *key_p; 672 673 key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32); 674 key_p = alloca(key_size); 675 for (iter = 0; iter < info->iter; iter++) 676 for (i = 0; i < MAX_TEST_KEYS; i++) { 677 /* first half of iterations in forward order, 678 * and second half in backward order. 679 */ 680 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; 681 key_p->prefixlen = info->key[j].prefixlen; 682 memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); 683 if (info->cmd == 0) { 684 __u32 value = j; 685 /* update must succeed */ 686 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); 687 } else if (info->cmd == 1) { 688 ret = bpf_map_delete_elem(info->map_fd, key_p); 689 assert(ret == 0 || errno == ENOENT); 690 } else if (info->cmd == 2) { 691 __u32 value; 692 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); 693 assert(ret == 0 || errno == ENOENT); 694 } else { 695 struct bpf_lpm_trie_key *next_key_p = alloca(key_size); 696 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); 697 assert(ret == 0 || errno == ENOENT || errno == ENOMEM); 698 } 699 } 700 701 // Pass successful exit info back to the main thread 702 pthread_exit((void *)info); 703 } 704 705 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) 706 { 707 info->iter = 2000; 708 info->map_fd = map_fd; 709 info->key[0].prefixlen = 16; 710 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); 711 info->key[1].prefixlen = 24; 712 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); 713 info->key[2].prefixlen = 24; 714 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); 715 info->key[3].prefixlen = 24; 716 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); 717 } 718 719 static void test_lpm_multi_thread(void) 720 { 721 struct lpm_mt_test_info info[4]; 722 size_t key_size, value_size; 723 pthread_t thread_id[4]; 724 int i, map_fd; 725 void *ret; 726 727 /* create a trie */ 728 value_size = sizeof(__u32); 729 key_size = sizeof(struct bpf_lpm_trie_key) + value_size; 730 map_fd = bpf_create_map(BPF_MAP_TYPE_LPM_TRIE, key_size, value_size, 731 100, BPF_F_NO_PREALLOC); 732 733 /* create 4 threads to test update, delete, lookup and get_next_key */ 734 setup_lpm_mt_test_info(&info[0], map_fd); 735 for (i = 0; i < 4; i++) { 736 if (i != 0) 737 memcpy(&info[i], &info[0], sizeof(info[i])); 738 info[i].cmd = i; 739 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); 740 } 741 742 for (i = 0; i < 4; i++) 743 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); 744 745 close(map_fd); 746 } 747 748 int main(void) 749 { 750 int i; 751 752 /* we want predictable, pseudo random tests */ 753 srand(0xf00ba1); 754 755 test_lpm_basic(); 756 test_lpm_order(); 757 758 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 759 for (i = 1; i <= 16; ++i) 760 test_lpm_map(i); 761 762 test_lpm_ipaddr(); 763 test_lpm_delete(); 764 test_lpm_get_next_key(); 765 test_lpm_multi_thread(); 766 767 printf("test_lpm: OK\n"); 768 return 0; 769 } 770