1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Randomized tests for eBPF longest-prefix-match maps 4 * 5 * This program runs randomized tests against the lpm-bpf-map. It implements a 6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 7 * lists. The implementation should be pretty straightforward. 8 * 9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 10 * the trie-based bpf-map implementation behaves the same way as tlpm. 11 */ 12 13 #include <assert.h> 14 #include <errno.h> 15 #include <inttypes.h> 16 #include <linux/bpf.h> 17 #include <pthread.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <time.h> 22 #include <unistd.h> 23 #include <arpa/inet.h> 24 #include <sys/time.h> 25 26 #include <bpf/bpf.h> 27 28 #include "bpf_util.h" 29 #include "bpf_rlimit.h" 30 31 struct tlpm_node { 32 struct tlpm_node *next; 33 size_t n_bits; 34 uint8_t key[]; 35 }; 36 37 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 38 const uint8_t *key, 39 size_t n_bits); 40 41 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 42 const uint8_t *key, 43 size_t n_bits) 44 { 45 struct tlpm_node *node; 46 size_t n; 47 48 n = (n_bits + 7) / 8; 49 50 /* 'overwrite' an equivalent entry if one already exists */ 51 node = tlpm_match(list, key, n_bits); 52 if (node && node->n_bits == n_bits) { 53 memcpy(node->key, key, n); 54 return list; 55 } 56 57 /* add new entry with @key/@n_bits to @list and return new head */ 58 59 node = malloc(sizeof(*node) + n); 60 assert(node); 61 62 node->next = list; 63 node->n_bits = n_bits; 64 memcpy(node->key, key, n); 65 66 return node; 67 } 68 69 static void tlpm_clear(struct tlpm_node *list) 70 { 71 struct tlpm_node *node; 72 73 /* free all entries in @list */ 74 75 while ((node = list)) { 76 list = list->next; 77 free(node); 78 } 79 } 80 81 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 82 const uint8_t *key, 83 size_t n_bits) 84 { 85 struct tlpm_node *best = NULL; 86 size_t i; 87 88 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 89 * entries and match each prefix against @key. Remember the "best" 90 * entry we find (i.e., the longest prefix that matches) and return it 91 * to the caller when done. 92 */ 93 94 for ( ; list; list = list->next) { 95 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 96 if ((key[i / 8] & (1 << (7 - i % 8))) != 97 (list->key[i / 8] & (1 << (7 - i % 8)))) 98 break; 99 } 100 101 if (i >= list->n_bits) { 102 if (!best || i > best->n_bits) 103 best = list; 104 } 105 } 106 107 return best; 108 } 109 110 static struct tlpm_node *tlpm_delete(struct tlpm_node *list, 111 const uint8_t *key, 112 size_t n_bits) 113 { 114 struct tlpm_node *best = tlpm_match(list, key, n_bits); 115 struct tlpm_node *node; 116 117 if (!best || best->n_bits != n_bits) 118 return list; 119 120 if (best == list) { 121 node = best->next; 122 free(best); 123 return node; 124 } 125 126 for (node = list; node; node = node->next) { 127 if (node->next == best) { 128 node->next = best->next; 129 free(best); 130 return list; 131 } 132 } 133 /* should never get here */ 134 assert(0); 135 return list; 136 } 137 138 static void test_lpm_basic(void) 139 { 140 struct tlpm_node *list = NULL, *t1, *t2; 141 142 /* very basic, static tests to verify tlpm works as expected */ 143 144 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 145 146 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 149 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 150 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 151 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 152 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 153 154 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 155 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 156 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 157 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 158 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 159 160 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); 161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 162 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 163 164 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); 165 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 166 167 tlpm_clear(list); 168 } 169 170 static void test_lpm_order(void) 171 { 172 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 173 size_t i, j; 174 175 /* Verify the tlpm implementation works correctly regardless of the 176 * order of entries. Insert a random set of entries into @l1, and copy 177 * the same data in reverse order into @l2. Then verify a lookup of 178 * random keys will yield the same result in both sets. 179 */ 180 181 for (i = 0; i < (1 << 12); ++i) 182 l1 = tlpm_add(l1, (uint8_t[]){ 183 rand() % 0xff, 184 rand() % 0xff, 185 }, rand() % 16 + 1); 186 187 for (t1 = l1; t1; t1 = t1->next) 188 l2 = tlpm_add(l2, t1->key, t1->n_bits); 189 190 for (i = 0; i < (1 << 8); ++i) { 191 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 192 193 t1 = tlpm_match(l1, key, 16); 194 t2 = tlpm_match(l2, key, 16); 195 196 assert(!t1 == !t2); 197 if (t1) { 198 assert(t1->n_bits == t2->n_bits); 199 for (j = 0; j < t1->n_bits; ++j) 200 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 201 (t2->key[j / 8] & (1 << (7 - j % 8)))); 202 } 203 } 204 205 tlpm_clear(l1); 206 tlpm_clear(l2); 207 } 208 209 static void test_lpm_map(int keysize) 210 { 211 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 212 size_t i, j, n_matches, n_matches_after_delete, n_nodes, n_lookups; 213 struct tlpm_node *t, *list = NULL; 214 struct bpf_lpm_trie_key *key; 215 uint8_t *data, *value; 216 int r, map; 217 218 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 219 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 220 * randomized lookups and verify both maps return the same result. 221 */ 222 223 n_matches = 0; 224 n_matches_after_delete = 0; 225 n_nodes = 1 << 8; 226 n_lookups = 1 << 16; 227 228 data = alloca(keysize); 229 memset(data, 0, keysize); 230 231 value = alloca(keysize + 1); 232 memset(value, 0, keysize + 1); 233 234 key = alloca(sizeof(*key) + keysize); 235 memset(key, 0, sizeof(*key) + keysize); 236 237 map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 238 sizeof(*key) + keysize, 239 keysize + 1, 240 4096, 241 &opts); 242 assert(map >= 0); 243 244 for (i = 0; i < n_nodes; ++i) { 245 for (j = 0; j < keysize; ++j) 246 value[j] = rand() & 0xff; 247 value[keysize] = rand() % (8 * keysize + 1); 248 249 list = tlpm_add(list, value, value[keysize]); 250 251 key->prefixlen = value[keysize]; 252 memcpy(key->data, value, keysize); 253 r = bpf_map_update_elem(map, key, value, 0); 254 assert(!r); 255 } 256 257 for (i = 0; i < n_lookups; ++i) { 258 for (j = 0; j < keysize; ++j) 259 data[j] = rand() & 0xff; 260 261 t = tlpm_match(list, data, 8 * keysize); 262 263 key->prefixlen = 8 * keysize; 264 memcpy(key->data, data, keysize); 265 r = bpf_map_lookup_elem(map, key, value); 266 assert(!r || errno == ENOENT); 267 assert(!t == !!r); 268 269 if (t) { 270 ++n_matches; 271 assert(t->n_bits == value[keysize]); 272 for (j = 0; j < t->n_bits; ++j) 273 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 274 (value[j / 8] & (1 << (7 - j % 8)))); 275 } 276 } 277 278 /* Remove the first half of the elements in the tlpm and the 279 * corresponding nodes from the bpf-lpm. Then run the same 280 * large number of random lookups in both and make sure they match. 281 * Note: we need to count the number of nodes actually inserted 282 * since there may have been duplicates. 283 */ 284 for (i = 0, t = list; t; i++, t = t->next) 285 ; 286 for (j = 0; j < i / 2; ++j) { 287 key->prefixlen = list->n_bits; 288 memcpy(key->data, list->key, keysize); 289 r = bpf_map_delete_elem(map, key); 290 assert(!r); 291 list = tlpm_delete(list, list->key, list->n_bits); 292 assert(list); 293 } 294 for (i = 0; i < n_lookups; ++i) { 295 for (j = 0; j < keysize; ++j) 296 data[j] = rand() & 0xff; 297 298 t = tlpm_match(list, data, 8 * keysize); 299 300 key->prefixlen = 8 * keysize; 301 memcpy(key->data, data, keysize); 302 r = bpf_map_lookup_elem(map, key, value); 303 assert(!r || errno == ENOENT); 304 assert(!t == !!r); 305 306 if (t) { 307 ++n_matches_after_delete; 308 assert(t->n_bits == value[keysize]); 309 for (j = 0; j < t->n_bits; ++j) 310 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 311 (value[j / 8] & (1 << (7 - j % 8)))); 312 } 313 } 314 315 close(map); 316 tlpm_clear(list); 317 318 /* With 255 random nodes in the map, we are pretty likely to match 319 * something on every lookup. For statistics, use this: 320 * 321 * printf(" nodes: %zu\n" 322 * " lookups: %zu\n" 323 * " matches: %zu\n" 324 * "matches(delete): %zu\n", 325 * n_nodes, n_lookups, n_matches, n_matches_after_delete); 326 */ 327 } 328 329 /* Test the implementation with some 'real world' examples */ 330 331 static void test_lpm_ipaddr(void) 332 { 333 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 334 struct bpf_lpm_trie_key *key_ipv4; 335 struct bpf_lpm_trie_key *key_ipv6; 336 size_t key_size_ipv4; 337 size_t key_size_ipv6; 338 int map_fd_ipv4; 339 int map_fd_ipv6; 340 __u64 value; 341 342 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 343 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 344 key_ipv4 = alloca(key_size_ipv4); 345 key_ipv6 = alloca(key_size_ipv6); 346 347 map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 348 key_size_ipv4, sizeof(value), 349 100, &opts); 350 assert(map_fd_ipv4 >= 0); 351 352 map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 353 key_size_ipv6, sizeof(value), 354 100, &opts); 355 assert(map_fd_ipv6 >= 0); 356 357 /* Fill data some IPv4 and IPv6 address ranges */ 358 value = 1; 359 key_ipv4->prefixlen = 16; 360 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 361 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 362 363 value = 2; 364 key_ipv4->prefixlen = 24; 365 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 366 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 367 368 value = 3; 369 key_ipv4->prefixlen = 24; 370 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 371 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 372 373 value = 5; 374 key_ipv4->prefixlen = 24; 375 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 376 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 377 378 value = 4; 379 key_ipv4->prefixlen = 23; 380 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 381 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 382 383 value = 0xdeadbeef; 384 key_ipv6->prefixlen = 64; 385 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 386 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 387 388 /* Set tprefixlen to maximum for lookups */ 389 key_ipv4->prefixlen = 32; 390 key_ipv6->prefixlen = 128; 391 392 /* Test some lookups that should come back with a value */ 393 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 394 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 395 assert(value == 3); 396 397 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 398 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 399 assert(value == 2); 400 401 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 402 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 403 assert(value == 0xdeadbeef); 404 405 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 406 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 407 assert(value == 0xdeadbeef); 408 409 /* Test some lookups that should not match any entry */ 410 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 411 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 412 errno == ENOENT); 413 414 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 415 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 416 errno == ENOENT); 417 418 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 419 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && 420 errno == ENOENT); 421 422 close(map_fd_ipv4); 423 close(map_fd_ipv6); 424 } 425 426 static void test_lpm_delete(void) 427 { 428 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 429 struct bpf_lpm_trie_key *key; 430 size_t key_size; 431 int map_fd; 432 __u64 value; 433 434 key_size = sizeof(*key) + sizeof(__u32); 435 key = alloca(key_size); 436 437 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 438 key_size, sizeof(value), 439 100, &opts); 440 assert(map_fd >= 0); 441 442 /* Add nodes: 443 * 192.168.0.0/16 (1) 444 * 192.168.0.0/24 (2) 445 * 192.168.128.0/24 (3) 446 * 192.168.1.0/24 (4) 447 * 448 * (1) 449 * / \ 450 * (IM) (3) 451 * / \ 452 * (2) (4) 453 */ 454 value = 1; 455 key->prefixlen = 16; 456 inet_pton(AF_INET, "192.168.0.0", key->data); 457 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 458 459 value = 2; 460 key->prefixlen = 24; 461 inet_pton(AF_INET, "192.168.0.0", key->data); 462 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 463 464 value = 3; 465 key->prefixlen = 24; 466 inet_pton(AF_INET, "192.168.128.0", key->data); 467 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 468 469 value = 4; 470 key->prefixlen = 24; 471 inet_pton(AF_INET, "192.168.1.0", key->data); 472 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 473 474 /* remove non-existent node */ 475 key->prefixlen = 32; 476 inet_pton(AF_INET, "10.0.0.1", key->data); 477 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 478 errno == ENOENT); 479 480 key->prefixlen = 30; // unused prefix so far 481 inet_pton(AF_INET, "192.255.0.0", key->data); 482 assert(bpf_map_delete_elem(map_fd, key) == -1 && 483 errno == ENOENT); 484 485 key->prefixlen = 16; // same prefix as the root node 486 inet_pton(AF_INET, "192.255.0.0", key->data); 487 assert(bpf_map_delete_elem(map_fd, key) == -1 && 488 errno == ENOENT); 489 490 /* assert initial lookup */ 491 key->prefixlen = 32; 492 inet_pton(AF_INET, "192.168.0.1", key->data); 493 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 494 assert(value == 2); 495 496 /* remove leaf node */ 497 key->prefixlen = 24; 498 inet_pton(AF_INET, "192.168.0.0", key->data); 499 assert(bpf_map_delete_elem(map_fd, key) == 0); 500 501 key->prefixlen = 32; 502 inet_pton(AF_INET, "192.168.0.1", key->data); 503 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 504 assert(value == 1); 505 506 /* remove leaf (and intermediary) node */ 507 key->prefixlen = 24; 508 inet_pton(AF_INET, "192.168.1.0", key->data); 509 assert(bpf_map_delete_elem(map_fd, key) == 0); 510 511 key->prefixlen = 32; 512 inet_pton(AF_INET, "192.168.1.1", key->data); 513 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 514 assert(value == 1); 515 516 /* remove root node */ 517 key->prefixlen = 16; 518 inet_pton(AF_INET, "192.168.0.0", key->data); 519 assert(bpf_map_delete_elem(map_fd, key) == 0); 520 521 key->prefixlen = 32; 522 inet_pton(AF_INET, "192.168.128.1", key->data); 523 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 524 assert(value == 3); 525 526 /* remove last node */ 527 key->prefixlen = 24; 528 inet_pton(AF_INET, "192.168.128.0", key->data); 529 assert(bpf_map_delete_elem(map_fd, key) == 0); 530 531 key->prefixlen = 32; 532 inet_pton(AF_INET, "192.168.128.1", key->data); 533 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 534 errno == ENOENT); 535 536 close(map_fd); 537 } 538 539 static void test_lpm_get_next_key(void) 540 { 541 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 542 struct bpf_lpm_trie_key *key_p, *next_key_p; 543 size_t key_size; 544 __u32 value = 0; 545 int map_fd; 546 547 key_size = sizeof(*key_p) + sizeof(__u32); 548 key_p = alloca(key_size); 549 next_key_p = alloca(key_size); 550 551 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts); 552 assert(map_fd >= 0); 553 554 /* empty tree. get_next_key should return ENOENT */ 555 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 && 556 errno == ENOENT); 557 558 /* get and verify the first key, get the second one should fail. */ 559 key_p->prefixlen = 16; 560 inet_pton(AF_INET, "192.168.0.0", key_p->data); 561 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 562 563 memset(key_p, 0, key_size); 564 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 565 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 566 key_p->data[1] == 168); 567 568 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 569 errno == ENOENT); 570 571 /* no exact matching key should get the first one in post order. */ 572 key_p->prefixlen = 8; 573 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 574 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 575 key_p->data[1] == 168); 576 577 /* add one more element (total two) */ 578 key_p->prefixlen = 24; 579 inet_pton(AF_INET, "192.168.128.0", key_p->data); 580 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 581 582 memset(key_p, 0, key_size); 583 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 584 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 585 key_p->data[1] == 168 && key_p->data[2] == 128); 586 587 memset(next_key_p, 0, key_size); 588 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 589 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 590 next_key_p->data[1] == 168); 591 592 memcpy(key_p, next_key_p, key_size); 593 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 594 errno == ENOENT); 595 596 /* Add one more element (total three) */ 597 key_p->prefixlen = 24; 598 inet_pton(AF_INET, "192.168.0.0", key_p->data); 599 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 600 601 memset(key_p, 0, key_size); 602 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 603 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 604 key_p->data[1] == 168 && key_p->data[2] == 0); 605 606 memset(next_key_p, 0, key_size); 607 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 608 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 609 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 610 611 memcpy(key_p, next_key_p, key_size); 612 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 613 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 614 next_key_p->data[1] == 168); 615 616 memcpy(key_p, next_key_p, key_size); 617 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 618 errno == ENOENT); 619 620 /* Add one more element (total four) */ 621 key_p->prefixlen = 24; 622 inet_pton(AF_INET, "192.168.1.0", key_p->data); 623 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 624 625 memset(key_p, 0, key_size); 626 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 627 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 628 key_p->data[1] == 168 && key_p->data[2] == 0); 629 630 memset(next_key_p, 0, key_size); 631 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 632 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 633 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 634 635 memcpy(key_p, next_key_p, key_size); 636 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 637 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 638 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 639 640 memcpy(key_p, next_key_p, key_size); 641 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 642 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 643 next_key_p->data[1] == 168); 644 645 memcpy(key_p, next_key_p, key_size); 646 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 647 errno == ENOENT); 648 649 /* Add one more element (total five) */ 650 key_p->prefixlen = 28; 651 inet_pton(AF_INET, "192.168.1.128", key_p->data); 652 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 653 654 memset(key_p, 0, key_size); 655 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 656 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 657 key_p->data[1] == 168 && key_p->data[2] == 0); 658 659 memset(next_key_p, 0, key_size); 660 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 661 assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 && 662 next_key_p->data[1] == 168 && next_key_p->data[2] == 1 && 663 next_key_p->data[3] == 128); 664 665 memcpy(key_p, next_key_p, key_size); 666 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 667 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 668 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 669 670 memcpy(key_p, next_key_p, key_size); 671 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 672 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 673 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 674 675 memcpy(key_p, next_key_p, key_size); 676 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 677 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 678 next_key_p->data[1] == 168); 679 680 memcpy(key_p, next_key_p, key_size); 681 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 682 errno == ENOENT); 683 684 /* no exact matching key should return the first one in post order */ 685 key_p->prefixlen = 22; 686 inet_pton(AF_INET, "192.168.1.0", key_p->data); 687 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 688 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 689 next_key_p->data[1] == 168 && next_key_p->data[2] == 0); 690 691 close(map_fd); 692 } 693 694 #define MAX_TEST_KEYS 4 695 struct lpm_mt_test_info { 696 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ 697 int iter; 698 int map_fd; 699 struct { 700 __u32 prefixlen; 701 __u32 data; 702 } key[MAX_TEST_KEYS]; 703 }; 704 705 static void *lpm_test_command(void *arg) 706 { 707 int i, j, ret, iter, key_size; 708 struct lpm_mt_test_info *info = arg; 709 struct bpf_lpm_trie_key *key_p; 710 711 key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32); 712 key_p = alloca(key_size); 713 for (iter = 0; iter < info->iter; iter++) 714 for (i = 0; i < MAX_TEST_KEYS; i++) { 715 /* first half of iterations in forward order, 716 * and second half in backward order. 717 */ 718 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; 719 key_p->prefixlen = info->key[j].prefixlen; 720 memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); 721 if (info->cmd == 0) { 722 __u32 value = j; 723 /* update must succeed */ 724 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); 725 } else if (info->cmd == 1) { 726 ret = bpf_map_delete_elem(info->map_fd, key_p); 727 assert(ret == 0 || errno == ENOENT); 728 } else if (info->cmd == 2) { 729 __u32 value; 730 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); 731 assert(ret == 0 || errno == ENOENT); 732 } else { 733 struct bpf_lpm_trie_key *next_key_p = alloca(key_size); 734 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); 735 assert(ret == 0 || errno == ENOENT || errno == ENOMEM); 736 } 737 } 738 739 // Pass successful exit info back to the main thread 740 pthread_exit((void *)info); 741 } 742 743 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) 744 { 745 info->iter = 2000; 746 info->map_fd = map_fd; 747 info->key[0].prefixlen = 16; 748 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); 749 info->key[1].prefixlen = 24; 750 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); 751 info->key[2].prefixlen = 24; 752 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); 753 info->key[3].prefixlen = 24; 754 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); 755 } 756 757 static void test_lpm_multi_thread(void) 758 { 759 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 760 struct lpm_mt_test_info info[4]; 761 size_t key_size, value_size; 762 pthread_t thread_id[4]; 763 int i, map_fd; 764 void *ret; 765 766 /* create a trie */ 767 value_size = sizeof(__u32); 768 key_size = sizeof(struct bpf_lpm_trie_key) + value_size; 769 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts); 770 771 /* create 4 threads to test update, delete, lookup and get_next_key */ 772 setup_lpm_mt_test_info(&info[0], map_fd); 773 for (i = 0; i < 4; i++) { 774 if (i != 0) 775 memcpy(&info[i], &info[0], sizeof(info[i])); 776 info[i].cmd = i; 777 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); 778 } 779 780 for (i = 0; i < 4; i++) 781 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); 782 783 close(map_fd); 784 } 785 786 int main(void) 787 { 788 int i; 789 790 /* we want predictable, pseudo random tests */ 791 srand(0xf00ba1); 792 793 test_lpm_basic(); 794 test_lpm_order(); 795 796 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 797 for (i = 1; i <= 16; ++i) 798 test_lpm_map(i); 799 800 test_lpm_ipaddr(); 801 test_lpm_delete(); 802 test_lpm_get_next_key(); 803 test_lpm_multi_thread(); 804 805 printf("test_lpm: OK\n"); 806 return 0; 807 } 808