1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Randomized tests for eBPF longest-prefix-match maps 4 * 5 * This program runs randomized tests against the lpm-bpf-map. It implements a 6 * "Trivial Longest Prefix Match" (tlpm) based on simple, linear, singly linked 7 * lists. The implementation should be pretty straightforward. 8 * 9 * Based on tlpm, this inserts randomized data into bpf-lpm-maps and verifies 10 * the trie-based bpf-map implementation behaves the same way as tlpm. 11 */ 12 13 #include <assert.h> 14 #include <errno.h> 15 #include <inttypes.h> 16 #include <linux/bpf.h> 17 #include <pthread.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <time.h> 22 #include <unistd.h> 23 #include <arpa/inet.h> 24 #include <sys/time.h> 25 26 #include <bpf/bpf.h> 27 28 #include "bpf_util.h" 29 #include "bpf_rlimit.h" 30 31 struct tlpm_node { 32 struct tlpm_node *next; 33 size_t n_bits; 34 uint8_t key[]; 35 }; 36 37 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 38 const uint8_t *key, 39 size_t n_bits); 40 41 static struct tlpm_node *tlpm_add(struct tlpm_node *list, 42 const uint8_t *key, 43 size_t n_bits) 44 { 45 struct tlpm_node *node; 46 size_t n; 47 48 n = (n_bits + 7) / 8; 49 50 /* 'overwrite' an equivalent entry if one already exists */ 51 node = tlpm_match(list, key, n_bits); 52 if (node && node->n_bits == n_bits) { 53 memcpy(node->key, key, n); 54 return list; 55 } 56 57 /* add new entry with @key/@n_bits to @list and return new head */ 58 59 node = malloc(sizeof(*node) + n); 60 assert(node); 61 62 node->next = list; 63 node->n_bits = n_bits; 64 memcpy(node->key, key, n); 65 66 return node; 67 } 68 69 static void tlpm_clear(struct tlpm_node *list) 70 { 71 struct tlpm_node *node; 72 73 /* free all entries in @list */ 74 75 while ((node = list)) { 76 list = list->next; 77 free(node); 78 } 79 } 80 81 static struct tlpm_node *tlpm_match(struct tlpm_node *list, 82 const uint8_t *key, 83 size_t n_bits) 84 { 85 struct tlpm_node *best = NULL; 86 size_t i; 87 88 /* Perform longest prefix-match on @key/@n_bits. That is, iterate all 89 * entries and match each prefix against @key. Remember the "best" 90 * entry we find (i.e., the longest prefix that matches) and return it 91 * to the caller when done. 92 */ 93 94 for ( ; list; list = list->next) { 95 for (i = 0; i < n_bits && i < list->n_bits; ++i) { 96 if ((key[i / 8] & (1 << (7 - i % 8))) != 97 (list->key[i / 8] & (1 << (7 - i % 8)))) 98 break; 99 } 100 101 if (i >= list->n_bits) { 102 if (!best || i > best->n_bits) 103 best = list; 104 } 105 } 106 107 return best; 108 } 109 110 static struct tlpm_node *tlpm_delete(struct tlpm_node *list, 111 const uint8_t *key, 112 size_t n_bits) 113 { 114 struct tlpm_node *best = tlpm_match(list, key, n_bits); 115 struct tlpm_node *node; 116 117 if (!best || best->n_bits != n_bits) 118 return list; 119 120 if (best == list) { 121 node = best->next; 122 free(best); 123 return node; 124 } 125 126 for (node = list; node; node = node->next) { 127 if (node->next == best) { 128 node->next = best->next; 129 free(best); 130 return list; 131 } 132 } 133 /* should never get here */ 134 assert(0); 135 return list; 136 } 137 138 static void test_lpm_basic(void) 139 { 140 struct tlpm_node *list = NULL, *t1, *t2; 141 142 /* very basic, static tests to verify tlpm works as expected */ 143 144 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 145 146 t1 = list = tlpm_add(list, (uint8_t[]){ 0xff }, 8); 147 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 148 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 149 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0x00 }, 16)); 150 assert(!tlpm_match(list, (uint8_t[]){ 0x7f }, 8)); 151 assert(!tlpm_match(list, (uint8_t[]){ 0xfe }, 8)); 152 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 7)); 153 154 t2 = list = tlpm_add(list, (uint8_t[]){ 0xff, 0xff }, 16); 155 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 156 assert(t2 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 157 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 15)); 158 assert(!tlpm_match(list, (uint8_t[]){ 0x7f, 0xff }, 16)); 159 160 list = tlpm_delete(list, (uint8_t[]){ 0xff, 0xff }, 16); 161 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 162 assert(t1 == tlpm_match(list, (uint8_t[]){ 0xff, 0xff }, 16)); 163 164 list = tlpm_delete(list, (uint8_t[]){ 0xff }, 8); 165 assert(!tlpm_match(list, (uint8_t[]){ 0xff }, 8)); 166 167 tlpm_clear(list); 168 } 169 170 static void test_lpm_order(void) 171 { 172 struct tlpm_node *t1, *t2, *l1 = NULL, *l2 = NULL; 173 size_t i, j; 174 175 /* Verify the tlpm implementation works correctly regardless of the 176 * order of entries. Insert a random set of entries into @l1, and copy 177 * the same data in reverse order into @l2. Then verify a lookup of 178 * random keys will yield the same result in both sets. 179 */ 180 181 for (i = 0; i < (1 << 12); ++i) 182 l1 = tlpm_add(l1, (uint8_t[]){ 183 rand() % 0xff, 184 rand() % 0xff, 185 }, rand() % 16 + 1); 186 187 for (t1 = l1; t1; t1 = t1->next) 188 l2 = tlpm_add(l2, t1->key, t1->n_bits); 189 190 for (i = 0; i < (1 << 8); ++i) { 191 uint8_t key[] = { rand() % 0xff, rand() % 0xff }; 192 193 t1 = tlpm_match(l1, key, 16); 194 t2 = tlpm_match(l2, key, 16); 195 196 assert(!t1 == !t2); 197 if (t1) { 198 assert(t1->n_bits == t2->n_bits); 199 for (j = 0; j < t1->n_bits; ++j) 200 assert((t1->key[j / 8] & (1 << (7 - j % 8))) == 201 (t2->key[j / 8] & (1 << (7 - j % 8)))); 202 } 203 } 204 205 tlpm_clear(l1); 206 tlpm_clear(l2); 207 } 208 209 static void test_lpm_map(int keysize) 210 { 211 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 212 volatile size_t n_matches, n_matches_after_delete; 213 size_t i, j, n_nodes, n_lookups; 214 struct tlpm_node *t, *list = NULL; 215 struct bpf_lpm_trie_key *key; 216 uint8_t *data, *value; 217 int r, map; 218 219 /* Compare behavior of tlpm vs. bpf-lpm. Create a randomized set of 220 * prefixes and insert it into both tlpm and bpf-lpm. Then run some 221 * randomized lookups and verify both maps return the same result. 222 */ 223 224 n_matches = 0; 225 n_matches_after_delete = 0; 226 n_nodes = 1 << 8; 227 n_lookups = 1 << 16; 228 229 data = alloca(keysize); 230 memset(data, 0, keysize); 231 232 value = alloca(keysize + 1); 233 memset(value, 0, keysize + 1); 234 235 key = alloca(sizeof(*key) + keysize); 236 memset(key, 0, sizeof(*key) + keysize); 237 238 map = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 239 sizeof(*key) + keysize, 240 keysize + 1, 241 4096, 242 &opts); 243 assert(map >= 0); 244 245 for (i = 0; i < n_nodes; ++i) { 246 for (j = 0; j < keysize; ++j) 247 value[j] = rand() & 0xff; 248 value[keysize] = rand() % (8 * keysize + 1); 249 250 list = tlpm_add(list, value, value[keysize]); 251 252 key->prefixlen = value[keysize]; 253 memcpy(key->data, value, keysize); 254 r = bpf_map_update_elem(map, key, value, 0); 255 assert(!r); 256 } 257 258 for (i = 0; i < n_lookups; ++i) { 259 for (j = 0; j < keysize; ++j) 260 data[j] = rand() & 0xff; 261 262 t = tlpm_match(list, data, 8 * keysize); 263 264 key->prefixlen = 8 * keysize; 265 memcpy(key->data, data, keysize); 266 r = bpf_map_lookup_elem(map, key, value); 267 assert(!r || errno == ENOENT); 268 assert(!t == !!r); 269 270 if (t) { 271 ++n_matches; 272 assert(t->n_bits == value[keysize]); 273 for (j = 0; j < t->n_bits; ++j) 274 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 275 (value[j / 8] & (1 << (7 - j % 8)))); 276 } 277 } 278 279 /* Remove the first half of the elements in the tlpm and the 280 * corresponding nodes from the bpf-lpm. Then run the same 281 * large number of random lookups in both and make sure they match. 282 * Note: we need to count the number of nodes actually inserted 283 * since there may have been duplicates. 284 */ 285 for (i = 0, t = list; t; i++, t = t->next) 286 ; 287 for (j = 0; j < i / 2; ++j) { 288 key->prefixlen = list->n_bits; 289 memcpy(key->data, list->key, keysize); 290 r = bpf_map_delete_elem(map, key); 291 assert(!r); 292 list = tlpm_delete(list, list->key, list->n_bits); 293 assert(list); 294 } 295 for (i = 0; i < n_lookups; ++i) { 296 for (j = 0; j < keysize; ++j) 297 data[j] = rand() & 0xff; 298 299 t = tlpm_match(list, data, 8 * keysize); 300 301 key->prefixlen = 8 * keysize; 302 memcpy(key->data, data, keysize); 303 r = bpf_map_lookup_elem(map, key, value); 304 assert(!r || errno == ENOENT); 305 assert(!t == !!r); 306 307 if (t) { 308 ++n_matches_after_delete; 309 assert(t->n_bits == value[keysize]); 310 for (j = 0; j < t->n_bits; ++j) 311 assert((t->key[j / 8] & (1 << (7 - j % 8))) == 312 (value[j / 8] & (1 << (7 - j % 8)))); 313 } 314 } 315 316 close(map); 317 tlpm_clear(list); 318 319 /* With 255 random nodes in the map, we are pretty likely to match 320 * something on every lookup. For statistics, use this: 321 * 322 * printf(" nodes: %zu\n" 323 * " lookups: %zu\n" 324 * " matches: %zu\n" 325 * "matches(delete): %zu\n", 326 * n_nodes, n_lookups, n_matches, n_matches_after_delete); 327 */ 328 } 329 330 /* Test the implementation with some 'real world' examples */ 331 332 static void test_lpm_ipaddr(void) 333 { 334 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 335 struct bpf_lpm_trie_key *key_ipv4; 336 struct bpf_lpm_trie_key *key_ipv6; 337 size_t key_size_ipv4; 338 size_t key_size_ipv6; 339 int map_fd_ipv4; 340 int map_fd_ipv6; 341 __u64 value; 342 343 key_size_ipv4 = sizeof(*key_ipv4) + sizeof(__u32); 344 key_size_ipv6 = sizeof(*key_ipv6) + sizeof(__u32) * 4; 345 key_ipv4 = alloca(key_size_ipv4); 346 key_ipv6 = alloca(key_size_ipv6); 347 348 map_fd_ipv4 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 349 key_size_ipv4, sizeof(value), 350 100, &opts); 351 assert(map_fd_ipv4 >= 0); 352 353 map_fd_ipv6 = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 354 key_size_ipv6, sizeof(value), 355 100, &opts); 356 assert(map_fd_ipv6 >= 0); 357 358 /* Fill data some IPv4 and IPv6 address ranges */ 359 value = 1; 360 key_ipv4->prefixlen = 16; 361 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 362 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 363 364 value = 2; 365 key_ipv4->prefixlen = 24; 366 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 367 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 368 369 value = 3; 370 key_ipv4->prefixlen = 24; 371 inet_pton(AF_INET, "192.168.128.0", key_ipv4->data); 372 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 373 374 value = 5; 375 key_ipv4->prefixlen = 24; 376 inet_pton(AF_INET, "192.168.1.0", key_ipv4->data); 377 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 378 379 value = 4; 380 key_ipv4->prefixlen = 23; 381 inet_pton(AF_INET, "192.168.0.0", key_ipv4->data); 382 assert(bpf_map_update_elem(map_fd_ipv4, key_ipv4, &value, 0) == 0); 383 384 value = 0xdeadbeef; 385 key_ipv6->prefixlen = 64; 386 inet_pton(AF_INET6, "2a00:1450:4001:814::200e", key_ipv6->data); 387 assert(bpf_map_update_elem(map_fd_ipv6, key_ipv6, &value, 0) == 0); 388 389 /* Set tprefixlen to maximum for lookups */ 390 key_ipv4->prefixlen = 32; 391 key_ipv6->prefixlen = 128; 392 393 /* Test some lookups that should come back with a value */ 394 inet_pton(AF_INET, "192.168.128.23", key_ipv4->data); 395 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 396 assert(value == 3); 397 398 inet_pton(AF_INET, "192.168.0.1", key_ipv4->data); 399 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == 0); 400 assert(value == 2); 401 402 inet_pton(AF_INET6, "2a00:1450:4001:814::", key_ipv6->data); 403 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 404 assert(value == 0xdeadbeef); 405 406 inet_pton(AF_INET6, "2a00:1450:4001:814::1", key_ipv6->data); 407 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == 0); 408 assert(value == 0xdeadbeef); 409 410 /* Test some lookups that should not match any entry */ 411 inet_pton(AF_INET, "10.0.0.1", key_ipv4->data); 412 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 413 errno == ENOENT); 414 415 inet_pton(AF_INET, "11.11.11.11", key_ipv4->data); 416 assert(bpf_map_lookup_elem(map_fd_ipv4, key_ipv4, &value) == -1 && 417 errno == ENOENT); 418 419 inet_pton(AF_INET6, "2a00:ffff::", key_ipv6->data); 420 assert(bpf_map_lookup_elem(map_fd_ipv6, key_ipv6, &value) == -1 && 421 errno == ENOENT); 422 423 close(map_fd_ipv4); 424 close(map_fd_ipv6); 425 } 426 427 static void test_lpm_delete(void) 428 { 429 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 430 struct bpf_lpm_trie_key *key; 431 size_t key_size; 432 int map_fd; 433 __u64 value; 434 435 key_size = sizeof(*key) + sizeof(__u32); 436 key = alloca(key_size); 437 438 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, 439 key_size, sizeof(value), 440 100, &opts); 441 assert(map_fd >= 0); 442 443 /* Add nodes: 444 * 192.168.0.0/16 (1) 445 * 192.168.0.0/24 (2) 446 * 192.168.128.0/24 (3) 447 * 192.168.1.0/24 (4) 448 * 449 * (1) 450 * / \ 451 * (IM) (3) 452 * / \ 453 * (2) (4) 454 */ 455 value = 1; 456 key->prefixlen = 16; 457 inet_pton(AF_INET, "192.168.0.0", key->data); 458 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 459 460 value = 2; 461 key->prefixlen = 24; 462 inet_pton(AF_INET, "192.168.0.0", key->data); 463 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 464 465 value = 3; 466 key->prefixlen = 24; 467 inet_pton(AF_INET, "192.168.128.0", key->data); 468 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 469 470 value = 4; 471 key->prefixlen = 24; 472 inet_pton(AF_INET, "192.168.1.0", key->data); 473 assert(bpf_map_update_elem(map_fd, key, &value, 0) == 0); 474 475 /* remove non-existent node */ 476 key->prefixlen = 32; 477 inet_pton(AF_INET, "10.0.0.1", key->data); 478 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 479 errno == ENOENT); 480 481 key->prefixlen = 30; // unused prefix so far 482 inet_pton(AF_INET, "192.255.0.0", key->data); 483 assert(bpf_map_delete_elem(map_fd, key) == -1 && 484 errno == ENOENT); 485 486 key->prefixlen = 16; // same prefix as the root node 487 inet_pton(AF_INET, "192.255.0.0", key->data); 488 assert(bpf_map_delete_elem(map_fd, key) == -1 && 489 errno == ENOENT); 490 491 /* assert initial lookup */ 492 key->prefixlen = 32; 493 inet_pton(AF_INET, "192.168.0.1", key->data); 494 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 495 assert(value == 2); 496 497 /* remove leaf node */ 498 key->prefixlen = 24; 499 inet_pton(AF_INET, "192.168.0.0", key->data); 500 assert(bpf_map_delete_elem(map_fd, key) == 0); 501 502 key->prefixlen = 32; 503 inet_pton(AF_INET, "192.168.0.1", key->data); 504 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 505 assert(value == 1); 506 507 /* remove leaf (and intermediary) node */ 508 key->prefixlen = 24; 509 inet_pton(AF_INET, "192.168.1.0", key->data); 510 assert(bpf_map_delete_elem(map_fd, key) == 0); 511 512 key->prefixlen = 32; 513 inet_pton(AF_INET, "192.168.1.1", key->data); 514 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 515 assert(value == 1); 516 517 /* remove root node */ 518 key->prefixlen = 16; 519 inet_pton(AF_INET, "192.168.0.0", key->data); 520 assert(bpf_map_delete_elem(map_fd, key) == 0); 521 522 key->prefixlen = 32; 523 inet_pton(AF_INET, "192.168.128.1", key->data); 524 assert(bpf_map_lookup_elem(map_fd, key, &value) == 0); 525 assert(value == 3); 526 527 /* remove last node */ 528 key->prefixlen = 24; 529 inet_pton(AF_INET, "192.168.128.0", key->data); 530 assert(bpf_map_delete_elem(map_fd, key) == 0); 531 532 key->prefixlen = 32; 533 inet_pton(AF_INET, "192.168.128.1", key->data); 534 assert(bpf_map_lookup_elem(map_fd, key, &value) == -1 && 535 errno == ENOENT); 536 537 close(map_fd); 538 } 539 540 static void test_lpm_get_next_key(void) 541 { 542 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 543 struct bpf_lpm_trie_key *key_p, *next_key_p; 544 size_t key_size; 545 __u32 value = 0; 546 int map_fd; 547 548 key_size = sizeof(*key_p) + sizeof(__u32); 549 key_p = alloca(key_size); 550 next_key_p = alloca(key_size); 551 552 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, sizeof(value), 100, &opts); 553 assert(map_fd >= 0); 554 555 /* empty tree. get_next_key should return ENOENT */ 556 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == -1 && 557 errno == ENOENT); 558 559 /* get and verify the first key, get the second one should fail. */ 560 key_p->prefixlen = 16; 561 inet_pton(AF_INET, "192.168.0.0", key_p->data); 562 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 563 564 memset(key_p, 0, key_size); 565 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 566 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 567 key_p->data[1] == 168); 568 569 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 570 errno == ENOENT); 571 572 /* no exact matching key should get the first one in post order. */ 573 key_p->prefixlen = 8; 574 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 575 assert(key_p->prefixlen == 16 && key_p->data[0] == 192 && 576 key_p->data[1] == 168); 577 578 /* add one more element (total two) */ 579 key_p->prefixlen = 24; 580 inet_pton(AF_INET, "192.168.128.0", key_p->data); 581 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 582 583 memset(key_p, 0, key_size); 584 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 585 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 586 key_p->data[1] == 168 && key_p->data[2] == 128); 587 588 memset(next_key_p, 0, key_size); 589 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 590 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 591 next_key_p->data[1] == 168); 592 593 memcpy(key_p, next_key_p, key_size); 594 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 595 errno == ENOENT); 596 597 /* Add one more element (total three) */ 598 key_p->prefixlen = 24; 599 inet_pton(AF_INET, "192.168.0.0", key_p->data); 600 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 601 602 memset(key_p, 0, key_size); 603 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 604 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 605 key_p->data[1] == 168 && key_p->data[2] == 0); 606 607 memset(next_key_p, 0, key_size); 608 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 609 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 610 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 611 612 memcpy(key_p, next_key_p, key_size); 613 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 614 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 615 next_key_p->data[1] == 168); 616 617 memcpy(key_p, next_key_p, key_size); 618 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 619 errno == ENOENT); 620 621 /* Add one more element (total four) */ 622 key_p->prefixlen = 24; 623 inet_pton(AF_INET, "192.168.1.0", key_p->data); 624 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 625 626 memset(key_p, 0, key_size); 627 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 628 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 629 key_p->data[1] == 168 && key_p->data[2] == 0); 630 631 memset(next_key_p, 0, key_size); 632 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 633 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 634 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 635 636 memcpy(key_p, next_key_p, key_size); 637 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 638 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 639 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 640 641 memcpy(key_p, next_key_p, key_size); 642 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 643 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 644 next_key_p->data[1] == 168); 645 646 memcpy(key_p, next_key_p, key_size); 647 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 648 errno == ENOENT); 649 650 /* Add one more element (total five) */ 651 key_p->prefixlen = 28; 652 inet_pton(AF_INET, "192.168.1.128", key_p->data); 653 assert(bpf_map_update_elem(map_fd, key_p, &value, 0) == 0); 654 655 memset(key_p, 0, key_size); 656 assert(bpf_map_get_next_key(map_fd, NULL, key_p) == 0); 657 assert(key_p->prefixlen == 24 && key_p->data[0] == 192 && 658 key_p->data[1] == 168 && key_p->data[2] == 0); 659 660 memset(next_key_p, 0, key_size); 661 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 662 assert(next_key_p->prefixlen == 28 && next_key_p->data[0] == 192 && 663 next_key_p->data[1] == 168 && next_key_p->data[2] == 1 && 664 next_key_p->data[3] == 128); 665 666 memcpy(key_p, next_key_p, key_size); 667 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 668 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 669 next_key_p->data[1] == 168 && next_key_p->data[2] == 1); 670 671 memcpy(key_p, next_key_p, key_size); 672 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 673 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 674 next_key_p->data[1] == 168 && next_key_p->data[2] == 128); 675 676 memcpy(key_p, next_key_p, key_size); 677 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 678 assert(next_key_p->prefixlen == 16 && next_key_p->data[0] == 192 && 679 next_key_p->data[1] == 168); 680 681 memcpy(key_p, next_key_p, key_size); 682 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == -1 && 683 errno == ENOENT); 684 685 /* no exact matching key should return the first one in post order */ 686 key_p->prefixlen = 22; 687 inet_pton(AF_INET, "192.168.1.0", key_p->data); 688 assert(bpf_map_get_next_key(map_fd, key_p, next_key_p) == 0); 689 assert(next_key_p->prefixlen == 24 && next_key_p->data[0] == 192 && 690 next_key_p->data[1] == 168 && next_key_p->data[2] == 0); 691 692 close(map_fd); 693 } 694 695 #define MAX_TEST_KEYS 4 696 struct lpm_mt_test_info { 697 int cmd; /* 0: update, 1: delete, 2: lookup, 3: get_next_key */ 698 int iter; 699 int map_fd; 700 struct { 701 __u32 prefixlen; 702 __u32 data; 703 } key[MAX_TEST_KEYS]; 704 }; 705 706 static void *lpm_test_command(void *arg) 707 { 708 int i, j, ret, iter, key_size; 709 struct lpm_mt_test_info *info = arg; 710 struct bpf_lpm_trie_key *key_p; 711 712 key_size = sizeof(struct bpf_lpm_trie_key) + sizeof(__u32); 713 key_p = alloca(key_size); 714 for (iter = 0; iter < info->iter; iter++) 715 for (i = 0; i < MAX_TEST_KEYS; i++) { 716 /* first half of iterations in forward order, 717 * and second half in backward order. 718 */ 719 j = (iter < (info->iter / 2)) ? i : MAX_TEST_KEYS - i - 1; 720 key_p->prefixlen = info->key[j].prefixlen; 721 memcpy(key_p->data, &info->key[j].data, sizeof(__u32)); 722 if (info->cmd == 0) { 723 __u32 value = j; 724 /* update must succeed */ 725 assert(bpf_map_update_elem(info->map_fd, key_p, &value, 0) == 0); 726 } else if (info->cmd == 1) { 727 ret = bpf_map_delete_elem(info->map_fd, key_p); 728 assert(ret == 0 || errno == ENOENT); 729 } else if (info->cmd == 2) { 730 __u32 value; 731 ret = bpf_map_lookup_elem(info->map_fd, key_p, &value); 732 assert(ret == 0 || errno == ENOENT); 733 } else { 734 struct bpf_lpm_trie_key *next_key_p = alloca(key_size); 735 ret = bpf_map_get_next_key(info->map_fd, key_p, next_key_p); 736 assert(ret == 0 || errno == ENOENT || errno == ENOMEM); 737 } 738 } 739 740 // Pass successful exit info back to the main thread 741 pthread_exit((void *)info); 742 } 743 744 static void setup_lpm_mt_test_info(struct lpm_mt_test_info *info, int map_fd) 745 { 746 info->iter = 2000; 747 info->map_fd = map_fd; 748 info->key[0].prefixlen = 16; 749 inet_pton(AF_INET, "192.168.0.0", &info->key[0].data); 750 info->key[1].prefixlen = 24; 751 inet_pton(AF_INET, "192.168.0.0", &info->key[1].data); 752 info->key[2].prefixlen = 24; 753 inet_pton(AF_INET, "192.168.128.0", &info->key[2].data); 754 info->key[3].prefixlen = 24; 755 inet_pton(AF_INET, "192.168.1.0", &info->key[3].data); 756 } 757 758 static void test_lpm_multi_thread(void) 759 { 760 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_NO_PREALLOC); 761 struct lpm_mt_test_info info[4]; 762 size_t key_size, value_size; 763 pthread_t thread_id[4]; 764 int i, map_fd; 765 void *ret; 766 767 /* create a trie */ 768 value_size = sizeof(__u32); 769 key_size = sizeof(struct bpf_lpm_trie_key) + value_size; 770 map_fd = bpf_map_create(BPF_MAP_TYPE_LPM_TRIE, NULL, key_size, value_size, 100, &opts); 771 772 /* create 4 threads to test update, delete, lookup and get_next_key */ 773 setup_lpm_mt_test_info(&info[0], map_fd); 774 for (i = 0; i < 4; i++) { 775 if (i != 0) 776 memcpy(&info[i], &info[0], sizeof(info[i])); 777 info[i].cmd = i; 778 assert(pthread_create(&thread_id[i], NULL, &lpm_test_command, &info[i]) == 0); 779 } 780 781 for (i = 0; i < 4; i++) 782 assert(pthread_join(thread_id[i], &ret) == 0 && ret == (void *)&info[i]); 783 784 close(map_fd); 785 } 786 787 int main(void) 788 { 789 int i; 790 791 /* we want predictable, pseudo random tests */ 792 srand(0xf00ba1); 793 794 test_lpm_basic(); 795 test_lpm_order(); 796 797 /* Test with 8, 16, 24, 32, ... 128 bit prefix length */ 798 for (i = 1; i <= 16; ++i) 799 test_lpm_map(i); 800 801 test_lpm_ipaddr(); 802 test_lpm_delete(); 803 test_lpm_get_next_key(); 804 test_lpm_multi_thread(); 805 806 printf("test_lpm: OK\n"); 807 return 0; 808 } 809