1 /*
2  * multiorder.c: Multi-order radix tree entry testing
3  * Copyright (c) 2016 Intel Corporation
4  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 
20 #include "test.h"
21 
22 #define for_each_index(i, base, order) \
23 	for (i = base; i < base + (1 << order); i++)
24 
25 static void __multiorder_tag_test(int index, int order)
26 {
27 	RADIX_TREE(tree, GFP_KERNEL);
28 	int base, err, i;
29 
30 	/* our canonical entry */
31 	base = index & ~((1 << order) - 1);
32 
33 	printf("Multiorder tag test with index %d, canonical entry %d\n",
34 			index, base);
35 
36 	err = item_insert_order(&tree, index, order);
37 	assert(!err);
38 
39 	/*
40 	 * Verify we get collisions for covered indices.  We try and fail to
41 	 * insert an exceptional entry so we don't leak memory via
42 	 * item_insert_order().
43 	 */
44 	for_each_index(i, base, order) {
45 		err = __radix_tree_insert(&tree, i, order,
46 				(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
47 		assert(err == -EEXIST);
48 	}
49 
50 	for_each_index(i, base, order) {
51 		assert(!radix_tree_tag_get(&tree, i, 0));
52 		assert(!radix_tree_tag_get(&tree, i, 1));
53 	}
54 
55 	assert(radix_tree_tag_set(&tree, index, 0));
56 
57 	for_each_index(i, base, order) {
58 		assert(radix_tree_tag_get(&tree, i, 0));
59 		assert(!radix_tree_tag_get(&tree, i, 1));
60 	}
61 
62 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 	assert(radix_tree_tag_clear(&tree, index, 0));
64 
65 	for_each_index(i, base, order) {
66 		assert(!radix_tree_tag_get(&tree, i, 0));
67 		assert(radix_tree_tag_get(&tree, i, 1));
68 	}
69 
70 	assert(radix_tree_tag_clear(&tree, index, 1));
71 
72 	assert(!radix_tree_tagged(&tree, 0));
73 	assert(!radix_tree_tagged(&tree, 1));
74 
75 	item_kill_tree(&tree);
76 }
77 
78 static void __multiorder_tag_test2(unsigned order, unsigned long index2)
79 {
80 	RADIX_TREE(tree, GFP_KERNEL);
81 	unsigned long index = (1 << order);
82 	index2 += index;
83 
84 	assert(item_insert_order(&tree, 0, order) == 0);
85 	assert(item_insert(&tree, index2) == 0);
86 
87 	assert(radix_tree_tag_set(&tree, 0, 0));
88 	assert(radix_tree_tag_set(&tree, index2, 0));
89 
90 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
91 
92 	item_kill_tree(&tree);
93 }
94 
95 static void multiorder_tag_tests(void)
96 {
97 	int i, j;
98 
99 	/* test multi-order entry for indices 0-7 with no sibling pointers */
100 	__multiorder_tag_test(0, 3);
101 	__multiorder_tag_test(5, 3);
102 
103 	/* test multi-order entry for indices 8-15 with no sibling pointers */
104 	__multiorder_tag_test(8, 3);
105 	__multiorder_tag_test(15, 3);
106 
107 	/*
108 	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
109 	 * This is broken up as follows:
110 	 * 0-7:		canonical entry
111 	 * 8-15:	sibling 1
112 	 * 16-23:	sibling 2
113 	 * 24-31:	sibling 3
114 	 */
115 	__multiorder_tag_test(0, 5);
116 	__multiorder_tag_test(29, 5);
117 
118 	/* same test, but with indices 32-63 */
119 	__multiorder_tag_test(32, 5);
120 	__multiorder_tag_test(44, 5);
121 
122 	/*
123 	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
124 	 * This is broken up as follows:
125 	 * 0-63:	canonical entry
126 	 * 64-127:	sibling 1
127 	 * 128-191:	sibling 2
128 	 * 192-255:	sibling 3
129 	 */
130 	__multiorder_tag_test(0, 8);
131 	__multiorder_tag_test(190, 8);
132 
133 	/* same test, but with indices 256-511 */
134 	__multiorder_tag_test(256, 8);
135 	__multiorder_tag_test(300, 8);
136 
137 	__multiorder_tag_test(0x12345678UL, 8);
138 
139 	for (i = 1; i < 10; i++)
140 		for (j = 0; j < (10 << i); j++)
141 			__multiorder_tag_test2(i, j);
142 }
143 
144 static void multiorder_check(unsigned long index, int order)
145 {
146 	unsigned long i;
147 	unsigned long min = index & ~((1UL << order) - 1);
148 	unsigned long max = min + (1UL << order);
149 	void **slot;
150 	struct item *item2 = item_create(min, order);
151 	RADIX_TREE(tree, GFP_KERNEL);
152 
153 	printf("Multiorder index %ld, order %d\n", index, order);
154 
155 	assert(item_insert_order(&tree, index, order) == 0);
156 
157 	for (i = min; i < max; i++) {
158 		struct item *item = item_lookup(&tree, i);
159 		assert(item != 0);
160 		assert(item->index == index);
161 	}
162 	for (i = 0; i < min; i++)
163 		item_check_absent(&tree, i);
164 	for (i = max; i < 2*max; i++)
165 		item_check_absent(&tree, i);
166 	for (i = min; i < max; i++)
167 		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
168 
169 	slot = radix_tree_lookup_slot(&tree, index);
170 	free(*slot);
171 	radix_tree_replace_slot(&tree, slot, item2);
172 	for (i = min; i < max; i++) {
173 		struct item *item = item_lookup(&tree, i);
174 		assert(item != 0);
175 		assert(item->index == min);
176 	}
177 
178 	assert(item_delete(&tree, min) != 0);
179 
180 	for (i = 0; i < 2*max; i++)
181 		item_check_absent(&tree, i);
182 }
183 
184 static void multiorder_shrink(unsigned long index, int order)
185 {
186 	unsigned long i;
187 	unsigned long max = 1 << order;
188 	RADIX_TREE(tree, GFP_KERNEL);
189 	struct radix_tree_node *node;
190 
191 	printf("Multiorder shrink index %ld, order %d\n", index, order);
192 
193 	assert(item_insert_order(&tree, 0, order) == 0);
194 
195 	node = tree.rnode;
196 
197 	assert(item_insert(&tree, index) == 0);
198 	assert(node != tree.rnode);
199 
200 	assert(item_delete(&tree, index) != 0);
201 	assert(node == tree.rnode);
202 
203 	for (i = 0; i < max; i++) {
204 		struct item *item = item_lookup(&tree, i);
205 		assert(item != 0);
206 		assert(item->index == 0);
207 	}
208 	for (i = max; i < 2*max; i++)
209 		item_check_absent(&tree, i);
210 
211 	if (!item_delete(&tree, 0)) {
212 		printf("failed to delete index %ld (order %d)\n", index, order);		abort();
213 	}
214 
215 	for (i = 0; i < 2*max; i++)
216 		item_check_absent(&tree, i);
217 }
218 
219 static void multiorder_insert_bug(void)
220 {
221 	RADIX_TREE(tree, GFP_KERNEL);
222 
223 	item_insert(&tree, 0);
224 	radix_tree_tag_set(&tree, 0, 0);
225 	item_insert_order(&tree, 3 << 6, 6);
226 
227 	item_kill_tree(&tree);
228 }
229 
230 void multiorder_iteration(void)
231 {
232 	RADIX_TREE(tree, GFP_KERNEL);
233 	struct radix_tree_iter iter;
234 	void **slot;
235 	int i, j, err;
236 
237 	printf("Multiorder iteration test\n");
238 
239 #define NUM_ENTRIES 11
240 	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
241 	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
242 
243 	for (i = 0; i < NUM_ENTRIES; i++) {
244 		err = item_insert_order(&tree, index[i], order[i]);
245 		assert(!err);
246 	}
247 
248 	for (j = 0; j < 256; j++) {
249 		for (i = 0; i < NUM_ENTRIES; i++)
250 			if (j <= (index[i] | ((1 << order[i]) - 1)))
251 				break;
252 
253 		radix_tree_for_each_slot(slot, &tree, &iter, j) {
254 			int height = order[i] / RADIX_TREE_MAP_SHIFT;
255 			int shift = height * RADIX_TREE_MAP_SHIFT;
256 			unsigned long mask = (1UL << order[i]) - 1;
257 			struct item *item = *slot;
258 
259 			assert((iter.index | mask) == (index[i] | mask));
260 			assert(iter.shift == shift);
261 			assert(!radix_tree_is_internal_node(item));
262 			assert((item->index | mask) == (index[i] | mask));
263 			assert(item->order == order[i]);
264 			i++;
265 		}
266 	}
267 
268 	item_kill_tree(&tree);
269 }
270 
271 void multiorder_tagged_iteration(void)
272 {
273 	RADIX_TREE(tree, GFP_KERNEL);
274 	struct radix_tree_iter iter;
275 	void **slot;
276 	int i, j;
277 
278 	printf("Multiorder tagged iteration test\n");
279 
280 #define MT_NUM_ENTRIES 9
281 	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
282 	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
283 
284 #define TAG_ENTRIES 7
285 	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
286 
287 	for (i = 0; i < MT_NUM_ENTRIES; i++)
288 		assert(!item_insert_order(&tree, index[i], order[i]));
289 
290 	assert(!radix_tree_tagged(&tree, 1));
291 
292 	for (i = 0; i < TAG_ENTRIES; i++)
293 		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
294 
295 	for (j = 0; j < 256; j++) {
296 		int k;
297 
298 		for (i = 0; i < TAG_ENTRIES; i++) {
299 			for (k = i; index[k] < tag_index[i]; k++)
300 				;
301 			if (j <= (index[k] | ((1 << order[k]) - 1)))
302 				break;
303 		}
304 
305 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
306 			unsigned long mask;
307 			struct item *item = *slot;
308 			for (k = i; index[k] < tag_index[i]; k++)
309 				;
310 			mask = (1UL << order[k]) - 1;
311 
312 			assert((iter.index | mask) == (tag_index[i] | mask));
313 			assert(!radix_tree_is_internal_node(item));
314 			assert((item->index | mask) == (tag_index[i] | mask));
315 			assert(item->order == order[k]);
316 			i++;
317 		}
318 	}
319 
320 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
321 				TAG_ENTRIES);
322 
323 	for (j = 0; j < 256; j++) {
324 		int mask, k;
325 
326 		for (i = 0; i < TAG_ENTRIES; i++) {
327 			for (k = i; index[k] < tag_index[i]; k++)
328 				;
329 			if (j <= (index[k] | ((1 << order[k]) - 1)))
330 				break;
331 		}
332 
333 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
334 			struct item *item = *slot;
335 			for (k = i; index[k] < tag_index[i]; k++)
336 				;
337 			mask = (1 << order[k]) - 1;
338 
339 			assert((iter.index | mask) == (tag_index[i] | mask));
340 			assert(!radix_tree_is_internal_node(item));
341 			assert((item->index | mask) == (tag_index[i] | mask));
342 			assert(item->order == order[k]);
343 			i++;
344 		}
345 	}
346 
347 	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
348 			== TAG_ENTRIES);
349 	i = 0;
350 	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
351 		assert(iter.index == tag_index[i]);
352 		i++;
353 	}
354 
355 	item_kill_tree(&tree);
356 }
357 
358 static void multiorder_join1(unsigned long index,
359 				unsigned order1, unsigned order2)
360 {
361 	unsigned long loc;
362 	void *item, *item2 = item_create(index + 1, order1);
363 	RADIX_TREE(tree, GFP_KERNEL);
364 
365 	item_insert_order(&tree, index, order2);
366 	item = radix_tree_lookup(&tree, index);
367 	radix_tree_join(&tree, index + 1, order1, item2);
368 	loc = find_item(&tree, item);
369 	if (loc == -1)
370 		free(item);
371 	item = radix_tree_lookup(&tree, index + 1);
372 	assert(item == item2);
373 	item_kill_tree(&tree);
374 }
375 
376 static void multiorder_join2(unsigned order1, unsigned order2)
377 {
378 	RADIX_TREE(tree, GFP_KERNEL);
379 	struct radix_tree_node *node;
380 	void *item1 = item_create(0, order1);
381 	void *item2;
382 
383 	item_insert_order(&tree, 0, order2);
384 	radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
385 	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
386 	assert(item2 == (void *)0x12UL);
387 	assert(node->exceptional == 1);
388 
389 	radix_tree_join(&tree, 0, order1, item1);
390 	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
391 	assert(item2 == item1);
392 	assert(node->exceptional == 0);
393 	item_kill_tree(&tree);
394 }
395 
396 /*
397  * This test revealed an accounting bug for exceptional entries at one point.
398  * Nodes were being freed back into the pool with an elevated exception count
399  * by radix_tree_join() and then radix_tree_split() was failing to zero the
400  * count of exceptional entries.
401  */
402 static void multiorder_join3(unsigned int order)
403 {
404 	RADIX_TREE(tree, GFP_KERNEL);
405 	struct radix_tree_node *node;
406 	void **slot;
407 	struct radix_tree_iter iter;
408 	unsigned long i;
409 
410 	for (i = 0; i < (1 << order); i++) {
411 		radix_tree_insert(&tree, i, (void *)0x12UL);
412 	}
413 
414 	radix_tree_join(&tree, 0, order, (void *)0x16UL);
415 	rcu_barrier();
416 
417 	radix_tree_split(&tree, 0, 0);
418 
419 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
420 		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
421 	}
422 
423 	__radix_tree_lookup(&tree, 0, &node, NULL);
424 	assert(node->exceptional == node->count);
425 
426 	item_kill_tree(&tree);
427 }
428 
429 static void multiorder_join(void)
430 {
431 	int i, j, idx;
432 
433 	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
434 		for (i = 1; i < 15; i++) {
435 			for (j = 0; j < i; j++) {
436 				multiorder_join1(idx, i, j);
437 			}
438 		}
439 	}
440 
441 	for (i = 1; i < 15; i++) {
442 		for (j = 0; j < i; j++) {
443 			multiorder_join2(i, j);
444 		}
445 	}
446 
447 	for (i = 3; i < 10; i++) {
448 		multiorder_join3(i);
449 	}
450 }
451 
452 static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
453 {
454 	struct radix_tree_preload *rtp = &radix_tree_preloads;
455 	if (rtp->nr != 0)
456 		printf("split(%u %u) remaining %u\n", old_order, new_order,
457 							rtp->nr);
458 	/*
459 	 * Can't check for equality here as some nodes may have been
460 	 * RCU-freed while we ran.  But we should never finish with more
461 	 * nodes allocated since they should have all been preloaded.
462 	 */
463 	if (nr_allocated > alloc)
464 		printf("split(%u %u) allocated %u %u\n", old_order, new_order,
465 							alloc, nr_allocated);
466 }
467 
468 static void __multiorder_split(int old_order, int new_order)
469 {
470 	RADIX_TREE(tree, GFP_ATOMIC);
471 	void **slot;
472 	struct radix_tree_iter iter;
473 	unsigned alloc;
474 
475 	radix_tree_preload(GFP_KERNEL);
476 	assert(item_insert_order(&tree, 0, old_order) == 0);
477 	radix_tree_preload_end();
478 
479 	/* Wipe out the preloaded cache or it'll confuse check_mem() */
480 	radix_tree_cpu_dead(0);
481 
482 	radix_tree_tag_set(&tree, 0, 2);
483 
484 	radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
485 	alloc = nr_allocated;
486 	radix_tree_split(&tree, 0, new_order);
487 	check_mem(old_order, new_order, alloc);
488 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
489 		radix_tree_iter_replace(&tree, &iter, slot,
490 					item_create(iter.index, new_order));
491 	}
492 	radix_tree_preload_end();
493 
494 	item_kill_tree(&tree);
495 }
496 
497 static void __multiorder_split2(int old_order, int new_order)
498 {
499 	RADIX_TREE(tree, GFP_KERNEL);
500 	void **slot;
501 	struct radix_tree_iter iter;
502 	struct radix_tree_node *node;
503 	void *item;
504 
505 	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
506 
507 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
508 	assert(item == (void *)0x12);
509 	assert(node->exceptional > 0);
510 
511 	radix_tree_split(&tree, 0, new_order);
512 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
513 		radix_tree_iter_replace(&tree, &iter, slot,
514 					item_create(iter.index, new_order));
515 	}
516 
517 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
518 	assert(item != (void *)0x12);
519 	assert(node->exceptional == 0);
520 
521 	item_kill_tree(&tree);
522 }
523 
524 static void __multiorder_split3(int old_order, int new_order)
525 {
526 	RADIX_TREE(tree, GFP_KERNEL);
527 	void **slot;
528 	struct radix_tree_iter iter;
529 	struct radix_tree_node *node;
530 	void *item;
531 
532 	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
533 
534 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
535 	assert(item == (void *)0x12);
536 	assert(node->exceptional > 0);
537 
538 	radix_tree_split(&tree, 0, new_order);
539 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
540 		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
541 	}
542 
543 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
544 	assert(item == (void *)0x16);
545 	assert(node->exceptional > 0);
546 
547 	item_kill_tree(&tree);
548 
549 	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
550 
551 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
552 	assert(item == (void *)0x12);
553 	assert(node->exceptional > 0);
554 
555 	radix_tree_split(&tree, 0, new_order);
556 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
557 		if (iter.index == (1 << new_order))
558 			radix_tree_iter_replace(&tree, &iter, slot,
559 						(void *)0x16);
560 		else
561 			radix_tree_iter_replace(&tree, &iter, slot, NULL);
562 	}
563 
564 	item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
565 	assert(item == (void *)0x16);
566 	assert(node->count == node->exceptional);
567 	do {
568 		node = node->parent;
569 		if (!node)
570 			break;
571 		assert(node->count == 1);
572 		assert(node->exceptional == 0);
573 	} while (1);
574 
575 	item_kill_tree(&tree);
576 }
577 
578 static void multiorder_split(void)
579 {
580 	int i, j;
581 
582 	for (i = 3; i < 11; i++)
583 		for (j = 0; j < i; j++) {
584 			__multiorder_split(i, j);
585 			__multiorder_split2(i, j);
586 			__multiorder_split3(i, j);
587 		}
588 }
589 
590 static void multiorder_account(void)
591 {
592 	RADIX_TREE(tree, GFP_KERNEL);
593 	struct radix_tree_node *node;
594 	void **slot;
595 
596 	item_insert_order(&tree, 0, 5);
597 
598 	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
599 	__radix_tree_lookup(&tree, 0, &node, NULL);
600 	assert(node->count == node->exceptional * 2);
601 	radix_tree_delete(&tree, 1 << 5);
602 	assert(node->exceptional == 0);
603 
604 	__radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
605 	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
606 	assert(node->count == node->exceptional * 2);
607 	__radix_tree_replace(&tree, node, slot, NULL, NULL, NULL);
608 	assert(node->exceptional == 0);
609 
610 	item_kill_tree(&tree);
611 }
612 
613 void multiorder_checks(void)
614 {
615 	int i;
616 
617 	for (i = 0; i < 20; i++) {
618 		multiorder_check(200, i);
619 		multiorder_check(0, i);
620 		multiorder_check((1UL << i) + 1, i);
621 	}
622 
623 	for (i = 0; i < 15; i++)
624 		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
625 
626 	multiorder_insert_bug();
627 	multiorder_tag_tests();
628 	multiorder_iteration();
629 	multiorder_tagged_iteration();
630 	multiorder_join();
631 	multiorder_split();
632 	multiorder_account();
633 
634 	radix_tree_cpu_dead(0);
635 }
636