1 /*
2  * multiorder.c: Multi-order radix tree entry testing
3  * Copyright (c) 2016 Intel Corporation
4  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 
20 #include "test.h"
21 
22 #define for_each_index(i, base, order) \
23 	for (i = base; i < base + (1 << order); i++)
24 
25 static void __multiorder_tag_test(int index, int order)
26 {
27 	RADIX_TREE(tree, GFP_KERNEL);
28 	int base, err, i;
29 
30 	/* our canonical entry */
31 	base = index & ~((1 << order) - 1);
32 
33 	printf("Multiorder tag test with index %d, canonical entry %d\n",
34 			index, base);
35 
36 	err = item_insert_order(&tree, index, order);
37 	assert(!err);
38 
39 	/*
40 	 * Verify we get collisions for covered indices.  We try and fail to
41 	 * insert an exceptional entry so we don't leak memory via
42 	 * item_insert_order().
43 	 */
44 	for_each_index(i, base, order) {
45 		err = __radix_tree_insert(&tree, i, order,
46 				(void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
47 		assert(err == -EEXIST);
48 	}
49 
50 	for_each_index(i, base, order) {
51 		assert(!radix_tree_tag_get(&tree, i, 0));
52 		assert(!radix_tree_tag_get(&tree, i, 1));
53 	}
54 
55 	assert(radix_tree_tag_set(&tree, index, 0));
56 
57 	for_each_index(i, base, order) {
58 		assert(radix_tree_tag_get(&tree, i, 0));
59 		assert(!radix_tree_tag_get(&tree, i, 1));
60 	}
61 
62 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 	assert(radix_tree_tag_clear(&tree, index, 0));
64 
65 	for_each_index(i, base, order) {
66 		assert(!radix_tree_tag_get(&tree, i, 0));
67 		assert(radix_tree_tag_get(&tree, i, 1));
68 	}
69 
70 	assert(radix_tree_tag_clear(&tree, index, 1));
71 
72 	assert(!radix_tree_tagged(&tree, 0));
73 	assert(!radix_tree_tagged(&tree, 1));
74 
75 	item_kill_tree(&tree);
76 }
77 
78 static void multiorder_tag_tests(void)
79 {
80 	/* test multi-order entry for indices 0-7 with no sibling pointers */
81 	__multiorder_tag_test(0, 3);
82 	__multiorder_tag_test(5, 3);
83 
84 	/* test multi-order entry for indices 8-15 with no sibling pointers */
85 	__multiorder_tag_test(8, 3);
86 	__multiorder_tag_test(15, 3);
87 
88 	/*
89 	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
90 	 * This is broken up as follows:
91 	 * 0-7:		canonical entry
92 	 * 8-15:	sibling 1
93 	 * 16-23:	sibling 2
94 	 * 24-31:	sibling 3
95 	 */
96 	__multiorder_tag_test(0, 5);
97 	__multiorder_tag_test(29, 5);
98 
99 	/* same test, but with indices 32-63 */
100 	__multiorder_tag_test(32, 5);
101 	__multiorder_tag_test(44, 5);
102 
103 	/*
104 	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
105 	 * This is broken up as follows:
106 	 * 0-63:	canonical entry
107 	 * 64-127:	sibling 1
108 	 * 128-191:	sibling 2
109 	 * 192-255:	sibling 3
110 	 */
111 	__multiorder_tag_test(0, 8);
112 	__multiorder_tag_test(190, 8);
113 
114 	/* same test, but with indices 256-511 */
115 	__multiorder_tag_test(256, 8);
116 	__multiorder_tag_test(300, 8);
117 
118 	__multiorder_tag_test(0x12345678UL, 8);
119 }
120 
121 static void multiorder_check(unsigned long index, int order)
122 {
123 	unsigned long i;
124 	unsigned long min = index & ~((1UL << order) - 1);
125 	unsigned long max = min + (1UL << order);
126 	void **slot;
127 	struct item *item2 = item_create(min, order);
128 	RADIX_TREE(tree, GFP_KERNEL);
129 
130 	printf("Multiorder index %ld, order %d\n", index, order);
131 
132 	assert(item_insert_order(&tree, index, order) == 0);
133 
134 	for (i = min; i < max; i++) {
135 		struct item *item = item_lookup(&tree, i);
136 		assert(item != 0);
137 		assert(item->index == index);
138 	}
139 	for (i = 0; i < min; i++)
140 		item_check_absent(&tree, i);
141 	for (i = max; i < 2*max; i++)
142 		item_check_absent(&tree, i);
143 	for (i = min; i < max; i++)
144 		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
145 
146 	slot = radix_tree_lookup_slot(&tree, index);
147 	free(*slot);
148 	radix_tree_replace_slot(&tree, slot, item2);
149 	for (i = min; i < max; i++) {
150 		struct item *item = item_lookup(&tree, i);
151 		assert(item != 0);
152 		assert(item->index == min);
153 	}
154 
155 	assert(item_delete(&tree, min) != 0);
156 
157 	for (i = 0; i < 2*max; i++)
158 		item_check_absent(&tree, i);
159 }
160 
161 static void multiorder_shrink(unsigned long index, int order)
162 {
163 	unsigned long i;
164 	unsigned long max = 1 << order;
165 	RADIX_TREE(tree, GFP_KERNEL);
166 	struct radix_tree_node *node;
167 
168 	printf("Multiorder shrink index %ld, order %d\n", index, order);
169 
170 	assert(item_insert_order(&tree, 0, order) == 0);
171 
172 	node = tree.rnode;
173 
174 	assert(item_insert(&tree, index) == 0);
175 	assert(node != tree.rnode);
176 
177 	assert(item_delete(&tree, index) != 0);
178 	assert(node == tree.rnode);
179 
180 	for (i = 0; i < max; i++) {
181 		struct item *item = item_lookup(&tree, i);
182 		assert(item != 0);
183 		assert(item->index == 0);
184 	}
185 	for (i = max; i < 2*max; i++)
186 		item_check_absent(&tree, i);
187 
188 	if (!item_delete(&tree, 0)) {
189 		printf("failed to delete index %ld (order %d)\n", index, order);		abort();
190 	}
191 
192 	for (i = 0; i < 2*max; i++)
193 		item_check_absent(&tree, i);
194 }
195 
196 static void multiorder_insert_bug(void)
197 {
198 	RADIX_TREE(tree, GFP_KERNEL);
199 
200 	item_insert(&tree, 0);
201 	radix_tree_tag_set(&tree, 0, 0);
202 	item_insert_order(&tree, 3 << 6, 6);
203 
204 	item_kill_tree(&tree);
205 }
206 
207 void multiorder_iteration(void)
208 {
209 	RADIX_TREE(tree, GFP_KERNEL);
210 	struct radix_tree_iter iter;
211 	void **slot;
212 	int i, j, err;
213 
214 	printf("Multiorder iteration test\n");
215 
216 #define NUM_ENTRIES 11
217 	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
218 	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
219 
220 	for (i = 0; i < NUM_ENTRIES; i++) {
221 		err = item_insert_order(&tree, index[i], order[i]);
222 		assert(!err);
223 	}
224 
225 	for (j = 0; j < 256; j++) {
226 		for (i = 0; i < NUM_ENTRIES; i++)
227 			if (j <= (index[i] | ((1 << order[i]) - 1)))
228 				break;
229 
230 		radix_tree_for_each_slot(slot, &tree, &iter, j) {
231 			int height = order[i] / RADIX_TREE_MAP_SHIFT;
232 			int shift = height * RADIX_TREE_MAP_SHIFT;
233 			unsigned long mask = (1UL << order[i]) - 1;
234 			struct item *item = *slot;
235 
236 			assert((iter.index | mask) == (index[i] | mask));
237 			assert(iter.shift == shift);
238 			assert(!radix_tree_is_internal_node(item));
239 			assert((item->index | mask) == (index[i] | mask));
240 			assert(item->order == order[i]);
241 			i++;
242 		}
243 	}
244 
245 	item_kill_tree(&tree);
246 }
247 
248 void multiorder_tagged_iteration(void)
249 {
250 	RADIX_TREE(tree, GFP_KERNEL);
251 	struct radix_tree_iter iter;
252 	void **slot;
253 	int i, j;
254 
255 	printf("Multiorder tagged iteration test\n");
256 
257 #define MT_NUM_ENTRIES 9
258 	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
259 	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
260 
261 #define TAG_ENTRIES 7
262 	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
263 
264 	for (i = 0; i < MT_NUM_ENTRIES; i++)
265 		assert(!item_insert_order(&tree, index[i], order[i]));
266 
267 	assert(!radix_tree_tagged(&tree, 1));
268 
269 	for (i = 0; i < TAG_ENTRIES; i++)
270 		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
271 
272 	for (j = 0; j < 256; j++) {
273 		int k;
274 
275 		for (i = 0; i < TAG_ENTRIES; i++) {
276 			for (k = i; index[k] < tag_index[i]; k++)
277 				;
278 			if (j <= (index[k] | ((1 << order[k]) - 1)))
279 				break;
280 		}
281 
282 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
283 			unsigned long mask;
284 			struct item *item = *slot;
285 			for (k = i; index[k] < tag_index[i]; k++)
286 				;
287 			mask = (1UL << order[k]) - 1;
288 
289 			assert((iter.index | mask) == (tag_index[i] | mask));
290 			assert(!radix_tree_is_internal_node(item));
291 			assert((item->index | mask) == (tag_index[i] | mask));
292 			assert(item->order == order[k]);
293 			i++;
294 		}
295 	}
296 
297 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
298 				TAG_ENTRIES);
299 
300 	for (j = 0; j < 256; j++) {
301 		int mask, k;
302 
303 		for (i = 0; i < TAG_ENTRIES; i++) {
304 			for (k = i; index[k] < tag_index[i]; k++)
305 				;
306 			if (j <= (index[k] | ((1 << order[k]) - 1)))
307 				break;
308 		}
309 
310 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
311 			struct item *item = *slot;
312 			for (k = i; index[k] < tag_index[i]; k++)
313 				;
314 			mask = (1 << order[k]) - 1;
315 
316 			assert((iter.index | mask) == (tag_index[i] | mask));
317 			assert(!radix_tree_is_internal_node(item));
318 			assert((item->index | mask) == (tag_index[i] | mask));
319 			assert(item->order == order[k]);
320 			i++;
321 		}
322 	}
323 
324 	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
325 			== TAG_ENTRIES);
326 	i = 0;
327 	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
328 		assert(iter.index == tag_index[i]);
329 		i++;
330 	}
331 
332 	item_kill_tree(&tree);
333 }
334 
335 static void __multiorder_join(unsigned long index,
336 				unsigned order1, unsigned order2)
337 {
338 	unsigned long loc;
339 	void *item, *item2 = item_create(index + 1, order1);
340 	RADIX_TREE(tree, GFP_KERNEL);
341 
342 	item_insert_order(&tree, index, order2);
343 	item = radix_tree_lookup(&tree, index);
344 	radix_tree_join(&tree, index + 1, order1, item2);
345 	loc = find_item(&tree, item);
346 	if (loc == -1)
347 		free(item);
348 	item = radix_tree_lookup(&tree, index + 1);
349 	assert(item == item2);
350 	item_kill_tree(&tree);
351 }
352 
353 static void __multiorder_join2(unsigned order1, unsigned order2)
354 {
355 	RADIX_TREE(tree, GFP_KERNEL);
356 	struct radix_tree_node *node;
357 	void *item1 = item_create(0, order1);
358 	void *item2;
359 
360 	item_insert_order(&tree, 0, order2);
361 	radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
362 	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
363 	assert(item2 == (void *)0x12UL);
364 	assert(node->exceptional == 1);
365 
366 	radix_tree_join(&tree, 0, order1, item1);
367 	item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
368 	assert(item2 == item1);
369 	assert(node->exceptional == 0);
370 	item_kill_tree(&tree);
371 }
372 
373 static void multiorder_join(void)
374 {
375 	int i, j, idx;
376 
377 	for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
378 		for (i = 1; i < 15; i++) {
379 			for (j = 0; j < i; j++) {
380 				__multiorder_join(idx, i, j);
381 			}
382 		}
383 	}
384 
385 	for (i = 1; i < 15; i++) {
386 		for (j = 0; j < i; j++) {
387 			__multiorder_join2(i, j);
388 		}
389 	}
390 }
391 
392 static void __multiorder_split(int old_order, int new_order)
393 {
394 	RADIX_TREE(tree, GFP_KERNEL);
395 	void **slot;
396 	struct radix_tree_iter iter;
397 	struct radix_tree_node *node;
398 	void *item;
399 
400 	item_insert_order(&tree, 0, old_order);
401 	radix_tree_tag_set(&tree, 0, 2);
402 	radix_tree_split(&tree, 0, new_order);
403 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
404 		radix_tree_iter_replace(&tree, &iter, slot,
405 					item_create(iter.index, new_order));
406 	}
407 
408 	item_kill_tree(&tree);
409 
410 	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
411 
412 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
413 	assert(item == (void *)0x12);
414 	assert(node->exceptional > 0);
415 
416 	radix_tree_split(&tree, 0, new_order);
417 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
418 		radix_tree_iter_replace(&tree, &iter, slot,
419 					item_create(iter.index, new_order));
420 	}
421 
422 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
423 	assert(item != (void *)0x12);
424 	assert(node->exceptional == 0);
425 
426 	item_kill_tree(&tree);
427 
428 	__radix_tree_insert(&tree, 0, old_order, (void *)0x12);
429 
430 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
431 	assert(item == (void *)0x12);
432 	assert(node->exceptional > 0);
433 
434 	radix_tree_split(&tree, 0, new_order);
435 	radix_tree_for_each_slot(slot, &tree, &iter, 0) {
436 		radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
437 	}
438 
439 	item = __radix_tree_lookup(&tree, 0, &node, NULL);
440 	assert(item == (void *)0x16);
441 	assert(node->exceptional > 0);
442 
443 	item_kill_tree(&tree);
444 }
445 
446 static void multiorder_split(void)
447 {
448 	int i, j;
449 
450 	for (i = 9; i < 19; i++)
451 		for (j = 0; j < i; j++)
452 			__multiorder_split(i, j);
453 }
454 
455 void multiorder_checks(void)
456 {
457 	int i;
458 
459 	for (i = 0; i < 20; i++) {
460 		multiorder_check(200, i);
461 		multiorder_check(0, i);
462 		multiorder_check((1UL << i) + 1, i);
463 	}
464 
465 	for (i = 0; i < 15; i++)
466 		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
467 
468 	multiorder_insert_bug();
469 	multiorder_tag_tests();
470 	multiorder_iteration();
471 	multiorder_tagged_iteration();
472 	multiorder_join();
473 	multiorder_split();
474 }
475