1 /*
2  * multiorder.c: Multi-order radix tree entry testing
3  * Copyright (c) 2016 Intel Corporation
4  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <pthread.h>
20 
21 #include "test.h"
22 
23 #define for_each_index(i, base, order) \
24 	for (i = base; i < base + (1 << order); i++)
25 
26 static void __multiorder_tag_test(int index, int order)
27 {
28 	RADIX_TREE(tree, GFP_KERNEL);
29 	int base, err, i;
30 
31 	/* our canonical entry */
32 	base = index & ~((1 << order) - 1);
33 
34 	printv(2, "Multiorder tag test with index %d, canonical entry %d\n",
35 			index, base);
36 
37 	err = item_insert_order(&tree, index, order);
38 	assert(!err);
39 
40 	/*
41 	 * Verify we get collisions for covered indices.  We try and fail to
42 	 * insert a value entry so we don't leak memory via
43 	 * item_insert_order().
44 	 */
45 	for_each_index(i, base, order) {
46 		err = __radix_tree_insert(&tree, i, order, xa_mk_value(0xA0));
47 		assert(err == -EEXIST);
48 	}
49 
50 	for_each_index(i, base, order) {
51 		assert(!radix_tree_tag_get(&tree, i, 0));
52 		assert(!radix_tree_tag_get(&tree, i, 1));
53 	}
54 
55 	assert(radix_tree_tag_set(&tree, index, 0));
56 
57 	for_each_index(i, base, order) {
58 		assert(radix_tree_tag_get(&tree, i, 0));
59 		assert(!radix_tree_tag_get(&tree, i, 1));
60 	}
61 
62 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 	assert(radix_tree_tag_clear(&tree, index, 0));
64 
65 	for_each_index(i, base, order) {
66 		assert(!radix_tree_tag_get(&tree, i, 0));
67 		assert(radix_tree_tag_get(&tree, i, 1));
68 	}
69 
70 	assert(radix_tree_tag_clear(&tree, index, 1));
71 
72 	assert(!radix_tree_tagged(&tree, 0));
73 	assert(!radix_tree_tagged(&tree, 1));
74 
75 	item_kill_tree(&tree);
76 }
77 
78 static void __multiorder_tag_test2(unsigned order, unsigned long index2)
79 {
80 	RADIX_TREE(tree, GFP_KERNEL);
81 	unsigned long index = (1 << order);
82 	index2 += index;
83 
84 	assert(item_insert_order(&tree, 0, order) == 0);
85 	assert(item_insert(&tree, index2) == 0);
86 
87 	assert(radix_tree_tag_set(&tree, 0, 0));
88 	assert(radix_tree_tag_set(&tree, index2, 0));
89 
90 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
91 
92 	item_kill_tree(&tree);
93 }
94 
95 static void multiorder_tag_tests(void)
96 {
97 	int i, j;
98 
99 	/* test multi-order entry for indices 0-7 with no sibling pointers */
100 	__multiorder_tag_test(0, 3);
101 	__multiorder_tag_test(5, 3);
102 
103 	/* test multi-order entry for indices 8-15 with no sibling pointers */
104 	__multiorder_tag_test(8, 3);
105 	__multiorder_tag_test(15, 3);
106 
107 	/*
108 	 * Our order 5 entry covers indices 0-31 in a tree with height=2.
109 	 * This is broken up as follows:
110 	 * 0-7:		canonical entry
111 	 * 8-15:	sibling 1
112 	 * 16-23:	sibling 2
113 	 * 24-31:	sibling 3
114 	 */
115 	__multiorder_tag_test(0, 5);
116 	__multiorder_tag_test(29, 5);
117 
118 	/* same test, but with indices 32-63 */
119 	__multiorder_tag_test(32, 5);
120 	__multiorder_tag_test(44, 5);
121 
122 	/*
123 	 * Our order 8 entry covers indices 0-255 in a tree with height=3.
124 	 * This is broken up as follows:
125 	 * 0-63:	canonical entry
126 	 * 64-127:	sibling 1
127 	 * 128-191:	sibling 2
128 	 * 192-255:	sibling 3
129 	 */
130 	__multiorder_tag_test(0, 8);
131 	__multiorder_tag_test(190, 8);
132 
133 	/* same test, but with indices 256-511 */
134 	__multiorder_tag_test(256, 8);
135 	__multiorder_tag_test(300, 8);
136 
137 	__multiorder_tag_test(0x12345678UL, 8);
138 
139 	for (i = 1; i < 10; i++)
140 		for (j = 0; j < (10 << i); j++)
141 			__multiorder_tag_test2(i, j);
142 }
143 
144 static void multiorder_check(unsigned long index, int order)
145 {
146 	unsigned long i;
147 	unsigned long min = index & ~((1UL << order) - 1);
148 	unsigned long max = min + (1UL << order);
149 	void **slot;
150 	struct item *item2 = item_create(min, order);
151 	RADIX_TREE(tree, GFP_KERNEL);
152 
153 	printv(2, "Multiorder index %ld, order %d\n", index, order);
154 
155 	assert(item_insert_order(&tree, index, order) == 0);
156 
157 	for (i = min; i < max; i++) {
158 		struct item *item = item_lookup(&tree, i);
159 		assert(item != 0);
160 		assert(item->index == index);
161 	}
162 	for (i = 0; i < min; i++)
163 		item_check_absent(&tree, i);
164 	for (i = max; i < 2*max; i++)
165 		item_check_absent(&tree, i);
166 	for (i = min; i < max; i++)
167 		assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
168 
169 	slot = radix_tree_lookup_slot(&tree, index);
170 	free(*slot);
171 	radix_tree_replace_slot(&tree, slot, item2);
172 	for (i = min; i < max; i++) {
173 		struct item *item = item_lookup(&tree, i);
174 		assert(item != 0);
175 		assert(item->index == min);
176 	}
177 
178 	assert(item_delete(&tree, min) != 0);
179 
180 	for (i = 0; i < 2*max; i++)
181 		item_check_absent(&tree, i);
182 }
183 
184 static void multiorder_shrink(unsigned long index, int order)
185 {
186 	unsigned long i;
187 	unsigned long max = 1 << order;
188 	RADIX_TREE(tree, GFP_KERNEL);
189 	struct radix_tree_node *node;
190 
191 	printv(2, "Multiorder shrink index %ld, order %d\n", index, order);
192 
193 	assert(item_insert_order(&tree, 0, order) == 0);
194 
195 	node = tree.xa_head;
196 
197 	assert(item_insert(&tree, index) == 0);
198 	assert(node != tree.xa_head);
199 
200 	assert(item_delete(&tree, index) != 0);
201 	assert(node == tree.xa_head);
202 
203 	for (i = 0; i < max; i++) {
204 		struct item *item = item_lookup(&tree, i);
205 		assert(item != 0);
206 		assert(item->index == 0);
207 	}
208 	for (i = max; i < 2*max; i++)
209 		item_check_absent(&tree, i);
210 
211 	if (!item_delete(&tree, 0)) {
212 		printv(2, "failed to delete index %ld (order %d)\n", index, order);
213 		abort();
214 	}
215 
216 	for (i = 0; i < 2*max; i++)
217 		item_check_absent(&tree, i);
218 }
219 
220 static void multiorder_insert_bug(void)
221 {
222 	RADIX_TREE(tree, GFP_KERNEL);
223 
224 	item_insert(&tree, 0);
225 	radix_tree_tag_set(&tree, 0, 0);
226 	item_insert_order(&tree, 3 << 6, 6);
227 
228 	item_kill_tree(&tree);
229 }
230 
231 void multiorder_iteration(void)
232 {
233 	RADIX_TREE(tree, GFP_KERNEL);
234 	struct radix_tree_iter iter;
235 	void **slot;
236 	int i, j, err;
237 
238 	printv(1, "Multiorder iteration test\n");
239 
240 #define NUM_ENTRIES 11
241 	int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
242 	int order[NUM_ENTRIES] = {1, 1, 2, 3,  4,  1,  0,  1,  3,  0, 7};
243 
244 	for (i = 0; i < NUM_ENTRIES; i++) {
245 		err = item_insert_order(&tree, index[i], order[i]);
246 		assert(!err);
247 	}
248 
249 	for (j = 0; j < 256; j++) {
250 		for (i = 0; i < NUM_ENTRIES; i++)
251 			if (j <= (index[i] | ((1 << order[i]) - 1)))
252 				break;
253 
254 		radix_tree_for_each_slot(slot, &tree, &iter, j) {
255 			int height = order[i] / RADIX_TREE_MAP_SHIFT;
256 			int shift = height * RADIX_TREE_MAP_SHIFT;
257 			unsigned long mask = (1UL << order[i]) - 1;
258 			struct item *item = *slot;
259 
260 			assert((iter.index | mask) == (index[i] | mask));
261 			assert(iter.shift == shift);
262 			assert(!radix_tree_is_internal_node(item));
263 			assert((item->index | mask) == (index[i] | mask));
264 			assert(item->order == order[i]);
265 			i++;
266 		}
267 	}
268 
269 	item_kill_tree(&tree);
270 }
271 
272 void multiorder_tagged_iteration(void)
273 {
274 	RADIX_TREE(tree, GFP_KERNEL);
275 	struct radix_tree_iter iter;
276 	void **slot;
277 	int i, j;
278 
279 	printv(1, "Multiorder tagged iteration test\n");
280 
281 #define MT_NUM_ENTRIES 9
282 	int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
283 	int order[MT_NUM_ENTRIES] = {1, 0, 2, 4,  3,  1,  3,  0,   7};
284 
285 #define TAG_ENTRIES 7
286 	int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
287 
288 	for (i = 0; i < MT_NUM_ENTRIES; i++)
289 		assert(!item_insert_order(&tree, index[i], order[i]));
290 
291 	assert(!radix_tree_tagged(&tree, 1));
292 
293 	for (i = 0; i < TAG_ENTRIES; i++)
294 		assert(radix_tree_tag_set(&tree, tag_index[i], 1));
295 
296 	for (j = 0; j < 256; j++) {
297 		int k;
298 
299 		for (i = 0; i < TAG_ENTRIES; i++) {
300 			for (k = i; index[k] < tag_index[i]; k++)
301 				;
302 			if (j <= (index[k] | ((1 << order[k]) - 1)))
303 				break;
304 		}
305 
306 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
307 			unsigned long mask;
308 			struct item *item = *slot;
309 			for (k = i; index[k] < tag_index[i]; k++)
310 				;
311 			mask = (1UL << order[k]) - 1;
312 
313 			assert((iter.index | mask) == (tag_index[i] | mask));
314 			assert(!radix_tree_is_internal_node(item));
315 			assert((item->index | mask) == (tag_index[i] | mask));
316 			assert(item->order == order[k]);
317 			i++;
318 		}
319 	}
320 
321 	assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
322 				TAG_ENTRIES);
323 
324 	for (j = 0; j < 256; j++) {
325 		int mask, k;
326 
327 		for (i = 0; i < TAG_ENTRIES; i++) {
328 			for (k = i; index[k] < tag_index[i]; k++)
329 				;
330 			if (j <= (index[k] | ((1 << order[k]) - 1)))
331 				break;
332 		}
333 
334 		radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
335 			struct item *item = *slot;
336 			for (k = i; index[k] < tag_index[i]; k++)
337 				;
338 			mask = (1 << order[k]) - 1;
339 
340 			assert((iter.index | mask) == (tag_index[i] | mask));
341 			assert(!radix_tree_is_internal_node(item));
342 			assert((item->index | mask) == (tag_index[i] | mask));
343 			assert(item->order == order[k]);
344 			i++;
345 		}
346 	}
347 
348 	assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
349 			== TAG_ENTRIES);
350 	i = 0;
351 	radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
352 		assert(iter.index == tag_index[i]);
353 		i++;
354 	}
355 
356 	item_kill_tree(&tree);
357 }
358 
359 static void multiorder_account(void)
360 {
361 	RADIX_TREE(tree, GFP_KERNEL);
362 	struct radix_tree_node *node;
363 	void **slot;
364 
365 	item_insert_order(&tree, 0, 5);
366 
367 	__radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
368 	__radix_tree_lookup(&tree, 0, &node, NULL);
369 	assert(node->count == node->nr_values * 2);
370 	radix_tree_delete(&tree, 1 << 5);
371 	assert(node->nr_values == 0);
372 
373 	__radix_tree_insert(&tree, 1 << 5, 5, xa_mk_value(5));
374 	__radix_tree_lookup(&tree, 1 << 5, &node, &slot);
375 	assert(node->count == node->nr_values * 2);
376 	__radix_tree_replace(&tree, node, slot, NULL);
377 	assert(node->nr_values == 0);
378 
379 	item_kill_tree(&tree);
380 }
381 
382 bool stop_iteration = false;
383 
384 static void *creator_func(void *ptr)
385 {
386 	/* 'order' is set up to ensure we have sibling entries */
387 	unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
388 	struct radix_tree_root *tree = ptr;
389 	int i;
390 
391 	for (i = 0; i < 10000; i++) {
392 		item_insert_order(tree, 0, order);
393 		item_delete_rcu(tree, 0);
394 	}
395 
396 	stop_iteration = true;
397 	return NULL;
398 }
399 
400 static void *iterator_func(void *ptr)
401 {
402 	struct radix_tree_root *tree = ptr;
403 	struct radix_tree_iter iter;
404 	struct item *item;
405 	void **slot;
406 
407 	while (!stop_iteration) {
408 		rcu_read_lock();
409 		radix_tree_for_each_slot(slot, tree, &iter, 0) {
410 			item = radix_tree_deref_slot(slot);
411 
412 			if (!item)
413 				continue;
414 			if (radix_tree_deref_retry(item)) {
415 				slot = radix_tree_iter_retry(&iter);
416 				continue;
417 			}
418 
419 			item_sanity(item, iter.index);
420 		}
421 		rcu_read_unlock();
422 	}
423 	return NULL;
424 }
425 
426 static void multiorder_iteration_race(void)
427 {
428 	const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
429 	pthread_t worker_thread[num_threads];
430 	RADIX_TREE(tree, GFP_KERNEL);
431 	int i;
432 
433 	pthread_create(&worker_thread[0], NULL, &creator_func, &tree);
434 	for (i = 1; i < num_threads; i++)
435 		pthread_create(&worker_thread[i], NULL, &iterator_func, &tree);
436 
437 	for (i = 0; i < num_threads; i++)
438 		pthread_join(worker_thread[i], NULL);
439 
440 	item_kill_tree(&tree);
441 }
442 
443 void multiorder_checks(void)
444 {
445 	int i;
446 
447 	for (i = 0; i < 20; i++) {
448 		multiorder_check(200, i);
449 		multiorder_check(0, i);
450 		multiorder_check((1UL << i) + 1, i);
451 	}
452 
453 	for (i = 0; i < 15; i++)
454 		multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
455 
456 	multiorder_insert_bug();
457 	multiorder_tag_tests();
458 	multiorder_iteration();
459 	multiorder_tagged_iteration();
460 	multiorder_account();
461 	multiorder_iteration_race();
462 
463 	radix_tree_cpu_dead(0);
464 }
465 
466 int __weak main(void)
467 {
468 	radix_tree_init();
469 	multiorder_checks();
470 	return 0;
471 }
472