1 /* 2 * thread-stack.c: Synthesize a thread's stack using call / return events 3 * Copyright (c) 2014, Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 */ 15 16 #include <linux/rbtree.h> 17 #include <linux/list.h> 18 #include <linux/log2.h> 19 #include <errno.h> 20 #include "thread.h" 21 #include "event.h" 22 #include "machine.h" 23 #include "env.h" 24 #include "util.h" 25 #include "debug.h" 26 #include "symbol.h" 27 #include "comm.h" 28 #include "call-path.h" 29 #include "thread-stack.h" 30 31 #define STACK_GROWTH 2048 32 33 /* 34 * State of retpoline detection. 35 * 36 * RETPOLINE_NONE: no retpoline detection 37 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible 38 * X86_RETPOLINE_DETECTED: x86 retpoline detected 39 */ 40 enum retpoline_state_t { 41 RETPOLINE_NONE, 42 X86_RETPOLINE_POSSIBLE, 43 X86_RETPOLINE_DETECTED, 44 }; 45 46 /** 47 * struct thread_stack_entry - thread stack entry. 48 * @ret_addr: return address 49 * @timestamp: timestamp (if known) 50 * @ref: external reference (e.g. db_id of sample) 51 * @branch_count: the branch count when the entry was created 52 * @db_id: id used for db-export 53 * @cp: call path 54 * @no_call: a 'call' was not seen 55 * @trace_end: a 'call' but trace ended 56 * @non_call: a branch but not a 'call' to the start of a different symbol 57 */ 58 struct thread_stack_entry { 59 u64 ret_addr; 60 u64 timestamp; 61 u64 ref; 62 u64 branch_count; 63 u64 db_id; 64 struct call_path *cp; 65 bool no_call; 66 bool trace_end; 67 bool non_call; 68 }; 69 70 /** 71 * struct thread_stack - thread stack constructed from 'call' and 'return' 72 * branch samples. 73 * @stack: array that holds the stack 74 * @cnt: number of entries in the stack 75 * @sz: current maximum stack size 76 * @trace_nr: current trace number 77 * @branch_count: running branch count 78 * @kernel_start: kernel start address 79 * @last_time: last timestamp 80 * @crp: call/return processor 81 * @comm: current comm 82 * @arr_sz: size of array if this is the first element of an array 83 * @rstate: used to detect retpolines 84 */ 85 struct thread_stack { 86 struct thread_stack_entry *stack; 87 size_t cnt; 88 size_t sz; 89 u64 trace_nr; 90 u64 branch_count; 91 u64 kernel_start; 92 u64 last_time; 93 struct call_return_processor *crp; 94 struct comm *comm; 95 unsigned int arr_sz; 96 enum retpoline_state_t rstate; 97 }; 98 99 /* 100 * Assume pid == tid == 0 identifies the idle task as defined by 101 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu, 102 * and therefore requires a stack for each cpu. 103 */ 104 static inline bool thread_stack__per_cpu(struct thread *thread) 105 { 106 return !(thread->tid || thread->pid_); 107 } 108 109 static int thread_stack__grow(struct thread_stack *ts) 110 { 111 struct thread_stack_entry *new_stack; 112 size_t sz, new_sz; 113 114 new_sz = ts->sz + STACK_GROWTH; 115 sz = new_sz * sizeof(struct thread_stack_entry); 116 117 new_stack = realloc(ts->stack, sz); 118 if (!new_stack) 119 return -ENOMEM; 120 121 ts->stack = new_stack; 122 ts->sz = new_sz; 123 124 return 0; 125 } 126 127 static int thread_stack__init(struct thread_stack *ts, struct thread *thread, 128 struct call_return_processor *crp) 129 { 130 int err; 131 132 err = thread_stack__grow(ts); 133 if (err) 134 return err; 135 136 if (thread->mg && thread->mg->machine) { 137 struct machine *machine = thread->mg->machine; 138 const char *arch = perf_env__arch(machine->env); 139 140 ts->kernel_start = machine__kernel_start(machine); 141 if (!strcmp(arch, "x86")) 142 ts->rstate = X86_RETPOLINE_POSSIBLE; 143 } else { 144 ts->kernel_start = 1ULL << 63; 145 } 146 ts->crp = crp; 147 148 return 0; 149 } 150 151 static struct thread_stack *thread_stack__new(struct thread *thread, int cpu, 152 struct call_return_processor *crp) 153 { 154 struct thread_stack *ts = thread->ts, *new_ts; 155 unsigned int old_sz = ts ? ts->arr_sz : 0; 156 unsigned int new_sz = 1; 157 158 if (thread_stack__per_cpu(thread) && cpu > 0) 159 new_sz = roundup_pow_of_two(cpu + 1); 160 161 if (!ts || new_sz > old_sz) { 162 new_ts = calloc(new_sz, sizeof(*ts)); 163 if (!new_ts) 164 return NULL; 165 if (ts) 166 memcpy(new_ts, ts, old_sz * sizeof(*ts)); 167 new_ts->arr_sz = new_sz; 168 zfree(&thread->ts); 169 thread->ts = new_ts; 170 ts = new_ts; 171 } 172 173 if (thread_stack__per_cpu(thread) && cpu > 0 && 174 (unsigned int)cpu < ts->arr_sz) 175 ts += cpu; 176 177 if (!ts->stack && 178 thread_stack__init(ts, thread, crp)) 179 return NULL; 180 181 return ts; 182 } 183 184 static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu) 185 { 186 struct thread_stack *ts = thread->ts; 187 188 if (cpu < 0) 189 cpu = 0; 190 191 if (!ts || (unsigned int)cpu >= ts->arr_sz) 192 return NULL; 193 194 ts += cpu; 195 196 if (!ts->stack) 197 return NULL; 198 199 return ts; 200 } 201 202 static inline struct thread_stack *thread__stack(struct thread *thread, 203 int cpu) 204 { 205 if (!thread) 206 return NULL; 207 208 if (thread_stack__per_cpu(thread)) 209 return thread__cpu_stack(thread, cpu); 210 211 return thread->ts; 212 } 213 214 static int thread_stack__push(struct thread_stack *ts, u64 ret_addr, 215 bool trace_end) 216 { 217 int err = 0; 218 219 if (ts->cnt == ts->sz) { 220 err = thread_stack__grow(ts); 221 if (err) { 222 pr_warning("Out of memory: discarding thread stack\n"); 223 ts->cnt = 0; 224 } 225 } 226 227 ts->stack[ts->cnt].trace_end = trace_end; 228 ts->stack[ts->cnt++].ret_addr = ret_addr; 229 230 return err; 231 } 232 233 static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr) 234 { 235 size_t i; 236 237 /* 238 * In some cases there may be functions which are not seen to return. 239 * For example when setjmp / longjmp has been used. Or the perf context 240 * switch in the kernel which doesn't stop and start tracing in exactly 241 * the same code path. When that happens the return address will be 242 * further down the stack. If the return address is not found at all, 243 * we assume the opposite (i.e. this is a return for a call that wasn't 244 * seen for some reason) and leave the stack alone. 245 */ 246 for (i = ts->cnt; i; ) { 247 if (ts->stack[--i].ret_addr == ret_addr) { 248 ts->cnt = i; 249 return; 250 } 251 } 252 } 253 254 static void thread_stack__pop_trace_end(struct thread_stack *ts) 255 { 256 size_t i; 257 258 for (i = ts->cnt; i; ) { 259 if (ts->stack[--i].trace_end) 260 ts->cnt = i; 261 else 262 return; 263 } 264 } 265 266 static bool thread_stack__in_kernel(struct thread_stack *ts) 267 { 268 if (!ts->cnt) 269 return false; 270 271 return ts->stack[ts->cnt - 1].cp->in_kernel; 272 } 273 274 static int thread_stack__call_return(struct thread *thread, 275 struct thread_stack *ts, size_t idx, 276 u64 timestamp, u64 ref, bool no_return) 277 { 278 struct call_return_processor *crp = ts->crp; 279 struct thread_stack_entry *tse; 280 struct call_return cr = { 281 .thread = thread, 282 .comm = ts->comm, 283 .db_id = 0, 284 }; 285 u64 *parent_db_id; 286 287 tse = &ts->stack[idx]; 288 cr.cp = tse->cp; 289 cr.call_time = tse->timestamp; 290 cr.return_time = timestamp; 291 cr.branch_count = ts->branch_count - tse->branch_count; 292 cr.db_id = tse->db_id; 293 cr.call_ref = tse->ref; 294 cr.return_ref = ref; 295 if (tse->no_call) 296 cr.flags |= CALL_RETURN_NO_CALL; 297 if (no_return) 298 cr.flags |= CALL_RETURN_NO_RETURN; 299 if (tse->non_call) 300 cr.flags |= CALL_RETURN_NON_CALL; 301 302 /* 303 * The parent db_id must be assigned before exporting the child. Note 304 * it is not possible to export the parent first because its information 305 * is not yet complete because its 'return' has not yet been processed. 306 */ 307 parent_db_id = idx ? &(tse - 1)->db_id : NULL; 308 309 return crp->process(&cr, parent_db_id, crp->data); 310 } 311 312 static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts) 313 { 314 struct call_return_processor *crp = ts->crp; 315 int err; 316 317 if (!crp) { 318 ts->cnt = 0; 319 return 0; 320 } 321 322 while (ts->cnt) { 323 err = thread_stack__call_return(thread, ts, --ts->cnt, 324 ts->last_time, 0, true); 325 if (err) { 326 pr_err("Error flushing thread stack!\n"); 327 ts->cnt = 0; 328 return err; 329 } 330 } 331 332 return 0; 333 } 334 335 int thread_stack__flush(struct thread *thread) 336 { 337 struct thread_stack *ts = thread->ts; 338 unsigned int pos; 339 int err = 0; 340 341 if (ts) { 342 for (pos = 0; pos < ts->arr_sz; pos++) { 343 int ret = __thread_stack__flush(thread, ts + pos); 344 345 if (ret) 346 err = ret; 347 } 348 } 349 350 return err; 351 } 352 353 int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip, 354 u64 to_ip, u16 insn_len, u64 trace_nr) 355 { 356 struct thread_stack *ts = thread__stack(thread, cpu); 357 358 if (!thread) 359 return -EINVAL; 360 361 if (!ts) { 362 ts = thread_stack__new(thread, cpu, NULL); 363 if (!ts) { 364 pr_warning("Out of memory: no thread stack\n"); 365 return -ENOMEM; 366 } 367 ts->trace_nr = trace_nr; 368 } 369 370 /* 371 * When the trace is discontinuous, the trace_nr changes. In that case 372 * the stack might be completely invalid. Better to report nothing than 373 * to report something misleading, so flush the stack. 374 */ 375 if (trace_nr != ts->trace_nr) { 376 if (ts->trace_nr) 377 __thread_stack__flush(thread, ts); 378 ts->trace_nr = trace_nr; 379 } 380 381 /* Stop here if thread_stack__process() is in use */ 382 if (ts->crp) 383 return 0; 384 385 if (flags & PERF_IP_FLAG_CALL) { 386 u64 ret_addr; 387 388 if (!to_ip) 389 return 0; 390 ret_addr = from_ip + insn_len; 391 if (ret_addr == to_ip) 392 return 0; /* Zero-length calls are excluded */ 393 return thread_stack__push(ts, ret_addr, 394 flags & PERF_IP_FLAG_TRACE_END); 395 } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) { 396 /* 397 * If the caller did not change the trace number (which would 398 * have flushed the stack) then try to make sense of the stack. 399 * Possibly, tracing began after returning to the current 400 * address, so try to pop that. Also, do not expect a call made 401 * when the trace ended, to return, so pop that. 402 */ 403 thread_stack__pop(ts, to_ip); 404 thread_stack__pop_trace_end(ts); 405 } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) { 406 thread_stack__pop(ts, to_ip); 407 } 408 409 return 0; 410 } 411 412 void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr) 413 { 414 struct thread_stack *ts = thread__stack(thread, cpu); 415 416 if (!ts) 417 return; 418 419 if (trace_nr != ts->trace_nr) { 420 if (ts->trace_nr) 421 __thread_stack__flush(thread, ts); 422 ts->trace_nr = trace_nr; 423 } 424 } 425 426 static void __thread_stack__free(struct thread *thread, struct thread_stack *ts) 427 { 428 __thread_stack__flush(thread, ts); 429 zfree(&ts->stack); 430 } 431 432 static void thread_stack__reset(struct thread *thread, struct thread_stack *ts) 433 { 434 unsigned int arr_sz = ts->arr_sz; 435 436 __thread_stack__free(thread, ts); 437 memset(ts, 0, sizeof(*ts)); 438 ts->arr_sz = arr_sz; 439 } 440 441 void thread_stack__free(struct thread *thread) 442 { 443 struct thread_stack *ts = thread->ts; 444 unsigned int pos; 445 446 if (ts) { 447 for (pos = 0; pos < ts->arr_sz; pos++) 448 __thread_stack__free(thread, ts + pos); 449 zfree(&thread->ts); 450 } 451 } 452 453 static inline u64 callchain_context(u64 ip, u64 kernel_start) 454 { 455 return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL; 456 } 457 458 void thread_stack__sample(struct thread *thread, int cpu, 459 struct ip_callchain *chain, 460 size_t sz, u64 ip, u64 kernel_start) 461 { 462 struct thread_stack *ts = thread__stack(thread, cpu); 463 u64 context = callchain_context(ip, kernel_start); 464 u64 last_context; 465 size_t i, j; 466 467 if (sz < 2) { 468 chain->nr = 0; 469 return; 470 } 471 472 chain->ips[0] = context; 473 chain->ips[1] = ip; 474 475 if (!ts) { 476 chain->nr = 2; 477 return; 478 } 479 480 last_context = context; 481 482 for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) { 483 ip = ts->stack[ts->cnt - j].ret_addr; 484 context = callchain_context(ip, kernel_start); 485 if (context != last_context) { 486 if (i >= sz - 1) 487 break; 488 chain->ips[i++] = context; 489 last_context = context; 490 } 491 chain->ips[i] = ip; 492 } 493 494 chain->nr = i; 495 } 496 497 struct call_return_processor * 498 call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data), 499 void *data) 500 { 501 struct call_return_processor *crp; 502 503 crp = zalloc(sizeof(struct call_return_processor)); 504 if (!crp) 505 return NULL; 506 crp->cpr = call_path_root__new(); 507 if (!crp->cpr) 508 goto out_free; 509 crp->process = process; 510 crp->data = data; 511 return crp; 512 513 out_free: 514 free(crp); 515 return NULL; 516 } 517 518 void call_return_processor__free(struct call_return_processor *crp) 519 { 520 if (crp) { 521 call_path_root__free(crp->cpr); 522 free(crp); 523 } 524 } 525 526 static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr, 527 u64 timestamp, u64 ref, struct call_path *cp, 528 bool no_call, bool trace_end) 529 { 530 struct thread_stack_entry *tse; 531 int err; 532 533 if (!cp) 534 return -ENOMEM; 535 536 if (ts->cnt == ts->sz) { 537 err = thread_stack__grow(ts); 538 if (err) 539 return err; 540 } 541 542 tse = &ts->stack[ts->cnt++]; 543 tse->ret_addr = ret_addr; 544 tse->timestamp = timestamp; 545 tse->ref = ref; 546 tse->branch_count = ts->branch_count; 547 tse->cp = cp; 548 tse->no_call = no_call; 549 tse->trace_end = trace_end; 550 tse->non_call = false; 551 tse->db_id = 0; 552 553 return 0; 554 } 555 556 static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts, 557 u64 ret_addr, u64 timestamp, u64 ref, 558 struct symbol *sym) 559 { 560 int err; 561 562 if (!ts->cnt) 563 return 1; 564 565 if (ts->cnt == 1) { 566 struct thread_stack_entry *tse = &ts->stack[0]; 567 568 if (tse->cp->sym == sym) 569 return thread_stack__call_return(thread, ts, --ts->cnt, 570 timestamp, ref, false); 571 } 572 573 if (ts->stack[ts->cnt - 1].ret_addr == ret_addr && 574 !ts->stack[ts->cnt - 1].non_call) { 575 return thread_stack__call_return(thread, ts, --ts->cnt, 576 timestamp, ref, false); 577 } else { 578 size_t i = ts->cnt - 1; 579 580 while (i--) { 581 if (ts->stack[i].ret_addr != ret_addr || 582 ts->stack[i].non_call) 583 continue; 584 i += 1; 585 while (ts->cnt > i) { 586 err = thread_stack__call_return(thread, ts, 587 --ts->cnt, 588 timestamp, ref, 589 true); 590 if (err) 591 return err; 592 } 593 return thread_stack__call_return(thread, ts, --ts->cnt, 594 timestamp, ref, false); 595 } 596 } 597 598 return 1; 599 } 600 601 static int thread_stack__bottom(struct thread_stack *ts, 602 struct perf_sample *sample, 603 struct addr_location *from_al, 604 struct addr_location *to_al, u64 ref) 605 { 606 struct call_path_root *cpr = ts->crp->cpr; 607 struct call_path *cp; 608 struct symbol *sym; 609 u64 ip; 610 611 if (sample->ip) { 612 ip = sample->ip; 613 sym = from_al->sym; 614 } else if (sample->addr) { 615 ip = sample->addr; 616 sym = to_al->sym; 617 } else { 618 return 0; 619 } 620 621 cp = call_path__findnew(cpr, &cpr->call_path, sym, ip, 622 ts->kernel_start); 623 624 return thread_stack__push_cp(ts, ip, sample->time, ref, cp, 625 true, false); 626 } 627 628 static int thread_stack__no_call_return(struct thread *thread, 629 struct thread_stack *ts, 630 struct perf_sample *sample, 631 struct addr_location *from_al, 632 struct addr_location *to_al, u64 ref) 633 { 634 struct call_path_root *cpr = ts->crp->cpr; 635 struct call_path *root = &cpr->call_path; 636 struct symbol *fsym = from_al->sym; 637 struct symbol *tsym = to_al->sym; 638 struct call_path *cp, *parent; 639 u64 ks = ts->kernel_start; 640 u64 addr = sample->addr; 641 u64 tm = sample->time; 642 u64 ip = sample->ip; 643 int err; 644 645 if (ip >= ks && addr < ks) { 646 /* Return to userspace, so pop all kernel addresses */ 647 while (thread_stack__in_kernel(ts)) { 648 err = thread_stack__call_return(thread, ts, --ts->cnt, 649 tm, ref, true); 650 if (err) 651 return err; 652 } 653 654 /* If the stack is empty, push the userspace address */ 655 if (!ts->cnt) { 656 cp = call_path__findnew(cpr, root, tsym, addr, ks); 657 return thread_stack__push_cp(ts, 0, tm, ref, cp, true, 658 false); 659 } 660 } else if (thread_stack__in_kernel(ts) && ip < ks) { 661 /* Return to userspace, so pop all kernel addresses */ 662 while (thread_stack__in_kernel(ts)) { 663 err = thread_stack__call_return(thread, ts, --ts->cnt, 664 tm, ref, true); 665 if (err) 666 return err; 667 } 668 } 669 670 if (ts->cnt) 671 parent = ts->stack[ts->cnt - 1].cp; 672 else 673 parent = root; 674 675 if (parent->sym == from_al->sym) { 676 /* 677 * At the bottom of the stack, assume the missing 'call' was 678 * before the trace started. So, pop the current symbol and push 679 * the 'to' symbol. 680 */ 681 if (ts->cnt == 1) { 682 err = thread_stack__call_return(thread, ts, --ts->cnt, 683 tm, ref, false); 684 if (err) 685 return err; 686 } 687 688 if (!ts->cnt) { 689 cp = call_path__findnew(cpr, root, tsym, addr, ks); 690 691 return thread_stack__push_cp(ts, addr, tm, ref, cp, 692 true, false); 693 } 694 695 /* 696 * Otherwise assume the 'return' is being used as a jump (e.g. 697 * retpoline) and just push the 'to' symbol. 698 */ 699 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 700 701 err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false); 702 if (!err) 703 ts->stack[ts->cnt - 1].non_call = true; 704 705 return err; 706 } 707 708 /* 709 * Assume 'parent' has not yet returned, so push 'to', and then push and 710 * pop 'from'. 711 */ 712 713 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 714 715 err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false); 716 if (err) 717 return err; 718 719 cp = call_path__findnew(cpr, cp, fsym, ip, ks); 720 721 err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false); 722 if (err) 723 return err; 724 725 return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false); 726 } 727 728 static int thread_stack__trace_begin(struct thread *thread, 729 struct thread_stack *ts, u64 timestamp, 730 u64 ref) 731 { 732 struct thread_stack_entry *tse; 733 int err; 734 735 if (!ts->cnt) 736 return 0; 737 738 /* Pop trace end */ 739 tse = &ts->stack[ts->cnt - 1]; 740 if (tse->trace_end) { 741 err = thread_stack__call_return(thread, ts, --ts->cnt, 742 timestamp, ref, false); 743 if (err) 744 return err; 745 } 746 747 return 0; 748 } 749 750 static int thread_stack__trace_end(struct thread_stack *ts, 751 struct perf_sample *sample, u64 ref) 752 { 753 struct call_path_root *cpr = ts->crp->cpr; 754 struct call_path *cp; 755 u64 ret_addr; 756 757 /* No point having 'trace end' on the bottom of the stack */ 758 if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref)) 759 return 0; 760 761 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0, 762 ts->kernel_start); 763 764 ret_addr = sample->ip + sample->insn_len; 765 766 return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, 767 false, true); 768 } 769 770 static bool is_x86_retpoline(const char *name) 771 { 772 const char *p = strstr(name, "__x86_indirect_thunk_"); 773 774 return p == name || !strcmp(name, "__indirect_thunk_start"); 775 } 776 777 /* 778 * x86 retpoline functions pollute the call graph. This function removes them. 779 * This does not handle function return thunks, nor is there any improvement 780 * for the handling of inline thunks or extern thunks. 781 */ 782 static int thread_stack__x86_retpoline(struct thread_stack *ts, 783 struct perf_sample *sample, 784 struct addr_location *to_al) 785 { 786 struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1]; 787 struct call_path_root *cpr = ts->crp->cpr; 788 struct symbol *sym = tse->cp->sym; 789 struct symbol *tsym = to_al->sym; 790 struct call_path *cp; 791 792 if (sym && is_x86_retpoline(sym->name)) { 793 /* 794 * This is a x86 retpoline fn. It pollutes the call graph by 795 * showing up everywhere there is an indirect branch, but does 796 * not itself mean anything. Here the top-of-stack is removed, 797 * by decrementing the stack count, and then further down, the 798 * resulting top-of-stack is replaced with the actual target. 799 * The result is that the retpoline functions will no longer 800 * appear in the call graph. Note this only affects the call 801 * graph, since all the original branches are left unchanged. 802 */ 803 ts->cnt -= 1; 804 sym = ts->stack[ts->cnt - 2].cp->sym; 805 if (sym && sym == tsym && to_al->addr != tsym->start) { 806 /* 807 * Target is back to the middle of the symbol we came 808 * from so assume it is an indirect jmp and forget it 809 * altogether. 810 */ 811 ts->cnt -= 1; 812 return 0; 813 } 814 } else if (sym && sym == tsym) { 815 /* 816 * Target is back to the symbol we came from so assume it is an 817 * indirect jmp and forget it altogether. 818 */ 819 ts->cnt -= 1; 820 return 0; 821 } 822 823 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym, 824 sample->addr, ts->kernel_start); 825 if (!cp) 826 return -ENOMEM; 827 828 /* Replace the top-of-stack with the actual target */ 829 ts->stack[ts->cnt - 1].cp = cp; 830 831 return 0; 832 } 833 834 int thread_stack__process(struct thread *thread, struct comm *comm, 835 struct perf_sample *sample, 836 struct addr_location *from_al, 837 struct addr_location *to_al, u64 ref, 838 struct call_return_processor *crp) 839 { 840 struct thread_stack *ts = thread__stack(thread, sample->cpu); 841 enum retpoline_state_t rstate; 842 int err = 0; 843 844 if (ts && !ts->crp) { 845 /* Supersede thread_stack__event() */ 846 thread_stack__reset(thread, ts); 847 ts = NULL; 848 } 849 850 if (!ts) { 851 ts = thread_stack__new(thread, sample->cpu, crp); 852 if (!ts) 853 return -ENOMEM; 854 ts->comm = comm; 855 } 856 857 rstate = ts->rstate; 858 if (rstate == X86_RETPOLINE_DETECTED) 859 ts->rstate = X86_RETPOLINE_POSSIBLE; 860 861 /* Flush stack on exec */ 862 if (ts->comm != comm && thread->pid_ == thread->tid) { 863 err = __thread_stack__flush(thread, ts); 864 if (err) 865 return err; 866 ts->comm = comm; 867 } 868 869 /* If the stack is empty, put the current symbol on the stack */ 870 if (!ts->cnt) { 871 err = thread_stack__bottom(ts, sample, from_al, to_al, ref); 872 if (err) 873 return err; 874 } 875 876 ts->branch_count += 1; 877 ts->last_time = sample->time; 878 879 if (sample->flags & PERF_IP_FLAG_CALL) { 880 bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END; 881 struct call_path_root *cpr = ts->crp->cpr; 882 struct call_path *cp; 883 u64 ret_addr; 884 885 if (!sample->ip || !sample->addr) 886 return 0; 887 888 ret_addr = sample->ip + sample->insn_len; 889 if (ret_addr == sample->addr) 890 return 0; /* Zero-length calls are excluded */ 891 892 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 893 to_al->sym, sample->addr, 894 ts->kernel_start); 895 err = thread_stack__push_cp(ts, ret_addr, sample->time, ref, 896 cp, false, trace_end); 897 898 /* 899 * A call to the same symbol but not the start of the symbol, 900 * may be the start of a x86 retpoline. 901 */ 902 if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym && 903 from_al->sym == to_al->sym && 904 to_al->addr != to_al->sym->start) 905 ts->rstate = X86_RETPOLINE_DETECTED; 906 907 } else if (sample->flags & PERF_IP_FLAG_RETURN) { 908 if (!sample->ip || !sample->addr) 909 return 0; 910 911 /* x86 retpoline 'return' doesn't match the stack */ 912 if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 && 913 ts->stack[ts->cnt - 1].ret_addr != sample->addr) 914 return thread_stack__x86_retpoline(ts, sample, to_al); 915 916 err = thread_stack__pop_cp(thread, ts, sample->addr, 917 sample->time, ref, from_al->sym); 918 if (err) { 919 if (err < 0) 920 return err; 921 err = thread_stack__no_call_return(thread, ts, sample, 922 from_al, to_al, ref); 923 } 924 } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) { 925 err = thread_stack__trace_begin(thread, ts, sample->time, ref); 926 } else if (sample->flags & PERF_IP_FLAG_TRACE_END) { 927 err = thread_stack__trace_end(ts, sample, ref); 928 } else if (sample->flags & PERF_IP_FLAG_BRANCH && 929 from_al->sym != to_al->sym && to_al->sym && 930 to_al->addr == to_al->sym->start) { 931 struct call_path_root *cpr = ts->crp->cpr; 932 struct call_path *cp; 933 934 /* 935 * The compiler might optimize a call/ret combination by making 936 * it a jmp. Make that visible by recording on the stack a 937 * branch to the start of a different symbol. Note, that means 938 * when a ret pops the stack, all jmps must be popped off first. 939 */ 940 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 941 to_al->sym, sample->addr, 942 ts->kernel_start); 943 err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false, 944 false); 945 if (!err) 946 ts->stack[ts->cnt - 1].non_call = true; 947 } 948 949 return err; 950 } 951 952 size_t thread_stack__depth(struct thread *thread, int cpu) 953 { 954 struct thread_stack *ts = thread__stack(thread, cpu); 955 956 if (!ts) 957 return 0; 958 return ts->cnt; 959 } 960