xref: /openbmc/linux/tools/perf/util/thread-stack.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * thread-stack.c: Synthesize a thread's stack using call / return events
4  * Copyright (c) 2014, Intel Corporation.
5  */
6 
7 #include <linux/rbtree.h>
8 #include <linux/list.h>
9 #include <linux/log2.h>
10 #include <linux/zalloc.h>
11 #include <errno.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include "thread.h"
15 #include "event.h"
16 #include "machine.h"
17 #include "env.h"
18 #include "debug.h"
19 #include "symbol.h"
20 #include "comm.h"
21 #include "call-path.h"
22 #include "thread-stack.h"
23 
24 #define STACK_GROWTH 2048
25 
26 /*
27  * State of retpoline detection.
28  *
29  * RETPOLINE_NONE: no retpoline detection
30  * X86_RETPOLINE_POSSIBLE: x86 retpoline possible
31  * X86_RETPOLINE_DETECTED: x86 retpoline detected
32  */
33 enum retpoline_state_t {
34 	RETPOLINE_NONE,
35 	X86_RETPOLINE_POSSIBLE,
36 	X86_RETPOLINE_DETECTED,
37 };
38 
39 /**
40  * struct thread_stack_entry - thread stack entry.
41  * @ret_addr: return address
42  * @timestamp: timestamp (if known)
43  * @ref: external reference (e.g. db_id of sample)
44  * @branch_count: the branch count when the entry was created
45  * @insn_count: the instruction count when the entry was created
46  * @cyc_count the cycle count when the entry was created
47  * @db_id: id used for db-export
48  * @cp: call path
49  * @no_call: a 'call' was not seen
50  * @trace_end: a 'call' but trace ended
51  * @non_call: a branch but not a 'call' to the start of a different symbol
52  */
53 struct thread_stack_entry {
54 	u64 ret_addr;
55 	u64 timestamp;
56 	u64 ref;
57 	u64 branch_count;
58 	u64 insn_count;
59 	u64 cyc_count;
60 	u64 db_id;
61 	struct call_path *cp;
62 	bool no_call;
63 	bool trace_end;
64 	bool non_call;
65 };
66 
67 /**
68  * struct thread_stack - thread stack constructed from 'call' and 'return'
69  *                       branch samples.
70  * @stack: array that holds the stack
71  * @cnt: number of entries in the stack
72  * @sz: current maximum stack size
73  * @trace_nr: current trace number
74  * @branch_count: running branch count
75  * @insn_count: running  instruction count
76  * @cyc_count running  cycle count
77  * @kernel_start: kernel start address
78  * @last_time: last timestamp
79  * @crp: call/return processor
80  * @comm: current comm
81  * @arr_sz: size of array if this is the first element of an array
82  * @rstate: used to detect retpolines
83  */
84 struct thread_stack {
85 	struct thread_stack_entry *stack;
86 	size_t cnt;
87 	size_t sz;
88 	u64 trace_nr;
89 	u64 branch_count;
90 	u64 insn_count;
91 	u64 cyc_count;
92 	u64 kernel_start;
93 	u64 last_time;
94 	struct call_return_processor *crp;
95 	struct comm *comm;
96 	unsigned int arr_sz;
97 	enum retpoline_state_t rstate;
98 };
99 
100 /*
101  * Assume pid == tid == 0 identifies the idle task as defined by
102  * perf_session__register_idle_thread(). The idle task is really 1 task per cpu,
103  * and therefore requires a stack for each cpu.
104  */
105 static inline bool thread_stack__per_cpu(struct thread *thread)
106 {
107 	return !(thread->tid || thread->pid_);
108 }
109 
110 static int thread_stack__grow(struct thread_stack *ts)
111 {
112 	struct thread_stack_entry *new_stack;
113 	size_t sz, new_sz;
114 
115 	new_sz = ts->sz + STACK_GROWTH;
116 	sz = new_sz * sizeof(struct thread_stack_entry);
117 
118 	new_stack = realloc(ts->stack, sz);
119 	if (!new_stack)
120 		return -ENOMEM;
121 
122 	ts->stack = new_stack;
123 	ts->sz = new_sz;
124 
125 	return 0;
126 }
127 
128 static int thread_stack__init(struct thread_stack *ts, struct thread *thread,
129 			      struct call_return_processor *crp)
130 {
131 	int err;
132 
133 	err = thread_stack__grow(ts);
134 	if (err)
135 		return err;
136 
137 	if (thread->maps && thread->maps->machine) {
138 		struct machine *machine = thread->maps->machine;
139 		const char *arch = perf_env__arch(machine->env);
140 
141 		ts->kernel_start = machine__kernel_start(machine);
142 		if (!strcmp(arch, "x86"))
143 			ts->rstate = X86_RETPOLINE_POSSIBLE;
144 	} else {
145 		ts->kernel_start = 1ULL << 63;
146 	}
147 	ts->crp = crp;
148 
149 	return 0;
150 }
151 
152 static struct thread_stack *thread_stack__new(struct thread *thread, int cpu,
153 					      struct call_return_processor *crp)
154 {
155 	struct thread_stack *ts = thread->ts, *new_ts;
156 	unsigned int old_sz = ts ? ts->arr_sz : 0;
157 	unsigned int new_sz = 1;
158 
159 	if (thread_stack__per_cpu(thread) && cpu > 0)
160 		new_sz = roundup_pow_of_two(cpu + 1);
161 
162 	if (!ts || new_sz > old_sz) {
163 		new_ts = calloc(new_sz, sizeof(*ts));
164 		if (!new_ts)
165 			return NULL;
166 		if (ts)
167 			memcpy(new_ts, ts, old_sz * sizeof(*ts));
168 		new_ts->arr_sz = new_sz;
169 		zfree(&thread->ts);
170 		thread->ts = new_ts;
171 		ts = new_ts;
172 	}
173 
174 	if (thread_stack__per_cpu(thread) && cpu > 0 &&
175 	    (unsigned int)cpu < ts->arr_sz)
176 		ts += cpu;
177 
178 	if (!ts->stack &&
179 	    thread_stack__init(ts, thread, crp))
180 		return NULL;
181 
182 	return ts;
183 }
184 
185 static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu)
186 {
187 	struct thread_stack *ts = thread->ts;
188 
189 	if (cpu < 0)
190 		cpu = 0;
191 
192 	if (!ts || (unsigned int)cpu >= ts->arr_sz)
193 		return NULL;
194 
195 	ts += cpu;
196 
197 	if (!ts->stack)
198 		return NULL;
199 
200 	return ts;
201 }
202 
203 static inline struct thread_stack *thread__stack(struct thread *thread,
204 						    int cpu)
205 {
206 	if (!thread)
207 		return NULL;
208 
209 	if (thread_stack__per_cpu(thread))
210 		return thread__cpu_stack(thread, cpu);
211 
212 	return thread->ts;
213 }
214 
215 static int thread_stack__push(struct thread_stack *ts, u64 ret_addr,
216 			      bool trace_end)
217 {
218 	int err = 0;
219 
220 	if (ts->cnt == ts->sz) {
221 		err = thread_stack__grow(ts);
222 		if (err) {
223 			pr_warning("Out of memory: discarding thread stack\n");
224 			ts->cnt = 0;
225 		}
226 	}
227 
228 	ts->stack[ts->cnt].trace_end = trace_end;
229 	ts->stack[ts->cnt++].ret_addr = ret_addr;
230 
231 	return err;
232 }
233 
234 static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr)
235 {
236 	size_t i;
237 
238 	/*
239 	 * In some cases there may be functions which are not seen to return.
240 	 * For example when setjmp / longjmp has been used.  Or the perf context
241 	 * switch in the kernel which doesn't stop and start tracing in exactly
242 	 * the same code path.  When that happens the return address will be
243 	 * further down the stack.  If the return address is not found at all,
244 	 * we assume the opposite (i.e. this is a return for a call that wasn't
245 	 * seen for some reason) and leave the stack alone.
246 	 */
247 	for (i = ts->cnt; i; ) {
248 		if (ts->stack[--i].ret_addr == ret_addr) {
249 			ts->cnt = i;
250 			return;
251 		}
252 	}
253 }
254 
255 static void thread_stack__pop_trace_end(struct thread_stack *ts)
256 {
257 	size_t i;
258 
259 	for (i = ts->cnt; i; ) {
260 		if (ts->stack[--i].trace_end)
261 			ts->cnt = i;
262 		else
263 			return;
264 	}
265 }
266 
267 static bool thread_stack__in_kernel(struct thread_stack *ts)
268 {
269 	if (!ts->cnt)
270 		return false;
271 
272 	return ts->stack[ts->cnt - 1].cp->in_kernel;
273 }
274 
275 static int thread_stack__call_return(struct thread *thread,
276 				     struct thread_stack *ts, size_t idx,
277 				     u64 timestamp, u64 ref, bool no_return)
278 {
279 	struct call_return_processor *crp = ts->crp;
280 	struct thread_stack_entry *tse;
281 	struct call_return cr = {
282 		.thread = thread,
283 		.comm = ts->comm,
284 		.db_id = 0,
285 	};
286 	u64 *parent_db_id;
287 
288 	tse = &ts->stack[idx];
289 	cr.cp = tse->cp;
290 	cr.call_time = tse->timestamp;
291 	cr.return_time = timestamp;
292 	cr.branch_count = ts->branch_count - tse->branch_count;
293 	cr.insn_count = ts->insn_count - tse->insn_count;
294 	cr.cyc_count = ts->cyc_count - tse->cyc_count;
295 	cr.db_id = tse->db_id;
296 	cr.call_ref = tse->ref;
297 	cr.return_ref = ref;
298 	if (tse->no_call)
299 		cr.flags |= CALL_RETURN_NO_CALL;
300 	if (no_return)
301 		cr.flags |= CALL_RETURN_NO_RETURN;
302 	if (tse->non_call)
303 		cr.flags |= CALL_RETURN_NON_CALL;
304 
305 	/*
306 	 * The parent db_id must be assigned before exporting the child. Note
307 	 * it is not possible to export the parent first because its information
308 	 * is not yet complete because its 'return' has not yet been processed.
309 	 */
310 	parent_db_id = idx ? &(tse - 1)->db_id : NULL;
311 
312 	return crp->process(&cr, parent_db_id, crp->data);
313 }
314 
315 static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts)
316 {
317 	struct call_return_processor *crp = ts->crp;
318 	int err;
319 
320 	if (!crp) {
321 		ts->cnt = 0;
322 		return 0;
323 	}
324 
325 	while (ts->cnt) {
326 		err = thread_stack__call_return(thread, ts, --ts->cnt,
327 						ts->last_time, 0, true);
328 		if (err) {
329 			pr_err("Error flushing thread stack!\n");
330 			ts->cnt = 0;
331 			return err;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 int thread_stack__flush(struct thread *thread)
339 {
340 	struct thread_stack *ts = thread->ts;
341 	unsigned int pos;
342 	int err = 0;
343 
344 	if (ts) {
345 		for (pos = 0; pos < ts->arr_sz; pos++) {
346 			int ret = __thread_stack__flush(thread, ts + pos);
347 
348 			if (ret)
349 				err = ret;
350 		}
351 	}
352 
353 	return err;
354 }
355 
356 int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip,
357 			u64 to_ip, u16 insn_len, u64 trace_nr)
358 {
359 	struct thread_stack *ts = thread__stack(thread, cpu);
360 
361 	if (!thread)
362 		return -EINVAL;
363 
364 	if (!ts) {
365 		ts = thread_stack__new(thread, cpu, NULL);
366 		if (!ts) {
367 			pr_warning("Out of memory: no thread stack\n");
368 			return -ENOMEM;
369 		}
370 		ts->trace_nr = trace_nr;
371 	}
372 
373 	/*
374 	 * When the trace is discontinuous, the trace_nr changes.  In that case
375 	 * the stack might be completely invalid.  Better to report nothing than
376 	 * to report something misleading, so flush the stack.
377 	 */
378 	if (trace_nr != ts->trace_nr) {
379 		if (ts->trace_nr)
380 			__thread_stack__flush(thread, ts);
381 		ts->trace_nr = trace_nr;
382 	}
383 
384 	/* Stop here if thread_stack__process() is in use */
385 	if (ts->crp)
386 		return 0;
387 
388 	if (flags & PERF_IP_FLAG_CALL) {
389 		u64 ret_addr;
390 
391 		if (!to_ip)
392 			return 0;
393 		ret_addr = from_ip + insn_len;
394 		if (ret_addr == to_ip)
395 			return 0; /* Zero-length calls are excluded */
396 		return thread_stack__push(ts, ret_addr,
397 					  flags & PERF_IP_FLAG_TRACE_END);
398 	} else if (flags & PERF_IP_FLAG_TRACE_BEGIN) {
399 		/*
400 		 * If the caller did not change the trace number (which would
401 		 * have flushed the stack) then try to make sense of the stack.
402 		 * Possibly, tracing began after returning to the current
403 		 * address, so try to pop that. Also, do not expect a call made
404 		 * when the trace ended, to return, so pop that.
405 		 */
406 		thread_stack__pop(ts, to_ip);
407 		thread_stack__pop_trace_end(ts);
408 	} else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) {
409 		thread_stack__pop(ts, to_ip);
410 	}
411 
412 	return 0;
413 }
414 
415 void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr)
416 {
417 	struct thread_stack *ts = thread__stack(thread, cpu);
418 
419 	if (!ts)
420 		return;
421 
422 	if (trace_nr != ts->trace_nr) {
423 		if (ts->trace_nr)
424 			__thread_stack__flush(thread, ts);
425 		ts->trace_nr = trace_nr;
426 	}
427 }
428 
429 static void __thread_stack__free(struct thread *thread, struct thread_stack *ts)
430 {
431 	__thread_stack__flush(thread, ts);
432 	zfree(&ts->stack);
433 }
434 
435 static void thread_stack__reset(struct thread *thread, struct thread_stack *ts)
436 {
437 	unsigned int arr_sz = ts->arr_sz;
438 
439 	__thread_stack__free(thread, ts);
440 	memset(ts, 0, sizeof(*ts));
441 	ts->arr_sz = arr_sz;
442 }
443 
444 void thread_stack__free(struct thread *thread)
445 {
446 	struct thread_stack *ts = thread->ts;
447 	unsigned int pos;
448 
449 	if (ts) {
450 		for (pos = 0; pos < ts->arr_sz; pos++)
451 			__thread_stack__free(thread, ts + pos);
452 		zfree(&thread->ts);
453 	}
454 }
455 
456 static inline u64 callchain_context(u64 ip, u64 kernel_start)
457 {
458 	return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL;
459 }
460 
461 void thread_stack__sample(struct thread *thread, int cpu,
462 			  struct ip_callchain *chain,
463 			  size_t sz, u64 ip, u64 kernel_start)
464 {
465 	struct thread_stack *ts = thread__stack(thread, cpu);
466 	u64 context = callchain_context(ip, kernel_start);
467 	u64 last_context;
468 	size_t i, j;
469 
470 	if (sz < 2) {
471 		chain->nr = 0;
472 		return;
473 	}
474 
475 	chain->ips[0] = context;
476 	chain->ips[1] = ip;
477 
478 	if (!ts) {
479 		chain->nr = 2;
480 		return;
481 	}
482 
483 	last_context = context;
484 
485 	for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) {
486 		ip = ts->stack[ts->cnt - j].ret_addr;
487 		context = callchain_context(ip, kernel_start);
488 		if (context != last_context) {
489 			if (i >= sz - 1)
490 				break;
491 			chain->ips[i++] = context;
492 			last_context = context;
493 		}
494 		chain->ips[i] = ip;
495 	}
496 
497 	chain->nr = i;
498 }
499 
500 struct call_return_processor *
501 call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data),
502 			   void *data)
503 {
504 	struct call_return_processor *crp;
505 
506 	crp = zalloc(sizeof(struct call_return_processor));
507 	if (!crp)
508 		return NULL;
509 	crp->cpr = call_path_root__new();
510 	if (!crp->cpr)
511 		goto out_free;
512 	crp->process = process;
513 	crp->data = data;
514 	return crp;
515 
516 out_free:
517 	free(crp);
518 	return NULL;
519 }
520 
521 void call_return_processor__free(struct call_return_processor *crp)
522 {
523 	if (crp) {
524 		call_path_root__free(crp->cpr);
525 		free(crp);
526 	}
527 }
528 
529 static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr,
530 				 u64 timestamp, u64 ref, struct call_path *cp,
531 				 bool no_call, bool trace_end)
532 {
533 	struct thread_stack_entry *tse;
534 	int err;
535 
536 	if (!cp)
537 		return -ENOMEM;
538 
539 	if (ts->cnt == ts->sz) {
540 		err = thread_stack__grow(ts);
541 		if (err)
542 			return err;
543 	}
544 
545 	tse = &ts->stack[ts->cnt++];
546 	tse->ret_addr = ret_addr;
547 	tse->timestamp = timestamp;
548 	tse->ref = ref;
549 	tse->branch_count = ts->branch_count;
550 	tse->insn_count = ts->insn_count;
551 	tse->cyc_count = ts->cyc_count;
552 	tse->cp = cp;
553 	tse->no_call = no_call;
554 	tse->trace_end = trace_end;
555 	tse->non_call = false;
556 	tse->db_id = 0;
557 
558 	return 0;
559 }
560 
561 static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts,
562 				u64 ret_addr, u64 timestamp, u64 ref,
563 				struct symbol *sym)
564 {
565 	int err;
566 
567 	if (!ts->cnt)
568 		return 1;
569 
570 	if (ts->cnt == 1) {
571 		struct thread_stack_entry *tse = &ts->stack[0];
572 
573 		if (tse->cp->sym == sym)
574 			return thread_stack__call_return(thread, ts, --ts->cnt,
575 							 timestamp, ref, false);
576 	}
577 
578 	if (ts->stack[ts->cnt - 1].ret_addr == ret_addr &&
579 	    !ts->stack[ts->cnt - 1].non_call) {
580 		return thread_stack__call_return(thread, ts, --ts->cnt,
581 						 timestamp, ref, false);
582 	} else {
583 		size_t i = ts->cnt - 1;
584 
585 		while (i--) {
586 			if (ts->stack[i].ret_addr != ret_addr ||
587 			    ts->stack[i].non_call)
588 				continue;
589 			i += 1;
590 			while (ts->cnt > i) {
591 				err = thread_stack__call_return(thread, ts,
592 								--ts->cnt,
593 								timestamp, ref,
594 								true);
595 				if (err)
596 					return err;
597 			}
598 			return thread_stack__call_return(thread, ts, --ts->cnt,
599 							 timestamp, ref, false);
600 		}
601 	}
602 
603 	return 1;
604 }
605 
606 static int thread_stack__bottom(struct thread_stack *ts,
607 				struct perf_sample *sample,
608 				struct addr_location *from_al,
609 				struct addr_location *to_al, u64 ref)
610 {
611 	struct call_path_root *cpr = ts->crp->cpr;
612 	struct call_path *cp;
613 	struct symbol *sym;
614 	u64 ip;
615 
616 	if (sample->ip) {
617 		ip = sample->ip;
618 		sym = from_al->sym;
619 	} else if (sample->addr) {
620 		ip = sample->addr;
621 		sym = to_al->sym;
622 	} else {
623 		return 0;
624 	}
625 
626 	cp = call_path__findnew(cpr, &cpr->call_path, sym, ip,
627 				ts->kernel_start);
628 
629 	return thread_stack__push_cp(ts, ip, sample->time, ref, cp,
630 				     true, false);
631 }
632 
633 static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts,
634 				struct perf_sample *sample, u64 ref)
635 {
636 	u64 tm = sample->time;
637 	int err;
638 
639 	/* Return to userspace, so pop all kernel addresses */
640 	while (thread_stack__in_kernel(ts)) {
641 		err = thread_stack__call_return(thread, ts, --ts->cnt,
642 						tm, ref, true);
643 		if (err)
644 			return err;
645 	}
646 
647 	return 0;
648 }
649 
650 static int thread_stack__no_call_return(struct thread *thread,
651 					struct thread_stack *ts,
652 					struct perf_sample *sample,
653 					struct addr_location *from_al,
654 					struct addr_location *to_al, u64 ref)
655 {
656 	struct call_path_root *cpr = ts->crp->cpr;
657 	struct call_path *root = &cpr->call_path;
658 	struct symbol *fsym = from_al->sym;
659 	struct symbol *tsym = to_al->sym;
660 	struct call_path *cp, *parent;
661 	u64 ks = ts->kernel_start;
662 	u64 addr = sample->addr;
663 	u64 tm = sample->time;
664 	u64 ip = sample->ip;
665 	int err;
666 
667 	if (ip >= ks && addr < ks) {
668 		/* Return to userspace, so pop all kernel addresses */
669 		err = thread_stack__pop_ks(thread, ts, sample, ref);
670 		if (err)
671 			return err;
672 
673 		/* If the stack is empty, push the userspace address */
674 		if (!ts->cnt) {
675 			cp = call_path__findnew(cpr, root, tsym, addr, ks);
676 			return thread_stack__push_cp(ts, 0, tm, ref, cp, true,
677 						     false);
678 		}
679 	} else if (thread_stack__in_kernel(ts) && ip < ks) {
680 		/* Return to userspace, so pop all kernel addresses */
681 		err = thread_stack__pop_ks(thread, ts, sample, ref);
682 		if (err)
683 			return err;
684 	}
685 
686 	if (ts->cnt)
687 		parent = ts->stack[ts->cnt - 1].cp;
688 	else
689 		parent = root;
690 
691 	if (parent->sym == from_al->sym) {
692 		/*
693 		 * At the bottom of the stack, assume the missing 'call' was
694 		 * before the trace started. So, pop the current symbol and push
695 		 * the 'to' symbol.
696 		 */
697 		if (ts->cnt == 1) {
698 			err = thread_stack__call_return(thread, ts, --ts->cnt,
699 							tm, ref, false);
700 			if (err)
701 				return err;
702 		}
703 
704 		if (!ts->cnt) {
705 			cp = call_path__findnew(cpr, root, tsym, addr, ks);
706 
707 			return thread_stack__push_cp(ts, addr, tm, ref, cp,
708 						     true, false);
709 		}
710 
711 		/*
712 		 * Otherwise assume the 'return' is being used as a jump (e.g.
713 		 * retpoline) and just push the 'to' symbol.
714 		 */
715 		cp = call_path__findnew(cpr, parent, tsym, addr, ks);
716 
717 		err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false);
718 		if (!err)
719 			ts->stack[ts->cnt - 1].non_call = true;
720 
721 		return err;
722 	}
723 
724 	/*
725 	 * Assume 'parent' has not yet returned, so push 'to', and then push and
726 	 * pop 'from'.
727 	 */
728 
729 	cp = call_path__findnew(cpr, parent, tsym, addr, ks);
730 
731 	err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false);
732 	if (err)
733 		return err;
734 
735 	cp = call_path__findnew(cpr, cp, fsym, ip, ks);
736 
737 	err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false);
738 	if (err)
739 		return err;
740 
741 	return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false);
742 }
743 
744 static int thread_stack__trace_begin(struct thread *thread,
745 				     struct thread_stack *ts, u64 timestamp,
746 				     u64 ref)
747 {
748 	struct thread_stack_entry *tse;
749 	int err;
750 
751 	if (!ts->cnt)
752 		return 0;
753 
754 	/* Pop trace end */
755 	tse = &ts->stack[ts->cnt - 1];
756 	if (tse->trace_end) {
757 		err = thread_stack__call_return(thread, ts, --ts->cnt,
758 						timestamp, ref, false);
759 		if (err)
760 			return err;
761 	}
762 
763 	return 0;
764 }
765 
766 static int thread_stack__trace_end(struct thread_stack *ts,
767 				   struct perf_sample *sample, u64 ref)
768 {
769 	struct call_path_root *cpr = ts->crp->cpr;
770 	struct call_path *cp;
771 	u64 ret_addr;
772 
773 	/* No point having 'trace end' on the bottom of the stack */
774 	if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref))
775 		return 0;
776 
777 	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0,
778 				ts->kernel_start);
779 
780 	ret_addr = sample->ip + sample->insn_len;
781 
782 	return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp,
783 				     false, true);
784 }
785 
786 static bool is_x86_retpoline(const char *name)
787 {
788 	const char *p = strstr(name, "__x86_indirect_thunk_");
789 
790 	return p == name || !strcmp(name, "__indirect_thunk_start");
791 }
792 
793 /*
794  * x86 retpoline functions pollute the call graph. This function removes them.
795  * This does not handle function return thunks, nor is there any improvement
796  * for the handling of inline thunks or extern thunks.
797  */
798 static int thread_stack__x86_retpoline(struct thread_stack *ts,
799 				       struct perf_sample *sample,
800 				       struct addr_location *to_al)
801 {
802 	struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1];
803 	struct call_path_root *cpr = ts->crp->cpr;
804 	struct symbol *sym = tse->cp->sym;
805 	struct symbol *tsym = to_al->sym;
806 	struct call_path *cp;
807 
808 	if (sym && is_x86_retpoline(sym->name)) {
809 		/*
810 		 * This is a x86 retpoline fn. It pollutes the call graph by
811 		 * showing up everywhere there is an indirect branch, but does
812 		 * not itself mean anything. Here the top-of-stack is removed,
813 		 * by decrementing the stack count, and then further down, the
814 		 * resulting top-of-stack is replaced with the actual target.
815 		 * The result is that the retpoline functions will no longer
816 		 * appear in the call graph. Note this only affects the call
817 		 * graph, since all the original branches are left unchanged.
818 		 */
819 		ts->cnt -= 1;
820 		sym = ts->stack[ts->cnt - 2].cp->sym;
821 		if (sym && sym == tsym && to_al->addr != tsym->start) {
822 			/*
823 			 * Target is back to the middle of the symbol we came
824 			 * from so assume it is an indirect jmp and forget it
825 			 * altogether.
826 			 */
827 			ts->cnt -= 1;
828 			return 0;
829 		}
830 	} else if (sym && sym == tsym) {
831 		/*
832 		 * Target is back to the symbol we came from so assume it is an
833 		 * indirect jmp and forget it altogether.
834 		 */
835 		ts->cnt -= 1;
836 		return 0;
837 	}
838 
839 	cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym,
840 				sample->addr, ts->kernel_start);
841 	if (!cp)
842 		return -ENOMEM;
843 
844 	/* Replace the top-of-stack with the actual target */
845 	ts->stack[ts->cnt - 1].cp = cp;
846 
847 	return 0;
848 }
849 
850 int thread_stack__process(struct thread *thread, struct comm *comm,
851 			  struct perf_sample *sample,
852 			  struct addr_location *from_al,
853 			  struct addr_location *to_al, u64 ref,
854 			  struct call_return_processor *crp)
855 {
856 	struct thread_stack *ts = thread__stack(thread, sample->cpu);
857 	enum retpoline_state_t rstate;
858 	int err = 0;
859 
860 	if (ts && !ts->crp) {
861 		/* Supersede thread_stack__event() */
862 		thread_stack__reset(thread, ts);
863 		ts = NULL;
864 	}
865 
866 	if (!ts) {
867 		ts = thread_stack__new(thread, sample->cpu, crp);
868 		if (!ts)
869 			return -ENOMEM;
870 		ts->comm = comm;
871 	}
872 
873 	rstate = ts->rstate;
874 	if (rstate == X86_RETPOLINE_DETECTED)
875 		ts->rstate = X86_RETPOLINE_POSSIBLE;
876 
877 	/* Flush stack on exec */
878 	if (ts->comm != comm && thread->pid_ == thread->tid) {
879 		err = __thread_stack__flush(thread, ts);
880 		if (err)
881 			return err;
882 		ts->comm = comm;
883 	}
884 
885 	/* If the stack is empty, put the current symbol on the stack */
886 	if (!ts->cnt) {
887 		err = thread_stack__bottom(ts, sample, from_al, to_al, ref);
888 		if (err)
889 			return err;
890 	}
891 
892 	ts->branch_count += 1;
893 	ts->insn_count += sample->insn_cnt;
894 	ts->cyc_count += sample->cyc_cnt;
895 	ts->last_time = sample->time;
896 
897 	if (sample->flags & PERF_IP_FLAG_CALL) {
898 		bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END;
899 		struct call_path_root *cpr = ts->crp->cpr;
900 		struct call_path *cp;
901 		u64 ret_addr;
902 
903 		if (!sample->ip || !sample->addr)
904 			return 0;
905 
906 		ret_addr = sample->ip + sample->insn_len;
907 		if (ret_addr == sample->addr)
908 			return 0; /* Zero-length calls are excluded */
909 
910 		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
911 					to_al->sym, sample->addr,
912 					ts->kernel_start);
913 		err = thread_stack__push_cp(ts, ret_addr, sample->time, ref,
914 					    cp, false, trace_end);
915 
916 		/*
917 		 * A call to the same symbol but not the start of the symbol,
918 		 * may be the start of a x86 retpoline.
919 		 */
920 		if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym &&
921 		    from_al->sym == to_al->sym &&
922 		    to_al->addr != to_al->sym->start)
923 			ts->rstate = X86_RETPOLINE_DETECTED;
924 
925 	} else if (sample->flags & PERF_IP_FLAG_RETURN) {
926 		if (!sample->addr) {
927 			u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET |
928 						 PERF_IP_FLAG_INTERRUPT;
929 
930 			if (!(sample->flags & return_from_kernel))
931 				return 0;
932 
933 			/* Pop kernel stack */
934 			return thread_stack__pop_ks(thread, ts, sample, ref);
935 		}
936 
937 		if (!sample->ip)
938 			return 0;
939 
940 		/* x86 retpoline 'return' doesn't match the stack */
941 		if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 &&
942 		    ts->stack[ts->cnt - 1].ret_addr != sample->addr)
943 			return thread_stack__x86_retpoline(ts, sample, to_al);
944 
945 		err = thread_stack__pop_cp(thread, ts, sample->addr,
946 					   sample->time, ref, from_al->sym);
947 		if (err) {
948 			if (err < 0)
949 				return err;
950 			err = thread_stack__no_call_return(thread, ts, sample,
951 							   from_al, to_al, ref);
952 		}
953 	} else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) {
954 		err = thread_stack__trace_begin(thread, ts, sample->time, ref);
955 	} else if (sample->flags & PERF_IP_FLAG_TRACE_END) {
956 		err = thread_stack__trace_end(ts, sample, ref);
957 	} else if (sample->flags & PERF_IP_FLAG_BRANCH &&
958 		   from_al->sym != to_al->sym && to_al->sym &&
959 		   to_al->addr == to_al->sym->start) {
960 		struct call_path_root *cpr = ts->crp->cpr;
961 		struct call_path *cp;
962 
963 		/*
964 		 * The compiler might optimize a call/ret combination by making
965 		 * it a jmp. Make that visible by recording on the stack a
966 		 * branch to the start of a different symbol. Note, that means
967 		 * when a ret pops the stack, all jmps must be popped off first.
968 		 */
969 		cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp,
970 					to_al->sym, sample->addr,
971 					ts->kernel_start);
972 		err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false,
973 					    false);
974 		if (!err)
975 			ts->stack[ts->cnt - 1].non_call = true;
976 	}
977 
978 	return err;
979 }
980 
981 size_t thread_stack__depth(struct thread *thread, int cpu)
982 {
983 	struct thread_stack *ts = thread__stack(thread, cpu);
984 
985 	if (!ts)
986 		return 0;
987 	return ts->cnt;
988 }
989