1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * thread-stack.c: Synthesize a thread's stack using call / return events 4 * Copyright (c) 2014, Intel Corporation. 5 */ 6 7 #include <linux/rbtree.h> 8 #include <linux/list.h> 9 #include <linux/log2.h> 10 #include <linux/zalloc.h> 11 #include <errno.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include "thread.h" 15 #include "event.h" 16 #include "machine.h" 17 #include "env.h" 18 #include "debug.h" 19 #include "symbol.h" 20 #include "comm.h" 21 #include "call-path.h" 22 #include "thread-stack.h" 23 24 #define STACK_GROWTH 2048 25 26 /* 27 * State of retpoline detection. 28 * 29 * RETPOLINE_NONE: no retpoline detection 30 * X86_RETPOLINE_POSSIBLE: x86 retpoline possible 31 * X86_RETPOLINE_DETECTED: x86 retpoline detected 32 */ 33 enum retpoline_state_t { 34 RETPOLINE_NONE, 35 X86_RETPOLINE_POSSIBLE, 36 X86_RETPOLINE_DETECTED, 37 }; 38 39 /** 40 * struct thread_stack_entry - thread stack entry. 41 * @ret_addr: return address 42 * @timestamp: timestamp (if known) 43 * @ref: external reference (e.g. db_id of sample) 44 * @branch_count: the branch count when the entry was created 45 * @insn_count: the instruction count when the entry was created 46 * @cyc_count the cycle count when the entry was created 47 * @db_id: id used for db-export 48 * @cp: call path 49 * @no_call: a 'call' was not seen 50 * @trace_end: a 'call' but trace ended 51 * @non_call: a branch but not a 'call' to the start of a different symbol 52 */ 53 struct thread_stack_entry { 54 u64 ret_addr; 55 u64 timestamp; 56 u64 ref; 57 u64 branch_count; 58 u64 insn_count; 59 u64 cyc_count; 60 u64 db_id; 61 struct call_path *cp; 62 bool no_call; 63 bool trace_end; 64 bool non_call; 65 }; 66 67 /** 68 * struct thread_stack - thread stack constructed from 'call' and 'return' 69 * branch samples. 70 * @stack: array that holds the stack 71 * @cnt: number of entries in the stack 72 * @sz: current maximum stack size 73 * @trace_nr: current trace number 74 * @branch_count: running branch count 75 * @insn_count: running instruction count 76 * @cyc_count running cycle count 77 * @kernel_start: kernel start address 78 * @last_time: last timestamp 79 * @crp: call/return processor 80 * @comm: current comm 81 * @arr_sz: size of array if this is the first element of an array 82 * @rstate: used to detect retpolines 83 */ 84 struct thread_stack { 85 struct thread_stack_entry *stack; 86 size_t cnt; 87 size_t sz; 88 u64 trace_nr; 89 u64 branch_count; 90 u64 insn_count; 91 u64 cyc_count; 92 u64 kernel_start; 93 u64 last_time; 94 struct call_return_processor *crp; 95 struct comm *comm; 96 unsigned int arr_sz; 97 enum retpoline_state_t rstate; 98 }; 99 100 /* 101 * Assume pid == tid == 0 identifies the idle task as defined by 102 * perf_session__register_idle_thread(). The idle task is really 1 task per cpu, 103 * and therefore requires a stack for each cpu. 104 */ 105 static inline bool thread_stack__per_cpu(struct thread *thread) 106 { 107 return !(thread->tid || thread->pid_); 108 } 109 110 static int thread_stack__grow(struct thread_stack *ts) 111 { 112 struct thread_stack_entry *new_stack; 113 size_t sz, new_sz; 114 115 new_sz = ts->sz + STACK_GROWTH; 116 sz = new_sz * sizeof(struct thread_stack_entry); 117 118 new_stack = realloc(ts->stack, sz); 119 if (!new_stack) 120 return -ENOMEM; 121 122 ts->stack = new_stack; 123 ts->sz = new_sz; 124 125 return 0; 126 } 127 128 static int thread_stack__init(struct thread_stack *ts, struct thread *thread, 129 struct call_return_processor *crp) 130 { 131 int err; 132 133 err = thread_stack__grow(ts); 134 if (err) 135 return err; 136 137 if (thread->maps && thread->maps->machine) { 138 struct machine *machine = thread->maps->machine; 139 const char *arch = perf_env__arch(machine->env); 140 141 ts->kernel_start = machine__kernel_start(machine); 142 if (!strcmp(arch, "x86")) 143 ts->rstate = X86_RETPOLINE_POSSIBLE; 144 } else { 145 ts->kernel_start = 1ULL << 63; 146 } 147 ts->crp = crp; 148 149 return 0; 150 } 151 152 static struct thread_stack *thread_stack__new(struct thread *thread, int cpu, 153 struct call_return_processor *crp) 154 { 155 struct thread_stack *ts = thread->ts, *new_ts; 156 unsigned int old_sz = ts ? ts->arr_sz : 0; 157 unsigned int new_sz = 1; 158 159 if (thread_stack__per_cpu(thread) && cpu > 0) 160 new_sz = roundup_pow_of_two(cpu + 1); 161 162 if (!ts || new_sz > old_sz) { 163 new_ts = calloc(new_sz, sizeof(*ts)); 164 if (!new_ts) 165 return NULL; 166 if (ts) 167 memcpy(new_ts, ts, old_sz * sizeof(*ts)); 168 new_ts->arr_sz = new_sz; 169 zfree(&thread->ts); 170 thread->ts = new_ts; 171 ts = new_ts; 172 } 173 174 if (thread_stack__per_cpu(thread) && cpu > 0 && 175 (unsigned int)cpu < ts->arr_sz) 176 ts += cpu; 177 178 if (!ts->stack && 179 thread_stack__init(ts, thread, crp)) 180 return NULL; 181 182 return ts; 183 } 184 185 static struct thread_stack *thread__cpu_stack(struct thread *thread, int cpu) 186 { 187 struct thread_stack *ts = thread->ts; 188 189 if (cpu < 0) 190 cpu = 0; 191 192 if (!ts || (unsigned int)cpu >= ts->arr_sz) 193 return NULL; 194 195 ts += cpu; 196 197 if (!ts->stack) 198 return NULL; 199 200 return ts; 201 } 202 203 static inline struct thread_stack *thread__stack(struct thread *thread, 204 int cpu) 205 { 206 if (!thread) 207 return NULL; 208 209 if (thread_stack__per_cpu(thread)) 210 return thread__cpu_stack(thread, cpu); 211 212 return thread->ts; 213 } 214 215 static int thread_stack__push(struct thread_stack *ts, u64 ret_addr, 216 bool trace_end) 217 { 218 int err = 0; 219 220 if (ts->cnt == ts->sz) { 221 err = thread_stack__grow(ts); 222 if (err) { 223 pr_warning("Out of memory: discarding thread stack\n"); 224 ts->cnt = 0; 225 } 226 } 227 228 ts->stack[ts->cnt].trace_end = trace_end; 229 ts->stack[ts->cnt++].ret_addr = ret_addr; 230 231 return err; 232 } 233 234 static void thread_stack__pop(struct thread_stack *ts, u64 ret_addr) 235 { 236 size_t i; 237 238 /* 239 * In some cases there may be functions which are not seen to return. 240 * For example when setjmp / longjmp has been used. Or the perf context 241 * switch in the kernel which doesn't stop and start tracing in exactly 242 * the same code path. When that happens the return address will be 243 * further down the stack. If the return address is not found at all, 244 * we assume the opposite (i.e. this is a return for a call that wasn't 245 * seen for some reason) and leave the stack alone. 246 */ 247 for (i = ts->cnt; i; ) { 248 if (ts->stack[--i].ret_addr == ret_addr) { 249 ts->cnt = i; 250 return; 251 } 252 } 253 } 254 255 static void thread_stack__pop_trace_end(struct thread_stack *ts) 256 { 257 size_t i; 258 259 for (i = ts->cnt; i; ) { 260 if (ts->stack[--i].trace_end) 261 ts->cnt = i; 262 else 263 return; 264 } 265 } 266 267 static bool thread_stack__in_kernel(struct thread_stack *ts) 268 { 269 if (!ts->cnt) 270 return false; 271 272 return ts->stack[ts->cnt - 1].cp->in_kernel; 273 } 274 275 static int thread_stack__call_return(struct thread *thread, 276 struct thread_stack *ts, size_t idx, 277 u64 timestamp, u64 ref, bool no_return) 278 { 279 struct call_return_processor *crp = ts->crp; 280 struct thread_stack_entry *tse; 281 struct call_return cr = { 282 .thread = thread, 283 .comm = ts->comm, 284 .db_id = 0, 285 }; 286 u64 *parent_db_id; 287 288 tse = &ts->stack[idx]; 289 cr.cp = tse->cp; 290 cr.call_time = tse->timestamp; 291 cr.return_time = timestamp; 292 cr.branch_count = ts->branch_count - tse->branch_count; 293 cr.insn_count = ts->insn_count - tse->insn_count; 294 cr.cyc_count = ts->cyc_count - tse->cyc_count; 295 cr.db_id = tse->db_id; 296 cr.call_ref = tse->ref; 297 cr.return_ref = ref; 298 if (tse->no_call) 299 cr.flags |= CALL_RETURN_NO_CALL; 300 if (no_return) 301 cr.flags |= CALL_RETURN_NO_RETURN; 302 if (tse->non_call) 303 cr.flags |= CALL_RETURN_NON_CALL; 304 305 /* 306 * The parent db_id must be assigned before exporting the child. Note 307 * it is not possible to export the parent first because its information 308 * is not yet complete because its 'return' has not yet been processed. 309 */ 310 parent_db_id = idx ? &(tse - 1)->db_id : NULL; 311 312 return crp->process(&cr, parent_db_id, crp->data); 313 } 314 315 static int __thread_stack__flush(struct thread *thread, struct thread_stack *ts) 316 { 317 struct call_return_processor *crp = ts->crp; 318 int err; 319 320 if (!crp) { 321 ts->cnt = 0; 322 return 0; 323 } 324 325 while (ts->cnt) { 326 err = thread_stack__call_return(thread, ts, --ts->cnt, 327 ts->last_time, 0, true); 328 if (err) { 329 pr_err("Error flushing thread stack!\n"); 330 ts->cnt = 0; 331 return err; 332 } 333 } 334 335 return 0; 336 } 337 338 int thread_stack__flush(struct thread *thread) 339 { 340 struct thread_stack *ts = thread->ts; 341 unsigned int pos; 342 int err = 0; 343 344 if (ts) { 345 for (pos = 0; pos < ts->arr_sz; pos++) { 346 int ret = __thread_stack__flush(thread, ts + pos); 347 348 if (ret) 349 err = ret; 350 } 351 } 352 353 return err; 354 } 355 356 int thread_stack__event(struct thread *thread, int cpu, u32 flags, u64 from_ip, 357 u64 to_ip, u16 insn_len, u64 trace_nr) 358 { 359 struct thread_stack *ts = thread__stack(thread, cpu); 360 361 if (!thread) 362 return -EINVAL; 363 364 if (!ts) { 365 ts = thread_stack__new(thread, cpu, NULL); 366 if (!ts) { 367 pr_warning("Out of memory: no thread stack\n"); 368 return -ENOMEM; 369 } 370 ts->trace_nr = trace_nr; 371 } 372 373 /* 374 * When the trace is discontinuous, the trace_nr changes. In that case 375 * the stack might be completely invalid. Better to report nothing than 376 * to report something misleading, so flush the stack. 377 */ 378 if (trace_nr != ts->trace_nr) { 379 if (ts->trace_nr) 380 __thread_stack__flush(thread, ts); 381 ts->trace_nr = trace_nr; 382 } 383 384 /* Stop here if thread_stack__process() is in use */ 385 if (ts->crp) 386 return 0; 387 388 if (flags & PERF_IP_FLAG_CALL) { 389 u64 ret_addr; 390 391 if (!to_ip) 392 return 0; 393 ret_addr = from_ip + insn_len; 394 if (ret_addr == to_ip) 395 return 0; /* Zero-length calls are excluded */ 396 return thread_stack__push(ts, ret_addr, 397 flags & PERF_IP_FLAG_TRACE_END); 398 } else if (flags & PERF_IP_FLAG_TRACE_BEGIN) { 399 /* 400 * If the caller did not change the trace number (which would 401 * have flushed the stack) then try to make sense of the stack. 402 * Possibly, tracing began after returning to the current 403 * address, so try to pop that. Also, do not expect a call made 404 * when the trace ended, to return, so pop that. 405 */ 406 thread_stack__pop(ts, to_ip); 407 thread_stack__pop_trace_end(ts); 408 } else if ((flags & PERF_IP_FLAG_RETURN) && from_ip) { 409 thread_stack__pop(ts, to_ip); 410 } 411 412 return 0; 413 } 414 415 void thread_stack__set_trace_nr(struct thread *thread, int cpu, u64 trace_nr) 416 { 417 struct thread_stack *ts = thread__stack(thread, cpu); 418 419 if (!ts) 420 return; 421 422 if (trace_nr != ts->trace_nr) { 423 if (ts->trace_nr) 424 __thread_stack__flush(thread, ts); 425 ts->trace_nr = trace_nr; 426 } 427 } 428 429 static void __thread_stack__free(struct thread *thread, struct thread_stack *ts) 430 { 431 __thread_stack__flush(thread, ts); 432 zfree(&ts->stack); 433 } 434 435 static void thread_stack__reset(struct thread *thread, struct thread_stack *ts) 436 { 437 unsigned int arr_sz = ts->arr_sz; 438 439 __thread_stack__free(thread, ts); 440 memset(ts, 0, sizeof(*ts)); 441 ts->arr_sz = arr_sz; 442 } 443 444 void thread_stack__free(struct thread *thread) 445 { 446 struct thread_stack *ts = thread->ts; 447 unsigned int pos; 448 449 if (ts) { 450 for (pos = 0; pos < ts->arr_sz; pos++) 451 __thread_stack__free(thread, ts + pos); 452 zfree(&thread->ts); 453 } 454 } 455 456 static inline u64 callchain_context(u64 ip, u64 kernel_start) 457 { 458 return ip < kernel_start ? PERF_CONTEXT_USER : PERF_CONTEXT_KERNEL; 459 } 460 461 void thread_stack__sample(struct thread *thread, int cpu, 462 struct ip_callchain *chain, 463 size_t sz, u64 ip, u64 kernel_start) 464 { 465 struct thread_stack *ts = thread__stack(thread, cpu); 466 u64 context = callchain_context(ip, kernel_start); 467 u64 last_context; 468 size_t i, j; 469 470 if (sz < 2) { 471 chain->nr = 0; 472 return; 473 } 474 475 chain->ips[0] = context; 476 chain->ips[1] = ip; 477 478 if (!ts) { 479 chain->nr = 2; 480 return; 481 } 482 483 last_context = context; 484 485 for (i = 2, j = 1; i < sz && j <= ts->cnt; i++, j++) { 486 ip = ts->stack[ts->cnt - j].ret_addr; 487 context = callchain_context(ip, kernel_start); 488 if (context != last_context) { 489 if (i >= sz - 1) 490 break; 491 chain->ips[i++] = context; 492 last_context = context; 493 } 494 chain->ips[i] = ip; 495 } 496 497 chain->nr = i; 498 } 499 500 /* 501 * Hardware sample records, created some time after the event occurred, need to 502 * have subsequent addresses removed from the call chain. 503 */ 504 void thread_stack__sample_late(struct thread *thread, int cpu, 505 struct ip_callchain *chain, size_t sz, 506 u64 sample_ip, u64 kernel_start) 507 { 508 struct thread_stack *ts = thread__stack(thread, cpu); 509 u64 sample_context = callchain_context(sample_ip, kernel_start); 510 u64 last_context, context, ip; 511 size_t nr = 0, j; 512 513 if (sz < 2) { 514 chain->nr = 0; 515 return; 516 } 517 518 if (!ts) 519 goto out; 520 521 /* 522 * When tracing kernel space, kernel addresses occur at the top of the 523 * call chain after the event occurred but before tracing stopped. 524 * Skip them. 525 */ 526 for (j = 1; j <= ts->cnt; j++) { 527 ip = ts->stack[ts->cnt - j].ret_addr; 528 context = callchain_context(ip, kernel_start); 529 if (context == PERF_CONTEXT_USER || 530 (context == sample_context && ip == sample_ip)) 531 break; 532 } 533 534 last_context = sample_ip; /* Use sample_ip as an invalid context */ 535 536 for (; nr < sz && j <= ts->cnt; nr++, j++) { 537 ip = ts->stack[ts->cnt - j].ret_addr; 538 context = callchain_context(ip, kernel_start); 539 if (context != last_context) { 540 if (nr >= sz - 1) 541 break; 542 chain->ips[nr++] = context; 543 last_context = context; 544 } 545 chain->ips[nr] = ip; 546 } 547 out: 548 if (nr) { 549 chain->nr = nr; 550 } else { 551 chain->ips[0] = sample_context; 552 chain->ips[1] = sample_ip; 553 chain->nr = 2; 554 } 555 } 556 557 struct call_return_processor * 558 call_return_processor__new(int (*process)(struct call_return *cr, u64 *parent_db_id, void *data), 559 void *data) 560 { 561 struct call_return_processor *crp; 562 563 crp = zalloc(sizeof(struct call_return_processor)); 564 if (!crp) 565 return NULL; 566 crp->cpr = call_path_root__new(); 567 if (!crp->cpr) 568 goto out_free; 569 crp->process = process; 570 crp->data = data; 571 return crp; 572 573 out_free: 574 free(crp); 575 return NULL; 576 } 577 578 void call_return_processor__free(struct call_return_processor *crp) 579 { 580 if (crp) { 581 call_path_root__free(crp->cpr); 582 free(crp); 583 } 584 } 585 586 static int thread_stack__push_cp(struct thread_stack *ts, u64 ret_addr, 587 u64 timestamp, u64 ref, struct call_path *cp, 588 bool no_call, bool trace_end) 589 { 590 struct thread_stack_entry *tse; 591 int err; 592 593 if (!cp) 594 return -ENOMEM; 595 596 if (ts->cnt == ts->sz) { 597 err = thread_stack__grow(ts); 598 if (err) 599 return err; 600 } 601 602 tse = &ts->stack[ts->cnt++]; 603 tse->ret_addr = ret_addr; 604 tse->timestamp = timestamp; 605 tse->ref = ref; 606 tse->branch_count = ts->branch_count; 607 tse->insn_count = ts->insn_count; 608 tse->cyc_count = ts->cyc_count; 609 tse->cp = cp; 610 tse->no_call = no_call; 611 tse->trace_end = trace_end; 612 tse->non_call = false; 613 tse->db_id = 0; 614 615 return 0; 616 } 617 618 static int thread_stack__pop_cp(struct thread *thread, struct thread_stack *ts, 619 u64 ret_addr, u64 timestamp, u64 ref, 620 struct symbol *sym) 621 { 622 int err; 623 624 if (!ts->cnt) 625 return 1; 626 627 if (ts->cnt == 1) { 628 struct thread_stack_entry *tse = &ts->stack[0]; 629 630 if (tse->cp->sym == sym) 631 return thread_stack__call_return(thread, ts, --ts->cnt, 632 timestamp, ref, false); 633 } 634 635 if (ts->stack[ts->cnt - 1].ret_addr == ret_addr && 636 !ts->stack[ts->cnt - 1].non_call) { 637 return thread_stack__call_return(thread, ts, --ts->cnt, 638 timestamp, ref, false); 639 } else { 640 size_t i = ts->cnt - 1; 641 642 while (i--) { 643 if (ts->stack[i].ret_addr != ret_addr || 644 ts->stack[i].non_call) 645 continue; 646 i += 1; 647 while (ts->cnt > i) { 648 err = thread_stack__call_return(thread, ts, 649 --ts->cnt, 650 timestamp, ref, 651 true); 652 if (err) 653 return err; 654 } 655 return thread_stack__call_return(thread, ts, --ts->cnt, 656 timestamp, ref, false); 657 } 658 } 659 660 return 1; 661 } 662 663 static int thread_stack__bottom(struct thread_stack *ts, 664 struct perf_sample *sample, 665 struct addr_location *from_al, 666 struct addr_location *to_al, u64 ref) 667 { 668 struct call_path_root *cpr = ts->crp->cpr; 669 struct call_path *cp; 670 struct symbol *sym; 671 u64 ip; 672 673 if (sample->ip) { 674 ip = sample->ip; 675 sym = from_al->sym; 676 } else if (sample->addr) { 677 ip = sample->addr; 678 sym = to_al->sym; 679 } else { 680 return 0; 681 } 682 683 cp = call_path__findnew(cpr, &cpr->call_path, sym, ip, 684 ts->kernel_start); 685 686 return thread_stack__push_cp(ts, ip, sample->time, ref, cp, 687 true, false); 688 } 689 690 static int thread_stack__pop_ks(struct thread *thread, struct thread_stack *ts, 691 struct perf_sample *sample, u64 ref) 692 { 693 u64 tm = sample->time; 694 int err; 695 696 /* Return to userspace, so pop all kernel addresses */ 697 while (thread_stack__in_kernel(ts)) { 698 err = thread_stack__call_return(thread, ts, --ts->cnt, 699 tm, ref, true); 700 if (err) 701 return err; 702 } 703 704 return 0; 705 } 706 707 static int thread_stack__no_call_return(struct thread *thread, 708 struct thread_stack *ts, 709 struct perf_sample *sample, 710 struct addr_location *from_al, 711 struct addr_location *to_al, u64 ref) 712 { 713 struct call_path_root *cpr = ts->crp->cpr; 714 struct call_path *root = &cpr->call_path; 715 struct symbol *fsym = from_al->sym; 716 struct symbol *tsym = to_al->sym; 717 struct call_path *cp, *parent; 718 u64 ks = ts->kernel_start; 719 u64 addr = sample->addr; 720 u64 tm = sample->time; 721 u64 ip = sample->ip; 722 int err; 723 724 if (ip >= ks && addr < ks) { 725 /* Return to userspace, so pop all kernel addresses */ 726 err = thread_stack__pop_ks(thread, ts, sample, ref); 727 if (err) 728 return err; 729 730 /* If the stack is empty, push the userspace address */ 731 if (!ts->cnt) { 732 cp = call_path__findnew(cpr, root, tsym, addr, ks); 733 return thread_stack__push_cp(ts, 0, tm, ref, cp, true, 734 false); 735 } 736 } else if (thread_stack__in_kernel(ts) && ip < ks) { 737 /* Return to userspace, so pop all kernel addresses */ 738 err = thread_stack__pop_ks(thread, ts, sample, ref); 739 if (err) 740 return err; 741 } 742 743 if (ts->cnt) 744 parent = ts->stack[ts->cnt - 1].cp; 745 else 746 parent = root; 747 748 if (parent->sym == from_al->sym) { 749 /* 750 * At the bottom of the stack, assume the missing 'call' was 751 * before the trace started. So, pop the current symbol and push 752 * the 'to' symbol. 753 */ 754 if (ts->cnt == 1) { 755 err = thread_stack__call_return(thread, ts, --ts->cnt, 756 tm, ref, false); 757 if (err) 758 return err; 759 } 760 761 if (!ts->cnt) { 762 cp = call_path__findnew(cpr, root, tsym, addr, ks); 763 764 return thread_stack__push_cp(ts, addr, tm, ref, cp, 765 true, false); 766 } 767 768 /* 769 * Otherwise assume the 'return' is being used as a jump (e.g. 770 * retpoline) and just push the 'to' symbol. 771 */ 772 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 773 774 err = thread_stack__push_cp(ts, 0, tm, ref, cp, true, false); 775 if (!err) 776 ts->stack[ts->cnt - 1].non_call = true; 777 778 return err; 779 } 780 781 /* 782 * Assume 'parent' has not yet returned, so push 'to', and then push and 783 * pop 'from'. 784 */ 785 786 cp = call_path__findnew(cpr, parent, tsym, addr, ks); 787 788 err = thread_stack__push_cp(ts, addr, tm, ref, cp, true, false); 789 if (err) 790 return err; 791 792 cp = call_path__findnew(cpr, cp, fsym, ip, ks); 793 794 err = thread_stack__push_cp(ts, ip, tm, ref, cp, true, false); 795 if (err) 796 return err; 797 798 return thread_stack__call_return(thread, ts, --ts->cnt, tm, ref, false); 799 } 800 801 static int thread_stack__trace_begin(struct thread *thread, 802 struct thread_stack *ts, u64 timestamp, 803 u64 ref) 804 { 805 struct thread_stack_entry *tse; 806 int err; 807 808 if (!ts->cnt) 809 return 0; 810 811 /* Pop trace end */ 812 tse = &ts->stack[ts->cnt - 1]; 813 if (tse->trace_end) { 814 err = thread_stack__call_return(thread, ts, --ts->cnt, 815 timestamp, ref, false); 816 if (err) 817 return err; 818 } 819 820 return 0; 821 } 822 823 static int thread_stack__trace_end(struct thread_stack *ts, 824 struct perf_sample *sample, u64 ref) 825 { 826 struct call_path_root *cpr = ts->crp->cpr; 827 struct call_path *cp; 828 u64 ret_addr; 829 830 /* No point having 'trace end' on the bottom of the stack */ 831 if (!ts->cnt || (ts->cnt == 1 && ts->stack[0].ref == ref)) 832 return 0; 833 834 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, NULL, 0, 835 ts->kernel_start); 836 837 ret_addr = sample->ip + sample->insn_len; 838 839 return thread_stack__push_cp(ts, ret_addr, sample->time, ref, cp, 840 false, true); 841 } 842 843 static bool is_x86_retpoline(const char *name) 844 { 845 const char *p = strstr(name, "__x86_indirect_thunk_"); 846 847 return p == name || !strcmp(name, "__indirect_thunk_start"); 848 } 849 850 /* 851 * x86 retpoline functions pollute the call graph. This function removes them. 852 * This does not handle function return thunks, nor is there any improvement 853 * for the handling of inline thunks or extern thunks. 854 */ 855 static int thread_stack__x86_retpoline(struct thread_stack *ts, 856 struct perf_sample *sample, 857 struct addr_location *to_al) 858 { 859 struct thread_stack_entry *tse = &ts->stack[ts->cnt - 1]; 860 struct call_path_root *cpr = ts->crp->cpr; 861 struct symbol *sym = tse->cp->sym; 862 struct symbol *tsym = to_al->sym; 863 struct call_path *cp; 864 865 if (sym && is_x86_retpoline(sym->name)) { 866 /* 867 * This is a x86 retpoline fn. It pollutes the call graph by 868 * showing up everywhere there is an indirect branch, but does 869 * not itself mean anything. Here the top-of-stack is removed, 870 * by decrementing the stack count, and then further down, the 871 * resulting top-of-stack is replaced with the actual target. 872 * The result is that the retpoline functions will no longer 873 * appear in the call graph. Note this only affects the call 874 * graph, since all the original branches are left unchanged. 875 */ 876 ts->cnt -= 1; 877 sym = ts->stack[ts->cnt - 2].cp->sym; 878 if (sym && sym == tsym && to_al->addr != tsym->start) { 879 /* 880 * Target is back to the middle of the symbol we came 881 * from so assume it is an indirect jmp and forget it 882 * altogether. 883 */ 884 ts->cnt -= 1; 885 return 0; 886 } 887 } else if (sym && sym == tsym) { 888 /* 889 * Target is back to the symbol we came from so assume it is an 890 * indirect jmp and forget it altogether. 891 */ 892 ts->cnt -= 1; 893 return 0; 894 } 895 896 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 2].cp, tsym, 897 sample->addr, ts->kernel_start); 898 if (!cp) 899 return -ENOMEM; 900 901 /* Replace the top-of-stack with the actual target */ 902 ts->stack[ts->cnt - 1].cp = cp; 903 904 return 0; 905 } 906 907 int thread_stack__process(struct thread *thread, struct comm *comm, 908 struct perf_sample *sample, 909 struct addr_location *from_al, 910 struct addr_location *to_al, u64 ref, 911 struct call_return_processor *crp) 912 { 913 struct thread_stack *ts = thread__stack(thread, sample->cpu); 914 enum retpoline_state_t rstate; 915 int err = 0; 916 917 if (ts && !ts->crp) { 918 /* Supersede thread_stack__event() */ 919 thread_stack__reset(thread, ts); 920 ts = NULL; 921 } 922 923 if (!ts) { 924 ts = thread_stack__new(thread, sample->cpu, crp); 925 if (!ts) 926 return -ENOMEM; 927 ts->comm = comm; 928 } 929 930 rstate = ts->rstate; 931 if (rstate == X86_RETPOLINE_DETECTED) 932 ts->rstate = X86_RETPOLINE_POSSIBLE; 933 934 /* Flush stack on exec */ 935 if (ts->comm != comm && thread->pid_ == thread->tid) { 936 err = __thread_stack__flush(thread, ts); 937 if (err) 938 return err; 939 ts->comm = comm; 940 } 941 942 /* If the stack is empty, put the current symbol on the stack */ 943 if (!ts->cnt) { 944 err = thread_stack__bottom(ts, sample, from_al, to_al, ref); 945 if (err) 946 return err; 947 } 948 949 ts->branch_count += 1; 950 ts->insn_count += sample->insn_cnt; 951 ts->cyc_count += sample->cyc_cnt; 952 ts->last_time = sample->time; 953 954 if (sample->flags & PERF_IP_FLAG_CALL) { 955 bool trace_end = sample->flags & PERF_IP_FLAG_TRACE_END; 956 struct call_path_root *cpr = ts->crp->cpr; 957 struct call_path *cp; 958 u64 ret_addr; 959 960 if (!sample->ip || !sample->addr) 961 return 0; 962 963 ret_addr = sample->ip + sample->insn_len; 964 if (ret_addr == sample->addr) 965 return 0; /* Zero-length calls are excluded */ 966 967 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 968 to_al->sym, sample->addr, 969 ts->kernel_start); 970 err = thread_stack__push_cp(ts, ret_addr, sample->time, ref, 971 cp, false, trace_end); 972 973 /* 974 * A call to the same symbol but not the start of the symbol, 975 * may be the start of a x86 retpoline. 976 */ 977 if (!err && rstate == X86_RETPOLINE_POSSIBLE && to_al->sym && 978 from_al->sym == to_al->sym && 979 to_al->addr != to_al->sym->start) 980 ts->rstate = X86_RETPOLINE_DETECTED; 981 982 } else if (sample->flags & PERF_IP_FLAG_RETURN) { 983 if (!sample->addr) { 984 u32 return_from_kernel = PERF_IP_FLAG_SYSCALLRET | 985 PERF_IP_FLAG_INTERRUPT; 986 987 if (!(sample->flags & return_from_kernel)) 988 return 0; 989 990 /* Pop kernel stack */ 991 return thread_stack__pop_ks(thread, ts, sample, ref); 992 } 993 994 if (!sample->ip) 995 return 0; 996 997 /* x86 retpoline 'return' doesn't match the stack */ 998 if (rstate == X86_RETPOLINE_DETECTED && ts->cnt > 2 && 999 ts->stack[ts->cnt - 1].ret_addr != sample->addr) 1000 return thread_stack__x86_retpoline(ts, sample, to_al); 1001 1002 err = thread_stack__pop_cp(thread, ts, sample->addr, 1003 sample->time, ref, from_al->sym); 1004 if (err) { 1005 if (err < 0) 1006 return err; 1007 err = thread_stack__no_call_return(thread, ts, sample, 1008 from_al, to_al, ref); 1009 } 1010 } else if (sample->flags & PERF_IP_FLAG_TRACE_BEGIN) { 1011 err = thread_stack__trace_begin(thread, ts, sample->time, ref); 1012 } else if (sample->flags & PERF_IP_FLAG_TRACE_END) { 1013 err = thread_stack__trace_end(ts, sample, ref); 1014 } else if (sample->flags & PERF_IP_FLAG_BRANCH && 1015 from_al->sym != to_al->sym && to_al->sym && 1016 to_al->addr == to_al->sym->start) { 1017 struct call_path_root *cpr = ts->crp->cpr; 1018 struct call_path *cp; 1019 1020 /* 1021 * The compiler might optimize a call/ret combination by making 1022 * it a jmp. Make that visible by recording on the stack a 1023 * branch to the start of a different symbol. Note, that means 1024 * when a ret pops the stack, all jmps must be popped off first. 1025 */ 1026 cp = call_path__findnew(cpr, ts->stack[ts->cnt - 1].cp, 1027 to_al->sym, sample->addr, 1028 ts->kernel_start); 1029 err = thread_stack__push_cp(ts, 0, sample->time, ref, cp, false, 1030 false); 1031 if (!err) 1032 ts->stack[ts->cnt - 1].non_call = true; 1033 } 1034 1035 return err; 1036 } 1037 1038 size_t thread_stack__depth(struct thread *thread, int cpu) 1039 { 1040 struct thread_stack *ts = thread__stack(thread, cpu); 1041 1042 if (!ts) 1043 return 0; 1044 return ts->cnt; 1045 } 1046