xref: /openbmc/linux/tools/perf/util/symbol.c (revision ec03370e)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "dso.h"
22 #include "util.h" // lsdir()
23 #include "debug.h"
24 #include "event.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "symbol.h"
28 #include "map_symbol.h"
29 #include "mem-events.h"
30 #include "symsrc.h"
31 #include "strlist.h"
32 #include "intlist.h"
33 #include "namespaces.h"
34 #include "header.h"
35 #include "path.h"
36 #include <linux/ctype.h>
37 #include <linux/zalloc.h>
38 
39 #include <elf.h>
40 #include <limits.h>
41 #include <symbol/kallsyms.h>
42 #include <sys/utsname.h>
43 
44 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
46 static bool symbol__is_idle(const char *name);
47 
48 int vmlinux_path__nr_entries;
49 char **vmlinux_path;
50 
51 struct symbol_conf symbol_conf = {
52 	.nanosecs		= false,
53 	.use_modules		= true,
54 	.try_vmlinux_path	= true,
55 	.demangle		= true,
56 	.demangle_kernel	= false,
57 	.cumulate_callchain	= true,
58 	.time_quantum		= 100 * NSEC_PER_MSEC, /* 100ms */
59 	.show_hist_headers	= true,
60 	.symfs			= "",
61 	.event_group		= true,
62 	.inline_name		= true,
63 	.res_sample		= 0,
64 };
65 
66 static enum dso_binary_type binary_type_symtab[] = {
67 	DSO_BINARY_TYPE__KALLSYMS,
68 	DSO_BINARY_TYPE__GUEST_KALLSYMS,
69 	DSO_BINARY_TYPE__JAVA_JIT,
70 	DSO_BINARY_TYPE__DEBUGLINK,
71 	DSO_BINARY_TYPE__BUILD_ID_CACHE,
72 	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
73 	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
74 	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
75 	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
76 	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
77 	DSO_BINARY_TYPE__GUEST_KMODULE,
78 	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
79 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
80 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
81 	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
82 	DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO,
83 	DSO_BINARY_TYPE__NOT_FOUND,
84 };
85 
86 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
87 
88 static bool symbol_type__filter(char symbol_type)
89 {
90 	symbol_type = toupper(symbol_type);
91 	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
92 }
93 
94 static int prefix_underscores_count(const char *str)
95 {
96 	const char *tail = str;
97 
98 	while (*tail == '_')
99 		tail++;
100 
101 	return tail - str;
102 }
103 
104 void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c)
105 {
106 	p->end = c->start;
107 }
108 
109 const char * __weak arch__normalize_symbol_name(const char *name)
110 {
111 	return name;
112 }
113 
114 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
115 {
116 	return strcmp(namea, nameb);
117 }
118 
119 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
120 					unsigned int n)
121 {
122 	return strncmp(namea, nameb, n);
123 }
124 
125 int __weak arch__choose_best_symbol(struct symbol *syma,
126 				    struct symbol *symb __maybe_unused)
127 {
128 	/* Avoid "SyS" kernel syscall aliases */
129 	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
130 		return SYMBOL_B;
131 	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
132 		return SYMBOL_B;
133 
134 	return SYMBOL_A;
135 }
136 
137 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
138 {
139 	s64 a;
140 	s64 b;
141 	size_t na, nb;
142 
143 	/* Prefer a symbol with non zero length */
144 	a = syma->end - syma->start;
145 	b = symb->end - symb->start;
146 	if ((b == 0) && (a > 0))
147 		return SYMBOL_A;
148 	else if ((a == 0) && (b > 0))
149 		return SYMBOL_B;
150 
151 	/* Prefer a non weak symbol over a weak one */
152 	a = syma->binding == STB_WEAK;
153 	b = symb->binding == STB_WEAK;
154 	if (b && !a)
155 		return SYMBOL_A;
156 	if (a && !b)
157 		return SYMBOL_B;
158 
159 	/* Prefer a global symbol over a non global one */
160 	a = syma->binding == STB_GLOBAL;
161 	b = symb->binding == STB_GLOBAL;
162 	if (a && !b)
163 		return SYMBOL_A;
164 	if (b && !a)
165 		return SYMBOL_B;
166 
167 	/* Prefer a symbol with less underscores */
168 	a = prefix_underscores_count(syma->name);
169 	b = prefix_underscores_count(symb->name);
170 	if (b > a)
171 		return SYMBOL_A;
172 	else if (a > b)
173 		return SYMBOL_B;
174 
175 	/* Choose the symbol with the longest name */
176 	na = strlen(syma->name);
177 	nb = strlen(symb->name);
178 	if (na > nb)
179 		return SYMBOL_A;
180 	else if (na < nb)
181 		return SYMBOL_B;
182 
183 	return arch__choose_best_symbol(syma, symb);
184 }
185 
186 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
187 {
188 	struct rb_node *nd;
189 	struct symbol *curr, *next;
190 
191 	if (symbol_conf.allow_aliases)
192 		return;
193 
194 	nd = rb_first_cached(symbols);
195 
196 	while (nd) {
197 		curr = rb_entry(nd, struct symbol, rb_node);
198 again:
199 		nd = rb_next(&curr->rb_node);
200 		next = rb_entry(nd, struct symbol, rb_node);
201 
202 		if (!nd)
203 			break;
204 
205 		if (curr->start != next->start)
206 			continue;
207 
208 		if (choose_best_symbol(curr, next) == SYMBOL_A) {
209 			rb_erase_cached(&next->rb_node, symbols);
210 			symbol__delete(next);
211 			goto again;
212 		} else {
213 			nd = rb_next(&curr->rb_node);
214 			rb_erase_cached(&curr->rb_node, symbols);
215 			symbol__delete(curr);
216 		}
217 	}
218 }
219 
220 void symbols__fixup_end(struct rb_root_cached *symbols)
221 {
222 	struct rb_node *nd, *prevnd = rb_first_cached(symbols);
223 	struct symbol *curr, *prev;
224 
225 	if (prevnd == NULL)
226 		return;
227 
228 	curr = rb_entry(prevnd, struct symbol, rb_node);
229 
230 	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
231 		prev = curr;
232 		curr = rb_entry(nd, struct symbol, rb_node);
233 
234 		if (prev->end == prev->start && prev->end != curr->start)
235 			arch__symbols__fixup_end(prev, curr);
236 	}
237 
238 	/* Last entry */
239 	if (curr->end == curr->start)
240 		curr->end = roundup(curr->start, 4096) + 4096;
241 }
242 
243 void maps__fixup_end(struct maps *maps)
244 {
245 	struct map *prev = NULL, *curr;
246 
247 	down_write(&maps->lock);
248 
249 	maps__for_each_entry(maps, curr) {
250 		if (prev != NULL && !prev->end)
251 			prev->end = curr->start;
252 
253 		prev = curr;
254 	}
255 
256 	/*
257 	 * We still haven't the actual symbols, so guess the
258 	 * last map final address.
259 	 */
260 	if (curr && !curr->end)
261 		curr->end = ~0ULL;
262 
263 	up_write(&maps->lock);
264 }
265 
266 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
267 {
268 	size_t namelen = strlen(name) + 1;
269 	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
270 					sizeof(*sym) + namelen));
271 	if (sym == NULL)
272 		return NULL;
273 
274 	if (symbol_conf.priv_size) {
275 		if (symbol_conf.init_annotation) {
276 			struct annotation *notes = (void *)sym;
277 			pthread_mutex_init(&notes->lock, NULL);
278 		}
279 		sym = ((void *)sym) + symbol_conf.priv_size;
280 	}
281 
282 	sym->start   = start;
283 	sym->end     = len ? start + len : start;
284 	sym->type    = type;
285 	sym->binding = binding;
286 	sym->namelen = namelen - 1;
287 
288 	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
289 		  __func__, name, start, sym->end);
290 	memcpy(sym->name, name, namelen);
291 
292 	return sym;
293 }
294 
295 void symbol__delete(struct symbol *sym)
296 {
297 	free(((void *)sym) - symbol_conf.priv_size);
298 }
299 
300 void symbols__delete(struct rb_root_cached *symbols)
301 {
302 	struct symbol *pos;
303 	struct rb_node *next = rb_first_cached(symbols);
304 
305 	while (next) {
306 		pos = rb_entry(next, struct symbol, rb_node);
307 		next = rb_next(&pos->rb_node);
308 		rb_erase_cached(&pos->rb_node, symbols);
309 		symbol__delete(pos);
310 	}
311 }
312 
313 void __symbols__insert(struct rb_root_cached *symbols,
314 		       struct symbol *sym, bool kernel)
315 {
316 	struct rb_node **p = &symbols->rb_root.rb_node;
317 	struct rb_node *parent = NULL;
318 	const u64 ip = sym->start;
319 	struct symbol *s;
320 	bool leftmost = true;
321 
322 	if (kernel) {
323 		const char *name = sym->name;
324 		/*
325 		 * ppc64 uses function descriptors and appends a '.' to the
326 		 * start of every instruction address. Remove it.
327 		 */
328 		if (name[0] == '.')
329 			name++;
330 		sym->idle = symbol__is_idle(name);
331 	}
332 
333 	while (*p != NULL) {
334 		parent = *p;
335 		s = rb_entry(parent, struct symbol, rb_node);
336 		if (ip < s->start)
337 			p = &(*p)->rb_left;
338 		else {
339 			p = &(*p)->rb_right;
340 			leftmost = false;
341 		}
342 	}
343 	rb_link_node(&sym->rb_node, parent, p);
344 	rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
345 }
346 
347 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
348 {
349 	__symbols__insert(symbols, sym, false);
350 }
351 
352 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
353 {
354 	struct rb_node *n;
355 
356 	if (symbols == NULL)
357 		return NULL;
358 
359 	n = symbols->rb_root.rb_node;
360 
361 	while (n) {
362 		struct symbol *s = rb_entry(n, struct symbol, rb_node);
363 
364 		if (ip < s->start)
365 			n = n->rb_left;
366 		else if (ip > s->end || (ip == s->end && ip != s->start))
367 			n = n->rb_right;
368 		else
369 			return s;
370 	}
371 
372 	return NULL;
373 }
374 
375 static struct symbol *symbols__first(struct rb_root_cached *symbols)
376 {
377 	struct rb_node *n = rb_first_cached(symbols);
378 
379 	if (n)
380 		return rb_entry(n, struct symbol, rb_node);
381 
382 	return NULL;
383 }
384 
385 static struct symbol *symbols__last(struct rb_root_cached *symbols)
386 {
387 	struct rb_node *n = rb_last(&symbols->rb_root);
388 
389 	if (n)
390 		return rb_entry(n, struct symbol, rb_node);
391 
392 	return NULL;
393 }
394 
395 static struct symbol *symbols__next(struct symbol *sym)
396 {
397 	struct rb_node *n = rb_next(&sym->rb_node);
398 
399 	if (n)
400 		return rb_entry(n, struct symbol, rb_node);
401 
402 	return NULL;
403 }
404 
405 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym)
406 {
407 	struct rb_node **p = &symbols->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct symbol_name_rb_node *symn, *s;
410 	bool leftmost = true;
411 
412 	symn = container_of(sym, struct symbol_name_rb_node, sym);
413 
414 	while (*p != NULL) {
415 		parent = *p;
416 		s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
417 		if (strcmp(sym->name, s->sym.name) < 0)
418 			p = &(*p)->rb_left;
419 		else {
420 			p = &(*p)->rb_right;
421 			leftmost = false;
422 		}
423 	}
424 	rb_link_node(&symn->rb_node, parent, p);
425 	rb_insert_color_cached(&symn->rb_node, symbols, leftmost);
426 }
427 
428 static void symbols__sort_by_name(struct rb_root_cached *symbols,
429 				  struct rb_root_cached *source)
430 {
431 	struct rb_node *nd;
432 
433 	for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
434 		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
435 		symbols__insert_by_name(symbols, pos);
436 	}
437 }
438 
439 int symbol__match_symbol_name(const char *name, const char *str,
440 			      enum symbol_tag_include includes)
441 {
442 	const char *versioning;
443 
444 	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
445 	    (versioning = strstr(name, "@@"))) {
446 		int len = strlen(str);
447 
448 		if (len < versioning - name)
449 			len = versioning - name;
450 
451 		return arch__compare_symbol_names_n(name, str, len);
452 	} else
453 		return arch__compare_symbol_names(name, str);
454 }
455 
456 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols,
457 					    const char *name,
458 					    enum symbol_tag_include includes)
459 {
460 	struct rb_node *n;
461 	struct symbol_name_rb_node *s = NULL;
462 
463 	if (symbols == NULL)
464 		return NULL;
465 
466 	n = symbols->rb_root.rb_node;
467 
468 	while (n) {
469 		int cmp;
470 
471 		s = rb_entry(n, struct symbol_name_rb_node, rb_node);
472 		cmp = symbol__match_symbol_name(s->sym.name, name, includes);
473 
474 		if (cmp > 0)
475 			n = n->rb_left;
476 		else if (cmp < 0)
477 			n = n->rb_right;
478 		else
479 			break;
480 	}
481 
482 	if (n == NULL)
483 		return NULL;
484 
485 	if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
486 		/* return first symbol that has same name (if any) */
487 		for (n = rb_prev(n); n; n = rb_prev(n)) {
488 			struct symbol_name_rb_node *tmp;
489 
490 			tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
491 			if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
492 				break;
493 
494 			s = tmp;
495 		}
496 
497 	return &s->sym;
498 }
499 
500 void dso__reset_find_symbol_cache(struct dso *dso)
501 {
502 	dso->last_find_result.addr   = 0;
503 	dso->last_find_result.symbol = NULL;
504 }
505 
506 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
507 {
508 	__symbols__insert(&dso->symbols, sym, dso->kernel);
509 
510 	/* update the symbol cache if necessary */
511 	if (dso->last_find_result.addr >= sym->start &&
512 	    (dso->last_find_result.addr < sym->end ||
513 	    sym->start == sym->end)) {
514 		dso->last_find_result.symbol = sym;
515 	}
516 }
517 
518 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
519 {
520 	if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
521 		dso->last_find_result.addr   = addr;
522 		dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
523 	}
524 
525 	return dso->last_find_result.symbol;
526 }
527 
528 struct symbol *dso__first_symbol(struct dso *dso)
529 {
530 	return symbols__first(&dso->symbols);
531 }
532 
533 struct symbol *dso__last_symbol(struct dso *dso)
534 {
535 	return symbols__last(&dso->symbols);
536 }
537 
538 struct symbol *dso__next_symbol(struct symbol *sym)
539 {
540 	return symbols__next(sym);
541 }
542 
543 struct symbol *symbol__next_by_name(struct symbol *sym)
544 {
545 	struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
546 	struct rb_node *n = rb_next(&s->rb_node);
547 
548 	return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
549 }
550 
551  /*
552   * Returns first symbol that matched with @name.
553   */
554 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
555 {
556 	struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
557 						 SYMBOL_TAG_INCLUDE__NONE);
558 	if (!s)
559 		s = symbols__find_by_name(&dso->symbol_names, name,
560 					  SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
561 	return s;
562 }
563 
564 void dso__sort_by_name(struct dso *dso)
565 {
566 	dso__set_sorted_by_name(dso);
567 	return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
568 }
569 
570 /*
571  * While we find nice hex chars, build a long_val.
572  * Return number of chars processed.
573  */
574 static int hex2u64(const char *ptr, u64 *long_val)
575 {
576 	char *p;
577 
578 	*long_val = strtoull(ptr, &p, 16);
579 
580 	return p - ptr;
581 }
582 
583 
584 int modules__parse(const char *filename, void *arg,
585 		   int (*process_module)(void *arg, const char *name,
586 					 u64 start, u64 size))
587 {
588 	char *line = NULL;
589 	size_t n;
590 	FILE *file;
591 	int err = 0;
592 
593 	file = fopen(filename, "r");
594 	if (file == NULL)
595 		return -1;
596 
597 	while (1) {
598 		char name[PATH_MAX];
599 		u64 start, size;
600 		char *sep, *endptr;
601 		ssize_t line_len;
602 
603 		line_len = getline(&line, &n, file);
604 		if (line_len < 0) {
605 			if (feof(file))
606 				break;
607 			err = -1;
608 			goto out;
609 		}
610 
611 		if (!line) {
612 			err = -1;
613 			goto out;
614 		}
615 
616 		line[--line_len] = '\0'; /* \n */
617 
618 		sep = strrchr(line, 'x');
619 		if (sep == NULL)
620 			continue;
621 
622 		hex2u64(sep + 1, &start);
623 
624 		sep = strchr(line, ' ');
625 		if (sep == NULL)
626 			continue;
627 
628 		*sep = '\0';
629 
630 		scnprintf(name, sizeof(name), "[%s]", line);
631 
632 		size = strtoul(sep + 1, &endptr, 0);
633 		if (*endptr != ' ' && *endptr != '\t')
634 			continue;
635 
636 		err = process_module(arg, name, start, size);
637 		if (err)
638 			break;
639 	}
640 out:
641 	free(line);
642 	fclose(file);
643 	return err;
644 }
645 
646 /*
647  * These are symbols in the kernel image, so make sure that
648  * sym is from a kernel DSO.
649  */
650 static bool symbol__is_idle(const char *name)
651 {
652 	const char * const idle_symbols[] = {
653 		"acpi_idle_do_entry",
654 		"acpi_processor_ffh_cstate_enter",
655 		"arch_cpu_idle",
656 		"cpu_idle",
657 		"cpu_startup_entry",
658 		"idle_cpu",
659 		"intel_idle",
660 		"default_idle",
661 		"native_safe_halt",
662 		"enter_idle",
663 		"exit_idle",
664 		"mwait_idle",
665 		"mwait_idle_with_hints",
666 		"poll_idle",
667 		"ppc64_runlatch_off",
668 		"pseries_dedicated_idle_sleep",
669 		NULL
670 	};
671 	int i;
672 	static struct strlist *idle_symbols_list;
673 
674 	if (idle_symbols_list)
675 		return strlist__has_entry(idle_symbols_list, name);
676 
677 	idle_symbols_list = strlist__new(NULL, NULL);
678 
679 	for (i = 0; idle_symbols[i]; i++)
680 		strlist__add(idle_symbols_list, idle_symbols[i]);
681 
682 	return strlist__has_entry(idle_symbols_list, name);
683 }
684 
685 static int map__process_kallsym_symbol(void *arg, const char *name,
686 				       char type, u64 start)
687 {
688 	struct symbol *sym;
689 	struct dso *dso = arg;
690 	struct rb_root_cached *root = &dso->symbols;
691 
692 	if (!symbol_type__filter(type))
693 		return 0;
694 
695 	/*
696 	 * module symbols are not sorted so we add all
697 	 * symbols, setting length to 0, and rely on
698 	 * symbols__fixup_end() to fix it up.
699 	 */
700 	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
701 	if (sym == NULL)
702 		return -ENOMEM;
703 	/*
704 	 * We will pass the symbols to the filter later, in
705 	 * map__split_kallsyms, when we have split the maps per module
706 	 */
707 	__symbols__insert(root, sym, !strchr(name, '['));
708 
709 	return 0;
710 }
711 
712 /*
713  * Loads the function entries in /proc/kallsyms into kernel_map->dso,
714  * so that we can in the next step set the symbol ->end address and then
715  * call kernel_maps__split_kallsyms.
716  */
717 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
718 {
719 	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
720 }
721 
722 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso)
723 {
724 	struct map *curr_map;
725 	struct symbol *pos;
726 	int count = 0;
727 	struct rb_root_cached old_root = dso->symbols;
728 	struct rb_root_cached *root = &dso->symbols;
729 	struct rb_node *next = rb_first_cached(root);
730 
731 	if (!kmaps)
732 		return -1;
733 
734 	*root = RB_ROOT_CACHED;
735 
736 	while (next) {
737 		char *module;
738 
739 		pos = rb_entry(next, struct symbol, rb_node);
740 		next = rb_next(&pos->rb_node);
741 
742 		rb_erase_cached(&pos->rb_node, &old_root);
743 		RB_CLEAR_NODE(&pos->rb_node);
744 		module = strchr(pos->name, '\t');
745 		if (module)
746 			*module = '\0';
747 
748 		curr_map = maps__find(kmaps, pos->start);
749 
750 		if (!curr_map) {
751 			symbol__delete(pos);
752 			continue;
753 		}
754 
755 		pos->start -= curr_map->start - curr_map->pgoff;
756 		if (pos->end > curr_map->end)
757 			pos->end = curr_map->end;
758 		if (pos->end)
759 			pos->end -= curr_map->start - curr_map->pgoff;
760 		symbols__insert(&curr_map->dso->symbols, pos);
761 		++count;
762 	}
763 
764 	/* Symbols have been adjusted */
765 	dso->adjust_symbols = 1;
766 
767 	return count;
768 }
769 
770 /*
771  * Split the symbols into maps, making sure there are no overlaps, i.e. the
772  * kernel range is broken in several maps, named [kernel].N, as we don't have
773  * the original ELF section names vmlinux have.
774  */
775 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta,
776 				struct map *initial_map)
777 {
778 	struct machine *machine;
779 	struct map *curr_map = initial_map;
780 	struct symbol *pos;
781 	int count = 0, moved = 0;
782 	struct rb_root_cached *root = &dso->symbols;
783 	struct rb_node *next = rb_first_cached(root);
784 	int kernel_range = 0;
785 	bool x86_64;
786 
787 	if (!kmaps)
788 		return -1;
789 
790 	machine = kmaps->machine;
791 
792 	x86_64 = machine__is(machine, "x86_64");
793 
794 	while (next) {
795 		char *module;
796 
797 		pos = rb_entry(next, struct symbol, rb_node);
798 		next = rb_next(&pos->rb_node);
799 
800 		module = strchr(pos->name, '\t');
801 		if (module) {
802 			if (!symbol_conf.use_modules)
803 				goto discard_symbol;
804 
805 			*module++ = '\0';
806 
807 			if (strcmp(curr_map->dso->short_name, module)) {
808 				if (curr_map != initial_map &&
809 				    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
810 				    machine__is_default_guest(machine)) {
811 					/*
812 					 * We assume all symbols of a module are
813 					 * continuous in * kallsyms, so curr_map
814 					 * points to a module and all its
815 					 * symbols are in its kmap. Mark it as
816 					 * loaded.
817 					 */
818 					dso__set_loaded(curr_map->dso);
819 				}
820 
821 				curr_map = maps__find_by_name(kmaps, module);
822 				if (curr_map == NULL) {
823 					pr_debug("%s/proc/{kallsyms,modules} "
824 					         "inconsistency while looking "
825 						 "for \"%s\" module!\n",
826 						 machine->root_dir, module);
827 					curr_map = initial_map;
828 					goto discard_symbol;
829 				}
830 
831 				if (curr_map->dso->loaded &&
832 				    !machine__is_default_guest(machine))
833 					goto discard_symbol;
834 			}
835 			/*
836 			 * So that we look just like we get from .ko files,
837 			 * i.e. not prelinked, relative to initial_map->start.
838 			 */
839 			pos->start = curr_map->map_ip(curr_map, pos->start);
840 			pos->end   = curr_map->map_ip(curr_map, pos->end);
841 		} else if (x86_64 && is_entry_trampoline(pos->name)) {
842 			/*
843 			 * These symbols are not needed anymore since the
844 			 * trampoline maps refer to the text section and it's
845 			 * symbols instead. Avoid having to deal with
846 			 * relocations, and the assumption that the first symbol
847 			 * is the start of kernel text, by simply removing the
848 			 * symbols at this point.
849 			 */
850 			goto discard_symbol;
851 		} else if (curr_map != initial_map) {
852 			char dso_name[PATH_MAX];
853 			struct dso *ndso;
854 
855 			if (delta) {
856 				/* Kernel was relocated at boot time */
857 				pos->start -= delta;
858 				pos->end -= delta;
859 			}
860 
861 			if (count == 0) {
862 				curr_map = initial_map;
863 				goto add_symbol;
864 			}
865 
866 			if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
867 				snprintf(dso_name, sizeof(dso_name),
868 					"[guest.kernel].%d",
869 					kernel_range++);
870 			else
871 				snprintf(dso_name, sizeof(dso_name),
872 					"[kernel].%d",
873 					kernel_range++);
874 
875 			ndso = dso__new(dso_name);
876 			if (ndso == NULL)
877 				return -1;
878 
879 			ndso->kernel = dso->kernel;
880 
881 			curr_map = map__new2(pos->start, ndso);
882 			if (curr_map == NULL) {
883 				dso__put(ndso);
884 				return -1;
885 			}
886 
887 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
888 			maps__insert(kmaps, curr_map);
889 			++kernel_range;
890 		} else if (delta) {
891 			/* Kernel was relocated at boot time */
892 			pos->start -= delta;
893 			pos->end -= delta;
894 		}
895 add_symbol:
896 		if (curr_map != initial_map) {
897 			rb_erase_cached(&pos->rb_node, root);
898 			symbols__insert(&curr_map->dso->symbols, pos);
899 			++moved;
900 		} else
901 			++count;
902 
903 		continue;
904 discard_symbol:
905 		rb_erase_cached(&pos->rb_node, root);
906 		symbol__delete(pos);
907 	}
908 
909 	if (curr_map != initial_map &&
910 	    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
911 	    machine__is_default_guest(kmaps->machine)) {
912 		dso__set_loaded(curr_map->dso);
913 	}
914 
915 	return count + moved;
916 }
917 
918 bool symbol__restricted_filename(const char *filename,
919 				 const char *restricted_filename)
920 {
921 	bool restricted = false;
922 
923 	if (symbol_conf.kptr_restrict) {
924 		char *r = realpath(filename, NULL);
925 
926 		if (r != NULL) {
927 			restricted = strcmp(r, restricted_filename) == 0;
928 			free(r);
929 			return restricted;
930 		}
931 	}
932 
933 	return restricted;
934 }
935 
936 struct module_info {
937 	struct rb_node rb_node;
938 	char *name;
939 	u64 start;
940 };
941 
942 static void add_module(struct module_info *mi, struct rb_root *modules)
943 {
944 	struct rb_node **p = &modules->rb_node;
945 	struct rb_node *parent = NULL;
946 	struct module_info *m;
947 
948 	while (*p != NULL) {
949 		parent = *p;
950 		m = rb_entry(parent, struct module_info, rb_node);
951 		if (strcmp(mi->name, m->name) < 0)
952 			p = &(*p)->rb_left;
953 		else
954 			p = &(*p)->rb_right;
955 	}
956 	rb_link_node(&mi->rb_node, parent, p);
957 	rb_insert_color(&mi->rb_node, modules);
958 }
959 
960 static void delete_modules(struct rb_root *modules)
961 {
962 	struct module_info *mi;
963 	struct rb_node *next = rb_first(modules);
964 
965 	while (next) {
966 		mi = rb_entry(next, struct module_info, rb_node);
967 		next = rb_next(&mi->rb_node);
968 		rb_erase(&mi->rb_node, modules);
969 		zfree(&mi->name);
970 		free(mi);
971 	}
972 }
973 
974 static struct module_info *find_module(const char *name,
975 				       struct rb_root *modules)
976 {
977 	struct rb_node *n = modules->rb_node;
978 
979 	while (n) {
980 		struct module_info *m;
981 		int cmp;
982 
983 		m = rb_entry(n, struct module_info, rb_node);
984 		cmp = strcmp(name, m->name);
985 		if (cmp < 0)
986 			n = n->rb_left;
987 		else if (cmp > 0)
988 			n = n->rb_right;
989 		else
990 			return m;
991 	}
992 
993 	return NULL;
994 }
995 
996 static int __read_proc_modules(void *arg, const char *name, u64 start,
997 			       u64 size __maybe_unused)
998 {
999 	struct rb_root *modules = arg;
1000 	struct module_info *mi;
1001 
1002 	mi = zalloc(sizeof(struct module_info));
1003 	if (!mi)
1004 		return -ENOMEM;
1005 
1006 	mi->name = strdup(name);
1007 	mi->start = start;
1008 
1009 	if (!mi->name) {
1010 		free(mi);
1011 		return -ENOMEM;
1012 	}
1013 
1014 	add_module(mi, modules);
1015 
1016 	return 0;
1017 }
1018 
1019 static int read_proc_modules(const char *filename, struct rb_root *modules)
1020 {
1021 	if (symbol__restricted_filename(filename, "/proc/modules"))
1022 		return -1;
1023 
1024 	if (modules__parse(filename, modules, __read_proc_modules)) {
1025 		delete_modules(modules);
1026 		return -1;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 int compare_proc_modules(const char *from, const char *to)
1033 {
1034 	struct rb_root from_modules = RB_ROOT;
1035 	struct rb_root to_modules = RB_ROOT;
1036 	struct rb_node *from_node, *to_node;
1037 	struct module_info *from_m, *to_m;
1038 	int ret = -1;
1039 
1040 	if (read_proc_modules(from, &from_modules))
1041 		return -1;
1042 
1043 	if (read_proc_modules(to, &to_modules))
1044 		goto out_delete_from;
1045 
1046 	from_node = rb_first(&from_modules);
1047 	to_node = rb_first(&to_modules);
1048 	while (from_node) {
1049 		if (!to_node)
1050 			break;
1051 
1052 		from_m = rb_entry(from_node, struct module_info, rb_node);
1053 		to_m = rb_entry(to_node, struct module_info, rb_node);
1054 
1055 		if (from_m->start != to_m->start ||
1056 		    strcmp(from_m->name, to_m->name))
1057 			break;
1058 
1059 		from_node = rb_next(from_node);
1060 		to_node = rb_next(to_node);
1061 	}
1062 
1063 	if (!from_node && !to_node)
1064 		ret = 0;
1065 
1066 	delete_modules(&to_modules);
1067 out_delete_from:
1068 	delete_modules(&from_modules);
1069 
1070 	return ret;
1071 }
1072 
1073 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps)
1074 {
1075 	struct rb_root modules = RB_ROOT;
1076 	struct map *old_map;
1077 	int err;
1078 
1079 	err = read_proc_modules(filename, &modules);
1080 	if (err)
1081 		return err;
1082 
1083 	maps__for_each_entry(kmaps, old_map) {
1084 		struct module_info *mi;
1085 
1086 		if (!__map__is_kmodule(old_map)) {
1087 			continue;
1088 		}
1089 
1090 		/* Module must be in memory at the same address */
1091 		mi = find_module(old_map->dso->short_name, &modules);
1092 		if (!mi || mi->start != old_map->start) {
1093 			err = -EINVAL;
1094 			goto out;
1095 		}
1096 	}
1097 out:
1098 	delete_modules(&modules);
1099 	return err;
1100 }
1101 
1102 /*
1103  * If kallsyms is referenced by name then we look for filename in the same
1104  * directory.
1105  */
1106 static bool filename_from_kallsyms_filename(char *filename,
1107 					    const char *base_name,
1108 					    const char *kallsyms_filename)
1109 {
1110 	char *name;
1111 
1112 	strcpy(filename, kallsyms_filename);
1113 	name = strrchr(filename, '/');
1114 	if (!name)
1115 		return false;
1116 
1117 	name += 1;
1118 
1119 	if (!strcmp(name, "kallsyms")) {
1120 		strcpy(name, base_name);
1121 		return true;
1122 	}
1123 
1124 	return false;
1125 }
1126 
1127 static int validate_kcore_modules(const char *kallsyms_filename,
1128 				  struct map *map)
1129 {
1130 	struct maps *kmaps = map__kmaps(map);
1131 	char modules_filename[PATH_MAX];
1132 
1133 	if (!kmaps)
1134 		return -EINVAL;
1135 
1136 	if (!filename_from_kallsyms_filename(modules_filename, "modules",
1137 					     kallsyms_filename))
1138 		return -EINVAL;
1139 
1140 	if (do_validate_kcore_modules(modules_filename, kmaps))
1141 		return -EINVAL;
1142 
1143 	return 0;
1144 }
1145 
1146 static int validate_kcore_addresses(const char *kallsyms_filename,
1147 				    struct map *map)
1148 {
1149 	struct kmap *kmap = map__kmap(map);
1150 
1151 	if (!kmap)
1152 		return -EINVAL;
1153 
1154 	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1155 		u64 start;
1156 
1157 		if (kallsyms__get_function_start(kallsyms_filename,
1158 						 kmap->ref_reloc_sym->name, &start))
1159 			return -ENOENT;
1160 		if (start != kmap->ref_reloc_sym->addr)
1161 			return -EINVAL;
1162 	}
1163 
1164 	return validate_kcore_modules(kallsyms_filename, map);
1165 }
1166 
1167 struct kcore_mapfn_data {
1168 	struct dso *dso;
1169 	struct list_head maps;
1170 };
1171 
1172 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1173 {
1174 	struct kcore_mapfn_data *md = data;
1175 	struct map *map;
1176 
1177 	map = map__new2(start, md->dso);
1178 	if (map == NULL)
1179 		return -ENOMEM;
1180 
1181 	map->end = map->start + len;
1182 	map->pgoff = pgoff;
1183 
1184 	list_add(&map->node, &md->maps);
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  * Merges map into maps by splitting the new map within the existing map
1191  * regions.
1192  */
1193 int maps__merge_in(struct maps *kmaps, struct map *new_map)
1194 {
1195 	struct map *old_map;
1196 	LIST_HEAD(merged);
1197 
1198 	maps__for_each_entry(kmaps, old_map) {
1199 		/* no overload with this one */
1200 		if (new_map->end < old_map->start ||
1201 		    new_map->start >= old_map->end)
1202 			continue;
1203 
1204 		if (new_map->start < old_map->start) {
1205 			/*
1206 			 * |new......
1207 			 *       |old....
1208 			 */
1209 			if (new_map->end < old_map->end) {
1210 				/*
1211 				 * |new......|     -> |new..|
1212 				 *       |old....| ->       |old....|
1213 				 */
1214 				new_map->end = old_map->start;
1215 			} else {
1216 				/*
1217 				 * |new.............| -> |new..|       |new..|
1218 				 *       |old....|    ->       |old....|
1219 				 */
1220 				struct map *m = map__clone(new_map);
1221 
1222 				if (!m)
1223 					return -ENOMEM;
1224 
1225 				m->end = old_map->start;
1226 				list_add_tail(&m->node, &merged);
1227 				new_map->pgoff += old_map->end - new_map->start;
1228 				new_map->start = old_map->end;
1229 			}
1230 		} else {
1231 			/*
1232 			 *      |new......
1233 			 * |old....
1234 			 */
1235 			if (new_map->end < old_map->end) {
1236 				/*
1237 				 *      |new..|   -> x
1238 				 * |old.........| -> |old.........|
1239 				 */
1240 				map__put(new_map);
1241 				new_map = NULL;
1242 				break;
1243 			} else {
1244 				/*
1245 				 *      |new......| ->         |new...|
1246 				 * |old....|        -> |old....|
1247 				 */
1248 				new_map->pgoff += old_map->end - new_map->start;
1249 				new_map->start = old_map->end;
1250 			}
1251 		}
1252 	}
1253 
1254 	while (!list_empty(&merged)) {
1255 		old_map = list_entry(merged.next, struct map, node);
1256 		list_del_init(&old_map->node);
1257 		maps__insert(kmaps, old_map);
1258 		map__put(old_map);
1259 	}
1260 
1261 	if (new_map) {
1262 		maps__insert(kmaps, new_map);
1263 		map__put(new_map);
1264 	}
1265 	return 0;
1266 }
1267 
1268 static int dso__load_kcore(struct dso *dso, struct map *map,
1269 			   const char *kallsyms_filename)
1270 {
1271 	struct maps *kmaps = map__kmaps(map);
1272 	struct kcore_mapfn_data md;
1273 	struct map *old_map, *new_map, *replacement_map = NULL, *next;
1274 	struct machine *machine;
1275 	bool is_64_bit;
1276 	int err, fd;
1277 	char kcore_filename[PATH_MAX];
1278 	u64 stext;
1279 
1280 	if (!kmaps)
1281 		return -EINVAL;
1282 
1283 	machine = kmaps->machine;
1284 
1285 	/* This function requires that the map is the kernel map */
1286 	if (!__map__is_kernel(map))
1287 		return -EINVAL;
1288 
1289 	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1290 					     kallsyms_filename))
1291 		return -EINVAL;
1292 
1293 	/* Modules and kernel must be present at their original addresses */
1294 	if (validate_kcore_addresses(kallsyms_filename, map))
1295 		return -EINVAL;
1296 
1297 	md.dso = dso;
1298 	INIT_LIST_HEAD(&md.maps);
1299 
1300 	fd = open(kcore_filename, O_RDONLY);
1301 	if (fd < 0) {
1302 		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1303 			 kcore_filename);
1304 		return -EINVAL;
1305 	}
1306 
1307 	/* Read new maps into temporary lists */
1308 	err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1309 			      &is_64_bit);
1310 	if (err)
1311 		goto out_err;
1312 	dso->is_64_bit = is_64_bit;
1313 
1314 	if (list_empty(&md.maps)) {
1315 		err = -EINVAL;
1316 		goto out_err;
1317 	}
1318 
1319 	/* Remove old maps */
1320 	maps__for_each_entry_safe(kmaps, old_map, next) {
1321 		/*
1322 		 * We need to preserve eBPF maps even if they are
1323 		 * covered by kcore, because we need to access
1324 		 * eBPF dso for source data.
1325 		 */
1326 		if (old_map != map && !__map__is_bpf_prog(old_map))
1327 			maps__remove(kmaps, old_map);
1328 	}
1329 	machine->trampolines_mapped = false;
1330 
1331 	/* Find the kernel map using the '_stext' symbol */
1332 	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1333 		list_for_each_entry(new_map, &md.maps, node) {
1334 			if (stext >= new_map->start && stext < new_map->end) {
1335 				replacement_map = new_map;
1336 				break;
1337 			}
1338 		}
1339 	}
1340 
1341 	if (!replacement_map)
1342 		replacement_map = list_entry(md.maps.next, struct map, node);
1343 
1344 	/* Add new maps */
1345 	while (!list_empty(&md.maps)) {
1346 		new_map = list_entry(md.maps.next, struct map, node);
1347 		list_del_init(&new_map->node);
1348 		if (new_map == replacement_map) {
1349 			map->start	= new_map->start;
1350 			map->end	= new_map->end;
1351 			map->pgoff	= new_map->pgoff;
1352 			map->map_ip	= new_map->map_ip;
1353 			map->unmap_ip	= new_map->unmap_ip;
1354 			/* Ensure maps are correctly ordered */
1355 			map__get(map);
1356 			maps__remove(kmaps, map);
1357 			maps__insert(kmaps, map);
1358 			map__put(map);
1359 			map__put(new_map);
1360 		} else {
1361 			/*
1362 			 * Merge kcore map into existing maps,
1363 			 * and ensure that current maps (eBPF)
1364 			 * stay intact.
1365 			 */
1366 			if (maps__merge_in(kmaps, new_map))
1367 				goto out_err;
1368 		}
1369 	}
1370 
1371 	if (machine__is(machine, "x86_64")) {
1372 		u64 addr;
1373 
1374 		/*
1375 		 * If one of the corresponding symbols is there, assume the
1376 		 * entry trampoline maps are too.
1377 		 */
1378 		if (!kallsyms__get_function_start(kallsyms_filename,
1379 						  ENTRY_TRAMPOLINE_NAME,
1380 						  &addr))
1381 			machine->trampolines_mapped = true;
1382 	}
1383 
1384 	/*
1385 	 * Set the data type and long name so that kcore can be read via
1386 	 * dso__data_read_addr().
1387 	 */
1388 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1389 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1390 	else
1391 		dso->binary_type = DSO_BINARY_TYPE__KCORE;
1392 	dso__set_long_name(dso, strdup(kcore_filename), true);
1393 
1394 	close(fd);
1395 
1396 	if (map->prot & PROT_EXEC)
1397 		pr_debug("Using %s for kernel object code\n", kcore_filename);
1398 	else
1399 		pr_debug("Using %s for kernel data\n", kcore_filename);
1400 
1401 	return 0;
1402 
1403 out_err:
1404 	while (!list_empty(&md.maps)) {
1405 		map = list_entry(md.maps.next, struct map, node);
1406 		list_del_init(&map->node);
1407 		map__put(map);
1408 	}
1409 	close(fd);
1410 	return -EINVAL;
1411 }
1412 
1413 /*
1414  * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
1415  * delta based on the relocation reference symbol.
1416  */
1417 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1418 {
1419 	u64 addr;
1420 
1421 	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1422 		return 0;
1423 
1424 	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1425 		return -1;
1426 
1427 	*delta = addr - kmap->ref_reloc_sym->addr;
1428 	return 0;
1429 }
1430 
1431 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1432 			 struct map *map, bool no_kcore)
1433 {
1434 	struct kmap *kmap = map__kmap(map);
1435 	u64 delta = 0;
1436 
1437 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1438 		return -1;
1439 
1440 	if (!kmap || !kmap->kmaps)
1441 		return -1;
1442 
1443 	if (dso__load_all_kallsyms(dso, filename) < 0)
1444 		return -1;
1445 
1446 	if (kallsyms__delta(kmap, filename, &delta))
1447 		return -1;
1448 
1449 	symbols__fixup_end(&dso->symbols);
1450 	symbols__fixup_duplicate(&dso->symbols);
1451 
1452 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1453 		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1454 	else
1455 		dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1456 
1457 	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1458 		return maps__split_kallsyms_for_kcore(kmap->kmaps, dso);
1459 	else
1460 		return maps__split_kallsyms(kmap->kmaps, dso, delta, map);
1461 }
1462 
1463 int dso__load_kallsyms(struct dso *dso, const char *filename,
1464 		       struct map *map)
1465 {
1466 	return __dso__load_kallsyms(dso, filename, map, false);
1467 }
1468 
1469 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1470 {
1471 	char *line = NULL;
1472 	size_t n;
1473 	FILE *file;
1474 	int nr_syms = 0;
1475 
1476 	file = fopen(map_path, "r");
1477 	if (file == NULL)
1478 		goto out_failure;
1479 
1480 	while (!feof(file)) {
1481 		u64 start, size;
1482 		struct symbol *sym;
1483 		int line_len, len;
1484 
1485 		line_len = getline(&line, &n, file);
1486 		if (line_len < 0)
1487 			break;
1488 
1489 		if (!line)
1490 			goto out_failure;
1491 
1492 		line[--line_len] = '\0'; /* \n */
1493 
1494 		len = hex2u64(line, &start);
1495 
1496 		len++;
1497 		if (len + 2 >= line_len)
1498 			continue;
1499 
1500 		len += hex2u64(line + len, &size);
1501 
1502 		len++;
1503 		if (len + 2 >= line_len)
1504 			continue;
1505 
1506 		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1507 
1508 		if (sym == NULL)
1509 			goto out_delete_line;
1510 
1511 		symbols__insert(&dso->symbols, sym);
1512 		nr_syms++;
1513 	}
1514 
1515 	free(line);
1516 	fclose(file);
1517 
1518 	return nr_syms;
1519 
1520 out_delete_line:
1521 	free(line);
1522 out_failure:
1523 	return -1;
1524 }
1525 
1526 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1527 					   enum dso_binary_type type)
1528 {
1529 	switch (type) {
1530 	case DSO_BINARY_TYPE__JAVA_JIT:
1531 	case DSO_BINARY_TYPE__DEBUGLINK:
1532 	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1533 	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1534 	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1535 	case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO:
1536 	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1537 	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1538 		return !kmod && dso->kernel == DSO_TYPE_USER;
1539 
1540 	case DSO_BINARY_TYPE__KALLSYMS:
1541 	case DSO_BINARY_TYPE__VMLINUX:
1542 	case DSO_BINARY_TYPE__KCORE:
1543 		return dso->kernel == DSO_TYPE_KERNEL;
1544 
1545 	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1546 	case DSO_BINARY_TYPE__GUEST_VMLINUX:
1547 	case DSO_BINARY_TYPE__GUEST_KCORE:
1548 		return dso->kernel == DSO_TYPE_GUEST_KERNEL;
1549 
1550 	case DSO_BINARY_TYPE__GUEST_KMODULE:
1551 	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1552 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1553 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1554 		/*
1555 		 * kernel modules know their symtab type - it's set when
1556 		 * creating a module dso in machine__addnew_module_map().
1557 		 */
1558 		return kmod && dso->symtab_type == type;
1559 
1560 	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1561 	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1562 		return true;
1563 
1564 	case DSO_BINARY_TYPE__BPF_PROG_INFO:
1565 	case DSO_BINARY_TYPE__BPF_IMAGE:
1566 	case DSO_BINARY_TYPE__NOT_FOUND:
1567 	default:
1568 		return false;
1569 	}
1570 }
1571 
1572 /* Checks for the existence of the perf-<pid>.map file in two different
1573  * locations.  First, if the process is a separate mount namespace, check in
1574  * that namespace using the pid of the innermost pid namespace.  If's not in a
1575  * namespace, or the file can't be found there, try in the mount namespace of
1576  * the tracing process using our view of its pid.
1577  */
1578 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1579 			      struct nsinfo **nsip)
1580 {
1581 	struct nscookie nsc;
1582 	struct nsinfo *nsi;
1583 	struct nsinfo *nnsi;
1584 	int rc = -1;
1585 
1586 	nsi = *nsip;
1587 
1588 	if (nsi->need_setns) {
1589 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
1590 		nsinfo__mountns_enter(nsi, &nsc);
1591 		rc = access(filebuf, R_OK);
1592 		nsinfo__mountns_exit(&nsc);
1593 		if (rc == 0)
1594 			return rc;
1595 	}
1596 
1597 	nnsi = nsinfo__copy(nsi);
1598 	if (nnsi) {
1599 		nsinfo__put(nsi);
1600 
1601 		nnsi->need_setns = false;
1602 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
1603 		*nsip = nnsi;
1604 		rc = 0;
1605 	}
1606 
1607 	return rc;
1608 }
1609 
1610 int dso__load(struct dso *dso, struct map *map)
1611 {
1612 	char *name;
1613 	int ret = -1;
1614 	u_int i;
1615 	struct machine *machine = NULL;
1616 	char *root_dir = (char *) "";
1617 	int ss_pos = 0;
1618 	struct symsrc ss_[2];
1619 	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1620 	bool kmod;
1621 	bool perfmap;
1622 	unsigned char build_id[BUILD_ID_SIZE];
1623 	struct nscookie nsc;
1624 	char newmapname[PATH_MAX];
1625 	const char *map_path = dso->long_name;
1626 
1627 	perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
1628 	if (perfmap) {
1629 		if (dso->nsinfo && (dso__find_perf_map(newmapname,
1630 		    sizeof(newmapname), &dso->nsinfo) == 0)) {
1631 			map_path = newmapname;
1632 		}
1633 	}
1634 
1635 	nsinfo__mountns_enter(dso->nsinfo, &nsc);
1636 	pthread_mutex_lock(&dso->lock);
1637 
1638 	/* check again under the dso->lock */
1639 	if (dso__loaded(dso)) {
1640 		ret = 1;
1641 		goto out;
1642 	}
1643 
1644 	kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1645 		dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
1646 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
1647 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1648 
1649 	if (dso->kernel && !kmod) {
1650 		if (dso->kernel == DSO_TYPE_KERNEL)
1651 			ret = dso__load_kernel_sym(dso, map);
1652 		else if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1653 			ret = dso__load_guest_kernel_sym(dso, map);
1654 
1655 		machine = map__kmaps(map)->machine;
1656 		if (machine__is(machine, "x86_64"))
1657 			machine__map_x86_64_entry_trampolines(machine, dso);
1658 		goto out;
1659 	}
1660 
1661 	dso->adjust_symbols = 0;
1662 
1663 	if (perfmap) {
1664 		ret = dso__load_perf_map(map_path, dso);
1665 		dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
1666 					     DSO_BINARY_TYPE__NOT_FOUND;
1667 		goto out;
1668 	}
1669 
1670 	if (machine)
1671 		root_dir = machine->root_dir;
1672 
1673 	name = malloc(PATH_MAX);
1674 	if (!name)
1675 		goto out;
1676 
1677 	/*
1678 	 * Read the build id if possible. This is required for
1679 	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1680 	 */
1681 	if (!dso->has_build_id &&
1682 	    is_regular_file(dso->long_name)) {
1683 	    __symbol__join_symfs(name, PATH_MAX, dso->long_name);
1684 	    if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0)
1685 		dso__set_build_id(dso, build_id);
1686 	}
1687 
1688 	/*
1689 	 * Iterate over candidate debug images.
1690 	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1691 	 * and/or opd section) for processing.
1692 	 */
1693 	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1694 		struct symsrc *ss = &ss_[ss_pos];
1695 		bool next_slot = false;
1696 		bool is_reg;
1697 		bool nsexit;
1698 		int sirc = -1;
1699 
1700 		enum dso_binary_type symtab_type = binary_type_symtab[i];
1701 
1702 		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1703 		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1704 
1705 		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1706 			continue;
1707 
1708 		if (dso__read_binary_type_filename(dso, symtab_type,
1709 						   root_dir, name, PATH_MAX))
1710 			continue;
1711 
1712 		if (nsexit)
1713 			nsinfo__mountns_exit(&nsc);
1714 
1715 		is_reg = is_regular_file(name);
1716 		if (is_reg)
1717 			sirc = symsrc__init(ss, dso, name, symtab_type);
1718 
1719 		if (nsexit)
1720 			nsinfo__mountns_enter(dso->nsinfo, &nsc);
1721 
1722 		if (!is_reg || sirc < 0)
1723 			continue;
1724 
1725 		if (!syms_ss && symsrc__has_symtab(ss)) {
1726 			syms_ss = ss;
1727 			next_slot = true;
1728 			if (!dso->symsrc_filename)
1729 				dso->symsrc_filename = strdup(name);
1730 		}
1731 
1732 		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1733 			runtime_ss = ss;
1734 			next_slot = true;
1735 		}
1736 
1737 		if (next_slot) {
1738 			ss_pos++;
1739 
1740 			if (syms_ss && runtime_ss)
1741 				break;
1742 		} else {
1743 			symsrc__destroy(ss);
1744 		}
1745 
1746 	}
1747 
1748 	if (!runtime_ss && !syms_ss)
1749 		goto out_free;
1750 
1751 	if (runtime_ss && !syms_ss) {
1752 		syms_ss = runtime_ss;
1753 	}
1754 
1755 	/* We'll have to hope for the best */
1756 	if (!runtime_ss && syms_ss)
1757 		runtime_ss = syms_ss;
1758 
1759 	if (syms_ss)
1760 		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1761 	else
1762 		ret = -1;
1763 
1764 	if (ret > 0) {
1765 		int nr_plt;
1766 
1767 		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1768 		if (nr_plt > 0)
1769 			ret += nr_plt;
1770 	}
1771 
1772 	for (; ss_pos > 0; ss_pos--)
1773 		symsrc__destroy(&ss_[ss_pos - 1]);
1774 out_free:
1775 	free(name);
1776 	if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1777 		ret = 0;
1778 out:
1779 	dso__set_loaded(dso);
1780 	pthread_mutex_unlock(&dso->lock);
1781 	nsinfo__mountns_exit(&nsc);
1782 
1783 	return ret;
1784 }
1785 
1786 static int map__strcmp(const void *a, const void *b)
1787 {
1788 	const struct map *ma = *(const struct map **)a, *mb = *(const struct map **)b;
1789 	return strcmp(ma->dso->short_name, mb->dso->short_name);
1790 }
1791 
1792 static int map__strcmp_name(const void *name, const void *b)
1793 {
1794 	const struct map *map = *(const struct map **)b;
1795 	return strcmp(name, map->dso->short_name);
1796 }
1797 
1798 void __maps__sort_by_name(struct maps *maps)
1799 {
1800 	qsort(maps->maps_by_name, maps->nr_maps, sizeof(struct map *), map__strcmp);
1801 }
1802 
1803 static int map__groups__sort_by_name_from_rbtree(struct maps *maps)
1804 {
1805 	struct map *map;
1806 	struct map **maps_by_name = realloc(maps->maps_by_name, maps->nr_maps * sizeof(map));
1807 	int i = 0;
1808 
1809 	if (maps_by_name == NULL)
1810 		return -1;
1811 
1812 	maps->maps_by_name = maps_by_name;
1813 	maps->nr_maps_allocated = maps->nr_maps;
1814 
1815 	maps__for_each_entry(maps, map)
1816 		maps_by_name[i++] = map;
1817 
1818 	__maps__sort_by_name(maps);
1819 	return 0;
1820 }
1821 
1822 static struct map *__maps__find_by_name(struct maps *maps, const char *name)
1823 {
1824 	struct map **mapp;
1825 
1826 	if (maps->maps_by_name == NULL &&
1827 	    map__groups__sort_by_name_from_rbtree(maps))
1828 		return NULL;
1829 
1830 	mapp = bsearch(name, maps->maps_by_name, maps->nr_maps, sizeof(*mapp), map__strcmp_name);
1831 	if (mapp)
1832 		return *mapp;
1833 	return NULL;
1834 }
1835 
1836 struct map *maps__find_by_name(struct maps *maps, const char *name)
1837 {
1838 	struct map *map;
1839 
1840 	down_read(&maps->lock);
1841 
1842 	if (maps->last_search_by_name && strcmp(maps->last_search_by_name->dso->short_name, name) == 0) {
1843 		map = maps->last_search_by_name;
1844 		goto out_unlock;
1845 	}
1846 	/*
1847 	 * If we have maps->maps_by_name, then the name isn't in the rbtree,
1848 	 * as maps->maps_by_name mirrors the rbtree when lookups by name are
1849 	 * made.
1850 	 */
1851 	map = __maps__find_by_name(maps, name);
1852 	if (map || maps->maps_by_name != NULL)
1853 		goto out_unlock;
1854 
1855 	/* Fallback to traversing the rbtree... */
1856 	maps__for_each_entry(maps, map)
1857 		if (strcmp(map->dso->short_name, name) == 0) {
1858 			maps->last_search_by_name = map;
1859 			goto out_unlock;
1860 		}
1861 
1862 	map = NULL;
1863 
1864 out_unlock:
1865 	up_read(&maps->lock);
1866 	return map;
1867 }
1868 
1869 int dso__load_vmlinux(struct dso *dso, struct map *map,
1870 		      const char *vmlinux, bool vmlinux_allocated)
1871 {
1872 	int err = -1;
1873 	struct symsrc ss;
1874 	char symfs_vmlinux[PATH_MAX];
1875 	enum dso_binary_type symtab_type;
1876 
1877 	if (vmlinux[0] == '/')
1878 		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
1879 	else
1880 		symbol__join_symfs(symfs_vmlinux, vmlinux);
1881 
1882 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1883 		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1884 	else
1885 		symtab_type = DSO_BINARY_TYPE__VMLINUX;
1886 
1887 	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
1888 		return -1;
1889 
1890 	err = dso__load_sym(dso, map, &ss, &ss, 0);
1891 	symsrc__destroy(&ss);
1892 
1893 	if (err > 0) {
1894 		if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1895 			dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1896 		else
1897 			dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
1898 		dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1899 		dso__set_loaded(dso);
1900 		pr_debug("Using %s for symbols\n", symfs_vmlinux);
1901 	}
1902 
1903 	return err;
1904 }
1905 
1906 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1907 {
1908 	int i, err = 0;
1909 	char *filename = NULL;
1910 
1911 	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
1912 		 vmlinux_path__nr_entries + 1);
1913 
1914 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1915 		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1916 		if (err > 0)
1917 			goto out;
1918 	}
1919 
1920 	if (!symbol_conf.ignore_vmlinux_buildid)
1921 		filename = dso__build_id_filename(dso, NULL, 0, false);
1922 	if (filename != NULL) {
1923 		err = dso__load_vmlinux(dso, map, filename, true);
1924 		if (err > 0)
1925 			goto out;
1926 		free(filename);
1927 	}
1928 out:
1929 	return err;
1930 }
1931 
1932 static bool visible_dir_filter(const char *name, struct dirent *d)
1933 {
1934 	if (d->d_type != DT_DIR)
1935 		return false;
1936 	return lsdir_no_dot_filter(name, d);
1937 }
1938 
1939 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
1940 {
1941 	char kallsyms_filename[PATH_MAX];
1942 	int ret = -1;
1943 	struct strlist *dirs;
1944 	struct str_node *nd;
1945 
1946 	dirs = lsdir(dir, visible_dir_filter);
1947 	if (!dirs)
1948 		return -1;
1949 
1950 	strlist__for_each_entry(nd, dirs) {
1951 		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1952 			  "%s/%s/kallsyms", dir, nd->s);
1953 		if (!validate_kcore_addresses(kallsyms_filename, map)) {
1954 			strlcpy(dir, kallsyms_filename, dir_sz);
1955 			ret = 0;
1956 			break;
1957 		}
1958 	}
1959 
1960 	strlist__delete(dirs);
1961 
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
1967  * since access(R_OK) only checks with real UID/GID but open() use effective
1968  * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
1969  */
1970 static bool filename__readable(const char *file)
1971 {
1972 	int fd = open(file, O_RDONLY);
1973 	if (fd < 0)
1974 		return false;
1975 	close(fd);
1976 	return true;
1977 }
1978 
1979 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
1980 {
1981 	u8 host_build_id[BUILD_ID_SIZE];
1982 	char sbuild_id[SBUILD_ID_SIZE];
1983 	bool is_host = false;
1984 	char path[PATH_MAX];
1985 
1986 	if (!dso->has_build_id) {
1987 		/*
1988 		 * Last resort, if we don't have a build-id and couldn't find
1989 		 * any vmlinux file, try the running kernel kallsyms table.
1990 		 */
1991 		goto proc_kallsyms;
1992 	}
1993 
1994 	if (sysfs__read_build_id("/sys/kernel/notes", host_build_id,
1995 				 sizeof(host_build_id)) == 0)
1996 		is_host = dso__build_id_equal(dso, host_build_id);
1997 
1998 	/* Try a fast path for /proc/kallsyms if possible */
1999 	if (is_host) {
2000 		/*
2001 		 * Do not check the build-id cache, unless we know we cannot use
2002 		 * /proc/kcore or module maps don't match to /proc/kallsyms.
2003 		 * To check readability of /proc/kcore, do not use access(R_OK)
2004 		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
2005 		 * can't check it.
2006 		 */
2007 		if (filename__readable("/proc/kcore") &&
2008 		    !validate_kcore_addresses("/proc/kallsyms", map))
2009 			goto proc_kallsyms;
2010 	}
2011 
2012 	build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id);
2013 
2014 	/* Find kallsyms in build-id cache with kcore */
2015 	scnprintf(path, sizeof(path), "%s/%s/%s",
2016 		  buildid_dir, DSO__NAME_KCORE, sbuild_id);
2017 
2018 	if (!find_matching_kcore(map, path, sizeof(path)))
2019 		return strdup(path);
2020 
2021 	/* Use current /proc/kallsyms if possible */
2022 	if (is_host) {
2023 proc_kallsyms:
2024 		return strdup("/proc/kallsyms");
2025 	}
2026 
2027 	/* Finally, find a cache of kallsyms */
2028 	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
2029 		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
2030 		       sbuild_id);
2031 		return NULL;
2032 	}
2033 
2034 	return strdup(path);
2035 }
2036 
2037 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
2038 {
2039 	int err;
2040 	const char *kallsyms_filename = NULL;
2041 	char *kallsyms_allocated_filename = NULL;
2042 	/*
2043 	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
2044 	 * it and only it, reporting errors to the user if it cannot be used.
2045 	 *
2046 	 * For instance, try to analyse an ARM perf.data file _without_ a
2047 	 * build-id, or if the user specifies the wrong path to the right
2048 	 * vmlinux file, obviously we can't fallback to another vmlinux (a
2049 	 * x86_86 one, on the machine where analysis is being performed, say),
2050 	 * or worse, /proc/kallsyms.
2051 	 *
2052 	 * If the specified file _has_ a build-id and there is a build-id
2053 	 * section in the perf.data file, we will still do the expected
2054 	 * validation in dso__load_vmlinux and will bail out if they don't
2055 	 * match.
2056 	 */
2057 	if (symbol_conf.kallsyms_name != NULL) {
2058 		kallsyms_filename = symbol_conf.kallsyms_name;
2059 		goto do_kallsyms;
2060 	}
2061 
2062 	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2063 		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2064 	}
2065 
2066 	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2067 		err = dso__load_vmlinux_path(dso, map);
2068 		if (err > 0)
2069 			return err;
2070 	}
2071 
2072 	/* do not try local files if a symfs was given */
2073 	if (symbol_conf.symfs[0] != 0)
2074 		return -1;
2075 
2076 	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2077 	if (!kallsyms_allocated_filename)
2078 		return -1;
2079 
2080 	kallsyms_filename = kallsyms_allocated_filename;
2081 
2082 do_kallsyms:
2083 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2084 	if (err > 0)
2085 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2086 	free(kallsyms_allocated_filename);
2087 
2088 	if (err > 0 && !dso__is_kcore(dso)) {
2089 		dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
2090 		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2091 		map__fixup_start(map);
2092 		map__fixup_end(map);
2093 	}
2094 
2095 	return err;
2096 }
2097 
2098 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2099 {
2100 	int err;
2101 	const char *kallsyms_filename = NULL;
2102 	struct machine *machine = map__kmaps(map)->machine;
2103 	char path[PATH_MAX];
2104 
2105 	if (machine__is_default_guest(machine)) {
2106 		/*
2107 		 * if the user specified a vmlinux filename, use it and only
2108 		 * it, reporting errors to the user if it cannot be used.
2109 		 * Or use file guest_kallsyms inputted by user on commandline
2110 		 */
2111 		if (symbol_conf.default_guest_vmlinux_name != NULL) {
2112 			err = dso__load_vmlinux(dso, map,
2113 						symbol_conf.default_guest_vmlinux_name,
2114 						false);
2115 			return err;
2116 		}
2117 
2118 		kallsyms_filename = symbol_conf.default_guest_kallsyms;
2119 		if (!kallsyms_filename)
2120 			return -1;
2121 	} else {
2122 		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2123 		kallsyms_filename = path;
2124 	}
2125 
2126 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2127 	if (err > 0)
2128 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2129 	if (err > 0 && !dso__is_kcore(dso)) {
2130 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
2131 		dso__set_long_name(dso, machine->mmap_name, false);
2132 		map__fixup_start(map);
2133 		map__fixup_end(map);
2134 	}
2135 
2136 	return err;
2137 }
2138 
2139 static void vmlinux_path__exit(void)
2140 {
2141 	while (--vmlinux_path__nr_entries >= 0)
2142 		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2143 	vmlinux_path__nr_entries = 0;
2144 
2145 	zfree(&vmlinux_path);
2146 }
2147 
2148 static const char * const vmlinux_paths[] = {
2149 	"vmlinux",
2150 	"/boot/vmlinux"
2151 };
2152 
2153 static const char * const vmlinux_paths_upd[] = {
2154 	"/boot/vmlinux-%s",
2155 	"/usr/lib/debug/boot/vmlinux-%s",
2156 	"/lib/modules/%s/build/vmlinux",
2157 	"/usr/lib/debug/lib/modules/%s/vmlinux",
2158 	"/usr/lib/debug/boot/vmlinux-%s.debug"
2159 };
2160 
2161 static int vmlinux_path__add(const char *new_entry)
2162 {
2163 	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2164 	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2165 		return -1;
2166 	++vmlinux_path__nr_entries;
2167 
2168 	return 0;
2169 }
2170 
2171 static int vmlinux_path__init(struct perf_env *env)
2172 {
2173 	struct utsname uts;
2174 	char bf[PATH_MAX];
2175 	char *kernel_version;
2176 	unsigned int i;
2177 
2178 	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2179 			      ARRAY_SIZE(vmlinux_paths_upd)));
2180 	if (vmlinux_path == NULL)
2181 		return -1;
2182 
2183 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2184 		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2185 			goto out_fail;
2186 
2187 	/* only try kernel version if no symfs was given */
2188 	if (symbol_conf.symfs[0] != 0)
2189 		return 0;
2190 
2191 	if (env) {
2192 		kernel_version = env->os_release;
2193 	} else {
2194 		if (uname(&uts) < 0)
2195 			goto out_fail;
2196 
2197 		kernel_version = uts.release;
2198 	}
2199 
2200 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2201 		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2202 		if (vmlinux_path__add(bf) < 0)
2203 			goto out_fail;
2204 	}
2205 
2206 	return 0;
2207 
2208 out_fail:
2209 	vmlinux_path__exit();
2210 	return -1;
2211 }
2212 
2213 int setup_list(struct strlist **list, const char *list_str,
2214 		      const char *list_name)
2215 {
2216 	if (list_str == NULL)
2217 		return 0;
2218 
2219 	*list = strlist__new(list_str, NULL);
2220 	if (!*list) {
2221 		pr_err("problems parsing %s list\n", list_name);
2222 		return -1;
2223 	}
2224 
2225 	symbol_conf.has_filter = true;
2226 	return 0;
2227 }
2228 
2229 int setup_intlist(struct intlist **list, const char *list_str,
2230 		  const char *list_name)
2231 {
2232 	if (list_str == NULL)
2233 		return 0;
2234 
2235 	*list = intlist__new(list_str);
2236 	if (!*list) {
2237 		pr_err("problems parsing %s list\n", list_name);
2238 		return -1;
2239 	}
2240 	return 0;
2241 }
2242 
2243 static bool symbol__read_kptr_restrict(void)
2244 {
2245 	bool value = false;
2246 	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2247 
2248 	if (fp != NULL) {
2249 		char line[8];
2250 
2251 		if (fgets(line, sizeof(line), fp) != NULL)
2252 			value = perf_cap__capable(CAP_SYSLOG) ?
2253 					(atoi(line) >= 2) :
2254 					(atoi(line) != 0);
2255 
2256 		fclose(fp);
2257 	}
2258 
2259 	/* Per kernel/kallsyms.c:
2260 	 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2261 	 */
2262 	if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG))
2263 		value = true;
2264 
2265 	return value;
2266 }
2267 
2268 int symbol__annotation_init(void)
2269 {
2270 	if (symbol_conf.init_annotation)
2271 		return 0;
2272 
2273 	if (symbol_conf.initialized) {
2274 		pr_err("Annotation needs to be init before symbol__init()\n");
2275 		return -1;
2276 	}
2277 
2278 	symbol_conf.priv_size += sizeof(struct annotation);
2279 	symbol_conf.init_annotation = true;
2280 	return 0;
2281 }
2282 
2283 int symbol__init(struct perf_env *env)
2284 {
2285 	const char *symfs;
2286 
2287 	if (symbol_conf.initialized)
2288 		return 0;
2289 
2290 	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2291 
2292 	symbol__elf_init();
2293 
2294 	if (symbol_conf.sort_by_name)
2295 		symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
2296 					  sizeof(struct symbol));
2297 
2298 	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2299 		return -1;
2300 
2301 	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2302 		pr_err("'.' is the only non valid --field-separator argument\n");
2303 		return -1;
2304 	}
2305 
2306 	if (setup_list(&symbol_conf.dso_list,
2307 		       symbol_conf.dso_list_str, "dso") < 0)
2308 		return -1;
2309 
2310 	if (setup_list(&symbol_conf.comm_list,
2311 		       symbol_conf.comm_list_str, "comm") < 0)
2312 		goto out_free_dso_list;
2313 
2314 	if (setup_intlist(&symbol_conf.pid_list,
2315 		       symbol_conf.pid_list_str, "pid") < 0)
2316 		goto out_free_comm_list;
2317 
2318 	if (setup_intlist(&symbol_conf.tid_list,
2319 		       symbol_conf.tid_list_str, "tid") < 0)
2320 		goto out_free_pid_list;
2321 
2322 	if (setup_list(&symbol_conf.sym_list,
2323 		       symbol_conf.sym_list_str, "symbol") < 0)
2324 		goto out_free_tid_list;
2325 
2326 	if (setup_list(&symbol_conf.bt_stop_list,
2327 		       symbol_conf.bt_stop_list_str, "symbol") < 0)
2328 		goto out_free_sym_list;
2329 
2330 	/*
2331 	 * A path to symbols of "/" is identical to ""
2332 	 * reset here for simplicity.
2333 	 */
2334 	symfs = realpath(symbol_conf.symfs, NULL);
2335 	if (symfs == NULL)
2336 		symfs = symbol_conf.symfs;
2337 	if (strcmp(symfs, "/") == 0)
2338 		symbol_conf.symfs = "";
2339 	if (symfs != symbol_conf.symfs)
2340 		free((void *)symfs);
2341 
2342 	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2343 
2344 	symbol_conf.initialized = true;
2345 	return 0;
2346 
2347 out_free_sym_list:
2348 	strlist__delete(symbol_conf.sym_list);
2349 out_free_tid_list:
2350 	intlist__delete(symbol_conf.tid_list);
2351 out_free_pid_list:
2352 	intlist__delete(symbol_conf.pid_list);
2353 out_free_comm_list:
2354 	strlist__delete(symbol_conf.comm_list);
2355 out_free_dso_list:
2356 	strlist__delete(symbol_conf.dso_list);
2357 	return -1;
2358 }
2359 
2360 void symbol__exit(void)
2361 {
2362 	if (!symbol_conf.initialized)
2363 		return;
2364 	strlist__delete(symbol_conf.bt_stop_list);
2365 	strlist__delete(symbol_conf.sym_list);
2366 	strlist__delete(symbol_conf.dso_list);
2367 	strlist__delete(symbol_conf.comm_list);
2368 	intlist__delete(symbol_conf.tid_list);
2369 	intlist__delete(symbol_conf.pid_list);
2370 	vmlinux_path__exit();
2371 	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2372 	symbol_conf.bt_stop_list = NULL;
2373 	symbol_conf.initialized = false;
2374 }
2375 
2376 int symbol__config_symfs(const struct option *opt __maybe_unused,
2377 			 const char *dir, int unset __maybe_unused)
2378 {
2379 	char *bf = NULL;
2380 	int ret;
2381 
2382 	symbol_conf.symfs = strdup(dir);
2383 	if (symbol_conf.symfs == NULL)
2384 		return -ENOMEM;
2385 
2386 	/* skip the locally configured cache if a symfs is given, and
2387 	 * config buildid dir to symfs/.debug
2388 	 */
2389 	ret = asprintf(&bf, "%s/%s", dir, ".debug");
2390 	if (ret < 0)
2391 		return -ENOMEM;
2392 
2393 	set_buildid_dir(bf);
2394 
2395 	free(bf);
2396 	return 0;
2397 }
2398 
2399 struct mem_info *mem_info__get(struct mem_info *mi)
2400 {
2401 	if (mi)
2402 		refcount_inc(&mi->refcnt);
2403 	return mi;
2404 }
2405 
2406 void mem_info__put(struct mem_info *mi)
2407 {
2408 	if (mi && refcount_dec_and_test(&mi->refcnt))
2409 		free(mi);
2410 }
2411 
2412 struct mem_info *mem_info__new(void)
2413 {
2414 	struct mem_info *mi = zalloc(sizeof(*mi));
2415 
2416 	if (mi)
2417 		refcount_set(&mi->refcnt, 1);
2418 	return mi;
2419 }
2420