xref: /openbmc/linux/tools/perf/util/symbol.c (revision df687341)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/kernel.h>
8 #include <linux/mman.h>
9 #include <sys/types.h>
10 #include <sys/stat.h>
11 #include <sys/param.h>
12 #include <fcntl.h>
13 #include <unistd.h>
14 #include <inttypes.h>
15 #include "annotate.h"
16 #include "build-id.h"
17 #include "util.h"
18 #include "debug.h"
19 #include "machine.h"
20 #include "symbol.h"
21 #include "strlist.h"
22 #include "intlist.h"
23 #include "namespaces.h"
24 #include "header.h"
25 #include "path.h"
26 #include "sane_ctype.h"
27 
28 #include <elf.h>
29 #include <limits.h>
30 #include <symbol/kallsyms.h>
31 #include <sys/utsname.h>
32 
33 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
34 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
35 static bool symbol__is_idle(const char *name);
36 
37 int vmlinux_path__nr_entries;
38 char **vmlinux_path;
39 
40 struct symbol_conf symbol_conf = {
41 	.use_modules		= true,
42 	.try_vmlinux_path	= true,
43 	.demangle		= true,
44 	.demangle_kernel	= false,
45 	.cumulate_callchain	= true,
46 	.show_hist_headers	= true,
47 	.symfs			= "",
48 	.event_group		= true,
49 	.inline_name		= true,
50 };
51 
52 static enum dso_binary_type binary_type_symtab[] = {
53 	DSO_BINARY_TYPE__KALLSYMS,
54 	DSO_BINARY_TYPE__GUEST_KALLSYMS,
55 	DSO_BINARY_TYPE__JAVA_JIT,
56 	DSO_BINARY_TYPE__DEBUGLINK,
57 	DSO_BINARY_TYPE__BUILD_ID_CACHE,
58 	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
59 	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
60 	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
61 	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
62 	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
63 	DSO_BINARY_TYPE__GUEST_KMODULE,
64 	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
65 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
66 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
67 	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
68 	DSO_BINARY_TYPE__NOT_FOUND,
69 };
70 
71 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
72 
73 static bool symbol_type__filter(char symbol_type)
74 {
75 	symbol_type = toupper(symbol_type);
76 	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
77 }
78 
79 static int prefix_underscores_count(const char *str)
80 {
81 	const char *tail = str;
82 
83 	while (*tail == '_')
84 		tail++;
85 
86 	return tail - str;
87 }
88 
89 const char * __weak arch__normalize_symbol_name(const char *name)
90 {
91 	return name;
92 }
93 
94 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
95 {
96 	return strcmp(namea, nameb);
97 }
98 
99 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
100 					unsigned int n)
101 {
102 	return strncmp(namea, nameb, n);
103 }
104 
105 int __weak arch__choose_best_symbol(struct symbol *syma,
106 				    struct symbol *symb __maybe_unused)
107 {
108 	/* Avoid "SyS" kernel syscall aliases */
109 	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
110 		return SYMBOL_B;
111 	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
112 		return SYMBOL_B;
113 
114 	return SYMBOL_A;
115 }
116 
117 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
118 {
119 	s64 a;
120 	s64 b;
121 	size_t na, nb;
122 
123 	/* Prefer a symbol with non zero length */
124 	a = syma->end - syma->start;
125 	b = symb->end - symb->start;
126 	if ((b == 0) && (a > 0))
127 		return SYMBOL_A;
128 	else if ((a == 0) && (b > 0))
129 		return SYMBOL_B;
130 
131 	/* Prefer a non weak symbol over a weak one */
132 	a = syma->binding == STB_WEAK;
133 	b = symb->binding == STB_WEAK;
134 	if (b && !a)
135 		return SYMBOL_A;
136 	if (a && !b)
137 		return SYMBOL_B;
138 
139 	/* Prefer a global symbol over a non global one */
140 	a = syma->binding == STB_GLOBAL;
141 	b = symb->binding == STB_GLOBAL;
142 	if (a && !b)
143 		return SYMBOL_A;
144 	if (b && !a)
145 		return SYMBOL_B;
146 
147 	/* Prefer a symbol with less underscores */
148 	a = prefix_underscores_count(syma->name);
149 	b = prefix_underscores_count(symb->name);
150 	if (b > a)
151 		return SYMBOL_A;
152 	else if (a > b)
153 		return SYMBOL_B;
154 
155 	/* Choose the symbol with the longest name */
156 	na = strlen(syma->name);
157 	nb = strlen(symb->name);
158 	if (na > nb)
159 		return SYMBOL_A;
160 	else if (na < nb)
161 		return SYMBOL_B;
162 
163 	return arch__choose_best_symbol(syma, symb);
164 }
165 
166 void symbols__fixup_duplicate(struct rb_root *symbols)
167 {
168 	struct rb_node *nd;
169 	struct symbol *curr, *next;
170 
171 	if (symbol_conf.allow_aliases)
172 		return;
173 
174 	nd = rb_first(symbols);
175 
176 	while (nd) {
177 		curr = rb_entry(nd, struct symbol, rb_node);
178 again:
179 		nd = rb_next(&curr->rb_node);
180 		next = rb_entry(nd, struct symbol, rb_node);
181 
182 		if (!nd)
183 			break;
184 
185 		if (curr->start != next->start)
186 			continue;
187 
188 		if (choose_best_symbol(curr, next) == SYMBOL_A) {
189 			rb_erase(&next->rb_node, symbols);
190 			symbol__delete(next);
191 			goto again;
192 		} else {
193 			nd = rb_next(&curr->rb_node);
194 			rb_erase(&curr->rb_node, symbols);
195 			symbol__delete(curr);
196 		}
197 	}
198 }
199 
200 void symbols__fixup_end(struct rb_root *symbols)
201 {
202 	struct rb_node *nd, *prevnd = rb_first(symbols);
203 	struct symbol *curr, *prev;
204 
205 	if (prevnd == NULL)
206 		return;
207 
208 	curr = rb_entry(prevnd, struct symbol, rb_node);
209 
210 	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
211 		prev = curr;
212 		curr = rb_entry(nd, struct symbol, rb_node);
213 
214 		if (prev->end == prev->start && prev->end != curr->start)
215 			prev->end = curr->start;
216 	}
217 
218 	/* Last entry */
219 	if (curr->end == curr->start)
220 		curr->end = roundup(curr->start, 4096) + 4096;
221 }
222 
223 void map_groups__fixup_end(struct map_groups *mg)
224 {
225 	struct maps *maps = &mg->maps;
226 	struct map *next, *curr;
227 
228 	down_write(&maps->lock);
229 
230 	curr = maps__first(maps);
231 	if (curr == NULL)
232 		goto out_unlock;
233 
234 	for (next = map__next(curr); next; next = map__next(curr)) {
235 		if (!curr->end)
236 			curr->end = next->start;
237 		curr = next;
238 	}
239 
240 	/*
241 	 * We still haven't the actual symbols, so guess the
242 	 * last map final address.
243 	 */
244 	if (!curr->end)
245 		curr->end = ~0ULL;
246 
247 out_unlock:
248 	up_write(&maps->lock);
249 }
250 
251 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
252 {
253 	size_t namelen = strlen(name) + 1;
254 	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
255 					sizeof(*sym) + namelen));
256 	if (sym == NULL)
257 		return NULL;
258 
259 	if (symbol_conf.priv_size) {
260 		if (symbol_conf.init_annotation) {
261 			struct annotation *notes = (void *)sym;
262 			pthread_mutex_init(&notes->lock, NULL);
263 		}
264 		sym = ((void *)sym) + symbol_conf.priv_size;
265 	}
266 
267 	sym->start   = start;
268 	sym->end     = len ? start + len : start;
269 	sym->type    = type;
270 	sym->binding = binding;
271 	sym->namelen = namelen - 1;
272 
273 	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
274 		  __func__, name, start, sym->end);
275 	memcpy(sym->name, name, namelen);
276 
277 	return sym;
278 }
279 
280 void symbol__delete(struct symbol *sym)
281 {
282 	free(((void *)sym) - symbol_conf.priv_size);
283 }
284 
285 void symbols__delete(struct rb_root *symbols)
286 {
287 	struct symbol *pos;
288 	struct rb_node *next = rb_first(symbols);
289 
290 	while (next) {
291 		pos = rb_entry(next, struct symbol, rb_node);
292 		next = rb_next(&pos->rb_node);
293 		rb_erase(&pos->rb_node, symbols);
294 		symbol__delete(pos);
295 	}
296 }
297 
298 void __symbols__insert(struct rb_root *symbols, struct symbol *sym, bool kernel)
299 {
300 	struct rb_node **p = &symbols->rb_node;
301 	struct rb_node *parent = NULL;
302 	const u64 ip = sym->start;
303 	struct symbol *s;
304 
305 	if (kernel) {
306 		const char *name = sym->name;
307 		/*
308 		 * ppc64 uses function descriptors and appends a '.' to the
309 		 * start of every instruction address. Remove it.
310 		 */
311 		if (name[0] == '.')
312 			name++;
313 		sym->idle = symbol__is_idle(name);
314 	}
315 
316 	while (*p != NULL) {
317 		parent = *p;
318 		s = rb_entry(parent, struct symbol, rb_node);
319 		if (ip < s->start)
320 			p = &(*p)->rb_left;
321 		else
322 			p = &(*p)->rb_right;
323 	}
324 	rb_link_node(&sym->rb_node, parent, p);
325 	rb_insert_color(&sym->rb_node, symbols);
326 }
327 
328 void symbols__insert(struct rb_root *symbols, struct symbol *sym)
329 {
330 	__symbols__insert(symbols, sym, false);
331 }
332 
333 static struct symbol *symbols__find(struct rb_root *symbols, u64 ip)
334 {
335 	struct rb_node *n;
336 
337 	if (symbols == NULL)
338 		return NULL;
339 
340 	n = symbols->rb_node;
341 
342 	while (n) {
343 		struct symbol *s = rb_entry(n, struct symbol, rb_node);
344 
345 		if (ip < s->start)
346 			n = n->rb_left;
347 		else if (ip > s->end || (ip == s->end && ip != s->start))
348 			n = n->rb_right;
349 		else
350 			return s;
351 	}
352 
353 	return NULL;
354 }
355 
356 static struct symbol *symbols__first(struct rb_root *symbols)
357 {
358 	struct rb_node *n = rb_first(symbols);
359 
360 	if (n)
361 		return rb_entry(n, struct symbol, rb_node);
362 
363 	return NULL;
364 }
365 
366 static struct symbol *symbols__last(struct rb_root *symbols)
367 {
368 	struct rb_node *n = rb_last(symbols);
369 
370 	if (n)
371 		return rb_entry(n, struct symbol, rb_node);
372 
373 	return NULL;
374 }
375 
376 static struct symbol *symbols__next(struct symbol *sym)
377 {
378 	struct rb_node *n = rb_next(&sym->rb_node);
379 
380 	if (n)
381 		return rb_entry(n, struct symbol, rb_node);
382 
383 	return NULL;
384 }
385 
386 static void symbols__insert_by_name(struct rb_root *symbols, struct symbol *sym)
387 {
388 	struct rb_node **p = &symbols->rb_node;
389 	struct rb_node *parent = NULL;
390 	struct symbol_name_rb_node *symn, *s;
391 
392 	symn = container_of(sym, struct symbol_name_rb_node, sym);
393 
394 	while (*p != NULL) {
395 		parent = *p;
396 		s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
397 		if (strcmp(sym->name, s->sym.name) < 0)
398 			p = &(*p)->rb_left;
399 		else
400 			p = &(*p)->rb_right;
401 	}
402 	rb_link_node(&symn->rb_node, parent, p);
403 	rb_insert_color(&symn->rb_node, symbols);
404 }
405 
406 static void symbols__sort_by_name(struct rb_root *symbols,
407 				  struct rb_root *source)
408 {
409 	struct rb_node *nd;
410 
411 	for (nd = rb_first(source); nd; nd = rb_next(nd)) {
412 		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
413 		symbols__insert_by_name(symbols, pos);
414 	}
415 }
416 
417 int symbol__match_symbol_name(const char *name, const char *str,
418 			      enum symbol_tag_include includes)
419 {
420 	const char *versioning;
421 
422 	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
423 	    (versioning = strstr(name, "@@"))) {
424 		int len = strlen(str);
425 
426 		if (len < versioning - name)
427 			len = versioning - name;
428 
429 		return arch__compare_symbol_names_n(name, str, len);
430 	} else
431 		return arch__compare_symbol_names(name, str);
432 }
433 
434 static struct symbol *symbols__find_by_name(struct rb_root *symbols,
435 					    const char *name,
436 					    enum symbol_tag_include includes)
437 {
438 	struct rb_node *n;
439 	struct symbol_name_rb_node *s = NULL;
440 
441 	if (symbols == NULL)
442 		return NULL;
443 
444 	n = symbols->rb_node;
445 
446 	while (n) {
447 		int cmp;
448 
449 		s = rb_entry(n, struct symbol_name_rb_node, rb_node);
450 		cmp = symbol__match_symbol_name(s->sym.name, name, includes);
451 
452 		if (cmp > 0)
453 			n = n->rb_left;
454 		else if (cmp < 0)
455 			n = n->rb_right;
456 		else
457 			break;
458 	}
459 
460 	if (n == NULL)
461 		return NULL;
462 
463 	if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
464 		/* return first symbol that has same name (if any) */
465 		for (n = rb_prev(n); n; n = rb_prev(n)) {
466 			struct symbol_name_rb_node *tmp;
467 
468 			tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
469 			if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
470 				break;
471 
472 			s = tmp;
473 		}
474 
475 	return &s->sym;
476 }
477 
478 void dso__reset_find_symbol_cache(struct dso *dso)
479 {
480 	dso->last_find_result.addr   = 0;
481 	dso->last_find_result.symbol = NULL;
482 }
483 
484 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
485 {
486 	__symbols__insert(&dso->symbols, sym, dso->kernel);
487 
488 	/* update the symbol cache if necessary */
489 	if (dso->last_find_result.addr >= sym->start &&
490 	    (dso->last_find_result.addr < sym->end ||
491 	    sym->start == sym->end)) {
492 		dso->last_find_result.symbol = sym;
493 	}
494 }
495 
496 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
497 {
498 	if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
499 		dso->last_find_result.addr   = addr;
500 		dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
501 	}
502 
503 	return dso->last_find_result.symbol;
504 }
505 
506 struct symbol *dso__first_symbol(struct dso *dso)
507 {
508 	return symbols__first(&dso->symbols);
509 }
510 
511 struct symbol *dso__last_symbol(struct dso *dso)
512 {
513 	return symbols__last(&dso->symbols);
514 }
515 
516 struct symbol *dso__next_symbol(struct symbol *sym)
517 {
518 	return symbols__next(sym);
519 }
520 
521 struct symbol *symbol__next_by_name(struct symbol *sym)
522 {
523 	struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
524 	struct rb_node *n = rb_next(&s->rb_node);
525 
526 	return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
527 }
528 
529  /*
530   * Returns first symbol that matched with @name.
531   */
532 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
533 {
534 	struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
535 						 SYMBOL_TAG_INCLUDE__NONE);
536 	if (!s)
537 		s = symbols__find_by_name(&dso->symbol_names, name,
538 					  SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
539 	return s;
540 }
541 
542 void dso__sort_by_name(struct dso *dso)
543 {
544 	dso__set_sorted_by_name(dso);
545 	return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
546 }
547 
548 int modules__parse(const char *filename, void *arg,
549 		   int (*process_module)(void *arg, const char *name,
550 					 u64 start, u64 size))
551 {
552 	char *line = NULL;
553 	size_t n;
554 	FILE *file;
555 	int err = 0;
556 
557 	file = fopen(filename, "r");
558 	if (file == NULL)
559 		return -1;
560 
561 	while (1) {
562 		char name[PATH_MAX];
563 		u64 start, size;
564 		char *sep, *endptr;
565 		ssize_t line_len;
566 
567 		line_len = getline(&line, &n, file);
568 		if (line_len < 0) {
569 			if (feof(file))
570 				break;
571 			err = -1;
572 			goto out;
573 		}
574 
575 		if (!line) {
576 			err = -1;
577 			goto out;
578 		}
579 
580 		line[--line_len] = '\0'; /* \n */
581 
582 		sep = strrchr(line, 'x');
583 		if (sep == NULL)
584 			continue;
585 
586 		hex2u64(sep + 1, &start);
587 
588 		sep = strchr(line, ' ');
589 		if (sep == NULL)
590 			continue;
591 
592 		*sep = '\0';
593 
594 		scnprintf(name, sizeof(name), "[%s]", line);
595 
596 		size = strtoul(sep + 1, &endptr, 0);
597 		if (*endptr != ' ' && *endptr != '\t')
598 			continue;
599 
600 		err = process_module(arg, name, start, size);
601 		if (err)
602 			break;
603 	}
604 out:
605 	free(line);
606 	fclose(file);
607 	return err;
608 }
609 
610 /*
611  * These are symbols in the kernel image, so make sure that
612  * sym is from a kernel DSO.
613  */
614 static bool symbol__is_idle(const char *name)
615 {
616 	const char * const idle_symbols[] = {
617 		"cpu_idle",
618 		"cpu_startup_entry",
619 		"intel_idle",
620 		"default_idle",
621 		"native_safe_halt",
622 		"enter_idle",
623 		"exit_idle",
624 		"mwait_idle",
625 		"mwait_idle_with_hints",
626 		"poll_idle",
627 		"ppc64_runlatch_off",
628 		"pseries_dedicated_idle_sleep",
629 		NULL
630 	};
631 	int i;
632 
633 	for (i = 0; idle_symbols[i]; i++) {
634 		if (!strcmp(idle_symbols[i], name))
635 			return true;
636 	}
637 
638 	return false;
639 }
640 
641 static int map__process_kallsym_symbol(void *arg, const char *name,
642 				       char type, u64 start)
643 {
644 	struct symbol *sym;
645 	struct dso *dso = arg;
646 	struct rb_root *root = &dso->symbols;
647 
648 	if (!symbol_type__filter(type))
649 		return 0;
650 
651 	/*
652 	 * module symbols are not sorted so we add all
653 	 * symbols, setting length to 0, and rely on
654 	 * symbols__fixup_end() to fix it up.
655 	 */
656 	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
657 	if (sym == NULL)
658 		return -ENOMEM;
659 	/*
660 	 * We will pass the symbols to the filter later, in
661 	 * map__split_kallsyms, when we have split the maps per module
662 	 */
663 	__symbols__insert(root, sym, !strchr(name, '['));
664 
665 	return 0;
666 }
667 
668 /*
669  * Loads the function entries in /proc/kallsyms into kernel_map->dso,
670  * so that we can in the next step set the symbol ->end address and then
671  * call kernel_maps__split_kallsyms.
672  */
673 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
674 {
675 	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
676 }
677 
678 static int map_groups__split_kallsyms_for_kcore(struct map_groups *kmaps, struct dso *dso)
679 {
680 	struct map *curr_map;
681 	struct symbol *pos;
682 	int count = 0;
683 	struct rb_root old_root = dso->symbols;
684 	struct rb_root *root = &dso->symbols;
685 	struct rb_node *next = rb_first(root);
686 
687 	if (!kmaps)
688 		return -1;
689 
690 	*root = RB_ROOT;
691 
692 	while (next) {
693 		char *module;
694 
695 		pos = rb_entry(next, struct symbol, rb_node);
696 		next = rb_next(&pos->rb_node);
697 
698 		rb_erase_init(&pos->rb_node, &old_root);
699 
700 		module = strchr(pos->name, '\t');
701 		if (module)
702 			*module = '\0';
703 
704 		curr_map = map_groups__find(kmaps, pos->start);
705 
706 		if (!curr_map) {
707 			symbol__delete(pos);
708 			continue;
709 		}
710 
711 		pos->start -= curr_map->start - curr_map->pgoff;
712 		if (pos->end)
713 			pos->end -= curr_map->start - curr_map->pgoff;
714 		symbols__insert(&curr_map->dso->symbols, pos);
715 		++count;
716 	}
717 
718 	/* Symbols have been adjusted */
719 	dso->adjust_symbols = 1;
720 
721 	return count;
722 }
723 
724 /*
725  * Split the symbols into maps, making sure there are no overlaps, i.e. the
726  * kernel range is broken in several maps, named [kernel].N, as we don't have
727  * the original ELF section names vmlinux have.
728  */
729 static int map_groups__split_kallsyms(struct map_groups *kmaps, struct dso *dso, u64 delta,
730 				      struct map *initial_map)
731 {
732 	struct machine *machine;
733 	struct map *curr_map = initial_map;
734 	struct symbol *pos;
735 	int count = 0, moved = 0;
736 	struct rb_root *root = &dso->symbols;
737 	struct rb_node *next = rb_first(root);
738 	int kernel_range = 0;
739 	bool x86_64;
740 
741 	if (!kmaps)
742 		return -1;
743 
744 	machine = kmaps->machine;
745 
746 	x86_64 = machine__is(machine, "x86_64");
747 
748 	while (next) {
749 		char *module;
750 
751 		pos = rb_entry(next, struct symbol, rb_node);
752 		next = rb_next(&pos->rb_node);
753 
754 		module = strchr(pos->name, '\t');
755 		if (module) {
756 			if (!symbol_conf.use_modules)
757 				goto discard_symbol;
758 
759 			*module++ = '\0';
760 
761 			if (strcmp(curr_map->dso->short_name, module)) {
762 				if (curr_map != initial_map &&
763 				    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
764 				    machine__is_default_guest(machine)) {
765 					/*
766 					 * We assume all symbols of a module are
767 					 * continuous in * kallsyms, so curr_map
768 					 * points to a module and all its
769 					 * symbols are in its kmap. Mark it as
770 					 * loaded.
771 					 */
772 					dso__set_loaded(curr_map->dso);
773 				}
774 
775 				curr_map = map_groups__find_by_name(kmaps, module);
776 				if (curr_map == NULL) {
777 					pr_debug("%s/proc/{kallsyms,modules} "
778 					         "inconsistency while looking "
779 						 "for \"%s\" module!\n",
780 						 machine->root_dir, module);
781 					curr_map = initial_map;
782 					goto discard_symbol;
783 				}
784 
785 				if (curr_map->dso->loaded &&
786 				    !machine__is_default_guest(machine))
787 					goto discard_symbol;
788 			}
789 			/*
790 			 * So that we look just like we get from .ko files,
791 			 * i.e. not prelinked, relative to initial_map->start.
792 			 */
793 			pos->start = curr_map->map_ip(curr_map, pos->start);
794 			pos->end   = curr_map->map_ip(curr_map, pos->end);
795 		} else if (x86_64 && is_entry_trampoline(pos->name)) {
796 			/*
797 			 * These symbols are not needed anymore since the
798 			 * trampoline maps refer to the text section and it's
799 			 * symbols instead. Avoid having to deal with
800 			 * relocations, and the assumption that the first symbol
801 			 * is the start of kernel text, by simply removing the
802 			 * symbols at this point.
803 			 */
804 			goto discard_symbol;
805 		} else if (curr_map != initial_map) {
806 			char dso_name[PATH_MAX];
807 			struct dso *ndso;
808 
809 			if (delta) {
810 				/* Kernel was relocated at boot time */
811 				pos->start -= delta;
812 				pos->end -= delta;
813 			}
814 
815 			if (count == 0) {
816 				curr_map = initial_map;
817 				goto add_symbol;
818 			}
819 
820 			if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
821 				snprintf(dso_name, sizeof(dso_name),
822 					"[guest.kernel].%d",
823 					kernel_range++);
824 			else
825 				snprintf(dso_name, sizeof(dso_name),
826 					"[kernel].%d",
827 					kernel_range++);
828 
829 			ndso = dso__new(dso_name);
830 			if (ndso == NULL)
831 				return -1;
832 
833 			ndso->kernel = dso->kernel;
834 
835 			curr_map = map__new2(pos->start, ndso);
836 			if (curr_map == NULL) {
837 				dso__put(ndso);
838 				return -1;
839 			}
840 
841 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
842 			map_groups__insert(kmaps, curr_map);
843 			++kernel_range;
844 		} else if (delta) {
845 			/* Kernel was relocated at boot time */
846 			pos->start -= delta;
847 			pos->end -= delta;
848 		}
849 add_symbol:
850 		if (curr_map != initial_map) {
851 			rb_erase(&pos->rb_node, root);
852 			symbols__insert(&curr_map->dso->symbols, pos);
853 			++moved;
854 		} else
855 			++count;
856 
857 		continue;
858 discard_symbol:
859 		rb_erase(&pos->rb_node, root);
860 		symbol__delete(pos);
861 	}
862 
863 	if (curr_map != initial_map &&
864 	    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
865 	    machine__is_default_guest(kmaps->machine)) {
866 		dso__set_loaded(curr_map->dso);
867 	}
868 
869 	return count + moved;
870 }
871 
872 bool symbol__restricted_filename(const char *filename,
873 				 const char *restricted_filename)
874 {
875 	bool restricted = false;
876 
877 	if (symbol_conf.kptr_restrict) {
878 		char *r = realpath(filename, NULL);
879 
880 		if (r != NULL) {
881 			restricted = strcmp(r, restricted_filename) == 0;
882 			free(r);
883 			return restricted;
884 		}
885 	}
886 
887 	return restricted;
888 }
889 
890 struct module_info {
891 	struct rb_node rb_node;
892 	char *name;
893 	u64 start;
894 };
895 
896 static void add_module(struct module_info *mi, struct rb_root *modules)
897 {
898 	struct rb_node **p = &modules->rb_node;
899 	struct rb_node *parent = NULL;
900 	struct module_info *m;
901 
902 	while (*p != NULL) {
903 		parent = *p;
904 		m = rb_entry(parent, struct module_info, rb_node);
905 		if (strcmp(mi->name, m->name) < 0)
906 			p = &(*p)->rb_left;
907 		else
908 			p = &(*p)->rb_right;
909 	}
910 	rb_link_node(&mi->rb_node, parent, p);
911 	rb_insert_color(&mi->rb_node, modules);
912 }
913 
914 static void delete_modules(struct rb_root *modules)
915 {
916 	struct module_info *mi;
917 	struct rb_node *next = rb_first(modules);
918 
919 	while (next) {
920 		mi = rb_entry(next, struct module_info, rb_node);
921 		next = rb_next(&mi->rb_node);
922 		rb_erase(&mi->rb_node, modules);
923 		zfree(&mi->name);
924 		free(mi);
925 	}
926 }
927 
928 static struct module_info *find_module(const char *name,
929 				       struct rb_root *modules)
930 {
931 	struct rb_node *n = modules->rb_node;
932 
933 	while (n) {
934 		struct module_info *m;
935 		int cmp;
936 
937 		m = rb_entry(n, struct module_info, rb_node);
938 		cmp = strcmp(name, m->name);
939 		if (cmp < 0)
940 			n = n->rb_left;
941 		else if (cmp > 0)
942 			n = n->rb_right;
943 		else
944 			return m;
945 	}
946 
947 	return NULL;
948 }
949 
950 static int __read_proc_modules(void *arg, const char *name, u64 start,
951 			       u64 size __maybe_unused)
952 {
953 	struct rb_root *modules = arg;
954 	struct module_info *mi;
955 
956 	mi = zalloc(sizeof(struct module_info));
957 	if (!mi)
958 		return -ENOMEM;
959 
960 	mi->name = strdup(name);
961 	mi->start = start;
962 
963 	if (!mi->name) {
964 		free(mi);
965 		return -ENOMEM;
966 	}
967 
968 	add_module(mi, modules);
969 
970 	return 0;
971 }
972 
973 static int read_proc_modules(const char *filename, struct rb_root *modules)
974 {
975 	if (symbol__restricted_filename(filename, "/proc/modules"))
976 		return -1;
977 
978 	if (modules__parse(filename, modules, __read_proc_modules)) {
979 		delete_modules(modules);
980 		return -1;
981 	}
982 
983 	return 0;
984 }
985 
986 int compare_proc_modules(const char *from, const char *to)
987 {
988 	struct rb_root from_modules = RB_ROOT;
989 	struct rb_root to_modules = RB_ROOT;
990 	struct rb_node *from_node, *to_node;
991 	struct module_info *from_m, *to_m;
992 	int ret = -1;
993 
994 	if (read_proc_modules(from, &from_modules))
995 		return -1;
996 
997 	if (read_proc_modules(to, &to_modules))
998 		goto out_delete_from;
999 
1000 	from_node = rb_first(&from_modules);
1001 	to_node = rb_first(&to_modules);
1002 	while (from_node) {
1003 		if (!to_node)
1004 			break;
1005 
1006 		from_m = rb_entry(from_node, struct module_info, rb_node);
1007 		to_m = rb_entry(to_node, struct module_info, rb_node);
1008 
1009 		if (from_m->start != to_m->start ||
1010 		    strcmp(from_m->name, to_m->name))
1011 			break;
1012 
1013 		from_node = rb_next(from_node);
1014 		to_node = rb_next(to_node);
1015 	}
1016 
1017 	if (!from_node && !to_node)
1018 		ret = 0;
1019 
1020 	delete_modules(&to_modules);
1021 out_delete_from:
1022 	delete_modules(&from_modules);
1023 
1024 	return ret;
1025 }
1026 
1027 struct map *map_groups__first(struct map_groups *mg)
1028 {
1029 	return maps__first(&mg->maps);
1030 }
1031 
1032 static int do_validate_kcore_modules(const char *filename,
1033 				  struct map_groups *kmaps)
1034 {
1035 	struct rb_root modules = RB_ROOT;
1036 	struct map *old_map;
1037 	int err;
1038 
1039 	err = read_proc_modules(filename, &modules);
1040 	if (err)
1041 		return err;
1042 
1043 	old_map = map_groups__first(kmaps);
1044 	while (old_map) {
1045 		struct map *next = map_groups__next(old_map);
1046 		struct module_info *mi;
1047 
1048 		if (!__map__is_kmodule(old_map)) {
1049 			old_map = next;
1050 			continue;
1051 		}
1052 
1053 		/* Module must be in memory at the same address */
1054 		mi = find_module(old_map->dso->short_name, &modules);
1055 		if (!mi || mi->start != old_map->start) {
1056 			err = -EINVAL;
1057 			goto out;
1058 		}
1059 
1060 		old_map = next;
1061 	}
1062 out:
1063 	delete_modules(&modules);
1064 	return err;
1065 }
1066 
1067 /*
1068  * If kallsyms is referenced by name then we look for filename in the same
1069  * directory.
1070  */
1071 static bool filename_from_kallsyms_filename(char *filename,
1072 					    const char *base_name,
1073 					    const char *kallsyms_filename)
1074 {
1075 	char *name;
1076 
1077 	strcpy(filename, kallsyms_filename);
1078 	name = strrchr(filename, '/');
1079 	if (!name)
1080 		return false;
1081 
1082 	name += 1;
1083 
1084 	if (!strcmp(name, "kallsyms")) {
1085 		strcpy(name, base_name);
1086 		return true;
1087 	}
1088 
1089 	return false;
1090 }
1091 
1092 static int validate_kcore_modules(const char *kallsyms_filename,
1093 				  struct map *map)
1094 {
1095 	struct map_groups *kmaps = map__kmaps(map);
1096 	char modules_filename[PATH_MAX];
1097 
1098 	if (!kmaps)
1099 		return -EINVAL;
1100 
1101 	if (!filename_from_kallsyms_filename(modules_filename, "modules",
1102 					     kallsyms_filename))
1103 		return -EINVAL;
1104 
1105 	if (do_validate_kcore_modules(modules_filename, kmaps))
1106 		return -EINVAL;
1107 
1108 	return 0;
1109 }
1110 
1111 static int validate_kcore_addresses(const char *kallsyms_filename,
1112 				    struct map *map)
1113 {
1114 	struct kmap *kmap = map__kmap(map);
1115 
1116 	if (!kmap)
1117 		return -EINVAL;
1118 
1119 	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1120 		u64 start;
1121 
1122 		if (kallsyms__get_function_start(kallsyms_filename,
1123 						 kmap->ref_reloc_sym->name, &start))
1124 			return -ENOENT;
1125 		if (start != kmap->ref_reloc_sym->addr)
1126 			return -EINVAL;
1127 	}
1128 
1129 	return validate_kcore_modules(kallsyms_filename, map);
1130 }
1131 
1132 struct kcore_mapfn_data {
1133 	struct dso *dso;
1134 	struct list_head maps;
1135 };
1136 
1137 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1138 {
1139 	struct kcore_mapfn_data *md = data;
1140 	struct map *map;
1141 
1142 	map = map__new2(start, md->dso);
1143 	if (map == NULL)
1144 		return -ENOMEM;
1145 
1146 	map->end = map->start + len;
1147 	map->pgoff = pgoff;
1148 
1149 	list_add(&map->node, &md->maps);
1150 
1151 	return 0;
1152 }
1153 
1154 static int dso__load_kcore(struct dso *dso, struct map *map,
1155 			   const char *kallsyms_filename)
1156 {
1157 	struct map_groups *kmaps = map__kmaps(map);
1158 	struct kcore_mapfn_data md;
1159 	struct map *old_map, *new_map, *replacement_map = NULL;
1160 	struct machine *machine;
1161 	bool is_64_bit;
1162 	int err, fd;
1163 	char kcore_filename[PATH_MAX];
1164 	u64 stext;
1165 
1166 	if (!kmaps)
1167 		return -EINVAL;
1168 
1169 	machine = kmaps->machine;
1170 
1171 	/* This function requires that the map is the kernel map */
1172 	if (!__map__is_kernel(map))
1173 		return -EINVAL;
1174 
1175 	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1176 					     kallsyms_filename))
1177 		return -EINVAL;
1178 
1179 	/* Modules and kernel must be present at their original addresses */
1180 	if (validate_kcore_addresses(kallsyms_filename, map))
1181 		return -EINVAL;
1182 
1183 	md.dso = dso;
1184 	INIT_LIST_HEAD(&md.maps);
1185 
1186 	fd = open(kcore_filename, O_RDONLY);
1187 	if (fd < 0) {
1188 		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1189 			 kcore_filename);
1190 		return -EINVAL;
1191 	}
1192 
1193 	/* Read new maps into temporary lists */
1194 	err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1195 			      &is_64_bit);
1196 	if (err)
1197 		goto out_err;
1198 	dso->is_64_bit = is_64_bit;
1199 
1200 	if (list_empty(&md.maps)) {
1201 		err = -EINVAL;
1202 		goto out_err;
1203 	}
1204 
1205 	/* Remove old maps */
1206 	old_map = map_groups__first(kmaps);
1207 	while (old_map) {
1208 		struct map *next = map_groups__next(old_map);
1209 
1210 		if (old_map != map)
1211 			map_groups__remove(kmaps, old_map);
1212 		old_map = next;
1213 	}
1214 	machine->trampolines_mapped = false;
1215 
1216 	/* Find the kernel map using the '_stext' symbol */
1217 	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1218 		list_for_each_entry(new_map, &md.maps, node) {
1219 			if (stext >= new_map->start && stext < new_map->end) {
1220 				replacement_map = new_map;
1221 				break;
1222 			}
1223 		}
1224 	}
1225 
1226 	if (!replacement_map)
1227 		replacement_map = list_entry(md.maps.next, struct map, node);
1228 
1229 	/* Add new maps */
1230 	while (!list_empty(&md.maps)) {
1231 		new_map = list_entry(md.maps.next, struct map, node);
1232 		list_del_init(&new_map->node);
1233 		if (new_map == replacement_map) {
1234 			map->start	= new_map->start;
1235 			map->end	= new_map->end;
1236 			map->pgoff	= new_map->pgoff;
1237 			map->map_ip	= new_map->map_ip;
1238 			map->unmap_ip	= new_map->unmap_ip;
1239 			/* Ensure maps are correctly ordered */
1240 			map__get(map);
1241 			map_groups__remove(kmaps, map);
1242 			map_groups__insert(kmaps, map);
1243 			map__put(map);
1244 		} else {
1245 			map_groups__insert(kmaps, new_map);
1246 		}
1247 
1248 		map__put(new_map);
1249 	}
1250 
1251 	if (machine__is(machine, "x86_64")) {
1252 		u64 addr;
1253 
1254 		/*
1255 		 * If one of the corresponding symbols is there, assume the
1256 		 * entry trampoline maps are too.
1257 		 */
1258 		if (!kallsyms__get_function_start(kallsyms_filename,
1259 						  ENTRY_TRAMPOLINE_NAME,
1260 						  &addr))
1261 			machine->trampolines_mapped = true;
1262 	}
1263 
1264 	/*
1265 	 * Set the data type and long name so that kcore can be read via
1266 	 * dso__data_read_addr().
1267 	 */
1268 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1269 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1270 	else
1271 		dso->binary_type = DSO_BINARY_TYPE__KCORE;
1272 	dso__set_long_name(dso, strdup(kcore_filename), true);
1273 
1274 	close(fd);
1275 
1276 	if (map->prot & PROT_EXEC)
1277 		pr_debug("Using %s for kernel object code\n", kcore_filename);
1278 	else
1279 		pr_debug("Using %s for kernel data\n", kcore_filename);
1280 
1281 	return 0;
1282 
1283 out_err:
1284 	while (!list_empty(&md.maps)) {
1285 		map = list_entry(md.maps.next, struct map, node);
1286 		list_del_init(&map->node);
1287 		map__put(map);
1288 	}
1289 	close(fd);
1290 	return -EINVAL;
1291 }
1292 
1293 /*
1294  * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
1295  * delta based on the relocation reference symbol.
1296  */
1297 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1298 {
1299 	u64 addr;
1300 
1301 	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1302 		return 0;
1303 
1304 	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1305 		return -1;
1306 
1307 	*delta = addr - kmap->ref_reloc_sym->addr;
1308 	return 0;
1309 }
1310 
1311 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1312 			 struct map *map, bool no_kcore)
1313 {
1314 	struct kmap *kmap = map__kmap(map);
1315 	u64 delta = 0;
1316 
1317 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1318 		return -1;
1319 
1320 	if (!kmap || !kmap->kmaps)
1321 		return -1;
1322 
1323 	if (dso__load_all_kallsyms(dso, filename) < 0)
1324 		return -1;
1325 
1326 	if (kallsyms__delta(kmap, filename, &delta))
1327 		return -1;
1328 
1329 	symbols__fixup_end(&dso->symbols);
1330 	symbols__fixup_duplicate(&dso->symbols);
1331 
1332 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1333 		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1334 	else
1335 		dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1336 
1337 	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1338 		return map_groups__split_kallsyms_for_kcore(kmap->kmaps, dso);
1339 	else
1340 		return map_groups__split_kallsyms(kmap->kmaps, dso, delta, map);
1341 }
1342 
1343 int dso__load_kallsyms(struct dso *dso, const char *filename,
1344 		       struct map *map)
1345 {
1346 	return __dso__load_kallsyms(dso, filename, map, false);
1347 }
1348 
1349 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1350 {
1351 	char *line = NULL;
1352 	size_t n;
1353 	FILE *file;
1354 	int nr_syms = 0;
1355 
1356 	file = fopen(map_path, "r");
1357 	if (file == NULL)
1358 		goto out_failure;
1359 
1360 	while (!feof(file)) {
1361 		u64 start, size;
1362 		struct symbol *sym;
1363 		int line_len, len;
1364 
1365 		line_len = getline(&line, &n, file);
1366 		if (line_len < 0)
1367 			break;
1368 
1369 		if (!line)
1370 			goto out_failure;
1371 
1372 		line[--line_len] = '\0'; /* \n */
1373 
1374 		len = hex2u64(line, &start);
1375 
1376 		len++;
1377 		if (len + 2 >= line_len)
1378 			continue;
1379 
1380 		len += hex2u64(line + len, &size);
1381 
1382 		len++;
1383 		if (len + 2 >= line_len)
1384 			continue;
1385 
1386 		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1387 
1388 		if (sym == NULL)
1389 			goto out_delete_line;
1390 
1391 		symbols__insert(&dso->symbols, sym);
1392 		nr_syms++;
1393 	}
1394 
1395 	free(line);
1396 	fclose(file);
1397 
1398 	return nr_syms;
1399 
1400 out_delete_line:
1401 	free(line);
1402 out_failure:
1403 	return -1;
1404 }
1405 
1406 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1407 					   enum dso_binary_type type)
1408 {
1409 	switch (type) {
1410 	case DSO_BINARY_TYPE__JAVA_JIT:
1411 	case DSO_BINARY_TYPE__DEBUGLINK:
1412 	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1413 	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1414 	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1415 	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1416 	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1417 		return !kmod && dso->kernel == DSO_TYPE_USER;
1418 
1419 	case DSO_BINARY_TYPE__KALLSYMS:
1420 	case DSO_BINARY_TYPE__VMLINUX:
1421 	case DSO_BINARY_TYPE__KCORE:
1422 		return dso->kernel == DSO_TYPE_KERNEL;
1423 
1424 	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1425 	case DSO_BINARY_TYPE__GUEST_VMLINUX:
1426 	case DSO_BINARY_TYPE__GUEST_KCORE:
1427 		return dso->kernel == DSO_TYPE_GUEST_KERNEL;
1428 
1429 	case DSO_BINARY_TYPE__GUEST_KMODULE:
1430 	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1431 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1432 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1433 		/*
1434 		 * kernel modules know their symtab type - it's set when
1435 		 * creating a module dso in machine__findnew_module_map().
1436 		 */
1437 		return kmod && dso->symtab_type == type;
1438 
1439 	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1440 	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1441 		return true;
1442 
1443 	case DSO_BINARY_TYPE__NOT_FOUND:
1444 	default:
1445 		return false;
1446 	}
1447 }
1448 
1449 /* Checks for the existence of the perf-<pid>.map file in two different
1450  * locations.  First, if the process is a separate mount namespace, check in
1451  * that namespace using the pid of the innermost pid namespace.  If's not in a
1452  * namespace, or the file can't be found there, try in the mount namespace of
1453  * the tracing process using our view of its pid.
1454  */
1455 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1456 			      struct nsinfo **nsip)
1457 {
1458 	struct nscookie nsc;
1459 	struct nsinfo *nsi;
1460 	struct nsinfo *nnsi;
1461 	int rc = -1;
1462 
1463 	nsi = *nsip;
1464 
1465 	if (nsi->need_setns) {
1466 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
1467 		nsinfo__mountns_enter(nsi, &nsc);
1468 		rc = access(filebuf, R_OK);
1469 		nsinfo__mountns_exit(&nsc);
1470 		if (rc == 0)
1471 			return rc;
1472 	}
1473 
1474 	nnsi = nsinfo__copy(nsi);
1475 	if (nnsi) {
1476 		nsinfo__put(nsi);
1477 
1478 		nnsi->need_setns = false;
1479 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
1480 		*nsip = nnsi;
1481 		rc = 0;
1482 	}
1483 
1484 	return rc;
1485 }
1486 
1487 int dso__load(struct dso *dso, struct map *map)
1488 {
1489 	char *name;
1490 	int ret = -1;
1491 	u_int i;
1492 	struct machine *machine;
1493 	char *root_dir = (char *) "";
1494 	int ss_pos = 0;
1495 	struct symsrc ss_[2];
1496 	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1497 	bool kmod;
1498 	bool perfmap;
1499 	unsigned char build_id[BUILD_ID_SIZE];
1500 	struct nscookie nsc;
1501 	char newmapname[PATH_MAX];
1502 	const char *map_path = dso->long_name;
1503 
1504 	perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
1505 	if (perfmap) {
1506 		if (dso->nsinfo && (dso__find_perf_map(newmapname,
1507 		    sizeof(newmapname), &dso->nsinfo) == 0)) {
1508 			map_path = newmapname;
1509 		}
1510 	}
1511 
1512 	nsinfo__mountns_enter(dso->nsinfo, &nsc);
1513 	pthread_mutex_lock(&dso->lock);
1514 
1515 	/* check again under the dso->lock */
1516 	if (dso__loaded(dso)) {
1517 		ret = 1;
1518 		goto out;
1519 	}
1520 
1521 	if (map->groups && map->groups->machine)
1522 		machine = map->groups->machine;
1523 	else
1524 		machine = NULL;
1525 
1526 	if (dso->kernel) {
1527 		if (dso->kernel == DSO_TYPE_KERNEL)
1528 			ret = dso__load_kernel_sym(dso, map);
1529 		else if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1530 			ret = dso__load_guest_kernel_sym(dso, map);
1531 
1532 		if (machine__is(machine, "x86_64"))
1533 			machine__map_x86_64_entry_trampolines(machine, dso);
1534 		goto out;
1535 	}
1536 
1537 	dso->adjust_symbols = 0;
1538 
1539 	if (perfmap) {
1540 		ret = dso__load_perf_map(map_path, dso);
1541 		dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
1542 					     DSO_BINARY_TYPE__NOT_FOUND;
1543 		goto out;
1544 	}
1545 
1546 	if (machine)
1547 		root_dir = machine->root_dir;
1548 
1549 	name = malloc(PATH_MAX);
1550 	if (!name)
1551 		goto out;
1552 
1553 	kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1554 		dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
1555 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
1556 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1557 
1558 
1559 	/*
1560 	 * Read the build id if possible. This is required for
1561 	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1562 	 */
1563 	if (!dso->has_build_id &&
1564 	    is_regular_file(dso->long_name)) {
1565 	    __symbol__join_symfs(name, PATH_MAX, dso->long_name);
1566 	    if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0)
1567 		dso__set_build_id(dso, build_id);
1568 	}
1569 
1570 	/*
1571 	 * Iterate over candidate debug images.
1572 	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1573 	 * and/or opd section) for processing.
1574 	 */
1575 	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1576 		struct symsrc *ss = &ss_[ss_pos];
1577 		bool next_slot = false;
1578 		bool is_reg;
1579 		bool nsexit;
1580 		int sirc = -1;
1581 
1582 		enum dso_binary_type symtab_type = binary_type_symtab[i];
1583 
1584 		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1585 		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1586 
1587 		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1588 			continue;
1589 
1590 		if (dso__read_binary_type_filename(dso, symtab_type,
1591 						   root_dir, name, PATH_MAX))
1592 			continue;
1593 
1594 		if (nsexit)
1595 			nsinfo__mountns_exit(&nsc);
1596 
1597 		is_reg = is_regular_file(name);
1598 		if (is_reg)
1599 			sirc = symsrc__init(ss, dso, name, symtab_type);
1600 
1601 		if (nsexit)
1602 			nsinfo__mountns_enter(dso->nsinfo, &nsc);
1603 
1604 		if (!is_reg || sirc < 0)
1605 			continue;
1606 
1607 		if (!syms_ss && symsrc__has_symtab(ss)) {
1608 			syms_ss = ss;
1609 			next_slot = true;
1610 			if (!dso->symsrc_filename)
1611 				dso->symsrc_filename = strdup(name);
1612 		}
1613 
1614 		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1615 			runtime_ss = ss;
1616 			next_slot = true;
1617 		}
1618 
1619 		if (next_slot) {
1620 			ss_pos++;
1621 
1622 			if (syms_ss && runtime_ss)
1623 				break;
1624 		} else {
1625 			symsrc__destroy(ss);
1626 		}
1627 
1628 	}
1629 
1630 	if (!runtime_ss && !syms_ss)
1631 		goto out_free;
1632 
1633 	if (runtime_ss && !syms_ss) {
1634 		syms_ss = runtime_ss;
1635 	}
1636 
1637 	/* We'll have to hope for the best */
1638 	if (!runtime_ss && syms_ss)
1639 		runtime_ss = syms_ss;
1640 
1641 	if (syms_ss)
1642 		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1643 	else
1644 		ret = -1;
1645 
1646 	if (ret > 0) {
1647 		int nr_plt;
1648 
1649 		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1650 		if (nr_plt > 0)
1651 			ret += nr_plt;
1652 	}
1653 
1654 	for (; ss_pos > 0; ss_pos--)
1655 		symsrc__destroy(&ss_[ss_pos - 1]);
1656 out_free:
1657 	free(name);
1658 	if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1659 		ret = 0;
1660 out:
1661 	dso__set_loaded(dso);
1662 	pthread_mutex_unlock(&dso->lock);
1663 	nsinfo__mountns_exit(&nsc);
1664 
1665 	return ret;
1666 }
1667 
1668 struct map *map_groups__find_by_name(struct map_groups *mg, const char *name)
1669 {
1670 	struct maps *maps = &mg->maps;
1671 	struct map *map;
1672 	struct rb_node *node;
1673 
1674 	down_read(&maps->lock);
1675 
1676 	for (node = maps->names.rb_node; node; ) {
1677 		int rc;
1678 
1679 		map = rb_entry(node, struct map, rb_node_name);
1680 
1681 		rc = strcmp(map->dso->short_name, name);
1682 		if (rc < 0)
1683 			node = node->rb_left;
1684 		else if (rc > 0)
1685 			node = node->rb_right;
1686 		else
1687 
1688 			goto out_unlock;
1689 	}
1690 
1691 	map = NULL;
1692 
1693 out_unlock:
1694 	up_read(&maps->lock);
1695 	return map;
1696 }
1697 
1698 int dso__load_vmlinux(struct dso *dso, struct map *map,
1699 		      const char *vmlinux, bool vmlinux_allocated)
1700 {
1701 	int err = -1;
1702 	struct symsrc ss;
1703 	char symfs_vmlinux[PATH_MAX];
1704 	enum dso_binary_type symtab_type;
1705 
1706 	if (vmlinux[0] == '/')
1707 		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
1708 	else
1709 		symbol__join_symfs(symfs_vmlinux, vmlinux);
1710 
1711 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1712 		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1713 	else
1714 		symtab_type = DSO_BINARY_TYPE__VMLINUX;
1715 
1716 	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
1717 		return -1;
1718 
1719 	err = dso__load_sym(dso, map, &ss, &ss, 0);
1720 	symsrc__destroy(&ss);
1721 
1722 	if (err > 0) {
1723 		if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1724 			dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1725 		else
1726 			dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
1727 		dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1728 		dso__set_loaded(dso);
1729 		pr_debug("Using %s for symbols\n", symfs_vmlinux);
1730 	}
1731 
1732 	return err;
1733 }
1734 
1735 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1736 {
1737 	int i, err = 0;
1738 	char *filename = NULL;
1739 
1740 	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
1741 		 vmlinux_path__nr_entries + 1);
1742 
1743 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1744 		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1745 		if (err > 0)
1746 			goto out;
1747 	}
1748 
1749 	if (!symbol_conf.ignore_vmlinux_buildid)
1750 		filename = dso__build_id_filename(dso, NULL, 0, false);
1751 	if (filename != NULL) {
1752 		err = dso__load_vmlinux(dso, map, filename, true);
1753 		if (err > 0)
1754 			goto out;
1755 		free(filename);
1756 	}
1757 out:
1758 	return err;
1759 }
1760 
1761 static bool visible_dir_filter(const char *name, struct dirent *d)
1762 {
1763 	if (d->d_type != DT_DIR)
1764 		return false;
1765 	return lsdir_no_dot_filter(name, d);
1766 }
1767 
1768 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
1769 {
1770 	char kallsyms_filename[PATH_MAX];
1771 	int ret = -1;
1772 	struct strlist *dirs;
1773 	struct str_node *nd;
1774 
1775 	dirs = lsdir(dir, visible_dir_filter);
1776 	if (!dirs)
1777 		return -1;
1778 
1779 	strlist__for_each_entry(nd, dirs) {
1780 		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1781 			  "%s/%s/kallsyms", dir, nd->s);
1782 		if (!validate_kcore_addresses(kallsyms_filename, map)) {
1783 			strlcpy(dir, kallsyms_filename, dir_sz);
1784 			ret = 0;
1785 			break;
1786 		}
1787 	}
1788 
1789 	strlist__delete(dirs);
1790 
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
1796  * since access(R_OK) only checks with real UID/GID but open() use effective
1797  * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
1798  */
1799 static bool filename__readable(const char *file)
1800 {
1801 	int fd = open(file, O_RDONLY);
1802 	if (fd < 0)
1803 		return false;
1804 	close(fd);
1805 	return true;
1806 }
1807 
1808 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
1809 {
1810 	u8 host_build_id[BUILD_ID_SIZE];
1811 	char sbuild_id[SBUILD_ID_SIZE];
1812 	bool is_host = false;
1813 	char path[PATH_MAX];
1814 
1815 	if (!dso->has_build_id) {
1816 		/*
1817 		 * Last resort, if we don't have a build-id and couldn't find
1818 		 * any vmlinux file, try the running kernel kallsyms table.
1819 		 */
1820 		goto proc_kallsyms;
1821 	}
1822 
1823 	if (sysfs__read_build_id("/sys/kernel/notes", host_build_id,
1824 				 sizeof(host_build_id)) == 0)
1825 		is_host = dso__build_id_equal(dso, host_build_id);
1826 
1827 	/* Try a fast path for /proc/kallsyms if possible */
1828 	if (is_host) {
1829 		/*
1830 		 * Do not check the build-id cache, unless we know we cannot use
1831 		 * /proc/kcore or module maps don't match to /proc/kallsyms.
1832 		 * To check readability of /proc/kcore, do not use access(R_OK)
1833 		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
1834 		 * can't check it.
1835 		 */
1836 		if (filename__readable("/proc/kcore") &&
1837 		    !validate_kcore_addresses("/proc/kallsyms", map))
1838 			goto proc_kallsyms;
1839 	}
1840 
1841 	build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id);
1842 
1843 	/* Find kallsyms in build-id cache with kcore */
1844 	scnprintf(path, sizeof(path), "%s/%s/%s",
1845 		  buildid_dir, DSO__NAME_KCORE, sbuild_id);
1846 
1847 	if (!find_matching_kcore(map, path, sizeof(path)))
1848 		return strdup(path);
1849 
1850 	/* Use current /proc/kallsyms if possible */
1851 	if (is_host) {
1852 proc_kallsyms:
1853 		return strdup("/proc/kallsyms");
1854 	}
1855 
1856 	/* Finally, find a cache of kallsyms */
1857 	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
1858 		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
1859 		       sbuild_id);
1860 		return NULL;
1861 	}
1862 
1863 	return strdup(path);
1864 }
1865 
1866 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
1867 {
1868 	int err;
1869 	const char *kallsyms_filename = NULL;
1870 	char *kallsyms_allocated_filename = NULL;
1871 	/*
1872 	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
1873 	 * it and only it, reporting errors to the user if it cannot be used.
1874 	 *
1875 	 * For instance, try to analyse an ARM perf.data file _without_ a
1876 	 * build-id, or if the user specifies the wrong path to the right
1877 	 * vmlinux file, obviously we can't fallback to another vmlinux (a
1878 	 * x86_86 one, on the machine where analysis is being performed, say),
1879 	 * or worse, /proc/kallsyms.
1880 	 *
1881 	 * If the specified file _has_ a build-id and there is a build-id
1882 	 * section in the perf.data file, we will still do the expected
1883 	 * validation in dso__load_vmlinux and will bail out if they don't
1884 	 * match.
1885 	 */
1886 	if (symbol_conf.kallsyms_name != NULL) {
1887 		kallsyms_filename = symbol_conf.kallsyms_name;
1888 		goto do_kallsyms;
1889 	}
1890 
1891 	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
1892 		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
1893 	}
1894 
1895 	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
1896 		err = dso__load_vmlinux_path(dso, map);
1897 		if (err > 0)
1898 			return err;
1899 	}
1900 
1901 	/* do not try local files if a symfs was given */
1902 	if (symbol_conf.symfs[0] != 0)
1903 		return -1;
1904 
1905 	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
1906 	if (!kallsyms_allocated_filename)
1907 		return -1;
1908 
1909 	kallsyms_filename = kallsyms_allocated_filename;
1910 
1911 do_kallsyms:
1912 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
1913 	if (err > 0)
1914 		pr_debug("Using %s for symbols\n", kallsyms_filename);
1915 	free(kallsyms_allocated_filename);
1916 
1917 	if (err > 0 && !dso__is_kcore(dso)) {
1918 		dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
1919 		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
1920 		map__fixup_start(map);
1921 		map__fixup_end(map);
1922 	}
1923 
1924 	return err;
1925 }
1926 
1927 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
1928 {
1929 	int err;
1930 	const char *kallsyms_filename = NULL;
1931 	struct machine *machine;
1932 	char path[PATH_MAX];
1933 
1934 	if (!map->groups) {
1935 		pr_debug("Guest kernel map hasn't the point to groups\n");
1936 		return -1;
1937 	}
1938 	machine = map->groups->machine;
1939 
1940 	if (machine__is_default_guest(machine)) {
1941 		/*
1942 		 * if the user specified a vmlinux filename, use it and only
1943 		 * it, reporting errors to the user if it cannot be used.
1944 		 * Or use file guest_kallsyms inputted by user on commandline
1945 		 */
1946 		if (symbol_conf.default_guest_vmlinux_name != NULL) {
1947 			err = dso__load_vmlinux(dso, map,
1948 						symbol_conf.default_guest_vmlinux_name,
1949 						false);
1950 			return err;
1951 		}
1952 
1953 		kallsyms_filename = symbol_conf.default_guest_kallsyms;
1954 		if (!kallsyms_filename)
1955 			return -1;
1956 	} else {
1957 		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
1958 		kallsyms_filename = path;
1959 	}
1960 
1961 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
1962 	if (err > 0)
1963 		pr_debug("Using %s for symbols\n", kallsyms_filename);
1964 	if (err > 0 && !dso__is_kcore(dso)) {
1965 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1966 		dso__set_long_name(dso, machine->mmap_name, false);
1967 		map__fixup_start(map);
1968 		map__fixup_end(map);
1969 	}
1970 
1971 	return err;
1972 }
1973 
1974 static void vmlinux_path__exit(void)
1975 {
1976 	while (--vmlinux_path__nr_entries >= 0)
1977 		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
1978 	vmlinux_path__nr_entries = 0;
1979 
1980 	zfree(&vmlinux_path);
1981 }
1982 
1983 static const char * const vmlinux_paths[] = {
1984 	"vmlinux",
1985 	"/boot/vmlinux"
1986 };
1987 
1988 static const char * const vmlinux_paths_upd[] = {
1989 	"/boot/vmlinux-%s",
1990 	"/usr/lib/debug/boot/vmlinux-%s",
1991 	"/lib/modules/%s/build/vmlinux",
1992 	"/usr/lib/debug/lib/modules/%s/vmlinux",
1993 	"/usr/lib/debug/boot/vmlinux-%s.debug"
1994 };
1995 
1996 static int vmlinux_path__add(const char *new_entry)
1997 {
1998 	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
1999 	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2000 		return -1;
2001 	++vmlinux_path__nr_entries;
2002 
2003 	return 0;
2004 }
2005 
2006 static int vmlinux_path__init(struct perf_env *env)
2007 {
2008 	struct utsname uts;
2009 	char bf[PATH_MAX];
2010 	char *kernel_version;
2011 	unsigned int i;
2012 
2013 	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2014 			      ARRAY_SIZE(vmlinux_paths_upd)));
2015 	if (vmlinux_path == NULL)
2016 		return -1;
2017 
2018 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2019 		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2020 			goto out_fail;
2021 
2022 	/* only try kernel version if no symfs was given */
2023 	if (symbol_conf.symfs[0] != 0)
2024 		return 0;
2025 
2026 	if (env) {
2027 		kernel_version = env->os_release;
2028 	} else {
2029 		if (uname(&uts) < 0)
2030 			goto out_fail;
2031 
2032 		kernel_version = uts.release;
2033 	}
2034 
2035 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2036 		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2037 		if (vmlinux_path__add(bf) < 0)
2038 			goto out_fail;
2039 	}
2040 
2041 	return 0;
2042 
2043 out_fail:
2044 	vmlinux_path__exit();
2045 	return -1;
2046 }
2047 
2048 int setup_list(struct strlist **list, const char *list_str,
2049 		      const char *list_name)
2050 {
2051 	if (list_str == NULL)
2052 		return 0;
2053 
2054 	*list = strlist__new(list_str, NULL);
2055 	if (!*list) {
2056 		pr_err("problems parsing %s list\n", list_name);
2057 		return -1;
2058 	}
2059 
2060 	symbol_conf.has_filter = true;
2061 	return 0;
2062 }
2063 
2064 int setup_intlist(struct intlist **list, const char *list_str,
2065 		  const char *list_name)
2066 {
2067 	if (list_str == NULL)
2068 		return 0;
2069 
2070 	*list = intlist__new(list_str);
2071 	if (!*list) {
2072 		pr_err("problems parsing %s list\n", list_name);
2073 		return -1;
2074 	}
2075 	return 0;
2076 }
2077 
2078 static bool symbol__read_kptr_restrict(void)
2079 {
2080 	bool value = false;
2081 	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2082 
2083 	if (fp != NULL) {
2084 		char line[8];
2085 
2086 		if (fgets(line, sizeof(line), fp) != NULL)
2087 			value = ((geteuid() != 0) || (getuid() != 0)) ?
2088 					(atoi(line) != 0) :
2089 					(atoi(line) == 2);
2090 
2091 		fclose(fp);
2092 	}
2093 
2094 	return value;
2095 }
2096 
2097 int symbol__annotation_init(void)
2098 {
2099 	if (symbol_conf.init_annotation)
2100 		return 0;
2101 
2102 	if (symbol_conf.initialized) {
2103 		pr_err("Annotation needs to be init before symbol__init()\n");
2104 		return -1;
2105 	}
2106 
2107 	symbol_conf.priv_size += sizeof(struct annotation);
2108 	symbol_conf.init_annotation = true;
2109 	return 0;
2110 }
2111 
2112 int symbol__init(struct perf_env *env)
2113 {
2114 	const char *symfs;
2115 
2116 	if (symbol_conf.initialized)
2117 		return 0;
2118 
2119 	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2120 
2121 	symbol__elf_init();
2122 
2123 	if (symbol_conf.sort_by_name)
2124 		symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
2125 					  sizeof(struct symbol));
2126 
2127 	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2128 		return -1;
2129 
2130 	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2131 		pr_err("'.' is the only non valid --field-separator argument\n");
2132 		return -1;
2133 	}
2134 
2135 	if (setup_list(&symbol_conf.dso_list,
2136 		       symbol_conf.dso_list_str, "dso") < 0)
2137 		return -1;
2138 
2139 	if (setup_list(&symbol_conf.comm_list,
2140 		       symbol_conf.comm_list_str, "comm") < 0)
2141 		goto out_free_dso_list;
2142 
2143 	if (setup_intlist(&symbol_conf.pid_list,
2144 		       symbol_conf.pid_list_str, "pid") < 0)
2145 		goto out_free_comm_list;
2146 
2147 	if (setup_intlist(&symbol_conf.tid_list,
2148 		       symbol_conf.tid_list_str, "tid") < 0)
2149 		goto out_free_pid_list;
2150 
2151 	if (setup_list(&symbol_conf.sym_list,
2152 		       symbol_conf.sym_list_str, "symbol") < 0)
2153 		goto out_free_tid_list;
2154 
2155 	if (setup_list(&symbol_conf.bt_stop_list,
2156 		       symbol_conf.bt_stop_list_str, "symbol") < 0)
2157 		goto out_free_sym_list;
2158 
2159 	/*
2160 	 * A path to symbols of "/" is identical to ""
2161 	 * reset here for simplicity.
2162 	 */
2163 	symfs = realpath(symbol_conf.symfs, NULL);
2164 	if (symfs == NULL)
2165 		symfs = symbol_conf.symfs;
2166 	if (strcmp(symfs, "/") == 0)
2167 		symbol_conf.symfs = "";
2168 	if (symfs != symbol_conf.symfs)
2169 		free((void *)symfs);
2170 
2171 	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2172 
2173 	symbol_conf.initialized = true;
2174 	return 0;
2175 
2176 out_free_sym_list:
2177 	strlist__delete(symbol_conf.sym_list);
2178 out_free_tid_list:
2179 	intlist__delete(symbol_conf.tid_list);
2180 out_free_pid_list:
2181 	intlist__delete(symbol_conf.pid_list);
2182 out_free_comm_list:
2183 	strlist__delete(symbol_conf.comm_list);
2184 out_free_dso_list:
2185 	strlist__delete(symbol_conf.dso_list);
2186 	return -1;
2187 }
2188 
2189 void symbol__exit(void)
2190 {
2191 	if (!symbol_conf.initialized)
2192 		return;
2193 	strlist__delete(symbol_conf.bt_stop_list);
2194 	strlist__delete(symbol_conf.sym_list);
2195 	strlist__delete(symbol_conf.dso_list);
2196 	strlist__delete(symbol_conf.comm_list);
2197 	intlist__delete(symbol_conf.tid_list);
2198 	intlist__delete(symbol_conf.pid_list);
2199 	vmlinux_path__exit();
2200 	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2201 	symbol_conf.bt_stop_list = NULL;
2202 	symbol_conf.initialized = false;
2203 }
2204 
2205 int symbol__config_symfs(const struct option *opt __maybe_unused,
2206 			 const char *dir, int unset __maybe_unused)
2207 {
2208 	char *bf = NULL;
2209 	int ret;
2210 
2211 	symbol_conf.symfs = strdup(dir);
2212 	if (symbol_conf.symfs == NULL)
2213 		return -ENOMEM;
2214 
2215 	/* skip the locally configured cache if a symfs is given, and
2216 	 * config buildid dir to symfs/.debug
2217 	 */
2218 	ret = asprintf(&bf, "%s/%s", dir, ".debug");
2219 	if (ret < 0)
2220 		return -ENOMEM;
2221 
2222 	set_buildid_dir(bf);
2223 
2224 	free(bf);
2225 	return 0;
2226 }
2227 
2228 struct mem_info *mem_info__get(struct mem_info *mi)
2229 {
2230 	if (mi)
2231 		refcount_inc(&mi->refcnt);
2232 	return mi;
2233 }
2234 
2235 void mem_info__put(struct mem_info *mi)
2236 {
2237 	if (mi && refcount_dec_and_test(&mi->refcnt))
2238 		free(mi);
2239 }
2240 
2241 struct mem_info *mem_info__new(void)
2242 {
2243 	struct mem_info *mi = zalloc(sizeof(*mi));
2244 
2245 	if (mi)
2246 		refcount_set(&mi->refcnt, 1);
2247 	return mi;
2248 }
2249