1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <stdlib.h> 5 #include <stdio.h> 6 #include <string.h> 7 #include <linux/capability.h> 8 #include <linux/kernel.h> 9 #include <linux/mman.h> 10 #include <linux/string.h> 11 #include <linux/time64.h> 12 #include <sys/types.h> 13 #include <sys/stat.h> 14 #include <sys/param.h> 15 #include <fcntl.h> 16 #include <unistd.h> 17 #include <inttypes.h> 18 #include "annotate.h" 19 #include "build-id.h" 20 #include "cap.h" 21 #include "dso.h" 22 #include "util.h" // lsdir() 23 #include "debug.h" 24 #include "event.h" 25 #include "machine.h" 26 #include "map.h" 27 #include "symbol.h" 28 #include "map_symbol.h" 29 #include "mem-events.h" 30 #include "symsrc.h" 31 #include "strlist.h" 32 #include "intlist.h" 33 #include "namespaces.h" 34 #include "header.h" 35 #include "path.h" 36 #include <linux/ctype.h> 37 #include <linux/zalloc.h> 38 39 #include <elf.h> 40 #include <limits.h> 41 #include <symbol/kallsyms.h> 42 #include <sys/utsname.h> 43 44 static int dso__load_kernel_sym(struct dso *dso, struct map *map); 45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map); 46 static bool symbol__is_idle(const char *name); 47 48 int vmlinux_path__nr_entries; 49 char **vmlinux_path; 50 51 struct symbol_conf symbol_conf = { 52 .nanosecs = false, 53 .use_modules = true, 54 .try_vmlinux_path = true, 55 .demangle = true, 56 .demangle_kernel = false, 57 .cumulate_callchain = true, 58 .time_quantum = 100 * NSEC_PER_MSEC, /* 100ms */ 59 .show_hist_headers = true, 60 .symfs = "", 61 .event_group = true, 62 .inline_name = true, 63 .res_sample = 0, 64 }; 65 66 static enum dso_binary_type binary_type_symtab[] = { 67 DSO_BINARY_TYPE__KALLSYMS, 68 DSO_BINARY_TYPE__GUEST_KALLSYMS, 69 DSO_BINARY_TYPE__JAVA_JIT, 70 DSO_BINARY_TYPE__DEBUGLINK, 71 DSO_BINARY_TYPE__BUILD_ID_CACHE, 72 DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO, 73 DSO_BINARY_TYPE__FEDORA_DEBUGINFO, 74 DSO_BINARY_TYPE__UBUNTU_DEBUGINFO, 75 DSO_BINARY_TYPE__BUILDID_DEBUGINFO, 76 DSO_BINARY_TYPE__SYSTEM_PATH_DSO, 77 DSO_BINARY_TYPE__GUEST_KMODULE, 78 DSO_BINARY_TYPE__GUEST_KMODULE_COMP, 79 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE, 80 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP, 81 DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO, 82 DSO_BINARY_TYPE__NOT_FOUND, 83 }; 84 85 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab) 86 87 static bool symbol_type__filter(char symbol_type) 88 { 89 symbol_type = toupper(symbol_type); 90 return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B'; 91 } 92 93 static int prefix_underscores_count(const char *str) 94 { 95 const char *tail = str; 96 97 while (*tail == '_') 98 tail++; 99 100 return tail - str; 101 } 102 103 void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c) 104 { 105 p->end = c->start; 106 } 107 108 const char * __weak arch__normalize_symbol_name(const char *name) 109 { 110 return name; 111 } 112 113 int __weak arch__compare_symbol_names(const char *namea, const char *nameb) 114 { 115 return strcmp(namea, nameb); 116 } 117 118 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb, 119 unsigned int n) 120 { 121 return strncmp(namea, nameb, n); 122 } 123 124 int __weak arch__choose_best_symbol(struct symbol *syma, 125 struct symbol *symb __maybe_unused) 126 { 127 /* Avoid "SyS" kernel syscall aliases */ 128 if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3)) 129 return SYMBOL_B; 130 if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10)) 131 return SYMBOL_B; 132 133 return SYMBOL_A; 134 } 135 136 static int choose_best_symbol(struct symbol *syma, struct symbol *symb) 137 { 138 s64 a; 139 s64 b; 140 size_t na, nb; 141 142 /* Prefer a symbol with non zero length */ 143 a = syma->end - syma->start; 144 b = symb->end - symb->start; 145 if ((b == 0) && (a > 0)) 146 return SYMBOL_A; 147 else if ((a == 0) && (b > 0)) 148 return SYMBOL_B; 149 150 /* Prefer a non weak symbol over a weak one */ 151 a = syma->binding == STB_WEAK; 152 b = symb->binding == STB_WEAK; 153 if (b && !a) 154 return SYMBOL_A; 155 if (a && !b) 156 return SYMBOL_B; 157 158 /* Prefer a global symbol over a non global one */ 159 a = syma->binding == STB_GLOBAL; 160 b = symb->binding == STB_GLOBAL; 161 if (a && !b) 162 return SYMBOL_A; 163 if (b && !a) 164 return SYMBOL_B; 165 166 /* Prefer a symbol with less underscores */ 167 a = prefix_underscores_count(syma->name); 168 b = prefix_underscores_count(symb->name); 169 if (b > a) 170 return SYMBOL_A; 171 else if (a > b) 172 return SYMBOL_B; 173 174 /* Choose the symbol with the longest name */ 175 na = strlen(syma->name); 176 nb = strlen(symb->name); 177 if (na > nb) 178 return SYMBOL_A; 179 else if (na < nb) 180 return SYMBOL_B; 181 182 return arch__choose_best_symbol(syma, symb); 183 } 184 185 void symbols__fixup_duplicate(struct rb_root_cached *symbols) 186 { 187 struct rb_node *nd; 188 struct symbol *curr, *next; 189 190 if (symbol_conf.allow_aliases) 191 return; 192 193 nd = rb_first_cached(symbols); 194 195 while (nd) { 196 curr = rb_entry(nd, struct symbol, rb_node); 197 again: 198 nd = rb_next(&curr->rb_node); 199 next = rb_entry(nd, struct symbol, rb_node); 200 201 if (!nd) 202 break; 203 204 if (curr->start != next->start) 205 continue; 206 207 if (choose_best_symbol(curr, next) == SYMBOL_A) { 208 rb_erase_cached(&next->rb_node, symbols); 209 symbol__delete(next); 210 goto again; 211 } else { 212 nd = rb_next(&curr->rb_node); 213 rb_erase_cached(&curr->rb_node, symbols); 214 symbol__delete(curr); 215 } 216 } 217 } 218 219 void symbols__fixup_end(struct rb_root_cached *symbols) 220 { 221 struct rb_node *nd, *prevnd = rb_first_cached(symbols); 222 struct symbol *curr, *prev; 223 224 if (prevnd == NULL) 225 return; 226 227 curr = rb_entry(prevnd, struct symbol, rb_node); 228 229 for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) { 230 prev = curr; 231 curr = rb_entry(nd, struct symbol, rb_node); 232 233 if (prev->end == prev->start && prev->end != curr->start) 234 arch__symbols__fixup_end(prev, curr); 235 } 236 237 /* Last entry */ 238 if (curr->end == curr->start) 239 curr->end = roundup(curr->start, 4096) + 4096; 240 } 241 242 void maps__fixup_end(struct maps *maps) 243 { 244 struct map *prev = NULL, *curr; 245 246 down_write(&maps->lock); 247 248 maps__for_each_entry(maps, curr) { 249 if (prev != NULL && !prev->end) 250 prev->end = curr->start; 251 252 prev = curr; 253 } 254 255 /* 256 * We still haven't the actual symbols, so guess the 257 * last map final address. 258 */ 259 if (curr && !curr->end) 260 curr->end = ~0ULL; 261 262 up_write(&maps->lock); 263 } 264 265 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name) 266 { 267 size_t namelen = strlen(name) + 1; 268 struct symbol *sym = calloc(1, (symbol_conf.priv_size + 269 sizeof(*sym) + namelen)); 270 if (sym == NULL) 271 return NULL; 272 273 if (symbol_conf.priv_size) { 274 if (symbol_conf.init_annotation) { 275 struct annotation *notes = (void *)sym; 276 pthread_mutex_init(¬es->lock, NULL); 277 } 278 sym = ((void *)sym) + symbol_conf.priv_size; 279 } 280 281 sym->start = start; 282 sym->end = len ? start + len : start; 283 sym->type = type; 284 sym->binding = binding; 285 sym->namelen = namelen - 1; 286 287 pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n", 288 __func__, name, start, sym->end); 289 memcpy(sym->name, name, namelen); 290 291 return sym; 292 } 293 294 void symbol__delete(struct symbol *sym) 295 { 296 free(((void *)sym) - symbol_conf.priv_size); 297 } 298 299 void symbols__delete(struct rb_root_cached *symbols) 300 { 301 struct symbol *pos; 302 struct rb_node *next = rb_first_cached(symbols); 303 304 while (next) { 305 pos = rb_entry(next, struct symbol, rb_node); 306 next = rb_next(&pos->rb_node); 307 rb_erase_cached(&pos->rb_node, symbols); 308 symbol__delete(pos); 309 } 310 } 311 312 void __symbols__insert(struct rb_root_cached *symbols, 313 struct symbol *sym, bool kernel) 314 { 315 struct rb_node **p = &symbols->rb_root.rb_node; 316 struct rb_node *parent = NULL; 317 const u64 ip = sym->start; 318 struct symbol *s; 319 bool leftmost = true; 320 321 if (kernel) { 322 const char *name = sym->name; 323 /* 324 * ppc64 uses function descriptors and appends a '.' to the 325 * start of every instruction address. Remove it. 326 */ 327 if (name[0] == '.') 328 name++; 329 sym->idle = symbol__is_idle(name); 330 } 331 332 while (*p != NULL) { 333 parent = *p; 334 s = rb_entry(parent, struct symbol, rb_node); 335 if (ip < s->start) 336 p = &(*p)->rb_left; 337 else { 338 p = &(*p)->rb_right; 339 leftmost = false; 340 } 341 } 342 rb_link_node(&sym->rb_node, parent, p); 343 rb_insert_color_cached(&sym->rb_node, symbols, leftmost); 344 } 345 346 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym) 347 { 348 __symbols__insert(symbols, sym, false); 349 } 350 351 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip) 352 { 353 struct rb_node *n; 354 355 if (symbols == NULL) 356 return NULL; 357 358 n = symbols->rb_root.rb_node; 359 360 while (n) { 361 struct symbol *s = rb_entry(n, struct symbol, rb_node); 362 363 if (ip < s->start) 364 n = n->rb_left; 365 else if (ip > s->end || (ip == s->end && ip != s->start)) 366 n = n->rb_right; 367 else 368 return s; 369 } 370 371 return NULL; 372 } 373 374 static struct symbol *symbols__first(struct rb_root_cached *symbols) 375 { 376 struct rb_node *n = rb_first_cached(symbols); 377 378 if (n) 379 return rb_entry(n, struct symbol, rb_node); 380 381 return NULL; 382 } 383 384 static struct symbol *symbols__last(struct rb_root_cached *symbols) 385 { 386 struct rb_node *n = rb_last(&symbols->rb_root); 387 388 if (n) 389 return rb_entry(n, struct symbol, rb_node); 390 391 return NULL; 392 } 393 394 static struct symbol *symbols__next(struct symbol *sym) 395 { 396 struct rb_node *n = rb_next(&sym->rb_node); 397 398 if (n) 399 return rb_entry(n, struct symbol, rb_node); 400 401 return NULL; 402 } 403 404 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym) 405 { 406 struct rb_node **p = &symbols->rb_root.rb_node; 407 struct rb_node *parent = NULL; 408 struct symbol_name_rb_node *symn, *s; 409 bool leftmost = true; 410 411 symn = container_of(sym, struct symbol_name_rb_node, sym); 412 413 while (*p != NULL) { 414 parent = *p; 415 s = rb_entry(parent, struct symbol_name_rb_node, rb_node); 416 if (strcmp(sym->name, s->sym.name) < 0) 417 p = &(*p)->rb_left; 418 else { 419 p = &(*p)->rb_right; 420 leftmost = false; 421 } 422 } 423 rb_link_node(&symn->rb_node, parent, p); 424 rb_insert_color_cached(&symn->rb_node, symbols, leftmost); 425 } 426 427 static void symbols__sort_by_name(struct rb_root_cached *symbols, 428 struct rb_root_cached *source) 429 { 430 struct rb_node *nd; 431 432 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) { 433 struct symbol *pos = rb_entry(nd, struct symbol, rb_node); 434 symbols__insert_by_name(symbols, pos); 435 } 436 } 437 438 int symbol__match_symbol_name(const char *name, const char *str, 439 enum symbol_tag_include includes) 440 { 441 const char *versioning; 442 443 if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY && 444 (versioning = strstr(name, "@@"))) { 445 int len = strlen(str); 446 447 if (len < versioning - name) 448 len = versioning - name; 449 450 return arch__compare_symbol_names_n(name, str, len); 451 } else 452 return arch__compare_symbol_names(name, str); 453 } 454 455 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols, 456 const char *name, 457 enum symbol_tag_include includes) 458 { 459 struct rb_node *n; 460 struct symbol_name_rb_node *s = NULL; 461 462 if (symbols == NULL) 463 return NULL; 464 465 n = symbols->rb_root.rb_node; 466 467 while (n) { 468 int cmp; 469 470 s = rb_entry(n, struct symbol_name_rb_node, rb_node); 471 cmp = symbol__match_symbol_name(s->sym.name, name, includes); 472 473 if (cmp > 0) 474 n = n->rb_left; 475 else if (cmp < 0) 476 n = n->rb_right; 477 else 478 break; 479 } 480 481 if (n == NULL) 482 return NULL; 483 484 if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY) 485 /* return first symbol that has same name (if any) */ 486 for (n = rb_prev(n); n; n = rb_prev(n)) { 487 struct symbol_name_rb_node *tmp; 488 489 tmp = rb_entry(n, struct symbol_name_rb_node, rb_node); 490 if (arch__compare_symbol_names(tmp->sym.name, s->sym.name)) 491 break; 492 493 s = tmp; 494 } 495 496 return &s->sym; 497 } 498 499 void dso__reset_find_symbol_cache(struct dso *dso) 500 { 501 dso->last_find_result.addr = 0; 502 dso->last_find_result.symbol = NULL; 503 } 504 505 void dso__insert_symbol(struct dso *dso, struct symbol *sym) 506 { 507 __symbols__insert(&dso->symbols, sym, dso->kernel); 508 509 /* update the symbol cache if necessary */ 510 if (dso->last_find_result.addr >= sym->start && 511 (dso->last_find_result.addr < sym->end || 512 sym->start == sym->end)) { 513 dso->last_find_result.symbol = sym; 514 } 515 } 516 517 struct symbol *dso__find_symbol(struct dso *dso, u64 addr) 518 { 519 if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) { 520 dso->last_find_result.addr = addr; 521 dso->last_find_result.symbol = symbols__find(&dso->symbols, addr); 522 } 523 524 return dso->last_find_result.symbol; 525 } 526 527 struct symbol *dso__first_symbol(struct dso *dso) 528 { 529 return symbols__first(&dso->symbols); 530 } 531 532 struct symbol *dso__last_symbol(struct dso *dso) 533 { 534 return symbols__last(&dso->symbols); 535 } 536 537 struct symbol *dso__next_symbol(struct symbol *sym) 538 { 539 return symbols__next(sym); 540 } 541 542 struct symbol *symbol__next_by_name(struct symbol *sym) 543 { 544 struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym); 545 struct rb_node *n = rb_next(&s->rb_node); 546 547 return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL; 548 } 549 550 /* 551 * Returns first symbol that matched with @name. 552 */ 553 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name) 554 { 555 struct symbol *s = symbols__find_by_name(&dso->symbol_names, name, 556 SYMBOL_TAG_INCLUDE__NONE); 557 if (!s) 558 s = symbols__find_by_name(&dso->symbol_names, name, 559 SYMBOL_TAG_INCLUDE__DEFAULT_ONLY); 560 return s; 561 } 562 563 void dso__sort_by_name(struct dso *dso) 564 { 565 dso__set_sorted_by_name(dso); 566 return symbols__sort_by_name(&dso->symbol_names, &dso->symbols); 567 } 568 569 /* 570 * While we find nice hex chars, build a long_val. 571 * Return number of chars processed. 572 */ 573 static int hex2u64(const char *ptr, u64 *long_val) 574 { 575 char *p; 576 577 *long_val = strtoull(ptr, &p, 16); 578 579 return p - ptr; 580 } 581 582 583 int modules__parse(const char *filename, void *arg, 584 int (*process_module)(void *arg, const char *name, 585 u64 start, u64 size)) 586 { 587 char *line = NULL; 588 size_t n; 589 FILE *file; 590 int err = 0; 591 592 file = fopen(filename, "r"); 593 if (file == NULL) 594 return -1; 595 596 while (1) { 597 char name[PATH_MAX]; 598 u64 start, size; 599 char *sep, *endptr; 600 ssize_t line_len; 601 602 line_len = getline(&line, &n, file); 603 if (line_len < 0) { 604 if (feof(file)) 605 break; 606 err = -1; 607 goto out; 608 } 609 610 if (!line) { 611 err = -1; 612 goto out; 613 } 614 615 line[--line_len] = '\0'; /* \n */ 616 617 sep = strrchr(line, 'x'); 618 if (sep == NULL) 619 continue; 620 621 hex2u64(sep + 1, &start); 622 623 sep = strchr(line, ' '); 624 if (sep == NULL) 625 continue; 626 627 *sep = '\0'; 628 629 scnprintf(name, sizeof(name), "[%s]", line); 630 631 size = strtoul(sep + 1, &endptr, 0); 632 if (*endptr != ' ' && *endptr != '\t') 633 continue; 634 635 err = process_module(arg, name, start, size); 636 if (err) 637 break; 638 } 639 out: 640 free(line); 641 fclose(file); 642 return err; 643 } 644 645 /* 646 * These are symbols in the kernel image, so make sure that 647 * sym is from a kernel DSO. 648 */ 649 static bool symbol__is_idle(const char *name) 650 { 651 const char * const idle_symbols[] = { 652 "acpi_idle_do_entry", 653 "acpi_processor_ffh_cstate_enter", 654 "arch_cpu_idle", 655 "cpu_idle", 656 "cpu_startup_entry", 657 "idle_cpu", 658 "intel_idle", 659 "default_idle", 660 "native_safe_halt", 661 "enter_idle", 662 "exit_idle", 663 "mwait_idle", 664 "mwait_idle_with_hints", 665 "poll_idle", 666 "ppc64_runlatch_off", 667 "pseries_dedicated_idle_sleep", 668 NULL 669 }; 670 int i; 671 static struct strlist *idle_symbols_list; 672 673 if (idle_symbols_list) 674 return strlist__has_entry(idle_symbols_list, name); 675 676 idle_symbols_list = strlist__new(NULL, NULL); 677 678 for (i = 0; idle_symbols[i]; i++) 679 strlist__add(idle_symbols_list, idle_symbols[i]); 680 681 return strlist__has_entry(idle_symbols_list, name); 682 } 683 684 static int map__process_kallsym_symbol(void *arg, const char *name, 685 char type, u64 start) 686 { 687 struct symbol *sym; 688 struct dso *dso = arg; 689 struct rb_root_cached *root = &dso->symbols; 690 691 if (!symbol_type__filter(type)) 692 return 0; 693 694 /* 695 * module symbols are not sorted so we add all 696 * symbols, setting length to 0, and rely on 697 * symbols__fixup_end() to fix it up. 698 */ 699 sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name); 700 if (sym == NULL) 701 return -ENOMEM; 702 /* 703 * We will pass the symbols to the filter later, in 704 * map__split_kallsyms, when we have split the maps per module 705 */ 706 __symbols__insert(root, sym, !strchr(name, '[')); 707 708 return 0; 709 } 710 711 /* 712 * Loads the function entries in /proc/kallsyms into kernel_map->dso, 713 * so that we can in the next step set the symbol ->end address and then 714 * call kernel_maps__split_kallsyms. 715 */ 716 static int dso__load_all_kallsyms(struct dso *dso, const char *filename) 717 { 718 return kallsyms__parse(filename, dso, map__process_kallsym_symbol); 719 } 720 721 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso) 722 { 723 struct map *curr_map; 724 struct symbol *pos; 725 int count = 0; 726 struct rb_root_cached old_root = dso->symbols; 727 struct rb_root_cached *root = &dso->symbols; 728 struct rb_node *next = rb_first_cached(root); 729 730 if (!kmaps) 731 return -1; 732 733 *root = RB_ROOT_CACHED; 734 735 while (next) { 736 char *module; 737 738 pos = rb_entry(next, struct symbol, rb_node); 739 next = rb_next(&pos->rb_node); 740 741 rb_erase_cached(&pos->rb_node, &old_root); 742 RB_CLEAR_NODE(&pos->rb_node); 743 module = strchr(pos->name, '\t'); 744 if (module) 745 *module = '\0'; 746 747 curr_map = maps__find(kmaps, pos->start); 748 749 if (!curr_map) { 750 symbol__delete(pos); 751 continue; 752 } 753 754 pos->start -= curr_map->start - curr_map->pgoff; 755 if (pos->end > curr_map->end) 756 pos->end = curr_map->end; 757 if (pos->end) 758 pos->end -= curr_map->start - curr_map->pgoff; 759 symbols__insert(&curr_map->dso->symbols, pos); 760 ++count; 761 } 762 763 /* Symbols have been adjusted */ 764 dso->adjust_symbols = 1; 765 766 return count; 767 } 768 769 /* 770 * Split the symbols into maps, making sure there are no overlaps, i.e. the 771 * kernel range is broken in several maps, named [kernel].N, as we don't have 772 * the original ELF section names vmlinux have. 773 */ 774 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta, 775 struct map *initial_map) 776 { 777 struct machine *machine; 778 struct map *curr_map = initial_map; 779 struct symbol *pos; 780 int count = 0, moved = 0; 781 struct rb_root_cached *root = &dso->symbols; 782 struct rb_node *next = rb_first_cached(root); 783 int kernel_range = 0; 784 bool x86_64; 785 786 if (!kmaps) 787 return -1; 788 789 machine = kmaps->machine; 790 791 x86_64 = machine__is(machine, "x86_64"); 792 793 while (next) { 794 char *module; 795 796 pos = rb_entry(next, struct symbol, rb_node); 797 next = rb_next(&pos->rb_node); 798 799 module = strchr(pos->name, '\t'); 800 if (module) { 801 if (!symbol_conf.use_modules) 802 goto discard_symbol; 803 804 *module++ = '\0'; 805 806 if (strcmp(curr_map->dso->short_name, module)) { 807 if (curr_map != initial_map && 808 dso->kernel == DSO_TYPE_GUEST_KERNEL && 809 machine__is_default_guest(machine)) { 810 /* 811 * We assume all symbols of a module are 812 * continuous in * kallsyms, so curr_map 813 * points to a module and all its 814 * symbols are in its kmap. Mark it as 815 * loaded. 816 */ 817 dso__set_loaded(curr_map->dso); 818 } 819 820 curr_map = maps__find_by_name(kmaps, module); 821 if (curr_map == NULL) { 822 pr_debug("%s/proc/{kallsyms,modules} " 823 "inconsistency while looking " 824 "for \"%s\" module!\n", 825 machine->root_dir, module); 826 curr_map = initial_map; 827 goto discard_symbol; 828 } 829 830 if (curr_map->dso->loaded && 831 !machine__is_default_guest(machine)) 832 goto discard_symbol; 833 } 834 /* 835 * So that we look just like we get from .ko files, 836 * i.e. not prelinked, relative to initial_map->start. 837 */ 838 pos->start = curr_map->map_ip(curr_map, pos->start); 839 pos->end = curr_map->map_ip(curr_map, pos->end); 840 } else if (x86_64 && is_entry_trampoline(pos->name)) { 841 /* 842 * These symbols are not needed anymore since the 843 * trampoline maps refer to the text section and it's 844 * symbols instead. Avoid having to deal with 845 * relocations, and the assumption that the first symbol 846 * is the start of kernel text, by simply removing the 847 * symbols at this point. 848 */ 849 goto discard_symbol; 850 } else if (curr_map != initial_map) { 851 char dso_name[PATH_MAX]; 852 struct dso *ndso; 853 854 if (delta) { 855 /* Kernel was relocated at boot time */ 856 pos->start -= delta; 857 pos->end -= delta; 858 } 859 860 if (count == 0) { 861 curr_map = initial_map; 862 goto add_symbol; 863 } 864 865 if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 866 snprintf(dso_name, sizeof(dso_name), 867 "[guest.kernel].%d", 868 kernel_range++); 869 else 870 snprintf(dso_name, sizeof(dso_name), 871 "[kernel].%d", 872 kernel_range++); 873 874 ndso = dso__new(dso_name); 875 if (ndso == NULL) 876 return -1; 877 878 ndso->kernel = dso->kernel; 879 880 curr_map = map__new2(pos->start, ndso); 881 if (curr_map == NULL) { 882 dso__put(ndso); 883 return -1; 884 } 885 886 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 887 maps__insert(kmaps, curr_map); 888 ++kernel_range; 889 } else if (delta) { 890 /* Kernel was relocated at boot time */ 891 pos->start -= delta; 892 pos->end -= delta; 893 } 894 add_symbol: 895 if (curr_map != initial_map) { 896 rb_erase_cached(&pos->rb_node, root); 897 symbols__insert(&curr_map->dso->symbols, pos); 898 ++moved; 899 } else 900 ++count; 901 902 continue; 903 discard_symbol: 904 rb_erase_cached(&pos->rb_node, root); 905 symbol__delete(pos); 906 } 907 908 if (curr_map != initial_map && 909 dso->kernel == DSO_TYPE_GUEST_KERNEL && 910 machine__is_default_guest(kmaps->machine)) { 911 dso__set_loaded(curr_map->dso); 912 } 913 914 return count + moved; 915 } 916 917 bool symbol__restricted_filename(const char *filename, 918 const char *restricted_filename) 919 { 920 bool restricted = false; 921 922 if (symbol_conf.kptr_restrict) { 923 char *r = realpath(filename, NULL); 924 925 if (r != NULL) { 926 restricted = strcmp(r, restricted_filename) == 0; 927 free(r); 928 return restricted; 929 } 930 } 931 932 return restricted; 933 } 934 935 struct module_info { 936 struct rb_node rb_node; 937 char *name; 938 u64 start; 939 }; 940 941 static void add_module(struct module_info *mi, struct rb_root *modules) 942 { 943 struct rb_node **p = &modules->rb_node; 944 struct rb_node *parent = NULL; 945 struct module_info *m; 946 947 while (*p != NULL) { 948 parent = *p; 949 m = rb_entry(parent, struct module_info, rb_node); 950 if (strcmp(mi->name, m->name) < 0) 951 p = &(*p)->rb_left; 952 else 953 p = &(*p)->rb_right; 954 } 955 rb_link_node(&mi->rb_node, parent, p); 956 rb_insert_color(&mi->rb_node, modules); 957 } 958 959 static void delete_modules(struct rb_root *modules) 960 { 961 struct module_info *mi; 962 struct rb_node *next = rb_first(modules); 963 964 while (next) { 965 mi = rb_entry(next, struct module_info, rb_node); 966 next = rb_next(&mi->rb_node); 967 rb_erase(&mi->rb_node, modules); 968 zfree(&mi->name); 969 free(mi); 970 } 971 } 972 973 static struct module_info *find_module(const char *name, 974 struct rb_root *modules) 975 { 976 struct rb_node *n = modules->rb_node; 977 978 while (n) { 979 struct module_info *m; 980 int cmp; 981 982 m = rb_entry(n, struct module_info, rb_node); 983 cmp = strcmp(name, m->name); 984 if (cmp < 0) 985 n = n->rb_left; 986 else if (cmp > 0) 987 n = n->rb_right; 988 else 989 return m; 990 } 991 992 return NULL; 993 } 994 995 static int __read_proc_modules(void *arg, const char *name, u64 start, 996 u64 size __maybe_unused) 997 { 998 struct rb_root *modules = arg; 999 struct module_info *mi; 1000 1001 mi = zalloc(sizeof(struct module_info)); 1002 if (!mi) 1003 return -ENOMEM; 1004 1005 mi->name = strdup(name); 1006 mi->start = start; 1007 1008 if (!mi->name) { 1009 free(mi); 1010 return -ENOMEM; 1011 } 1012 1013 add_module(mi, modules); 1014 1015 return 0; 1016 } 1017 1018 static int read_proc_modules(const char *filename, struct rb_root *modules) 1019 { 1020 if (symbol__restricted_filename(filename, "/proc/modules")) 1021 return -1; 1022 1023 if (modules__parse(filename, modules, __read_proc_modules)) { 1024 delete_modules(modules); 1025 return -1; 1026 } 1027 1028 return 0; 1029 } 1030 1031 int compare_proc_modules(const char *from, const char *to) 1032 { 1033 struct rb_root from_modules = RB_ROOT; 1034 struct rb_root to_modules = RB_ROOT; 1035 struct rb_node *from_node, *to_node; 1036 struct module_info *from_m, *to_m; 1037 int ret = -1; 1038 1039 if (read_proc_modules(from, &from_modules)) 1040 return -1; 1041 1042 if (read_proc_modules(to, &to_modules)) 1043 goto out_delete_from; 1044 1045 from_node = rb_first(&from_modules); 1046 to_node = rb_first(&to_modules); 1047 while (from_node) { 1048 if (!to_node) 1049 break; 1050 1051 from_m = rb_entry(from_node, struct module_info, rb_node); 1052 to_m = rb_entry(to_node, struct module_info, rb_node); 1053 1054 if (from_m->start != to_m->start || 1055 strcmp(from_m->name, to_m->name)) 1056 break; 1057 1058 from_node = rb_next(from_node); 1059 to_node = rb_next(to_node); 1060 } 1061 1062 if (!from_node && !to_node) 1063 ret = 0; 1064 1065 delete_modules(&to_modules); 1066 out_delete_from: 1067 delete_modules(&from_modules); 1068 1069 return ret; 1070 } 1071 1072 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps) 1073 { 1074 struct rb_root modules = RB_ROOT; 1075 struct map *old_map; 1076 int err; 1077 1078 err = read_proc_modules(filename, &modules); 1079 if (err) 1080 return err; 1081 1082 maps__for_each_entry(kmaps, old_map) { 1083 struct module_info *mi; 1084 1085 if (!__map__is_kmodule(old_map)) { 1086 continue; 1087 } 1088 1089 /* Module must be in memory at the same address */ 1090 mi = find_module(old_map->dso->short_name, &modules); 1091 if (!mi || mi->start != old_map->start) { 1092 err = -EINVAL; 1093 goto out; 1094 } 1095 } 1096 out: 1097 delete_modules(&modules); 1098 return err; 1099 } 1100 1101 /* 1102 * If kallsyms is referenced by name then we look for filename in the same 1103 * directory. 1104 */ 1105 static bool filename_from_kallsyms_filename(char *filename, 1106 const char *base_name, 1107 const char *kallsyms_filename) 1108 { 1109 char *name; 1110 1111 strcpy(filename, kallsyms_filename); 1112 name = strrchr(filename, '/'); 1113 if (!name) 1114 return false; 1115 1116 name += 1; 1117 1118 if (!strcmp(name, "kallsyms")) { 1119 strcpy(name, base_name); 1120 return true; 1121 } 1122 1123 return false; 1124 } 1125 1126 static int validate_kcore_modules(const char *kallsyms_filename, 1127 struct map *map) 1128 { 1129 struct maps *kmaps = map__kmaps(map); 1130 char modules_filename[PATH_MAX]; 1131 1132 if (!kmaps) 1133 return -EINVAL; 1134 1135 if (!filename_from_kallsyms_filename(modules_filename, "modules", 1136 kallsyms_filename)) 1137 return -EINVAL; 1138 1139 if (do_validate_kcore_modules(modules_filename, kmaps)) 1140 return -EINVAL; 1141 1142 return 0; 1143 } 1144 1145 static int validate_kcore_addresses(const char *kallsyms_filename, 1146 struct map *map) 1147 { 1148 struct kmap *kmap = map__kmap(map); 1149 1150 if (!kmap) 1151 return -EINVAL; 1152 1153 if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) { 1154 u64 start; 1155 1156 if (kallsyms__get_function_start(kallsyms_filename, 1157 kmap->ref_reloc_sym->name, &start)) 1158 return -ENOENT; 1159 if (start != kmap->ref_reloc_sym->addr) 1160 return -EINVAL; 1161 } 1162 1163 return validate_kcore_modules(kallsyms_filename, map); 1164 } 1165 1166 struct kcore_mapfn_data { 1167 struct dso *dso; 1168 struct list_head maps; 1169 }; 1170 1171 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data) 1172 { 1173 struct kcore_mapfn_data *md = data; 1174 struct map *map; 1175 1176 map = map__new2(start, md->dso); 1177 if (map == NULL) 1178 return -ENOMEM; 1179 1180 map->end = map->start + len; 1181 map->pgoff = pgoff; 1182 1183 list_add(&map->node, &md->maps); 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * Merges map into maps by splitting the new map within the existing map 1190 * regions. 1191 */ 1192 int maps__merge_in(struct maps *kmaps, struct map *new_map) 1193 { 1194 struct map *old_map; 1195 LIST_HEAD(merged); 1196 1197 maps__for_each_entry(kmaps, old_map) { 1198 /* no overload with this one */ 1199 if (new_map->end < old_map->start || 1200 new_map->start >= old_map->end) 1201 continue; 1202 1203 if (new_map->start < old_map->start) { 1204 /* 1205 * |new...... 1206 * |old.... 1207 */ 1208 if (new_map->end < old_map->end) { 1209 /* 1210 * |new......| -> |new..| 1211 * |old....| -> |old....| 1212 */ 1213 new_map->end = old_map->start; 1214 } else { 1215 /* 1216 * |new.............| -> |new..| |new..| 1217 * |old....| -> |old....| 1218 */ 1219 struct map *m = map__clone(new_map); 1220 1221 if (!m) 1222 return -ENOMEM; 1223 1224 m->end = old_map->start; 1225 list_add_tail(&m->node, &merged); 1226 new_map->start = old_map->end; 1227 } 1228 } else { 1229 /* 1230 * |new...... 1231 * |old.... 1232 */ 1233 if (new_map->end < old_map->end) { 1234 /* 1235 * |new..| -> x 1236 * |old.........| -> |old.........| 1237 */ 1238 map__put(new_map); 1239 new_map = NULL; 1240 break; 1241 } else { 1242 /* 1243 * |new......| -> |new...| 1244 * |old....| -> |old....| 1245 */ 1246 new_map->start = old_map->end; 1247 } 1248 } 1249 } 1250 1251 while (!list_empty(&merged)) { 1252 old_map = list_entry(merged.next, struct map, node); 1253 list_del_init(&old_map->node); 1254 maps__insert(kmaps, old_map); 1255 map__put(old_map); 1256 } 1257 1258 if (new_map) { 1259 maps__insert(kmaps, new_map); 1260 map__put(new_map); 1261 } 1262 return 0; 1263 } 1264 1265 static int dso__load_kcore(struct dso *dso, struct map *map, 1266 const char *kallsyms_filename) 1267 { 1268 struct maps *kmaps = map__kmaps(map); 1269 struct kcore_mapfn_data md; 1270 struct map *old_map, *new_map, *replacement_map = NULL, *next; 1271 struct machine *machine; 1272 bool is_64_bit; 1273 int err, fd; 1274 char kcore_filename[PATH_MAX]; 1275 u64 stext; 1276 1277 if (!kmaps) 1278 return -EINVAL; 1279 1280 machine = kmaps->machine; 1281 1282 /* This function requires that the map is the kernel map */ 1283 if (!__map__is_kernel(map)) 1284 return -EINVAL; 1285 1286 if (!filename_from_kallsyms_filename(kcore_filename, "kcore", 1287 kallsyms_filename)) 1288 return -EINVAL; 1289 1290 /* Modules and kernel must be present at their original addresses */ 1291 if (validate_kcore_addresses(kallsyms_filename, map)) 1292 return -EINVAL; 1293 1294 md.dso = dso; 1295 INIT_LIST_HEAD(&md.maps); 1296 1297 fd = open(kcore_filename, O_RDONLY); 1298 if (fd < 0) { 1299 pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n", 1300 kcore_filename); 1301 return -EINVAL; 1302 } 1303 1304 /* Read new maps into temporary lists */ 1305 err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md, 1306 &is_64_bit); 1307 if (err) 1308 goto out_err; 1309 dso->is_64_bit = is_64_bit; 1310 1311 if (list_empty(&md.maps)) { 1312 err = -EINVAL; 1313 goto out_err; 1314 } 1315 1316 /* Remove old maps */ 1317 maps__for_each_entry_safe(kmaps, old_map, next) { 1318 /* 1319 * We need to preserve eBPF maps even if they are 1320 * covered by kcore, because we need to access 1321 * eBPF dso for source data. 1322 */ 1323 if (old_map != map && !__map__is_bpf_prog(old_map)) 1324 maps__remove(kmaps, old_map); 1325 } 1326 machine->trampolines_mapped = false; 1327 1328 /* Find the kernel map using the '_stext' symbol */ 1329 if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) { 1330 list_for_each_entry(new_map, &md.maps, node) { 1331 if (stext >= new_map->start && stext < new_map->end) { 1332 replacement_map = new_map; 1333 break; 1334 } 1335 } 1336 } 1337 1338 if (!replacement_map) 1339 replacement_map = list_entry(md.maps.next, struct map, node); 1340 1341 /* Add new maps */ 1342 while (!list_empty(&md.maps)) { 1343 new_map = list_entry(md.maps.next, struct map, node); 1344 list_del_init(&new_map->node); 1345 if (new_map == replacement_map) { 1346 map->start = new_map->start; 1347 map->end = new_map->end; 1348 map->pgoff = new_map->pgoff; 1349 map->map_ip = new_map->map_ip; 1350 map->unmap_ip = new_map->unmap_ip; 1351 /* Ensure maps are correctly ordered */ 1352 map__get(map); 1353 maps__remove(kmaps, map); 1354 maps__insert(kmaps, map); 1355 map__put(map); 1356 map__put(new_map); 1357 } else { 1358 /* 1359 * Merge kcore map into existing maps, 1360 * and ensure that current maps (eBPF) 1361 * stay intact. 1362 */ 1363 if (maps__merge_in(kmaps, new_map)) 1364 goto out_err; 1365 } 1366 } 1367 1368 if (machine__is(machine, "x86_64")) { 1369 u64 addr; 1370 1371 /* 1372 * If one of the corresponding symbols is there, assume the 1373 * entry trampoline maps are too. 1374 */ 1375 if (!kallsyms__get_function_start(kallsyms_filename, 1376 ENTRY_TRAMPOLINE_NAME, 1377 &addr)) 1378 machine->trampolines_mapped = true; 1379 } 1380 1381 /* 1382 * Set the data type and long name so that kcore can be read via 1383 * dso__data_read_addr(). 1384 */ 1385 if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 1386 dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE; 1387 else 1388 dso->binary_type = DSO_BINARY_TYPE__KCORE; 1389 dso__set_long_name(dso, strdup(kcore_filename), true); 1390 1391 close(fd); 1392 1393 if (map->prot & PROT_EXEC) 1394 pr_debug("Using %s for kernel object code\n", kcore_filename); 1395 else 1396 pr_debug("Using %s for kernel data\n", kcore_filename); 1397 1398 return 0; 1399 1400 out_err: 1401 while (!list_empty(&md.maps)) { 1402 map = list_entry(md.maps.next, struct map, node); 1403 list_del_init(&map->node); 1404 map__put(map); 1405 } 1406 close(fd); 1407 return -EINVAL; 1408 } 1409 1410 /* 1411 * If the kernel is relocated at boot time, kallsyms won't match. Compute the 1412 * delta based on the relocation reference symbol. 1413 */ 1414 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta) 1415 { 1416 u64 addr; 1417 1418 if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name) 1419 return 0; 1420 1421 if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr)) 1422 return -1; 1423 1424 *delta = addr - kmap->ref_reloc_sym->addr; 1425 return 0; 1426 } 1427 1428 int __dso__load_kallsyms(struct dso *dso, const char *filename, 1429 struct map *map, bool no_kcore) 1430 { 1431 struct kmap *kmap = map__kmap(map); 1432 u64 delta = 0; 1433 1434 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1435 return -1; 1436 1437 if (!kmap || !kmap->kmaps) 1438 return -1; 1439 1440 if (dso__load_all_kallsyms(dso, filename) < 0) 1441 return -1; 1442 1443 if (kallsyms__delta(kmap, filename, &delta)) 1444 return -1; 1445 1446 symbols__fixup_end(&dso->symbols); 1447 symbols__fixup_duplicate(&dso->symbols); 1448 1449 if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 1450 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS; 1451 else 1452 dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS; 1453 1454 if (!no_kcore && !dso__load_kcore(dso, map, filename)) 1455 return maps__split_kallsyms_for_kcore(kmap->kmaps, dso); 1456 else 1457 return maps__split_kallsyms(kmap->kmaps, dso, delta, map); 1458 } 1459 1460 int dso__load_kallsyms(struct dso *dso, const char *filename, 1461 struct map *map) 1462 { 1463 return __dso__load_kallsyms(dso, filename, map, false); 1464 } 1465 1466 static int dso__load_perf_map(const char *map_path, struct dso *dso) 1467 { 1468 char *line = NULL; 1469 size_t n; 1470 FILE *file; 1471 int nr_syms = 0; 1472 1473 file = fopen(map_path, "r"); 1474 if (file == NULL) 1475 goto out_failure; 1476 1477 while (!feof(file)) { 1478 u64 start, size; 1479 struct symbol *sym; 1480 int line_len, len; 1481 1482 line_len = getline(&line, &n, file); 1483 if (line_len < 0) 1484 break; 1485 1486 if (!line) 1487 goto out_failure; 1488 1489 line[--line_len] = '\0'; /* \n */ 1490 1491 len = hex2u64(line, &start); 1492 1493 len++; 1494 if (len + 2 >= line_len) 1495 continue; 1496 1497 len += hex2u64(line + len, &size); 1498 1499 len++; 1500 if (len + 2 >= line_len) 1501 continue; 1502 1503 sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len); 1504 1505 if (sym == NULL) 1506 goto out_delete_line; 1507 1508 symbols__insert(&dso->symbols, sym); 1509 nr_syms++; 1510 } 1511 1512 free(line); 1513 fclose(file); 1514 1515 return nr_syms; 1516 1517 out_delete_line: 1518 free(line); 1519 out_failure: 1520 return -1; 1521 } 1522 1523 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod, 1524 enum dso_binary_type type) 1525 { 1526 switch (type) { 1527 case DSO_BINARY_TYPE__JAVA_JIT: 1528 case DSO_BINARY_TYPE__DEBUGLINK: 1529 case DSO_BINARY_TYPE__SYSTEM_PATH_DSO: 1530 case DSO_BINARY_TYPE__FEDORA_DEBUGINFO: 1531 case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO: 1532 case DSO_BINARY_TYPE__BUILDID_DEBUGINFO: 1533 case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO: 1534 return !kmod && dso->kernel == DSO_TYPE_USER; 1535 1536 case DSO_BINARY_TYPE__KALLSYMS: 1537 case DSO_BINARY_TYPE__VMLINUX: 1538 case DSO_BINARY_TYPE__KCORE: 1539 return dso->kernel == DSO_TYPE_KERNEL; 1540 1541 case DSO_BINARY_TYPE__GUEST_KALLSYMS: 1542 case DSO_BINARY_TYPE__GUEST_VMLINUX: 1543 case DSO_BINARY_TYPE__GUEST_KCORE: 1544 return dso->kernel == DSO_TYPE_GUEST_KERNEL; 1545 1546 case DSO_BINARY_TYPE__GUEST_KMODULE: 1547 case DSO_BINARY_TYPE__GUEST_KMODULE_COMP: 1548 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE: 1549 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP: 1550 /* 1551 * kernel modules know their symtab type - it's set when 1552 * creating a module dso in machine__addnew_module_map(). 1553 */ 1554 return kmod && dso->symtab_type == type; 1555 1556 case DSO_BINARY_TYPE__BUILD_ID_CACHE: 1557 case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO: 1558 return true; 1559 1560 case DSO_BINARY_TYPE__BPF_PROG_INFO: 1561 case DSO_BINARY_TYPE__BPF_IMAGE: 1562 case DSO_BINARY_TYPE__NOT_FOUND: 1563 default: 1564 return false; 1565 } 1566 } 1567 1568 /* Checks for the existence of the perf-<pid>.map file in two different 1569 * locations. First, if the process is a separate mount namespace, check in 1570 * that namespace using the pid of the innermost pid namespace. If's not in a 1571 * namespace, or the file can't be found there, try in the mount namespace of 1572 * the tracing process using our view of its pid. 1573 */ 1574 static int dso__find_perf_map(char *filebuf, size_t bufsz, 1575 struct nsinfo **nsip) 1576 { 1577 struct nscookie nsc; 1578 struct nsinfo *nsi; 1579 struct nsinfo *nnsi; 1580 int rc = -1; 1581 1582 nsi = *nsip; 1583 1584 if (nsi->need_setns) { 1585 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid); 1586 nsinfo__mountns_enter(nsi, &nsc); 1587 rc = access(filebuf, R_OK); 1588 nsinfo__mountns_exit(&nsc); 1589 if (rc == 0) 1590 return rc; 1591 } 1592 1593 nnsi = nsinfo__copy(nsi); 1594 if (nnsi) { 1595 nsinfo__put(nsi); 1596 1597 nnsi->need_setns = false; 1598 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid); 1599 *nsip = nnsi; 1600 rc = 0; 1601 } 1602 1603 return rc; 1604 } 1605 1606 int dso__load(struct dso *dso, struct map *map) 1607 { 1608 char *name; 1609 int ret = -1; 1610 u_int i; 1611 struct machine *machine = NULL; 1612 char *root_dir = (char *) ""; 1613 int ss_pos = 0; 1614 struct symsrc ss_[2]; 1615 struct symsrc *syms_ss = NULL, *runtime_ss = NULL; 1616 bool kmod; 1617 bool perfmap; 1618 unsigned char build_id[BUILD_ID_SIZE]; 1619 struct nscookie nsc; 1620 char newmapname[PATH_MAX]; 1621 const char *map_path = dso->long_name; 1622 1623 perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0; 1624 if (perfmap) { 1625 if (dso->nsinfo && (dso__find_perf_map(newmapname, 1626 sizeof(newmapname), &dso->nsinfo) == 0)) { 1627 map_path = newmapname; 1628 } 1629 } 1630 1631 nsinfo__mountns_enter(dso->nsinfo, &nsc); 1632 pthread_mutex_lock(&dso->lock); 1633 1634 /* check again under the dso->lock */ 1635 if (dso__loaded(dso)) { 1636 ret = 1; 1637 goto out; 1638 } 1639 1640 kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1641 dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP || 1642 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE || 1643 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP; 1644 1645 if (dso->kernel && !kmod) { 1646 if (dso->kernel == DSO_TYPE_KERNEL) 1647 ret = dso__load_kernel_sym(dso, map); 1648 else if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 1649 ret = dso__load_guest_kernel_sym(dso, map); 1650 1651 machine = map__kmaps(map)->machine; 1652 if (machine__is(machine, "x86_64")) 1653 machine__map_x86_64_entry_trampolines(machine, dso); 1654 goto out; 1655 } 1656 1657 dso->adjust_symbols = 0; 1658 1659 if (perfmap) { 1660 ret = dso__load_perf_map(map_path, dso); 1661 dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT : 1662 DSO_BINARY_TYPE__NOT_FOUND; 1663 goto out; 1664 } 1665 1666 if (machine) 1667 root_dir = machine->root_dir; 1668 1669 name = malloc(PATH_MAX); 1670 if (!name) 1671 goto out; 1672 1673 /* 1674 * Read the build id if possible. This is required for 1675 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work 1676 */ 1677 if (!dso->has_build_id && 1678 is_regular_file(dso->long_name)) { 1679 __symbol__join_symfs(name, PATH_MAX, dso->long_name); 1680 if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0) 1681 dso__set_build_id(dso, build_id); 1682 } 1683 1684 /* 1685 * Iterate over candidate debug images. 1686 * Keep track of "interesting" ones (those which have a symtab, dynsym, 1687 * and/or opd section) for processing. 1688 */ 1689 for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) { 1690 struct symsrc *ss = &ss_[ss_pos]; 1691 bool next_slot = false; 1692 bool is_reg; 1693 bool nsexit; 1694 int sirc = -1; 1695 1696 enum dso_binary_type symtab_type = binary_type_symtab[i]; 1697 1698 nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE || 1699 symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO); 1700 1701 if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type)) 1702 continue; 1703 1704 if (dso__read_binary_type_filename(dso, symtab_type, 1705 root_dir, name, PATH_MAX)) 1706 continue; 1707 1708 if (nsexit) 1709 nsinfo__mountns_exit(&nsc); 1710 1711 is_reg = is_regular_file(name); 1712 if (is_reg) 1713 sirc = symsrc__init(ss, dso, name, symtab_type); 1714 1715 if (nsexit) 1716 nsinfo__mountns_enter(dso->nsinfo, &nsc); 1717 1718 if (!is_reg || sirc < 0) 1719 continue; 1720 1721 if (!syms_ss && symsrc__has_symtab(ss)) { 1722 syms_ss = ss; 1723 next_slot = true; 1724 if (!dso->symsrc_filename) 1725 dso->symsrc_filename = strdup(name); 1726 } 1727 1728 if (!runtime_ss && symsrc__possibly_runtime(ss)) { 1729 runtime_ss = ss; 1730 next_slot = true; 1731 } 1732 1733 if (next_slot) { 1734 ss_pos++; 1735 1736 if (syms_ss && runtime_ss) 1737 break; 1738 } else { 1739 symsrc__destroy(ss); 1740 } 1741 1742 } 1743 1744 if (!runtime_ss && !syms_ss) 1745 goto out_free; 1746 1747 if (runtime_ss && !syms_ss) { 1748 syms_ss = runtime_ss; 1749 } 1750 1751 /* We'll have to hope for the best */ 1752 if (!runtime_ss && syms_ss) 1753 runtime_ss = syms_ss; 1754 1755 if (syms_ss) 1756 ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod); 1757 else 1758 ret = -1; 1759 1760 if (ret > 0) { 1761 int nr_plt; 1762 1763 nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss); 1764 if (nr_plt > 0) 1765 ret += nr_plt; 1766 } 1767 1768 for (; ss_pos > 0; ss_pos--) 1769 symsrc__destroy(&ss_[ss_pos - 1]); 1770 out_free: 1771 free(name); 1772 if (ret < 0 && strstr(dso->name, " (deleted)") != NULL) 1773 ret = 0; 1774 out: 1775 dso__set_loaded(dso); 1776 pthread_mutex_unlock(&dso->lock); 1777 nsinfo__mountns_exit(&nsc); 1778 1779 return ret; 1780 } 1781 1782 static int map__strcmp(const void *a, const void *b) 1783 { 1784 const struct map *ma = *(const struct map **)a, *mb = *(const struct map **)b; 1785 return strcmp(ma->dso->short_name, mb->dso->short_name); 1786 } 1787 1788 static int map__strcmp_name(const void *name, const void *b) 1789 { 1790 const struct map *map = *(const struct map **)b; 1791 return strcmp(name, map->dso->short_name); 1792 } 1793 1794 void __maps__sort_by_name(struct maps *maps) 1795 { 1796 qsort(maps->maps_by_name, maps->nr_maps, sizeof(struct map *), map__strcmp); 1797 } 1798 1799 static int map__groups__sort_by_name_from_rbtree(struct maps *maps) 1800 { 1801 struct map *map; 1802 struct map **maps_by_name = realloc(maps->maps_by_name, maps->nr_maps * sizeof(map)); 1803 int i = 0; 1804 1805 if (maps_by_name == NULL) 1806 return -1; 1807 1808 maps->maps_by_name = maps_by_name; 1809 maps->nr_maps_allocated = maps->nr_maps; 1810 1811 maps__for_each_entry(maps, map) 1812 maps_by_name[i++] = map; 1813 1814 __maps__sort_by_name(maps); 1815 return 0; 1816 } 1817 1818 static struct map *__maps__find_by_name(struct maps *maps, const char *name) 1819 { 1820 struct map **mapp; 1821 1822 if (maps->maps_by_name == NULL && 1823 map__groups__sort_by_name_from_rbtree(maps)) 1824 return NULL; 1825 1826 mapp = bsearch(name, maps->maps_by_name, maps->nr_maps, sizeof(*mapp), map__strcmp_name); 1827 if (mapp) 1828 return *mapp; 1829 return NULL; 1830 } 1831 1832 struct map *maps__find_by_name(struct maps *maps, const char *name) 1833 { 1834 struct map *map; 1835 1836 down_read(&maps->lock); 1837 1838 if (maps->last_search_by_name && strcmp(maps->last_search_by_name->dso->short_name, name) == 0) { 1839 map = maps->last_search_by_name; 1840 goto out_unlock; 1841 } 1842 /* 1843 * If we have maps->maps_by_name, then the name isn't in the rbtree, 1844 * as maps->maps_by_name mirrors the rbtree when lookups by name are 1845 * made. 1846 */ 1847 map = __maps__find_by_name(maps, name); 1848 if (map || maps->maps_by_name != NULL) 1849 goto out_unlock; 1850 1851 /* Fallback to traversing the rbtree... */ 1852 maps__for_each_entry(maps, map) 1853 if (strcmp(map->dso->short_name, name) == 0) { 1854 maps->last_search_by_name = map; 1855 goto out_unlock; 1856 } 1857 1858 map = NULL; 1859 1860 out_unlock: 1861 up_read(&maps->lock); 1862 return map; 1863 } 1864 1865 int dso__load_vmlinux(struct dso *dso, struct map *map, 1866 const char *vmlinux, bool vmlinux_allocated) 1867 { 1868 int err = -1; 1869 struct symsrc ss; 1870 char symfs_vmlinux[PATH_MAX]; 1871 enum dso_binary_type symtab_type; 1872 1873 if (vmlinux[0] == '/') 1874 snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux); 1875 else 1876 symbol__join_symfs(symfs_vmlinux, vmlinux); 1877 1878 if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 1879 symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX; 1880 else 1881 symtab_type = DSO_BINARY_TYPE__VMLINUX; 1882 1883 if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type)) 1884 return -1; 1885 1886 err = dso__load_sym(dso, map, &ss, &ss, 0); 1887 symsrc__destroy(&ss); 1888 1889 if (err > 0) { 1890 if (dso->kernel == DSO_TYPE_GUEST_KERNEL) 1891 dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX; 1892 else 1893 dso->binary_type = DSO_BINARY_TYPE__VMLINUX; 1894 dso__set_long_name(dso, vmlinux, vmlinux_allocated); 1895 dso__set_loaded(dso); 1896 pr_debug("Using %s for symbols\n", symfs_vmlinux); 1897 } 1898 1899 return err; 1900 } 1901 1902 int dso__load_vmlinux_path(struct dso *dso, struct map *map) 1903 { 1904 int i, err = 0; 1905 char *filename = NULL; 1906 1907 pr_debug("Looking at the vmlinux_path (%d entries long)\n", 1908 vmlinux_path__nr_entries + 1); 1909 1910 for (i = 0; i < vmlinux_path__nr_entries; ++i) { 1911 err = dso__load_vmlinux(dso, map, vmlinux_path[i], false); 1912 if (err > 0) 1913 goto out; 1914 } 1915 1916 if (!symbol_conf.ignore_vmlinux_buildid) 1917 filename = dso__build_id_filename(dso, NULL, 0, false); 1918 if (filename != NULL) { 1919 err = dso__load_vmlinux(dso, map, filename, true); 1920 if (err > 0) 1921 goto out; 1922 free(filename); 1923 } 1924 out: 1925 return err; 1926 } 1927 1928 static bool visible_dir_filter(const char *name, struct dirent *d) 1929 { 1930 if (d->d_type != DT_DIR) 1931 return false; 1932 return lsdir_no_dot_filter(name, d); 1933 } 1934 1935 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz) 1936 { 1937 char kallsyms_filename[PATH_MAX]; 1938 int ret = -1; 1939 struct strlist *dirs; 1940 struct str_node *nd; 1941 1942 dirs = lsdir(dir, visible_dir_filter); 1943 if (!dirs) 1944 return -1; 1945 1946 strlist__for_each_entry(nd, dirs) { 1947 scnprintf(kallsyms_filename, sizeof(kallsyms_filename), 1948 "%s/%s/kallsyms", dir, nd->s); 1949 if (!validate_kcore_addresses(kallsyms_filename, map)) { 1950 strlcpy(dir, kallsyms_filename, dir_sz); 1951 ret = 0; 1952 break; 1953 } 1954 } 1955 1956 strlist__delete(dirs); 1957 1958 return ret; 1959 } 1960 1961 /* 1962 * Use open(O_RDONLY) to check readability directly instead of access(R_OK) 1963 * since access(R_OK) only checks with real UID/GID but open() use effective 1964 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO). 1965 */ 1966 static bool filename__readable(const char *file) 1967 { 1968 int fd = open(file, O_RDONLY); 1969 if (fd < 0) 1970 return false; 1971 close(fd); 1972 return true; 1973 } 1974 1975 static char *dso__find_kallsyms(struct dso *dso, struct map *map) 1976 { 1977 u8 host_build_id[BUILD_ID_SIZE]; 1978 char sbuild_id[SBUILD_ID_SIZE]; 1979 bool is_host = false; 1980 char path[PATH_MAX]; 1981 1982 if (!dso->has_build_id) { 1983 /* 1984 * Last resort, if we don't have a build-id and couldn't find 1985 * any vmlinux file, try the running kernel kallsyms table. 1986 */ 1987 goto proc_kallsyms; 1988 } 1989 1990 if (sysfs__read_build_id("/sys/kernel/notes", host_build_id, 1991 sizeof(host_build_id)) == 0) 1992 is_host = dso__build_id_equal(dso, host_build_id); 1993 1994 /* Try a fast path for /proc/kallsyms if possible */ 1995 if (is_host) { 1996 /* 1997 * Do not check the build-id cache, unless we know we cannot use 1998 * /proc/kcore or module maps don't match to /proc/kallsyms. 1999 * To check readability of /proc/kcore, do not use access(R_OK) 2000 * since /proc/kcore requires CAP_SYS_RAWIO to read and access 2001 * can't check it. 2002 */ 2003 if (filename__readable("/proc/kcore") && 2004 !validate_kcore_addresses("/proc/kallsyms", map)) 2005 goto proc_kallsyms; 2006 } 2007 2008 build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id); 2009 2010 /* Find kallsyms in build-id cache with kcore */ 2011 scnprintf(path, sizeof(path), "%s/%s/%s", 2012 buildid_dir, DSO__NAME_KCORE, sbuild_id); 2013 2014 if (!find_matching_kcore(map, path, sizeof(path))) 2015 return strdup(path); 2016 2017 /* Use current /proc/kallsyms if possible */ 2018 if (is_host) { 2019 proc_kallsyms: 2020 return strdup("/proc/kallsyms"); 2021 } 2022 2023 /* Finally, find a cache of kallsyms */ 2024 if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) { 2025 pr_err("No kallsyms or vmlinux with build-id %s was found\n", 2026 sbuild_id); 2027 return NULL; 2028 } 2029 2030 return strdup(path); 2031 } 2032 2033 static int dso__load_kernel_sym(struct dso *dso, struct map *map) 2034 { 2035 int err; 2036 const char *kallsyms_filename = NULL; 2037 char *kallsyms_allocated_filename = NULL; 2038 /* 2039 * Step 1: if the user specified a kallsyms or vmlinux filename, use 2040 * it and only it, reporting errors to the user if it cannot be used. 2041 * 2042 * For instance, try to analyse an ARM perf.data file _without_ a 2043 * build-id, or if the user specifies the wrong path to the right 2044 * vmlinux file, obviously we can't fallback to another vmlinux (a 2045 * x86_86 one, on the machine where analysis is being performed, say), 2046 * or worse, /proc/kallsyms. 2047 * 2048 * If the specified file _has_ a build-id and there is a build-id 2049 * section in the perf.data file, we will still do the expected 2050 * validation in dso__load_vmlinux and will bail out if they don't 2051 * match. 2052 */ 2053 if (symbol_conf.kallsyms_name != NULL) { 2054 kallsyms_filename = symbol_conf.kallsyms_name; 2055 goto do_kallsyms; 2056 } 2057 2058 if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) { 2059 return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false); 2060 } 2061 2062 if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) { 2063 err = dso__load_vmlinux_path(dso, map); 2064 if (err > 0) 2065 return err; 2066 } 2067 2068 /* do not try local files if a symfs was given */ 2069 if (symbol_conf.symfs[0] != 0) 2070 return -1; 2071 2072 kallsyms_allocated_filename = dso__find_kallsyms(dso, map); 2073 if (!kallsyms_allocated_filename) 2074 return -1; 2075 2076 kallsyms_filename = kallsyms_allocated_filename; 2077 2078 do_kallsyms: 2079 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2080 if (err > 0) 2081 pr_debug("Using %s for symbols\n", kallsyms_filename); 2082 free(kallsyms_allocated_filename); 2083 2084 if (err > 0 && !dso__is_kcore(dso)) { 2085 dso->binary_type = DSO_BINARY_TYPE__KALLSYMS; 2086 dso__set_long_name(dso, DSO__NAME_KALLSYMS, false); 2087 map__fixup_start(map); 2088 map__fixup_end(map); 2089 } 2090 2091 return err; 2092 } 2093 2094 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map) 2095 { 2096 int err; 2097 const char *kallsyms_filename = NULL; 2098 struct machine *machine = map__kmaps(map)->machine; 2099 char path[PATH_MAX]; 2100 2101 if (machine__is_default_guest(machine)) { 2102 /* 2103 * if the user specified a vmlinux filename, use it and only 2104 * it, reporting errors to the user if it cannot be used. 2105 * Or use file guest_kallsyms inputted by user on commandline 2106 */ 2107 if (symbol_conf.default_guest_vmlinux_name != NULL) { 2108 err = dso__load_vmlinux(dso, map, 2109 symbol_conf.default_guest_vmlinux_name, 2110 false); 2111 return err; 2112 } 2113 2114 kallsyms_filename = symbol_conf.default_guest_kallsyms; 2115 if (!kallsyms_filename) 2116 return -1; 2117 } else { 2118 sprintf(path, "%s/proc/kallsyms", machine->root_dir); 2119 kallsyms_filename = path; 2120 } 2121 2122 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2123 if (err > 0) 2124 pr_debug("Using %s for symbols\n", kallsyms_filename); 2125 if (err > 0 && !dso__is_kcore(dso)) { 2126 dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS; 2127 dso__set_long_name(dso, machine->mmap_name, false); 2128 map__fixup_start(map); 2129 map__fixup_end(map); 2130 } 2131 2132 return err; 2133 } 2134 2135 static void vmlinux_path__exit(void) 2136 { 2137 while (--vmlinux_path__nr_entries >= 0) 2138 zfree(&vmlinux_path[vmlinux_path__nr_entries]); 2139 vmlinux_path__nr_entries = 0; 2140 2141 zfree(&vmlinux_path); 2142 } 2143 2144 static const char * const vmlinux_paths[] = { 2145 "vmlinux", 2146 "/boot/vmlinux" 2147 }; 2148 2149 static const char * const vmlinux_paths_upd[] = { 2150 "/boot/vmlinux-%s", 2151 "/usr/lib/debug/boot/vmlinux-%s", 2152 "/lib/modules/%s/build/vmlinux", 2153 "/usr/lib/debug/lib/modules/%s/vmlinux", 2154 "/usr/lib/debug/boot/vmlinux-%s.debug" 2155 }; 2156 2157 static int vmlinux_path__add(const char *new_entry) 2158 { 2159 vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry); 2160 if (vmlinux_path[vmlinux_path__nr_entries] == NULL) 2161 return -1; 2162 ++vmlinux_path__nr_entries; 2163 2164 return 0; 2165 } 2166 2167 static int vmlinux_path__init(struct perf_env *env) 2168 { 2169 struct utsname uts; 2170 char bf[PATH_MAX]; 2171 char *kernel_version; 2172 unsigned int i; 2173 2174 vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) + 2175 ARRAY_SIZE(vmlinux_paths_upd))); 2176 if (vmlinux_path == NULL) 2177 return -1; 2178 2179 for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++) 2180 if (vmlinux_path__add(vmlinux_paths[i]) < 0) 2181 goto out_fail; 2182 2183 /* only try kernel version if no symfs was given */ 2184 if (symbol_conf.symfs[0] != 0) 2185 return 0; 2186 2187 if (env) { 2188 kernel_version = env->os_release; 2189 } else { 2190 if (uname(&uts) < 0) 2191 goto out_fail; 2192 2193 kernel_version = uts.release; 2194 } 2195 2196 for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) { 2197 snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version); 2198 if (vmlinux_path__add(bf) < 0) 2199 goto out_fail; 2200 } 2201 2202 return 0; 2203 2204 out_fail: 2205 vmlinux_path__exit(); 2206 return -1; 2207 } 2208 2209 int setup_list(struct strlist **list, const char *list_str, 2210 const char *list_name) 2211 { 2212 if (list_str == NULL) 2213 return 0; 2214 2215 *list = strlist__new(list_str, NULL); 2216 if (!*list) { 2217 pr_err("problems parsing %s list\n", list_name); 2218 return -1; 2219 } 2220 2221 symbol_conf.has_filter = true; 2222 return 0; 2223 } 2224 2225 int setup_intlist(struct intlist **list, const char *list_str, 2226 const char *list_name) 2227 { 2228 if (list_str == NULL) 2229 return 0; 2230 2231 *list = intlist__new(list_str); 2232 if (!*list) { 2233 pr_err("problems parsing %s list\n", list_name); 2234 return -1; 2235 } 2236 return 0; 2237 } 2238 2239 static bool symbol__read_kptr_restrict(void) 2240 { 2241 bool value = false; 2242 FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r"); 2243 2244 if (fp != NULL) { 2245 char line[8]; 2246 2247 if (fgets(line, sizeof(line), fp) != NULL) 2248 value = perf_cap__capable(CAP_SYSLOG) ? 2249 (atoi(line) >= 2) : 2250 (atoi(line) != 0); 2251 2252 fclose(fp); 2253 } 2254 2255 /* Per kernel/kallsyms.c: 2256 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG 2257 */ 2258 if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG)) 2259 value = true; 2260 2261 return value; 2262 } 2263 2264 int symbol__annotation_init(void) 2265 { 2266 if (symbol_conf.init_annotation) 2267 return 0; 2268 2269 if (symbol_conf.initialized) { 2270 pr_err("Annotation needs to be init before symbol__init()\n"); 2271 return -1; 2272 } 2273 2274 symbol_conf.priv_size += sizeof(struct annotation); 2275 symbol_conf.init_annotation = true; 2276 return 0; 2277 } 2278 2279 int symbol__init(struct perf_env *env) 2280 { 2281 const char *symfs; 2282 2283 if (symbol_conf.initialized) 2284 return 0; 2285 2286 symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64)); 2287 2288 symbol__elf_init(); 2289 2290 if (symbol_conf.sort_by_name) 2291 symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) - 2292 sizeof(struct symbol)); 2293 2294 if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0) 2295 return -1; 2296 2297 if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') { 2298 pr_err("'.' is the only non valid --field-separator argument\n"); 2299 return -1; 2300 } 2301 2302 if (setup_list(&symbol_conf.dso_list, 2303 symbol_conf.dso_list_str, "dso") < 0) 2304 return -1; 2305 2306 if (setup_list(&symbol_conf.comm_list, 2307 symbol_conf.comm_list_str, "comm") < 0) 2308 goto out_free_dso_list; 2309 2310 if (setup_intlist(&symbol_conf.pid_list, 2311 symbol_conf.pid_list_str, "pid") < 0) 2312 goto out_free_comm_list; 2313 2314 if (setup_intlist(&symbol_conf.tid_list, 2315 symbol_conf.tid_list_str, "tid") < 0) 2316 goto out_free_pid_list; 2317 2318 if (setup_list(&symbol_conf.sym_list, 2319 symbol_conf.sym_list_str, "symbol") < 0) 2320 goto out_free_tid_list; 2321 2322 if (setup_list(&symbol_conf.bt_stop_list, 2323 symbol_conf.bt_stop_list_str, "symbol") < 0) 2324 goto out_free_sym_list; 2325 2326 /* 2327 * A path to symbols of "/" is identical to "" 2328 * reset here for simplicity. 2329 */ 2330 symfs = realpath(symbol_conf.symfs, NULL); 2331 if (symfs == NULL) 2332 symfs = symbol_conf.symfs; 2333 if (strcmp(symfs, "/") == 0) 2334 symbol_conf.symfs = ""; 2335 if (symfs != symbol_conf.symfs) 2336 free((void *)symfs); 2337 2338 symbol_conf.kptr_restrict = symbol__read_kptr_restrict(); 2339 2340 symbol_conf.initialized = true; 2341 return 0; 2342 2343 out_free_sym_list: 2344 strlist__delete(symbol_conf.sym_list); 2345 out_free_tid_list: 2346 intlist__delete(symbol_conf.tid_list); 2347 out_free_pid_list: 2348 intlist__delete(symbol_conf.pid_list); 2349 out_free_comm_list: 2350 strlist__delete(symbol_conf.comm_list); 2351 out_free_dso_list: 2352 strlist__delete(symbol_conf.dso_list); 2353 return -1; 2354 } 2355 2356 void symbol__exit(void) 2357 { 2358 if (!symbol_conf.initialized) 2359 return; 2360 strlist__delete(symbol_conf.bt_stop_list); 2361 strlist__delete(symbol_conf.sym_list); 2362 strlist__delete(symbol_conf.dso_list); 2363 strlist__delete(symbol_conf.comm_list); 2364 intlist__delete(symbol_conf.tid_list); 2365 intlist__delete(symbol_conf.pid_list); 2366 vmlinux_path__exit(); 2367 symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL; 2368 symbol_conf.bt_stop_list = NULL; 2369 symbol_conf.initialized = false; 2370 } 2371 2372 int symbol__config_symfs(const struct option *opt __maybe_unused, 2373 const char *dir, int unset __maybe_unused) 2374 { 2375 char *bf = NULL; 2376 int ret; 2377 2378 symbol_conf.symfs = strdup(dir); 2379 if (symbol_conf.symfs == NULL) 2380 return -ENOMEM; 2381 2382 /* skip the locally configured cache if a symfs is given, and 2383 * config buildid dir to symfs/.debug 2384 */ 2385 ret = asprintf(&bf, "%s/%s", dir, ".debug"); 2386 if (ret < 0) 2387 return -ENOMEM; 2388 2389 set_buildid_dir(bf); 2390 2391 free(bf); 2392 return 0; 2393 } 2394 2395 struct mem_info *mem_info__get(struct mem_info *mi) 2396 { 2397 if (mi) 2398 refcount_inc(&mi->refcnt); 2399 return mi; 2400 } 2401 2402 void mem_info__put(struct mem_info *mi) 2403 { 2404 if (mi && refcount_dec_and_test(&mi->refcnt)) 2405 free(mi); 2406 } 2407 2408 struct mem_info *mem_info__new(void) 2409 { 2410 struct mem_info *mi = zalloc(sizeof(*mi)); 2411 2412 if (mi) 2413 refcount_set(&mi->refcnt, 1); 2414 return mi; 2415 } 2416