xref: /openbmc/linux/tools/perf/util/symbol.c (revision 68d8904b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "dso.h"
22 #include "util.h" // lsdir()
23 #include "debug.h"
24 #include "event.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "symbol.h"
28 #include "map_symbol.h"
29 #include "mem-events.h"
30 #include "symsrc.h"
31 #include "strlist.h"
32 #include "intlist.h"
33 #include "namespaces.h"
34 #include "header.h"
35 #include "path.h"
36 #include <linux/ctype.h>
37 #include <linux/zalloc.h>
38 
39 #include <elf.h>
40 #include <limits.h>
41 #include <symbol/kallsyms.h>
42 #include <sys/utsname.h>
43 
44 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
46 static bool symbol__is_idle(const char *name);
47 
48 int vmlinux_path__nr_entries;
49 char **vmlinux_path;
50 
51 struct symbol_conf symbol_conf = {
52 	.nanosecs		= false,
53 	.use_modules		= true,
54 	.try_vmlinux_path	= true,
55 	.demangle		= true,
56 	.demangle_kernel	= false,
57 	.cumulate_callchain	= true,
58 	.time_quantum		= 100 * NSEC_PER_MSEC, /* 100ms */
59 	.show_hist_headers	= true,
60 	.symfs			= "",
61 	.event_group		= true,
62 	.inline_name		= true,
63 	.res_sample		= 0,
64 };
65 
66 static enum dso_binary_type binary_type_symtab[] = {
67 	DSO_BINARY_TYPE__KALLSYMS,
68 	DSO_BINARY_TYPE__GUEST_KALLSYMS,
69 	DSO_BINARY_TYPE__JAVA_JIT,
70 	DSO_BINARY_TYPE__DEBUGLINK,
71 	DSO_BINARY_TYPE__BUILD_ID_CACHE,
72 	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
73 	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
74 	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
75 	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
76 	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
77 	DSO_BINARY_TYPE__GUEST_KMODULE,
78 	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
79 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
80 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
81 	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
82 	DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO,
83 	DSO_BINARY_TYPE__NOT_FOUND,
84 };
85 
86 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
87 
88 static bool symbol_type__filter(char symbol_type)
89 {
90 	symbol_type = toupper(symbol_type);
91 	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
92 }
93 
94 static int prefix_underscores_count(const char *str)
95 {
96 	const char *tail = str;
97 
98 	while (*tail == '_')
99 		tail++;
100 
101 	return tail - str;
102 }
103 
104 void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c)
105 {
106 	p->end = c->start;
107 }
108 
109 const char * __weak arch__normalize_symbol_name(const char *name)
110 {
111 	return name;
112 }
113 
114 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
115 {
116 	return strcmp(namea, nameb);
117 }
118 
119 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
120 					unsigned int n)
121 {
122 	return strncmp(namea, nameb, n);
123 }
124 
125 int __weak arch__choose_best_symbol(struct symbol *syma,
126 				    struct symbol *symb __maybe_unused)
127 {
128 	/* Avoid "SyS" kernel syscall aliases */
129 	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
130 		return SYMBOL_B;
131 	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
132 		return SYMBOL_B;
133 
134 	return SYMBOL_A;
135 }
136 
137 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
138 {
139 	s64 a;
140 	s64 b;
141 	size_t na, nb;
142 
143 	/* Prefer a symbol with non zero length */
144 	a = syma->end - syma->start;
145 	b = symb->end - symb->start;
146 	if ((b == 0) && (a > 0))
147 		return SYMBOL_A;
148 	else if ((a == 0) && (b > 0))
149 		return SYMBOL_B;
150 
151 	/* Prefer a non weak symbol over a weak one */
152 	a = syma->binding == STB_WEAK;
153 	b = symb->binding == STB_WEAK;
154 	if (b && !a)
155 		return SYMBOL_A;
156 	if (a && !b)
157 		return SYMBOL_B;
158 
159 	/* Prefer a global symbol over a non global one */
160 	a = syma->binding == STB_GLOBAL;
161 	b = symb->binding == STB_GLOBAL;
162 	if (a && !b)
163 		return SYMBOL_A;
164 	if (b && !a)
165 		return SYMBOL_B;
166 
167 	/* Prefer a symbol with less underscores */
168 	a = prefix_underscores_count(syma->name);
169 	b = prefix_underscores_count(symb->name);
170 	if (b > a)
171 		return SYMBOL_A;
172 	else if (a > b)
173 		return SYMBOL_B;
174 
175 	/* Choose the symbol with the longest name */
176 	na = strlen(syma->name);
177 	nb = strlen(symb->name);
178 	if (na > nb)
179 		return SYMBOL_A;
180 	else if (na < nb)
181 		return SYMBOL_B;
182 
183 	return arch__choose_best_symbol(syma, symb);
184 }
185 
186 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
187 {
188 	struct rb_node *nd;
189 	struct symbol *curr, *next;
190 
191 	if (symbol_conf.allow_aliases)
192 		return;
193 
194 	nd = rb_first_cached(symbols);
195 
196 	while (nd) {
197 		curr = rb_entry(nd, struct symbol, rb_node);
198 again:
199 		nd = rb_next(&curr->rb_node);
200 		next = rb_entry(nd, struct symbol, rb_node);
201 
202 		if (!nd)
203 			break;
204 
205 		if (curr->start != next->start)
206 			continue;
207 
208 		if (choose_best_symbol(curr, next) == SYMBOL_A) {
209 			rb_erase_cached(&next->rb_node, symbols);
210 			symbol__delete(next);
211 			goto again;
212 		} else {
213 			nd = rb_next(&curr->rb_node);
214 			rb_erase_cached(&curr->rb_node, symbols);
215 			symbol__delete(curr);
216 		}
217 	}
218 }
219 
220 void symbols__fixup_end(struct rb_root_cached *symbols)
221 {
222 	struct rb_node *nd, *prevnd = rb_first_cached(symbols);
223 	struct symbol *curr, *prev;
224 
225 	if (prevnd == NULL)
226 		return;
227 
228 	curr = rb_entry(prevnd, struct symbol, rb_node);
229 
230 	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
231 		prev = curr;
232 		curr = rb_entry(nd, struct symbol, rb_node);
233 
234 		if (prev->end == prev->start && prev->end != curr->start)
235 			arch__symbols__fixup_end(prev, curr);
236 	}
237 
238 	/* Last entry */
239 	if (curr->end == curr->start)
240 		curr->end = roundup(curr->start, 4096) + 4096;
241 }
242 
243 void maps__fixup_end(struct maps *maps)
244 {
245 	struct map *prev = NULL, *curr;
246 
247 	down_write(&maps->lock);
248 
249 	maps__for_each_entry(maps, curr) {
250 		if (prev != NULL && !prev->end)
251 			prev->end = curr->start;
252 
253 		prev = curr;
254 	}
255 
256 	/*
257 	 * We still haven't the actual symbols, so guess the
258 	 * last map final address.
259 	 */
260 	if (curr && !curr->end)
261 		curr->end = ~0ULL;
262 
263 	up_write(&maps->lock);
264 }
265 
266 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
267 {
268 	size_t namelen = strlen(name) + 1;
269 	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
270 					sizeof(*sym) + namelen));
271 	if (sym == NULL)
272 		return NULL;
273 
274 	if (symbol_conf.priv_size) {
275 		if (symbol_conf.init_annotation) {
276 			struct annotation *notes = (void *)sym;
277 			pthread_mutex_init(&notes->lock, NULL);
278 		}
279 		sym = ((void *)sym) + symbol_conf.priv_size;
280 	}
281 
282 	sym->start   = start;
283 	sym->end     = len ? start + len : start;
284 	sym->type    = type;
285 	sym->binding = binding;
286 	sym->namelen = namelen - 1;
287 
288 	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
289 		  __func__, name, start, sym->end);
290 	memcpy(sym->name, name, namelen);
291 
292 	return sym;
293 }
294 
295 void symbol__delete(struct symbol *sym)
296 {
297 	free(((void *)sym) - symbol_conf.priv_size);
298 }
299 
300 void symbols__delete(struct rb_root_cached *symbols)
301 {
302 	struct symbol *pos;
303 	struct rb_node *next = rb_first_cached(symbols);
304 
305 	while (next) {
306 		pos = rb_entry(next, struct symbol, rb_node);
307 		next = rb_next(&pos->rb_node);
308 		rb_erase_cached(&pos->rb_node, symbols);
309 		symbol__delete(pos);
310 	}
311 }
312 
313 void __symbols__insert(struct rb_root_cached *symbols,
314 		       struct symbol *sym, bool kernel)
315 {
316 	struct rb_node **p = &symbols->rb_root.rb_node;
317 	struct rb_node *parent = NULL;
318 	const u64 ip = sym->start;
319 	struct symbol *s;
320 	bool leftmost = true;
321 
322 	if (kernel) {
323 		const char *name = sym->name;
324 		/*
325 		 * ppc64 uses function descriptors and appends a '.' to the
326 		 * start of every instruction address. Remove it.
327 		 */
328 		if (name[0] == '.')
329 			name++;
330 		sym->idle = symbol__is_idle(name);
331 	}
332 
333 	while (*p != NULL) {
334 		parent = *p;
335 		s = rb_entry(parent, struct symbol, rb_node);
336 		if (ip < s->start)
337 			p = &(*p)->rb_left;
338 		else {
339 			p = &(*p)->rb_right;
340 			leftmost = false;
341 		}
342 	}
343 	rb_link_node(&sym->rb_node, parent, p);
344 	rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
345 }
346 
347 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
348 {
349 	__symbols__insert(symbols, sym, false);
350 }
351 
352 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
353 {
354 	struct rb_node *n;
355 
356 	if (symbols == NULL)
357 		return NULL;
358 
359 	n = symbols->rb_root.rb_node;
360 
361 	while (n) {
362 		struct symbol *s = rb_entry(n, struct symbol, rb_node);
363 
364 		if (ip < s->start)
365 			n = n->rb_left;
366 		else if (ip > s->end || (ip == s->end && ip != s->start))
367 			n = n->rb_right;
368 		else
369 			return s;
370 	}
371 
372 	return NULL;
373 }
374 
375 static struct symbol *symbols__first(struct rb_root_cached *symbols)
376 {
377 	struct rb_node *n = rb_first_cached(symbols);
378 
379 	if (n)
380 		return rb_entry(n, struct symbol, rb_node);
381 
382 	return NULL;
383 }
384 
385 static struct symbol *symbols__last(struct rb_root_cached *symbols)
386 {
387 	struct rb_node *n = rb_last(&symbols->rb_root);
388 
389 	if (n)
390 		return rb_entry(n, struct symbol, rb_node);
391 
392 	return NULL;
393 }
394 
395 static struct symbol *symbols__next(struct symbol *sym)
396 {
397 	struct rb_node *n = rb_next(&sym->rb_node);
398 
399 	if (n)
400 		return rb_entry(n, struct symbol, rb_node);
401 
402 	return NULL;
403 }
404 
405 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym)
406 {
407 	struct rb_node **p = &symbols->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct symbol_name_rb_node *symn, *s;
410 	bool leftmost = true;
411 
412 	symn = container_of(sym, struct symbol_name_rb_node, sym);
413 
414 	while (*p != NULL) {
415 		parent = *p;
416 		s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
417 		if (strcmp(sym->name, s->sym.name) < 0)
418 			p = &(*p)->rb_left;
419 		else {
420 			p = &(*p)->rb_right;
421 			leftmost = false;
422 		}
423 	}
424 	rb_link_node(&symn->rb_node, parent, p);
425 	rb_insert_color_cached(&symn->rb_node, symbols, leftmost);
426 }
427 
428 static void symbols__sort_by_name(struct rb_root_cached *symbols,
429 				  struct rb_root_cached *source)
430 {
431 	struct rb_node *nd;
432 
433 	for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
434 		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
435 		symbols__insert_by_name(symbols, pos);
436 	}
437 }
438 
439 int symbol__match_symbol_name(const char *name, const char *str,
440 			      enum symbol_tag_include includes)
441 {
442 	const char *versioning;
443 
444 	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
445 	    (versioning = strstr(name, "@@"))) {
446 		int len = strlen(str);
447 
448 		if (len < versioning - name)
449 			len = versioning - name;
450 
451 		return arch__compare_symbol_names_n(name, str, len);
452 	} else
453 		return arch__compare_symbol_names(name, str);
454 }
455 
456 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols,
457 					    const char *name,
458 					    enum symbol_tag_include includes)
459 {
460 	struct rb_node *n;
461 	struct symbol_name_rb_node *s = NULL;
462 
463 	if (symbols == NULL)
464 		return NULL;
465 
466 	n = symbols->rb_root.rb_node;
467 
468 	while (n) {
469 		int cmp;
470 
471 		s = rb_entry(n, struct symbol_name_rb_node, rb_node);
472 		cmp = symbol__match_symbol_name(s->sym.name, name, includes);
473 
474 		if (cmp > 0)
475 			n = n->rb_left;
476 		else if (cmp < 0)
477 			n = n->rb_right;
478 		else
479 			break;
480 	}
481 
482 	if (n == NULL)
483 		return NULL;
484 
485 	if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
486 		/* return first symbol that has same name (if any) */
487 		for (n = rb_prev(n); n; n = rb_prev(n)) {
488 			struct symbol_name_rb_node *tmp;
489 
490 			tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
491 			if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
492 				break;
493 
494 			s = tmp;
495 		}
496 
497 	return &s->sym;
498 }
499 
500 void dso__reset_find_symbol_cache(struct dso *dso)
501 {
502 	dso->last_find_result.addr   = 0;
503 	dso->last_find_result.symbol = NULL;
504 }
505 
506 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
507 {
508 	__symbols__insert(&dso->symbols, sym, dso->kernel);
509 
510 	/* update the symbol cache if necessary */
511 	if (dso->last_find_result.addr >= sym->start &&
512 	    (dso->last_find_result.addr < sym->end ||
513 	    sym->start == sym->end)) {
514 		dso->last_find_result.symbol = sym;
515 	}
516 }
517 
518 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
519 {
520 	if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
521 		dso->last_find_result.addr   = addr;
522 		dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
523 	}
524 
525 	return dso->last_find_result.symbol;
526 }
527 
528 struct symbol *dso__first_symbol(struct dso *dso)
529 {
530 	return symbols__first(&dso->symbols);
531 }
532 
533 struct symbol *dso__last_symbol(struct dso *dso)
534 {
535 	return symbols__last(&dso->symbols);
536 }
537 
538 struct symbol *dso__next_symbol(struct symbol *sym)
539 {
540 	return symbols__next(sym);
541 }
542 
543 struct symbol *symbol__next_by_name(struct symbol *sym)
544 {
545 	struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
546 	struct rb_node *n = rb_next(&s->rb_node);
547 
548 	return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
549 }
550 
551  /*
552   * Returns first symbol that matched with @name.
553   */
554 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
555 {
556 	struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
557 						 SYMBOL_TAG_INCLUDE__NONE);
558 	if (!s)
559 		s = symbols__find_by_name(&dso->symbol_names, name,
560 					  SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
561 	return s;
562 }
563 
564 void dso__sort_by_name(struct dso *dso)
565 {
566 	dso__set_sorted_by_name(dso);
567 	return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
568 }
569 
570 /*
571  * While we find nice hex chars, build a long_val.
572  * Return number of chars processed.
573  */
574 static int hex2u64(const char *ptr, u64 *long_val)
575 {
576 	char *p;
577 
578 	*long_val = strtoull(ptr, &p, 16);
579 
580 	return p - ptr;
581 }
582 
583 
584 int modules__parse(const char *filename, void *arg,
585 		   int (*process_module)(void *arg, const char *name,
586 					 u64 start, u64 size))
587 {
588 	char *line = NULL;
589 	size_t n;
590 	FILE *file;
591 	int err = 0;
592 
593 	file = fopen(filename, "r");
594 	if (file == NULL)
595 		return -1;
596 
597 	while (1) {
598 		char name[PATH_MAX];
599 		u64 start, size;
600 		char *sep, *endptr;
601 		ssize_t line_len;
602 
603 		line_len = getline(&line, &n, file);
604 		if (line_len < 0) {
605 			if (feof(file))
606 				break;
607 			err = -1;
608 			goto out;
609 		}
610 
611 		if (!line) {
612 			err = -1;
613 			goto out;
614 		}
615 
616 		line[--line_len] = '\0'; /* \n */
617 
618 		sep = strrchr(line, 'x');
619 		if (sep == NULL)
620 			continue;
621 
622 		hex2u64(sep + 1, &start);
623 
624 		sep = strchr(line, ' ');
625 		if (sep == NULL)
626 			continue;
627 
628 		*sep = '\0';
629 
630 		scnprintf(name, sizeof(name), "[%s]", line);
631 
632 		size = strtoul(sep + 1, &endptr, 0);
633 		if (*endptr != ' ' && *endptr != '\t')
634 			continue;
635 
636 		err = process_module(arg, name, start, size);
637 		if (err)
638 			break;
639 	}
640 out:
641 	free(line);
642 	fclose(file);
643 	return err;
644 }
645 
646 /*
647  * These are symbols in the kernel image, so make sure that
648  * sym is from a kernel DSO.
649  */
650 static bool symbol__is_idle(const char *name)
651 {
652 	const char * const idle_symbols[] = {
653 		"acpi_idle_do_entry",
654 		"acpi_processor_ffh_cstate_enter",
655 		"arch_cpu_idle",
656 		"cpu_idle",
657 		"cpu_startup_entry",
658 		"idle_cpu",
659 		"intel_idle",
660 		"default_idle",
661 		"native_safe_halt",
662 		"enter_idle",
663 		"exit_idle",
664 		"mwait_idle",
665 		"mwait_idle_with_hints",
666 		"poll_idle",
667 		"ppc64_runlatch_off",
668 		"pseries_dedicated_idle_sleep",
669 		"psw_idle",
670 		"psw_idle_exit",
671 		NULL
672 	};
673 	int i;
674 	static struct strlist *idle_symbols_list;
675 
676 	if (idle_symbols_list)
677 		return strlist__has_entry(idle_symbols_list, name);
678 
679 	idle_symbols_list = strlist__new(NULL, NULL);
680 
681 	for (i = 0; idle_symbols[i]; i++)
682 		strlist__add(idle_symbols_list, idle_symbols[i]);
683 
684 	return strlist__has_entry(idle_symbols_list, name);
685 }
686 
687 static int map__process_kallsym_symbol(void *arg, const char *name,
688 				       char type, u64 start)
689 {
690 	struct symbol *sym;
691 	struct dso *dso = arg;
692 	struct rb_root_cached *root = &dso->symbols;
693 
694 	if (!symbol_type__filter(type))
695 		return 0;
696 
697 	/*
698 	 * module symbols are not sorted so we add all
699 	 * symbols, setting length to 0, and rely on
700 	 * symbols__fixup_end() to fix it up.
701 	 */
702 	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
703 	if (sym == NULL)
704 		return -ENOMEM;
705 	/*
706 	 * We will pass the symbols to the filter later, in
707 	 * map__split_kallsyms, when we have split the maps per module
708 	 */
709 	__symbols__insert(root, sym, !strchr(name, '['));
710 
711 	return 0;
712 }
713 
714 /*
715  * Loads the function entries in /proc/kallsyms into kernel_map->dso,
716  * so that we can in the next step set the symbol ->end address and then
717  * call kernel_maps__split_kallsyms.
718  */
719 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
720 {
721 	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
722 }
723 
724 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso)
725 {
726 	struct map *curr_map;
727 	struct symbol *pos;
728 	int count = 0;
729 	struct rb_root_cached old_root = dso->symbols;
730 	struct rb_root_cached *root = &dso->symbols;
731 	struct rb_node *next = rb_first_cached(root);
732 
733 	if (!kmaps)
734 		return -1;
735 
736 	*root = RB_ROOT_CACHED;
737 
738 	while (next) {
739 		char *module;
740 
741 		pos = rb_entry(next, struct symbol, rb_node);
742 		next = rb_next(&pos->rb_node);
743 
744 		rb_erase_cached(&pos->rb_node, &old_root);
745 		RB_CLEAR_NODE(&pos->rb_node);
746 		module = strchr(pos->name, '\t');
747 		if (module)
748 			*module = '\0';
749 
750 		curr_map = maps__find(kmaps, pos->start);
751 
752 		if (!curr_map) {
753 			symbol__delete(pos);
754 			continue;
755 		}
756 
757 		pos->start -= curr_map->start - curr_map->pgoff;
758 		if (pos->end > curr_map->end)
759 			pos->end = curr_map->end;
760 		if (pos->end)
761 			pos->end -= curr_map->start - curr_map->pgoff;
762 		symbols__insert(&curr_map->dso->symbols, pos);
763 		++count;
764 	}
765 
766 	/* Symbols have been adjusted */
767 	dso->adjust_symbols = 1;
768 
769 	return count;
770 }
771 
772 /*
773  * Split the symbols into maps, making sure there are no overlaps, i.e. the
774  * kernel range is broken in several maps, named [kernel].N, as we don't have
775  * the original ELF section names vmlinux have.
776  */
777 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta,
778 				struct map *initial_map)
779 {
780 	struct machine *machine;
781 	struct map *curr_map = initial_map;
782 	struct symbol *pos;
783 	int count = 0, moved = 0;
784 	struct rb_root_cached *root = &dso->symbols;
785 	struct rb_node *next = rb_first_cached(root);
786 	int kernel_range = 0;
787 	bool x86_64;
788 
789 	if (!kmaps)
790 		return -1;
791 
792 	machine = kmaps->machine;
793 
794 	x86_64 = machine__is(machine, "x86_64");
795 
796 	while (next) {
797 		char *module;
798 
799 		pos = rb_entry(next, struct symbol, rb_node);
800 		next = rb_next(&pos->rb_node);
801 
802 		module = strchr(pos->name, '\t');
803 		if (module) {
804 			if (!symbol_conf.use_modules)
805 				goto discard_symbol;
806 
807 			*module++ = '\0';
808 
809 			if (strcmp(curr_map->dso->short_name, module)) {
810 				if (curr_map != initial_map &&
811 				    dso->kernel == DSO_SPACE__KERNEL_GUEST &&
812 				    machine__is_default_guest(machine)) {
813 					/*
814 					 * We assume all symbols of a module are
815 					 * continuous in * kallsyms, so curr_map
816 					 * points to a module and all its
817 					 * symbols are in its kmap. Mark it as
818 					 * loaded.
819 					 */
820 					dso__set_loaded(curr_map->dso);
821 				}
822 
823 				curr_map = maps__find_by_name(kmaps, module);
824 				if (curr_map == NULL) {
825 					pr_debug("%s/proc/{kallsyms,modules} "
826 					         "inconsistency while looking "
827 						 "for \"%s\" module!\n",
828 						 machine->root_dir, module);
829 					curr_map = initial_map;
830 					goto discard_symbol;
831 				}
832 
833 				if (curr_map->dso->loaded &&
834 				    !machine__is_default_guest(machine))
835 					goto discard_symbol;
836 			}
837 			/*
838 			 * So that we look just like we get from .ko files,
839 			 * i.e. not prelinked, relative to initial_map->start.
840 			 */
841 			pos->start = curr_map->map_ip(curr_map, pos->start);
842 			pos->end   = curr_map->map_ip(curr_map, pos->end);
843 		} else if (x86_64 && is_entry_trampoline(pos->name)) {
844 			/*
845 			 * These symbols are not needed anymore since the
846 			 * trampoline maps refer to the text section and it's
847 			 * symbols instead. Avoid having to deal with
848 			 * relocations, and the assumption that the first symbol
849 			 * is the start of kernel text, by simply removing the
850 			 * symbols at this point.
851 			 */
852 			goto discard_symbol;
853 		} else if (curr_map != initial_map) {
854 			char dso_name[PATH_MAX];
855 			struct dso *ndso;
856 
857 			if (delta) {
858 				/* Kernel was relocated at boot time */
859 				pos->start -= delta;
860 				pos->end -= delta;
861 			}
862 
863 			if (count == 0) {
864 				curr_map = initial_map;
865 				goto add_symbol;
866 			}
867 
868 			if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
869 				snprintf(dso_name, sizeof(dso_name),
870 					"[guest.kernel].%d",
871 					kernel_range++);
872 			else
873 				snprintf(dso_name, sizeof(dso_name),
874 					"[kernel].%d",
875 					kernel_range++);
876 
877 			ndso = dso__new(dso_name);
878 			if (ndso == NULL)
879 				return -1;
880 
881 			ndso->kernel = dso->kernel;
882 
883 			curr_map = map__new2(pos->start, ndso);
884 			if (curr_map == NULL) {
885 				dso__put(ndso);
886 				return -1;
887 			}
888 
889 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
890 			maps__insert(kmaps, curr_map);
891 			++kernel_range;
892 		} else if (delta) {
893 			/* Kernel was relocated at boot time */
894 			pos->start -= delta;
895 			pos->end -= delta;
896 		}
897 add_symbol:
898 		if (curr_map != initial_map) {
899 			rb_erase_cached(&pos->rb_node, root);
900 			symbols__insert(&curr_map->dso->symbols, pos);
901 			++moved;
902 		} else
903 			++count;
904 
905 		continue;
906 discard_symbol:
907 		rb_erase_cached(&pos->rb_node, root);
908 		symbol__delete(pos);
909 	}
910 
911 	if (curr_map != initial_map &&
912 	    dso->kernel == DSO_SPACE__KERNEL_GUEST &&
913 	    machine__is_default_guest(kmaps->machine)) {
914 		dso__set_loaded(curr_map->dso);
915 	}
916 
917 	return count + moved;
918 }
919 
920 bool symbol__restricted_filename(const char *filename,
921 				 const char *restricted_filename)
922 {
923 	bool restricted = false;
924 
925 	if (symbol_conf.kptr_restrict) {
926 		char *r = realpath(filename, NULL);
927 
928 		if (r != NULL) {
929 			restricted = strcmp(r, restricted_filename) == 0;
930 			free(r);
931 			return restricted;
932 		}
933 	}
934 
935 	return restricted;
936 }
937 
938 struct module_info {
939 	struct rb_node rb_node;
940 	char *name;
941 	u64 start;
942 };
943 
944 static void add_module(struct module_info *mi, struct rb_root *modules)
945 {
946 	struct rb_node **p = &modules->rb_node;
947 	struct rb_node *parent = NULL;
948 	struct module_info *m;
949 
950 	while (*p != NULL) {
951 		parent = *p;
952 		m = rb_entry(parent, struct module_info, rb_node);
953 		if (strcmp(mi->name, m->name) < 0)
954 			p = &(*p)->rb_left;
955 		else
956 			p = &(*p)->rb_right;
957 	}
958 	rb_link_node(&mi->rb_node, parent, p);
959 	rb_insert_color(&mi->rb_node, modules);
960 }
961 
962 static void delete_modules(struct rb_root *modules)
963 {
964 	struct module_info *mi;
965 	struct rb_node *next = rb_first(modules);
966 
967 	while (next) {
968 		mi = rb_entry(next, struct module_info, rb_node);
969 		next = rb_next(&mi->rb_node);
970 		rb_erase(&mi->rb_node, modules);
971 		zfree(&mi->name);
972 		free(mi);
973 	}
974 }
975 
976 static struct module_info *find_module(const char *name,
977 				       struct rb_root *modules)
978 {
979 	struct rb_node *n = modules->rb_node;
980 
981 	while (n) {
982 		struct module_info *m;
983 		int cmp;
984 
985 		m = rb_entry(n, struct module_info, rb_node);
986 		cmp = strcmp(name, m->name);
987 		if (cmp < 0)
988 			n = n->rb_left;
989 		else if (cmp > 0)
990 			n = n->rb_right;
991 		else
992 			return m;
993 	}
994 
995 	return NULL;
996 }
997 
998 static int __read_proc_modules(void *arg, const char *name, u64 start,
999 			       u64 size __maybe_unused)
1000 {
1001 	struct rb_root *modules = arg;
1002 	struct module_info *mi;
1003 
1004 	mi = zalloc(sizeof(struct module_info));
1005 	if (!mi)
1006 		return -ENOMEM;
1007 
1008 	mi->name = strdup(name);
1009 	mi->start = start;
1010 
1011 	if (!mi->name) {
1012 		free(mi);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	add_module(mi, modules);
1017 
1018 	return 0;
1019 }
1020 
1021 static int read_proc_modules(const char *filename, struct rb_root *modules)
1022 {
1023 	if (symbol__restricted_filename(filename, "/proc/modules"))
1024 		return -1;
1025 
1026 	if (modules__parse(filename, modules, __read_proc_modules)) {
1027 		delete_modules(modules);
1028 		return -1;
1029 	}
1030 
1031 	return 0;
1032 }
1033 
1034 int compare_proc_modules(const char *from, const char *to)
1035 {
1036 	struct rb_root from_modules = RB_ROOT;
1037 	struct rb_root to_modules = RB_ROOT;
1038 	struct rb_node *from_node, *to_node;
1039 	struct module_info *from_m, *to_m;
1040 	int ret = -1;
1041 
1042 	if (read_proc_modules(from, &from_modules))
1043 		return -1;
1044 
1045 	if (read_proc_modules(to, &to_modules))
1046 		goto out_delete_from;
1047 
1048 	from_node = rb_first(&from_modules);
1049 	to_node = rb_first(&to_modules);
1050 	while (from_node) {
1051 		if (!to_node)
1052 			break;
1053 
1054 		from_m = rb_entry(from_node, struct module_info, rb_node);
1055 		to_m = rb_entry(to_node, struct module_info, rb_node);
1056 
1057 		if (from_m->start != to_m->start ||
1058 		    strcmp(from_m->name, to_m->name))
1059 			break;
1060 
1061 		from_node = rb_next(from_node);
1062 		to_node = rb_next(to_node);
1063 	}
1064 
1065 	if (!from_node && !to_node)
1066 		ret = 0;
1067 
1068 	delete_modules(&to_modules);
1069 out_delete_from:
1070 	delete_modules(&from_modules);
1071 
1072 	return ret;
1073 }
1074 
1075 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps)
1076 {
1077 	struct rb_root modules = RB_ROOT;
1078 	struct map *old_map;
1079 	int err;
1080 
1081 	err = read_proc_modules(filename, &modules);
1082 	if (err)
1083 		return err;
1084 
1085 	maps__for_each_entry(kmaps, old_map) {
1086 		struct module_info *mi;
1087 
1088 		if (!__map__is_kmodule(old_map)) {
1089 			continue;
1090 		}
1091 
1092 		/* Module must be in memory at the same address */
1093 		mi = find_module(old_map->dso->short_name, &modules);
1094 		if (!mi || mi->start != old_map->start) {
1095 			err = -EINVAL;
1096 			goto out;
1097 		}
1098 	}
1099 out:
1100 	delete_modules(&modules);
1101 	return err;
1102 }
1103 
1104 /*
1105  * If kallsyms is referenced by name then we look for filename in the same
1106  * directory.
1107  */
1108 static bool filename_from_kallsyms_filename(char *filename,
1109 					    const char *base_name,
1110 					    const char *kallsyms_filename)
1111 {
1112 	char *name;
1113 
1114 	strcpy(filename, kallsyms_filename);
1115 	name = strrchr(filename, '/');
1116 	if (!name)
1117 		return false;
1118 
1119 	name += 1;
1120 
1121 	if (!strcmp(name, "kallsyms")) {
1122 		strcpy(name, base_name);
1123 		return true;
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 static int validate_kcore_modules(const char *kallsyms_filename,
1130 				  struct map *map)
1131 {
1132 	struct maps *kmaps = map__kmaps(map);
1133 	char modules_filename[PATH_MAX];
1134 
1135 	if (!kmaps)
1136 		return -EINVAL;
1137 
1138 	if (!filename_from_kallsyms_filename(modules_filename, "modules",
1139 					     kallsyms_filename))
1140 		return -EINVAL;
1141 
1142 	if (do_validate_kcore_modules(modules_filename, kmaps))
1143 		return -EINVAL;
1144 
1145 	return 0;
1146 }
1147 
1148 static int validate_kcore_addresses(const char *kallsyms_filename,
1149 				    struct map *map)
1150 {
1151 	struct kmap *kmap = map__kmap(map);
1152 
1153 	if (!kmap)
1154 		return -EINVAL;
1155 
1156 	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1157 		u64 start;
1158 
1159 		if (kallsyms__get_function_start(kallsyms_filename,
1160 						 kmap->ref_reloc_sym->name, &start))
1161 			return -ENOENT;
1162 		if (start != kmap->ref_reloc_sym->addr)
1163 			return -EINVAL;
1164 	}
1165 
1166 	return validate_kcore_modules(kallsyms_filename, map);
1167 }
1168 
1169 struct kcore_mapfn_data {
1170 	struct dso *dso;
1171 	struct list_head maps;
1172 };
1173 
1174 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1175 {
1176 	struct kcore_mapfn_data *md = data;
1177 	struct map *map;
1178 
1179 	map = map__new2(start, md->dso);
1180 	if (map == NULL)
1181 		return -ENOMEM;
1182 
1183 	map->end = map->start + len;
1184 	map->pgoff = pgoff;
1185 
1186 	list_add(&map->node, &md->maps);
1187 
1188 	return 0;
1189 }
1190 
1191 /*
1192  * Merges map into maps by splitting the new map within the existing map
1193  * regions.
1194  */
1195 int maps__merge_in(struct maps *kmaps, struct map *new_map)
1196 {
1197 	struct map *old_map;
1198 	LIST_HEAD(merged);
1199 
1200 	maps__for_each_entry(kmaps, old_map) {
1201 		/* no overload with this one */
1202 		if (new_map->end < old_map->start ||
1203 		    new_map->start >= old_map->end)
1204 			continue;
1205 
1206 		if (new_map->start < old_map->start) {
1207 			/*
1208 			 * |new......
1209 			 *       |old....
1210 			 */
1211 			if (new_map->end < old_map->end) {
1212 				/*
1213 				 * |new......|     -> |new..|
1214 				 *       |old....| ->       |old....|
1215 				 */
1216 				new_map->end = old_map->start;
1217 			} else {
1218 				/*
1219 				 * |new.............| -> |new..|       |new..|
1220 				 *       |old....|    ->       |old....|
1221 				 */
1222 				struct map *m = map__clone(new_map);
1223 
1224 				if (!m)
1225 					return -ENOMEM;
1226 
1227 				m->end = old_map->start;
1228 				list_add_tail(&m->node, &merged);
1229 				new_map->pgoff += old_map->end - new_map->start;
1230 				new_map->start = old_map->end;
1231 			}
1232 		} else {
1233 			/*
1234 			 *      |new......
1235 			 * |old....
1236 			 */
1237 			if (new_map->end < old_map->end) {
1238 				/*
1239 				 *      |new..|   -> x
1240 				 * |old.........| -> |old.........|
1241 				 */
1242 				map__put(new_map);
1243 				new_map = NULL;
1244 				break;
1245 			} else {
1246 				/*
1247 				 *      |new......| ->         |new...|
1248 				 * |old....|        -> |old....|
1249 				 */
1250 				new_map->pgoff += old_map->end - new_map->start;
1251 				new_map->start = old_map->end;
1252 			}
1253 		}
1254 	}
1255 
1256 	while (!list_empty(&merged)) {
1257 		old_map = list_entry(merged.next, struct map, node);
1258 		list_del_init(&old_map->node);
1259 		maps__insert(kmaps, old_map);
1260 		map__put(old_map);
1261 	}
1262 
1263 	if (new_map) {
1264 		maps__insert(kmaps, new_map);
1265 		map__put(new_map);
1266 	}
1267 	return 0;
1268 }
1269 
1270 static int dso__load_kcore(struct dso *dso, struct map *map,
1271 			   const char *kallsyms_filename)
1272 {
1273 	struct maps *kmaps = map__kmaps(map);
1274 	struct kcore_mapfn_data md;
1275 	struct map *old_map, *new_map, *replacement_map = NULL, *next;
1276 	struct machine *machine;
1277 	bool is_64_bit;
1278 	int err, fd;
1279 	char kcore_filename[PATH_MAX];
1280 	u64 stext;
1281 
1282 	if (!kmaps)
1283 		return -EINVAL;
1284 
1285 	machine = kmaps->machine;
1286 
1287 	/* This function requires that the map is the kernel map */
1288 	if (!__map__is_kernel(map))
1289 		return -EINVAL;
1290 
1291 	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1292 					     kallsyms_filename))
1293 		return -EINVAL;
1294 
1295 	/* Modules and kernel must be present at their original addresses */
1296 	if (validate_kcore_addresses(kallsyms_filename, map))
1297 		return -EINVAL;
1298 
1299 	md.dso = dso;
1300 	INIT_LIST_HEAD(&md.maps);
1301 
1302 	fd = open(kcore_filename, O_RDONLY);
1303 	if (fd < 0) {
1304 		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1305 			 kcore_filename);
1306 		return -EINVAL;
1307 	}
1308 
1309 	/* Read new maps into temporary lists */
1310 	err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1311 			      &is_64_bit);
1312 	if (err)
1313 		goto out_err;
1314 	dso->is_64_bit = is_64_bit;
1315 
1316 	if (list_empty(&md.maps)) {
1317 		err = -EINVAL;
1318 		goto out_err;
1319 	}
1320 
1321 	/* Remove old maps */
1322 	maps__for_each_entry_safe(kmaps, old_map, next) {
1323 		/*
1324 		 * We need to preserve eBPF maps even if they are
1325 		 * covered by kcore, because we need to access
1326 		 * eBPF dso for source data.
1327 		 */
1328 		if (old_map != map && !__map__is_bpf_prog(old_map))
1329 			maps__remove(kmaps, old_map);
1330 	}
1331 	machine->trampolines_mapped = false;
1332 
1333 	/* Find the kernel map using the '_stext' symbol */
1334 	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1335 		list_for_each_entry(new_map, &md.maps, node) {
1336 			if (stext >= new_map->start && stext < new_map->end) {
1337 				replacement_map = new_map;
1338 				break;
1339 			}
1340 		}
1341 	}
1342 
1343 	if (!replacement_map)
1344 		replacement_map = list_entry(md.maps.next, struct map, node);
1345 
1346 	/* Add new maps */
1347 	while (!list_empty(&md.maps)) {
1348 		new_map = list_entry(md.maps.next, struct map, node);
1349 		list_del_init(&new_map->node);
1350 		if (new_map == replacement_map) {
1351 			map->start	= new_map->start;
1352 			map->end	= new_map->end;
1353 			map->pgoff	= new_map->pgoff;
1354 			map->map_ip	= new_map->map_ip;
1355 			map->unmap_ip	= new_map->unmap_ip;
1356 			/* Ensure maps are correctly ordered */
1357 			map__get(map);
1358 			maps__remove(kmaps, map);
1359 			maps__insert(kmaps, map);
1360 			map__put(map);
1361 			map__put(new_map);
1362 		} else {
1363 			/*
1364 			 * Merge kcore map into existing maps,
1365 			 * and ensure that current maps (eBPF)
1366 			 * stay intact.
1367 			 */
1368 			if (maps__merge_in(kmaps, new_map))
1369 				goto out_err;
1370 		}
1371 	}
1372 
1373 	if (machine__is(machine, "x86_64")) {
1374 		u64 addr;
1375 
1376 		/*
1377 		 * If one of the corresponding symbols is there, assume the
1378 		 * entry trampoline maps are too.
1379 		 */
1380 		if (!kallsyms__get_function_start(kallsyms_filename,
1381 						  ENTRY_TRAMPOLINE_NAME,
1382 						  &addr))
1383 			machine->trampolines_mapped = true;
1384 	}
1385 
1386 	/*
1387 	 * Set the data type and long name so that kcore can be read via
1388 	 * dso__data_read_addr().
1389 	 */
1390 	if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1391 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1392 	else
1393 		dso->binary_type = DSO_BINARY_TYPE__KCORE;
1394 	dso__set_long_name(dso, strdup(kcore_filename), true);
1395 
1396 	close(fd);
1397 
1398 	if (map->prot & PROT_EXEC)
1399 		pr_debug("Using %s for kernel object code\n", kcore_filename);
1400 	else
1401 		pr_debug("Using %s for kernel data\n", kcore_filename);
1402 
1403 	return 0;
1404 
1405 out_err:
1406 	while (!list_empty(&md.maps)) {
1407 		map = list_entry(md.maps.next, struct map, node);
1408 		list_del_init(&map->node);
1409 		map__put(map);
1410 	}
1411 	close(fd);
1412 	return -EINVAL;
1413 }
1414 
1415 /*
1416  * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
1417  * delta based on the relocation reference symbol.
1418  */
1419 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1420 {
1421 	u64 addr;
1422 
1423 	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1424 		return 0;
1425 
1426 	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1427 		return -1;
1428 
1429 	*delta = addr - kmap->ref_reloc_sym->addr;
1430 	return 0;
1431 }
1432 
1433 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1434 			 struct map *map, bool no_kcore)
1435 {
1436 	struct kmap *kmap = map__kmap(map);
1437 	u64 delta = 0;
1438 
1439 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1440 		return -1;
1441 
1442 	if (!kmap || !kmap->kmaps)
1443 		return -1;
1444 
1445 	if (dso__load_all_kallsyms(dso, filename) < 0)
1446 		return -1;
1447 
1448 	if (kallsyms__delta(kmap, filename, &delta))
1449 		return -1;
1450 
1451 	symbols__fixup_end(&dso->symbols);
1452 	symbols__fixup_duplicate(&dso->symbols);
1453 
1454 	if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1455 		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1456 	else
1457 		dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1458 
1459 	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1460 		return maps__split_kallsyms_for_kcore(kmap->kmaps, dso);
1461 	else
1462 		return maps__split_kallsyms(kmap->kmaps, dso, delta, map);
1463 }
1464 
1465 int dso__load_kallsyms(struct dso *dso, const char *filename,
1466 		       struct map *map)
1467 {
1468 	return __dso__load_kallsyms(dso, filename, map, false);
1469 }
1470 
1471 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1472 {
1473 	char *line = NULL;
1474 	size_t n;
1475 	FILE *file;
1476 	int nr_syms = 0;
1477 
1478 	file = fopen(map_path, "r");
1479 	if (file == NULL)
1480 		goto out_failure;
1481 
1482 	while (!feof(file)) {
1483 		u64 start, size;
1484 		struct symbol *sym;
1485 		int line_len, len;
1486 
1487 		line_len = getline(&line, &n, file);
1488 		if (line_len < 0)
1489 			break;
1490 
1491 		if (!line)
1492 			goto out_failure;
1493 
1494 		line[--line_len] = '\0'; /* \n */
1495 
1496 		len = hex2u64(line, &start);
1497 
1498 		len++;
1499 		if (len + 2 >= line_len)
1500 			continue;
1501 
1502 		len += hex2u64(line + len, &size);
1503 
1504 		len++;
1505 		if (len + 2 >= line_len)
1506 			continue;
1507 
1508 		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1509 
1510 		if (sym == NULL)
1511 			goto out_delete_line;
1512 
1513 		symbols__insert(&dso->symbols, sym);
1514 		nr_syms++;
1515 	}
1516 
1517 	free(line);
1518 	fclose(file);
1519 
1520 	return nr_syms;
1521 
1522 out_delete_line:
1523 	free(line);
1524 out_failure:
1525 	return -1;
1526 }
1527 
1528 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1529 					   enum dso_binary_type type)
1530 {
1531 	switch (type) {
1532 	case DSO_BINARY_TYPE__JAVA_JIT:
1533 	case DSO_BINARY_TYPE__DEBUGLINK:
1534 	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1535 	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1536 	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1537 	case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO:
1538 	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1539 	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1540 		return !kmod && dso->kernel == DSO_SPACE__USER;
1541 
1542 	case DSO_BINARY_TYPE__KALLSYMS:
1543 	case DSO_BINARY_TYPE__VMLINUX:
1544 	case DSO_BINARY_TYPE__KCORE:
1545 		return dso->kernel == DSO_SPACE__KERNEL;
1546 
1547 	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1548 	case DSO_BINARY_TYPE__GUEST_VMLINUX:
1549 	case DSO_BINARY_TYPE__GUEST_KCORE:
1550 		return dso->kernel == DSO_SPACE__KERNEL_GUEST;
1551 
1552 	case DSO_BINARY_TYPE__GUEST_KMODULE:
1553 	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1554 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1555 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1556 		/*
1557 		 * kernel modules know their symtab type - it's set when
1558 		 * creating a module dso in machine__addnew_module_map().
1559 		 */
1560 		return kmod && dso->symtab_type == type;
1561 
1562 	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1563 	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1564 		return true;
1565 
1566 	case DSO_BINARY_TYPE__BPF_PROG_INFO:
1567 	case DSO_BINARY_TYPE__BPF_IMAGE:
1568 	case DSO_BINARY_TYPE__OOL:
1569 	case DSO_BINARY_TYPE__NOT_FOUND:
1570 	default:
1571 		return false;
1572 	}
1573 }
1574 
1575 /* Checks for the existence of the perf-<pid>.map file in two different
1576  * locations.  First, if the process is a separate mount namespace, check in
1577  * that namespace using the pid of the innermost pid namespace.  If's not in a
1578  * namespace, or the file can't be found there, try in the mount namespace of
1579  * the tracing process using our view of its pid.
1580  */
1581 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1582 			      struct nsinfo **nsip)
1583 {
1584 	struct nscookie nsc;
1585 	struct nsinfo *nsi;
1586 	struct nsinfo *nnsi;
1587 	int rc = -1;
1588 
1589 	nsi = *nsip;
1590 
1591 	if (nsi->need_setns) {
1592 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
1593 		nsinfo__mountns_enter(nsi, &nsc);
1594 		rc = access(filebuf, R_OK);
1595 		nsinfo__mountns_exit(&nsc);
1596 		if (rc == 0)
1597 			return rc;
1598 	}
1599 
1600 	nnsi = nsinfo__copy(nsi);
1601 	if (nnsi) {
1602 		nsinfo__put(nsi);
1603 
1604 		nnsi->need_setns = false;
1605 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
1606 		*nsip = nnsi;
1607 		rc = 0;
1608 	}
1609 
1610 	return rc;
1611 }
1612 
1613 int dso__load(struct dso *dso, struct map *map)
1614 {
1615 	char *name;
1616 	int ret = -1;
1617 	u_int i;
1618 	struct machine *machine = NULL;
1619 	char *root_dir = (char *) "";
1620 	int ss_pos = 0;
1621 	struct symsrc ss_[2];
1622 	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1623 	bool kmod;
1624 	bool perfmap;
1625 	unsigned char build_id[BUILD_ID_SIZE];
1626 	struct nscookie nsc;
1627 	char newmapname[PATH_MAX];
1628 	const char *map_path = dso->long_name;
1629 
1630 	perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
1631 	if (perfmap) {
1632 		if (dso->nsinfo && (dso__find_perf_map(newmapname,
1633 		    sizeof(newmapname), &dso->nsinfo) == 0)) {
1634 			map_path = newmapname;
1635 		}
1636 	}
1637 
1638 	nsinfo__mountns_enter(dso->nsinfo, &nsc);
1639 	pthread_mutex_lock(&dso->lock);
1640 
1641 	/* check again under the dso->lock */
1642 	if (dso__loaded(dso)) {
1643 		ret = 1;
1644 		goto out;
1645 	}
1646 
1647 	kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1648 		dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
1649 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
1650 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1651 
1652 	if (dso->kernel && !kmod) {
1653 		if (dso->kernel == DSO_SPACE__KERNEL)
1654 			ret = dso__load_kernel_sym(dso, map);
1655 		else if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1656 			ret = dso__load_guest_kernel_sym(dso, map);
1657 
1658 		machine = map__kmaps(map)->machine;
1659 		if (machine__is(machine, "x86_64"))
1660 			machine__map_x86_64_entry_trampolines(machine, dso);
1661 		goto out;
1662 	}
1663 
1664 	dso->adjust_symbols = 0;
1665 
1666 	if (perfmap) {
1667 		ret = dso__load_perf_map(map_path, dso);
1668 		dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
1669 					     DSO_BINARY_TYPE__NOT_FOUND;
1670 		goto out;
1671 	}
1672 
1673 	if (machine)
1674 		root_dir = machine->root_dir;
1675 
1676 	name = malloc(PATH_MAX);
1677 	if (!name)
1678 		goto out;
1679 
1680 	/*
1681 	 * Read the build id if possible. This is required for
1682 	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1683 	 */
1684 	if (!dso->has_build_id &&
1685 	    is_regular_file(dso->long_name)) {
1686 	    __symbol__join_symfs(name, PATH_MAX, dso->long_name);
1687 	    if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0)
1688 		dso__set_build_id(dso, build_id);
1689 	}
1690 
1691 	/*
1692 	 * Iterate over candidate debug images.
1693 	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1694 	 * and/or opd section) for processing.
1695 	 */
1696 	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1697 		struct symsrc *ss = &ss_[ss_pos];
1698 		bool next_slot = false;
1699 		bool is_reg;
1700 		bool nsexit;
1701 		int sirc = -1;
1702 
1703 		enum dso_binary_type symtab_type = binary_type_symtab[i];
1704 
1705 		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1706 		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1707 
1708 		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1709 			continue;
1710 
1711 		if (dso__read_binary_type_filename(dso, symtab_type,
1712 						   root_dir, name, PATH_MAX))
1713 			continue;
1714 
1715 		if (nsexit)
1716 			nsinfo__mountns_exit(&nsc);
1717 
1718 		is_reg = is_regular_file(name);
1719 		if (is_reg)
1720 			sirc = symsrc__init(ss, dso, name, symtab_type);
1721 
1722 		if (nsexit)
1723 			nsinfo__mountns_enter(dso->nsinfo, &nsc);
1724 
1725 		if (!is_reg || sirc < 0)
1726 			continue;
1727 
1728 		if (!syms_ss && symsrc__has_symtab(ss)) {
1729 			syms_ss = ss;
1730 			next_slot = true;
1731 			if (!dso->symsrc_filename)
1732 				dso->symsrc_filename = strdup(name);
1733 		}
1734 
1735 		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1736 			runtime_ss = ss;
1737 			next_slot = true;
1738 		}
1739 
1740 		if (next_slot) {
1741 			ss_pos++;
1742 
1743 			if (syms_ss && runtime_ss)
1744 				break;
1745 		} else {
1746 			symsrc__destroy(ss);
1747 		}
1748 
1749 	}
1750 
1751 	if (!runtime_ss && !syms_ss)
1752 		goto out_free;
1753 
1754 	if (runtime_ss && !syms_ss) {
1755 		syms_ss = runtime_ss;
1756 	}
1757 
1758 	/* We'll have to hope for the best */
1759 	if (!runtime_ss && syms_ss)
1760 		runtime_ss = syms_ss;
1761 
1762 	if (syms_ss)
1763 		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1764 	else
1765 		ret = -1;
1766 
1767 	if (ret > 0) {
1768 		int nr_plt;
1769 
1770 		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1771 		if (nr_plt > 0)
1772 			ret += nr_plt;
1773 	}
1774 
1775 	for (; ss_pos > 0; ss_pos--)
1776 		symsrc__destroy(&ss_[ss_pos - 1]);
1777 out_free:
1778 	free(name);
1779 	if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1780 		ret = 0;
1781 out:
1782 	dso__set_loaded(dso);
1783 	pthread_mutex_unlock(&dso->lock);
1784 	nsinfo__mountns_exit(&nsc);
1785 
1786 	return ret;
1787 }
1788 
1789 static int map__strcmp(const void *a, const void *b)
1790 {
1791 	const struct map *ma = *(const struct map **)a, *mb = *(const struct map **)b;
1792 	return strcmp(ma->dso->short_name, mb->dso->short_name);
1793 }
1794 
1795 static int map__strcmp_name(const void *name, const void *b)
1796 {
1797 	const struct map *map = *(const struct map **)b;
1798 	return strcmp(name, map->dso->short_name);
1799 }
1800 
1801 void __maps__sort_by_name(struct maps *maps)
1802 {
1803 	qsort(maps->maps_by_name, maps->nr_maps, sizeof(struct map *), map__strcmp);
1804 }
1805 
1806 static int map__groups__sort_by_name_from_rbtree(struct maps *maps)
1807 {
1808 	struct map *map;
1809 	struct map **maps_by_name = realloc(maps->maps_by_name, maps->nr_maps * sizeof(map));
1810 	int i = 0;
1811 
1812 	if (maps_by_name == NULL)
1813 		return -1;
1814 
1815 	maps->maps_by_name = maps_by_name;
1816 	maps->nr_maps_allocated = maps->nr_maps;
1817 
1818 	maps__for_each_entry(maps, map)
1819 		maps_by_name[i++] = map;
1820 
1821 	__maps__sort_by_name(maps);
1822 	return 0;
1823 }
1824 
1825 static struct map *__maps__find_by_name(struct maps *maps, const char *name)
1826 {
1827 	struct map **mapp;
1828 
1829 	if (maps->maps_by_name == NULL &&
1830 	    map__groups__sort_by_name_from_rbtree(maps))
1831 		return NULL;
1832 
1833 	mapp = bsearch(name, maps->maps_by_name, maps->nr_maps, sizeof(*mapp), map__strcmp_name);
1834 	if (mapp)
1835 		return *mapp;
1836 	return NULL;
1837 }
1838 
1839 struct map *maps__find_by_name(struct maps *maps, const char *name)
1840 {
1841 	struct map *map;
1842 
1843 	down_read(&maps->lock);
1844 
1845 	if (maps->last_search_by_name && strcmp(maps->last_search_by_name->dso->short_name, name) == 0) {
1846 		map = maps->last_search_by_name;
1847 		goto out_unlock;
1848 	}
1849 	/*
1850 	 * If we have maps->maps_by_name, then the name isn't in the rbtree,
1851 	 * as maps->maps_by_name mirrors the rbtree when lookups by name are
1852 	 * made.
1853 	 */
1854 	map = __maps__find_by_name(maps, name);
1855 	if (map || maps->maps_by_name != NULL)
1856 		goto out_unlock;
1857 
1858 	/* Fallback to traversing the rbtree... */
1859 	maps__for_each_entry(maps, map)
1860 		if (strcmp(map->dso->short_name, name) == 0) {
1861 			maps->last_search_by_name = map;
1862 			goto out_unlock;
1863 		}
1864 
1865 	map = NULL;
1866 
1867 out_unlock:
1868 	up_read(&maps->lock);
1869 	return map;
1870 }
1871 
1872 int dso__load_vmlinux(struct dso *dso, struct map *map,
1873 		      const char *vmlinux, bool vmlinux_allocated)
1874 {
1875 	int err = -1;
1876 	struct symsrc ss;
1877 	char symfs_vmlinux[PATH_MAX];
1878 	enum dso_binary_type symtab_type;
1879 
1880 	if (vmlinux[0] == '/')
1881 		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
1882 	else
1883 		symbol__join_symfs(symfs_vmlinux, vmlinux);
1884 
1885 	if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1886 		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1887 	else
1888 		symtab_type = DSO_BINARY_TYPE__VMLINUX;
1889 
1890 	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
1891 		return -1;
1892 
1893 	err = dso__load_sym(dso, map, &ss, &ss, 0);
1894 	symsrc__destroy(&ss);
1895 
1896 	if (err > 0) {
1897 		if (dso->kernel == DSO_SPACE__KERNEL_GUEST)
1898 			dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1899 		else
1900 			dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
1901 		dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1902 		dso__set_loaded(dso);
1903 		pr_debug("Using %s for symbols\n", symfs_vmlinux);
1904 	}
1905 
1906 	return err;
1907 }
1908 
1909 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1910 {
1911 	int i, err = 0;
1912 	char *filename = NULL;
1913 
1914 	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
1915 		 vmlinux_path__nr_entries + 1);
1916 
1917 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1918 		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1919 		if (err > 0)
1920 			goto out;
1921 	}
1922 
1923 	if (!symbol_conf.ignore_vmlinux_buildid)
1924 		filename = dso__build_id_filename(dso, NULL, 0, false);
1925 	if (filename != NULL) {
1926 		err = dso__load_vmlinux(dso, map, filename, true);
1927 		if (err > 0)
1928 			goto out;
1929 		free(filename);
1930 	}
1931 out:
1932 	return err;
1933 }
1934 
1935 static bool visible_dir_filter(const char *name, struct dirent *d)
1936 {
1937 	if (d->d_type != DT_DIR)
1938 		return false;
1939 	return lsdir_no_dot_filter(name, d);
1940 }
1941 
1942 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
1943 {
1944 	char kallsyms_filename[PATH_MAX];
1945 	int ret = -1;
1946 	struct strlist *dirs;
1947 	struct str_node *nd;
1948 
1949 	dirs = lsdir(dir, visible_dir_filter);
1950 	if (!dirs)
1951 		return -1;
1952 
1953 	strlist__for_each_entry(nd, dirs) {
1954 		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1955 			  "%s/%s/kallsyms", dir, nd->s);
1956 		if (!validate_kcore_addresses(kallsyms_filename, map)) {
1957 			strlcpy(dir, kallsyms_filename, dir_sz);
1958 			ret = 0;
1959 			break;
1960 		}
1961 	}
1962 
1963 	strlist__delete(dirs);
1964 
1965 	return ret;
1966 }
1967 
1968 /*
1969  * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
1970  * since access(R_OK) only checks with real UID/GID but open() use effective
1971  * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
1972  */
1973 static bool filename__readable(const char *file)
1974 {
1975 	int fd = open(file, O_RDONLY);
1976 	if (fd < 0)
1977 		return false;
1978 	close(fd);
1979 	return true;
1980 }
1981 
1982 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
1983 {
1984 	u8 host_build_id[BUILD_ID_SIZE];
1985 	char sbuild_id[SBUILD_ID_SIZE];
1986 	bool is_host = false;
1987 	char path[PATH_MAX];
1988 
1989 	if (!dso->has_build_id) {
1990 		/*
1991 		 * Last resort, if we don't have a build-id and couldn't find
1992 		 * any vmlinux file, try the running kernel kallsyms table.
1993 		 */
1994 		goto proc_kallsyms;
1995 	}
1996 
1997 	if (sysfs__read_build_id("/sys/kernel/notes", host_build_id,
1998 				 sizeof(host_build_id)) == 0)
1999 		is_host = dso__build_id_equal(dso, host_build_id);
2000 
2001 	/* Try a fast path for /proc/kallsyms if possible */
2002 	if (is_host) {
2003 		/*
2004 		 * Do not check the build-id cache, unless we know we cannot use
2005 		 * /proc/kcore or module maps don't match to /proc/kallsyms.
2006 		 * To check readability of /proc/kcore, do not use access(R_OK)
2007 		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
2008 		 * can't check it.
2009 		 */
2010 		if (filename__readable("/proc/kcore") &&
2011 		    !validate_kcore_addresses("/proc/kallsyms", map))
2012 			goto proc_kallsyms;
2013 	}
2014 
2015 	build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id);
2016 
2017 	/* Find kallsyms in build-id cache with kcore */
2018 	scnprintf(path, sizeof(path), "%s/%s/%s",
2019 		  buildid_dir, DSO__NAME_KCORE, sbuild_id);
2020 
2021 	if (!find_matching_kcore(map, path, sizeof(path)))
2022 		return strdup(path);
2023 
2024 	/* Use current /proc/kallsyms if possible */
2025 	if (is_host) {
2026 proc_kallsyms:
2027 		return strdup("/proc/kallsyms");
2028 	}
2029 
2030 	/* Finally, find a cache of kallsyms */
2031 	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
2032 		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
2033 		       sbuild_id);
2034 		return NULL;
2035 	}
2036 
2037 	return strdup(path);
2038 }
2039 
2040 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
2041 {
2042 	int err;
2043 	const char *kallsyms_filename = NULL;
2044 	char *kallsyms_allocated_filename = NULL;
2045 	/*
2046 	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
2047 	 * it and only it, reporting errors to the user if it cannot be used.
2048 	 *
2049 	 * For instance, try to analyse an ARM perf.data file _without_ a
2050 	 * build-id, or if the user specifies the wrong path to the right
2051 	 * vmlinux file, obviously we can't fallback to another vmlinux (a
2052 	 * x86_86 one, on the machine where analysis is being performed, say),
2053 	 * or worse, /proc/kallsyms.
2054 	 *
2055 	 * If the specified file _has_ a build-id and there is a build-id
2056 	 * section in the perf.data file, we will still do the expected
2057 	 * validation in dso__load_vmlinux and will bail out if they don't
2058 	 * match.
2059 	 */
2060 	if (symbol_conf.kallsyms_name != NULL) {
2061 		kallsyms_filename = symbol_conf.kallsyms_name;
2062 		goto do_kallsyms;
2063 	}
2064 
2065 	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2066 		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2067 	}
2068 
2069 	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2070 		err = dso__load_vmlinux_path(dso, map);
2071 		if (err > 0)
2072 			return err;
2073 	}
2074 
2075 	/* do not try local files if a symfs was given */
2076 	if (symbol_conf.symfs[0] != 0)
2077 		return -1;
2078 
2079 	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2080 	if (!kallsyms_allocated_filename)
2081 		return -1;
2082 
2083 	kallsyms_filename = kallsyms_allocated_filename;
2084 
2085 do_kallsyms:
2086 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2087 	if (err > 0)
2088 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2089 	free(kallsyms_allocated_filename);
2090 
2091 	if (err > 0 && !dso__is_kcore(dso)) {
2092 		dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
2093 		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2094 		map__fixup_start(map);
2095 		map__fixup_end(map);
2096 	}
2097 
2098 	return err;
2099 }
2100 
2101 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2102 {
2103 	int err;
2104 	const char *kallsyms_filename = NULL;
2105 	struct machine *machine = map__kmaps(map)->machine;
2106 	char path[PATH_MAX];
2107 
2108 	if (machine__is_default_guest(machine)) {
2109 		/*
2110 		 * if the user specified a vmlinux filename, use it and only
2111 		 * it, reporting errors to the user if it cannot be used.
2112 		 * Or use file guest_kallsyms inputted by user on commandline
2113 		 */
2114 		if (symbol_conf.default_guest_vmlinux_name != NULL) {
2115 			err = dso__load_vmlinux(dso, map,
2116 						symbol_conf.default_guest_vmlinux_name,
2117 						false);
2118 			return err;
2119 		}
2120 
2121 		kallsyms_filename = symbol_conf.default_guest_kallsyms;
2122 		if (!kallsyms_filename)
2123 			return -1;
2124 	} else {
2125 		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2126 		kallsyms_filename = path;
2127 	}
2128 
2129 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2130 	if (err > 0)
2131 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2132 	if (err > 0 && !dso__is_kcore(dso)) {
2133 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
2134 		dso__set_long_name(dso, machine->mmap_name, false);
2135 		map__fixup_start(map);
2136 		map__fixup_end(map);
2137 	}
2138 
2139 	return err;
2140 }
2141 
2142 static void vmlinux_path__exit(void)
2143 {
2144 	while (--vmlinux_path__nr_entries >= 0)
2145 		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2146 	vmlinux_path__nr_entries = 0;
2147 
2148 	zfree(&vmlinux_path);
2149 }
2150 
2151 static const char * const vmlinux_paths[] = {
2152 	"vmlinux",
2153 	"/boot/vmlinux"
2154 };
2155 
2156 static const char * const vmlinux_paths_upd[] = {
2157 	"/boot/vmlinux-%s",
2158 	"/usr/lib/debug/boot/vmlinux-%s",
2159 	"/lib/modules/%s/build/vmlinux",
2160 	"/usr/lib/debug/lib/modules/%s/vmlinux",
2161 	"/usr/lib/debug/boot/vmlinux-%s.debug"
2162 };
2163 
2164 static int vmlinux_path__add(const char *new_entry)
2165 {
2166 	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2167 	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2168 		return -1;
2169 	++vmlinux_path__nr_entries;
2170 
2171 	return 0;
2172 }
2173 
2174 static int vmlinux_path__init(struct perf_env *env)
2175 {
2176 	struct utsname uts;
2177 	char bf[PATH_MAX];
2178 	char *kernel_version;
2179 	unsigned int i;
2180 
2181 	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2182 			      ARRAY_SIZE(vmlinux_paths_upd)));
2183 	if (vmlinux_path == NULL)
2184 		return -1;
2185 
2186 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2187 		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2188 			goto out_fail;
2189 
2190 	/* only try kernel version if no symfs was given */
2191 	if (symbol_conf.symfs[0] != 0)
2192 		return 0;
2193 
2194 	if (env) {
2195 		kernel_version = env->os_release;
2196 	} else {
2197 		if (uname(&uts) < 0)
2198 			goto out_fail;
2199 
2200 		kernel_version = uts.release;
2201 	}
2202 
2203 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2204 		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2205 		if (vmlinux_path__add(bf) < 0)
2206 			goto out_fail;
2207 	}
2208 
2209 	return 0;
2210 
2211 out_fail:
2212 	vmlinux_path__exit();
2213 	return -1;
2214 }
2215 
2216 int setup_list(struct strlist **list, const char *list_str,
2217 		      const char *list_name)
2218 {
2219 	if (list_str == NULL)
2220 		return 0;
2221 
2222 	*list = strlist__new(list_str, NULL);
2223 	if (!*list) {
2224 		pr_err("problems parsing %s list\n", list_name);
2225 		return -1;
2226 	}
2227 
2228 	symbol_conf.has_filter = true;
2229 	return 0;
2230 }
2231 
2232 int setup_intlist(struct intlist **list, const char *list_str,
2233 		  const char *list_name)
2234 {
2235 	if (list_str == NULL)
2236 		return 0;
2237 
2238 	*list = intlist__new(list_str);
2239 	if (!*list) {
2240 		pr_err("problems parsing %s list\n", list_name);
2241 		return -1;
2242 	}
2243 	return 0;
2244 }
2245 
2246 static bool symbol__read_kptr_restrict(void)
2247 {
2248 	bool value = false;
2249 	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2250 
2251 	if (fp != NULL) {
2252 		char line[8];
2253 
2254 		if (fgets(line, sizeof(line), fp) != NULL)
2255 			value = perf_cap__capable(CAP_SYSLOG) ?
2256 					(atoi(line) >= 2) :
2257 					(atoi(line) != 0);
2258 
2259 		fclose(fp);
2260 	}
2261 
2262 	/* Per kernel/kallsyms.c:
2263 	 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2264 	 */
2265 	if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG))
2266 		value = true;
2267 
2268 	return value;
2269 }
2270 
2271 int symbol__annotation_init(void)
2272 {
2273 	if (symbol_conf.init_annotation)
2274 		return 0;
2275 
2276 	if (symbol_conf.initialized) {
2277 		pr_err("Annotation needs to be init before symbol__init()\n");
2278 		return -1;
2279 	}
2280 
2281 	symbol_conf.priv_size += sizeof(struct annotation);
2282 	symbol_conf.init_annotation = true;
2283 	return 0;
2284 }
2285 
2286 int symbol__init(struct perf_env *env)
2287 {
2288 	const char *symfs;
2289 
2290 	if (symbol_conf.initialized)
2291 		return 0;
2292 
2293 	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2294 
2295 	symbol__elf_init();
2296 
2297 	if (symbol_conf.sort_by_name)
2298 		symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
2299 					  sizeof(struct symbol));
2300 
2301 	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2302 		return -1;
2303 
2304 	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2305 		pr_err("'.' is the only non valid --field-separator argument\n");
2306 		return -1;
2307 	}
2308 
2309 	if (setup_list(&symbol_conf.dso_list,
2310 		       symbol_conf.dso_list_str, "dso") < 0)
2311 		return -1;
2312 
2313 	if (setup_list(&symbol_conf.comm_list,
2314 		       symbol_conf.comm_list_str, "comm") < 0)
2315 		goto out_free_dso_list;
2316 
2317 	if (setup_intlist(&symbol_conf.pid_list,
2318 		       symbol_conf.pid_list_str, "pid") < 0)
2319 		goto out_free_comm_list;
2320 
2321 	if (setup_intlist(&symbol_conf.tid_list,
2322 		       symbol_conf.tid_list_str, "tid") < 0)
2323 		goto out_free_pid_list;
2324 
2325 	if (setup_list(&symbol_conf.sym_list,
2326 		       symbol_conf.sym_list_str, "symbol") < 0)
2327 		goto out_free_tid_list;
2328 
2329 	if (setup_list(&symbol_conf.bt_stop_list,
2330 		       symbol_conf.bt_stop_list_str, "symbol") < 0)
2331 		goto out_free_sym_list;
2332 
2333 	/*
2334 	 * A path to symbols of "/" is identical to ""
2335 	 * reset here for simplicity.
2336 	 */
2337 	symfs = realpath(symbol_conf.symfs, NULL);
2338 	if (symfs == NULL)
2339 		symfs = symbol_conf.symfs;
2340 	if (strcmp(symfs, "/") == 0)
2341 		symbol_conf.symfs = "";
2342 	if (symfs != symbol_conf.symfs)
2343 		free((void *)symfs);
2344 
2345 	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2346 
2347 	symbol_conf.initialized = true;
2348 	return 0;
2349 
2350 out_free_sym_list:
2351 	strlist__delete(symbol_conf.sym_list);
2352 out_free_tid_list:
2353 	intlist__delete(symbol_conf.tid_list);
2354 out_free_pid_list:
2355 	intlist__delete(symbol_conf.pid_list);
2356 out_free_comm_list:
2357 	strlist__delete(symbol_conf.comm_list);
2358 out_free_dso_list:
2359 	strlist__delete(symbol_conf.dso_list);
2360 	return -1;
2361 }
2362 
2363 void symbol__exit(void)
2364 {
2365 	if (!symbol_conf.initialized)
2366 		return;
2367 	strlist__delete(symbol_conf.bt_stop_list);
2368 	strlist__delete(symbol_conf.sym_list);
2369 	strlist__delete(symbol_conf.dso_list);
2370 	strlist__delete(symbol_conf.comm_list);
2371 	intlist__delete(symbol_conf.tid_list);
2372 	intlist__delete(symbol_conf.pid_list);
2373 	vmlinux_path__exit();
2374 	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2375 	symbol_conf.bt_stop_list = NULL;
2376 	symbol_conf.initialized = false;
2377 }
2378 
2379 int symbol__config_symfs(const struct option *opt __maybe_unused,
2380 			 const char *dir, int unset __maybe_unused)
2381 {
2382 	char *bf = NULL;
2383 	int ret;
2384 
2385 	symbol_conf.symfs = strdup(dir);
2386 	if (symbol_conf.symfs == NULL)
2387 		return -ENOMEM;
2388 
2389 	/* skip the locally configured cache if a symfs is given, and
2390 	 * config buildid dir to symfs/.debug
2391 	 */
2392 	ret = asprintf(&bf, "%s/%s", dir, ".debug");
2393 	if (ret < 0)
2394 		return -ENOMEM;
2395 
2396 	set_buildid_dir(bf);
2397 
2398 	free(bf);
2399 	return 0;
2400 }
2401 
2402 struct mem_info *mem_info__get(struct mem_info *mi)
2403 {
2404 	if (mi)
2405 		refcount_inc(&mi->refcnt);
2406 	return mi;
2407 }
2408 
2409 void mem_info__put(struct mem_info *mi)
2410 {
2411 	if (mi && refcount_dec_and_test(&mi->refcnt))
2412 		free(mi);
2413 }
2414 
2415 struct mem_info *mem_info__new(void)
2416 {
2417 	struct mem_info *mi = zalloc(sizeof(*mi));
2418 
2419 	if (mi)
2420 		refcount_set(&mi->refcnt, 1);
2421 	return mi;
2422 }
2423