1 // SPDX-License-Identifier: GPL-2.0 2 #include <dirent.h> 3 #include <errno.h> 4 #include <stdlib.h> 5 #include <stdio.h> 6 #include <string.h> 7 #include <linux/capability.h> 8 #include <linux/kernel.h> 9 #include <linux/mman.h> 10 #include <linux/string.h> 11 #include <linux/time64.h> 12 #include <sys/types.h> 13 #include <sys/stat.h> 14 #include <sys/param.h> 15 #include <fcntl.h> 16 #include <unistd.h> 17 #include <inttypes.h> 18 #include "annotate.h" 19 #include "build-id.h" 20 #include "cap.h" 21 #include "dso.h" 22 #include "util.h" // lsdir() 23 #include "debug.h" 24 #include "event.h" 25 #include "machine.h" 26 #include "map.h" 27 #include "symbol.h" 28 #include "map_symbol.h" 29 #include "mem-events.h" 30 #include "symsrc.h" 31 #include "strlist.h" 32 #include "intlist.h" 33 #include "namespaces.h" 34 #include "header.h" 35 #include "path.h" 36 #include <linux/ctype.h> 37 #include <linux/zalloc.h> 38 39 #include <elf.h> 40 #include <limits.h> 41 #include <symbol/kallsyms.h> 42 #include <sys/utsname.h> 43 44 static int dso__load_kernel_sym(struct dso *dso, struct map *map); 45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map); 46 static bool symbol__is_idle(const char *name); 47 48 int vmlinux_path__nr_entries; 49 char **vmlinux_path; 50 51 struct symbol_conf symbol_conf = { 52 .nanosecs = false, 53 .use_modules = true, 54 .try_vmlinux_path = true, 55 .demangle = true, 56 .demangle_kernel = false, 57 .cumulate_callchain = true, 58 .time_quantum = 100 * NSEC_PER_MSEC, /* 100ms */ 59 .show_hist_headers = true, 60 .symfs = "", 61 .event_group = true, 62 .inline_name = true, 63 .res_sample = 0, 64 }; 65 66 static enum dso_binary_type binary_type_symtab[] = { 67 DSO_BINARY_TYPE__KALLSYMS, 68 DSO_BINARY_TYPE__GUEST_KALLSYMS, 69 DSO_BINARY_TYPE__JAVA_JIT, 70 DSO_BINARY_TYPE__DEBUGLINK, 71 DSO_BINARY_TYPE__BUILD_ID_CACHE, 72 DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO, 73 DSO_BINARY_TYPE__FEDORA_DEBUGINFO, 74 DSO_BINARY_TYPE__UBUNTU_DEBUGINFO, 75 DSO_BINARY_TYPE__BUILDID_DEBUGINFO, 76 DSO_BINARY_TYPE__SYSTEM_PATH_DSO, 77 DSO_BINARY_TYPE__GUEST_KMODULE, 78 DSO_BINARY_TYPE__GUEST_KMODULE_COMP, 79 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE, 80 DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP, 81 DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO, 82 DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO, 83 DSO_BINARY_TYPE__NOT_FOUND, 84 }; 85 86 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab) 87 88 static bool symbol_type__filter(char symbol_type) 89 { 90 symbol_type = toupper(symbol_type); 91 return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B'; 92 } 93 94 static int prefix_underscores_count(const char *str) 95 { 96 const char *tail = str; 97 98 while (*tail == '_') 99 tail++; 100 101 return tail - str; 102 } 103 104 const char * __weak arch__normalize_symbol_name(const char *name) 105 { 106 return name; 107 } 108 109 int __weak arch__compare_symbol_names(const char *namea, const char *nameb) 110 { 111 return strcmp(namea, nameb); 112 } 113 114 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb, 115 unsigned int n) 116 { 117 return strncmp(namea, nameb, n); 118 } 119 120 int __weak arch__choose_best_symbol(struct symbol *syma, 121 struct symbol *symb __maybe_unused) 122 { 123 /* Avoid "SyS" kernel syscall aliases */ 124 if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3)) 125 return SYMBOL_B; 126 if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10)) 127 return SYMBOL_B; 128 129 return SYMBOL_A; 130 } 131 132 static int choose_best_symbol(struct symbol *syma, struct symbol *symb) 133 { 134 s64 a; 135 s64 b; 136 size_t na, nb; 137 138 /* Prefer a symbol with non zero length */ 139 a = syma->end - syma->start; 140 b = symb->end - symb->start; 141 if ((b == 0) && (a > 0)) 142 return SYMBOL_A; 143 else if ((a == 0) && (b > 0)) 144 return SYMBOL_B; 145 146 /* Prefer a non weak symbol over a weak one */ 147 a = syma->binding == STB_WEAK; 148 b = symb->binding == STB_WEAK; 149 if (b && !a) 150 return SYMBOL_A; 151 if (a && !b) 152 return SYMBOL_B; 153 154 /* Prefer a global symbol over a non global one */ 155 a = syma->binding == STB_GLOBAL; 156 b = symb->binding == STB_GLOBAL; 157 if (a && !b) 158 return SYMBOL_A; 159 if (b && !a) 160 return SYMBOL_B; 161 162 /* Prefer a symbol with less underscores */ 163 a = prefix_underscores_count(syma->name); 164 b = prefix_underscores_count(symb->name); 165 if (b > a) 166 return SYMBOL_A; 167 else if (a > b) 168 return SYMBOL_B; 169 170 /* Choose the symbol with the longest name */ 171 na = strlen(syma->name); 172 nb = strlen(symb->name); 173 if (na > nb) 174 return SYMBOL_A; 175 else if (na < nb) 176 return SYMBOL_B; 177 178 return arch__choose_best_symbol(syma, symb); 179 } 180 181 void symbols__fixup_duplicate(struct rb_root_cached *symbols) 182 { 183 struct rb_node *nd; 184 struct symbol *curr, *next; 185 186 if (symbol_conf.allow_aliases) 187 return; 188 189 nd = rb_first_cached(symbols); 190 191 while (nd) { 192 curr = rb_entry(nd, struct symbol, rb_node); 193 again: 194 nd = rb_next(&curr->rb_node); 195 next = rb_entry(nd, struct symbol, rb_node); 196 197 if (!nd) 198 break; 199 200 if (curr->start != next->start) 201 continue; 202 203 if (choose_best_symbol(curr, next) == SYMBOL_A) { 204 rb_erase_cached(&next->rb_node, symbols); 205 symbol__delete(next); 206 goto again; 207 } else { 208 nd = rb_next(&curr->rb_node); 209 rb_erase_cached(&curr->rb_node, symbols); 210 symbol__delete(curr); 211 } 212 } 213 } 214 215 /* Update zero-sized symbols using the address of the next symbol */ 216 void symbols__fixup_end(struct rb_root_cached *symbols, bool is_kallsyms) 217 { 218 struct rb_node *nd, *prevnd = rb_first_cached(symbols); 219 struct symbol *curr, *prev; 220 221 if (prevnd == NULL) 222 return; 223 224 curr = rb_entry(prevnd, struct symbol, rb_node); 225 226 for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) { 227 prev = curr; 228 curr = rb_entry(nd, struct symbol, rb_node); 229 230 /* 231 * On some architecture kernel text segment start is located at 232 * some low memory address, while modules are located at high 233 * memory addresses (or vice versa). The gap between end of 234 * kernel text segment and beginning of first module's text 235 * segment is very big. Therefore do not fill this gap and do 236 * not assign it to the kernel dso map (kallsyms). 237 * 238 * In kallsyms, it determines module symbols using '[' character 239 * like in: 240 * ffffffffc1937000 T hdmi_driver_init [snd_hda_codec_hdmi] 241 */ 242 if (prev->end == prev->start) { 243 /* Last kernel/module symbol mapped to end of page */ 244 if (is_kallsyms && (!strchr(prev->name, '[') != 245 !strchr(curr->name, '['))) 246 prev->end = roundup(prev->end + 4096, 4096); 247 else 248 prev->end = curr->start; 249 250 pr_debug4("%s sym:%s end:%#" PRIx64 "\n", 251 __func__, prev->name, prev->end); 252 } 253 } 254 255 /* Last entry */ 256 if (curr->end == curr->start) 257 curr->end = roundup(curr->start, 4096) + 4096; 258 } 259 260 void maps__fixup_end(struct maps *maps) 261 { 262 struct map *prev = NULL, *curr; 263 264 down_write(&maps->lock); 265 266 maps__for_each_entry(maps, curr) { 267 if (prev != NULL && !prev->end) 268 prev->end = curr->start; 269 270 prev = curr; 271 } 272 273 /* 274 * We still haven't the actual symbols, so guess the 275 * last map final address. 276 */ 277 if (curr && !curr->end) 278 curr->end = ~0ULL; 279 280 up_write(&maps->lock); 281 } 282 283 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name) 284 { 285 size_t namelen = strlen(name) + 1; 286 struct symbol *sym = calloc(1, (symbol_conf.priv_size + 287 sizeof(*sym) + namelen)); 288 if (sym == NULL) 289 return NULL; 290 291 if (symbol_conf.priv_size) { 292 if (symbol_conf.init_annotation) { 293 struct annotation *notes = (void *)sym; 294 annotation__init(notes); 295 } 296 sym = ((void *)sym) + symbol_conf.priv_size; 297 } 298 299 sym->start = start; 300 sym->end = len ? start + len : start; 301 sym->type = type; 302 sym->binding = binding; 303 sym->namelen = namelen - 1; 304 305 pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n", 306 __func__, name, start, sym->end); 307 memcpy(sym->name, name, namelen); 308 309 return sym; 310 } 311 312 void symbol__delete(struct symbol *sym) 313 { 314 if (symbol_conf.priv_size) { 315 if (symbol_conf.init_annotation) { 316 struct annotation *notes = symbol__annotation(sym); 317 318 annotation__exit(notes); 319 } 320 } 321 free(((void *)sym) - symbol_conf.priv_size); 322 } 323 324 void symbols__delete(struct rb_root_cached *symbols) 325 { 326 struct symbol *pos; 327 struct rb_node *next = rb_first_cached(symbols); 328 329 while (next) { 330 pos = rb_entry(next, struct symbol, rb_node); 331 next = rb_next(&pos->rb_node); 332 rb_erase_cached(&pos->rb_node, symbols); 333 symbol__delete(pos); 334 } 335 } 336 337 void __symbols__insert(struct rb_root_cached *symbols, 338 struct symbol *sym, bool kernel) 339 { 340 struct rb_node **p = &symbols->rb_root.rb_node; 341 struct rb_node *parent = NULL; 342 const u64 ip = sym->start; 343 struct symbol *s; 344 bool leftmost = true; 345 346 if (kernel) { 347 const char *name = sym->name; 348 /* 349 * ppc64 uses function descriptors and appends a '.' to the 350 * start of every instruction address. Remove it. 351 */ 352 if (name[0] == '.') 353 name++; 354 sym->idle = symbol__is_idle(name); 355 } 356 357 while (*p != NULL) { 358 parent = *p; 359 s = rb_entry(parent, struct symbol, rb_node); 360 if (ip < s->start) 361 p = &(*p)->rb_left; 362 else { 363 p = &(*p)->rb_right; 364 leftmost = false; 365 } 366 } 367 rb_link_node(&sym->rb_node, parent, p); 368 rb_insert_color_cached(&sym->rb_node, symbols, leftmost); 369 } 370 371 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym) 372 { 373 __symbols__insert(symbols, sym, false); 374 } 375 376 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip) 377 { 378 struct rb_node *n; 379 380 if (symbols == NULL) 381 return NULL; 382 383 n = symbols->rb_root.rb_node; 384 385 while (n) { 386 struct symbol *s = rb_entry(n, struct symbol, rb_node); 387 388 if (ip < s->start) 389 n = n->rb_left; 390 else if (ip > s->end || (ip == s->end && ip != s->start)) 391 n = n->rb_right; 392 else 393 return s; 394 } 395 396 return NULL; 397 } 398 399 static struct symbol *symbols__first(struct rb_root_cached *symbols) 400 { 401 struct rb_node *n = rb_first_cached(symbols); 402 403 if (n) 404 return rb_entry(n, struct symbol, rb_node); 405 406 return NULL; 407 } 408 409 static struct symbol *symbols__last(struct rb_root_cached *symbols) 410 { 411 struct rb_node *n = rb_last(&symbols->rb_root); 412 413 if (n) 414 return rb_entry(n, struct symbol, rb_node); 415 416 return NULL; 417 } 418 419 static struct symbol *symbols__next(struct symbol *sym) 420 { 421 struct rb_node *n = rb_next(&sym->rb_node); 422 423 if (n) 424 return rb_entry(n, struct symbol, rb_node); 425 426 return NULL; 427 } 428 429 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym) 430 { 431 struct rb_node **p = &symbols->rb_root.rb_node; 432 struct rb_node *parent = NULL; 433 struct symbol_name_rb_node *symn, *s; 434 bool leftmost = true; 435 436 symn = container_of(sym, struct symbol_name_rb_node, sym); 437 438 while (*p != NULL) { 439 parent = *p; 440 s = rb_entry(parent, struct symbol_name_rb_node, rb_node); 441 if (strcmp(sym->name, s->sym.name) < 0) 442 p = &(*p)->rb_left; 443 else { 444 p = &(*p)->rb_right; 445 leftmost = false; 446 } 447 } 448 rb_link_node(&symn->rb_node, parent, p); 449 rb_insert_color_cached(&symn->rb_node, symbols, leftmost); 450 } 451 452 static void symbols__sort_by_name(struct rb_root_cached *symbols, 453 struct rb_root_cached *source) 454 { 455 struct rb_node *nd; 456 457 for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) { 458 struct symbol *pos = rb_entry(nd, struct symbol, rb_node); 459 symbols__insert_by_name(symbols, pos); 460 } 461 } 462 463 int symbol__match_symbol_name(const char *name, const char *str, 464 enum symbol_tag_include includes) 465 { 466 const char *versioning; 467 468 if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY && 469 (versioning = strstr(name, "@@"))) { 470 int len = strlen(str); 471 472 if (len < versioning - name) 473 len = versioning - name; 474 475 return arch__compare_symbol_names_n(name, str, len); 476 } else 477 return arch__compare_symbol_names(name, str); 478 } 479 480 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols, 481 const char *name, 482 enum symbol_tag_include includes) 483 { 484 struct rb_node *n; 485 struct symbol_name_rb_node *s = NULL; 486 487 if (symbols == NULL) 488 return NULL; 489 490 n = symbols->rb_root.rb_node; 491 492 while (n) { 493 int cmp; 494 495 s = rb_entry(n, struct symbol_name_rb_node, rb_node); 496 cmp = symbol__match_symbol_name(s->sym.name, name, includes); 497 498 if (cmp > 0) 499 n = n->rb_left; 500 else if (cmp < 0) 501 n = n->rb_right; 502 else 503 break; 504 } 505 506 if (n == NULL) 507 return NULL; 508 509 if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY) 510 /* return first symbol that has same name (if any) */ 511 for (n = rb_prev(n); n; n = rb_prev(n)) { 512 struct symbol_name_rb_node *tmp; 513 514 tmp = rb_entry(n, struct symbol_name_rb_node, rb_node); 515 if (arch__compare_symbol_names(tmp->sym.name, s->sym.name)) 516 break; 517 518 s = tmp; 519 } 520 521 return &s->sym; 522 } 523 524 void dso__reset_find_symbol_cache(struct dso *dso) 525 { 526 dso->last_find_result.addr = 0; 527 dso->last_find_result.symbol = NULL; 528 } 529 530 void dso__insert_symbol(struct dso *dso, struct symbol *sym) 531 { 532 __symbols__insert(&dso->symbols, sym, dso->kernel); 533 534 /* update the symbol cache if necessary */ 535 if (dso->last_find_result.addr >= sym->start && 536 (dso->last_find_result.addr < sym->end || 537 sym->start == sym->end)) { 538 dso->last_find_result.symbol = sym; 539 } 540 } 541 542 void dso__delete_symbol(struct dso *dso, struct symbol *sym) 543 { 544 rb_erase_cached(&sym->rb_node, &dso->symbols); 545 symbol__delete(sym); 546 dso__reset_find_symbol_cache(dso); 547 } 548 549 struct symbol *dso__find_symbol(struct dso *dso, u64 addr) 550 { 551 if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) { 552 dso->last_find_result.addr = addr; 553 dso->last_find_result.symbol = symbols__find(&dso->symbols, addr); 554 } 555 556 return dso->last_find_result.symbol; 557 } 558 559 struct symbol *dso__first_symbol(struct dso *dso) 560 { 561 return symbols__first(&dso->symbols); 562 } 563 564 struct symbol *dso__last_symbol(struct dso *dso) 565 { 566 return symbols__last(&dso->symbols); 567 } 568 569 struct symbol *dso__next_symbol(struct symbol *sym) 570 { 571 return symbols__next(sym); 572 } 573 574 struct symbol *symbol__next_by_name(struct symbol *sym) 575 { 576 struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym); 577 struct rb_node *n = rb_next(&s->rb_node); 578 579 return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL; 580 } 581 582 /* 583 * Returns first symbol that matched with @name. 584 */ 585 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name) 586 { 587 struct symbol *s = symbols__find_by_name(&dso->symbol_names, name, 588 SYMBOL_TAG_INCLUDE__NONE); 589 if (!s) 590 s = symbols__find_by_name(&dso->symbol_names, name, 591 SYMBOL_TAG_INCLUDE__DEFAULT_ONLY); 592 return s; 593 } 594 595 void dso__sort_by_name(struct dso *dso) 596 { 597 dso__set_sorted_by_name(dso); 598 return symbols__sort_by_name(&dso->symbol_names, &dso->symbols); 599 } 600 601 /* 602 * While we find nice hex chars, build a long_val. 603 * Return number of chars processed. 604 */ 605 static int hex2u64(const char *ptr, u64 *long_val) 606 { 607 char *p; 608 609 *long_val = strtoull(ptr, &p, 16); 610 611 return p - ptr; 612 } 613 614 615 int modules__parse(const char *filename, void *arg, 616 int (*process_module)(void *arg, const char *name, 617 u64 start, u64 size)) 618 { 619 char *line = NULL; 620 size_t n; 621 FILE *file; 622 int err = 0; 623 624 file = fopen(filename, "r"); 625 if (file == NULL) 626 return -1; 627 628 while (1) { 629 char name[PATH_MAX]; 630 u64 start, size; 631 char *sep, *endptr; 632 ssize_t line_len; 633 634 line_len = getline(&line, &n, file); 635 if (line_len < 0) { 636 if (feof(file)) 637 break; 638 err = -1; 639 goto out; 640 } 641 642 if (!line) { 643 err = -1; 644 goto out; 645 } 646 647 line[--line_len] = '\0'; /* \n */ 648 649 sep = strrchr(line, 'x'); 650 if (sep == NULL) 651 continue; 652 653 hex2u64(sep + 1, &start); 654 655 sep = strchr(line, ' '); 656 if (sep == NULL) 657 continue; 658 659 *sep = '\0'; 660 661 scnprintf(name, sizeof(name), "[%s]", line); 662 663 size = strtoul(sep + 1, &endptr, 0); 664 if (*endptr != ' ' && *endptr != '\t') 665 continue; 666 667 err = process_module(arg, name, start, size); 668 if (err) 669 break; 670 } 671 out: 672 free(line); 673 fclose(file); 674 return err; 675 } 676 677 /* 678 * These are symbols in the kernel image, so make sure that 679 * sym is from a kernel DSO. 680 */ 681 static bool symbol__is_idle(const char *name) 682 { 683 const char * const idle_symbols[] = { 684 "acpi_idle_do_entry", 685 "acpi_processor_ffh_cstate_enter", 686 "arch_cpu_idle", 687 "cpu_idle", 688 "cpu_startup_entry", 689 "idle_cpu", 690 "intel_idle", 691 "default_idle", 692 "native_safe_halt", 693 "enter_idle", 694 "exit_idle", 695 "mwait_idle", 696 "mwait_idle_with_hints", 697 "mwait_idle_with_hints.constprop.0", 698 "poll_idle", 699 "ppc64_runlatch_off", 700 "pseries_dedicated_idle_sleep", 701 "psw_idle", 702 "psw_idle_exit", 703 NULL 704 }; 705 int i; 706 static struct strlist *idle_symbols_list; 707 708 if (idle_symbols_list) 709 return strlist__has_entry(idle_symbols_list, name); 710 711 idle_symbols_list = strlist__new(NULL, NULL); 712 713 for (i = 0; idle_symbols[i]; i++) 714 strlist__add(idle_symbols_list, idle_symbols[i]); 715 716 return strlist__has_entry(idle_symbols_list, name); 717 } 718 719 static int map__process_kallsym_symbol(void *arg, const char *name, 720 char type, u64 start) 721 { 722 struct symbol *sym; 723 struct dso *dso = arg; 724 struct rb_root_cached *root = &dso->symbols; 725 726 if (!symbol_type__filter(type)) 727 return 0; 728 729 /* Ignore local symbols for ARM modules */ 730 if (name[0] == '$') 731 return 0; 732 733 /* 734 * module symbols are not sorted so we add all 735 * symbols, setting length to 0, and rely on 736 * symbols__fixup_end() to fix it up. 737 */ 738 sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name); 739 if (sym == NULL) 740 return -ENOMEM; 741 /* 742 * We will pass the symbols to the filter later, in 743 * map__split_kallsyms, when we have split the maps per module 744 */ 745 __symbols__insert(root, sym, !strchr(name, '[')); 746 747 return 0; 748 } 749 750 /* 751 * Loads the function entries in /proc/kallsyms into kernel_map->dso, 752 * so that we can in the next step set the symbol ->end address and then 753 * call kernel_maps__split_kallsyms. 754 */ 755 static int dso__load_all_kallsyms(struct dso *dso, const char *filename) 756 { 757 return kallsyms__parse(filename, dso, map__process_kallsym_symbol); 758 } 759 760 static int maps__split_kallsyms_for_kcore(struct maps *kmaps, struct dso *dso) 761 { 762 struct map *curr_map; 763 struct symbol *pos; 764 int count = 0; 765 struct rb_root_cached old_root = dso->symbols; 766 struct rb_root_cached *root = &dso->symbols; 767 struct rb_node *next = rb_first_cached(root); 768 769 if (!kmaps) 770 return -1; 771 772 *root = RB_ROOT_CACHED; 773 774 while (next) { 775 char *module; 776 777 pos = rb_entry(next, struct symbol, rb_node); 778 next = rb_next(&pos->rb_node); 779 780 rb_erase_cached(&pos->rb_node, &old_root); 781 RB_CLEAR_NODE(&pos->rb_node); 782 module = strchr(pos->name, '\t'); 783 if (module) 784 *module = '\0'; 785 786 curr_map = maps__find(kmaps, pos->start); 787 788 if (!curr_map) { 789 symbol__delete(pos); 790 continue; 791 } 792 793 pos->start -= curr_map->start - curr_map->pgoff; 794 if (pos->end > curr_map->end) 795 pos->end = curr_map->end; 796 if (pos->end) 797 pos->end -= curr_map->start - curr_map->pgoff; 798 symbols__insert(&curr_map->dso->symbols, pos); 799 ++count; 800 } 801 802 /* Symbols have been adjusted */ 803 dso->adjust_symbols = 1; 804 805 return count; 806 } 807 808 /* 809 * Split the symbols into maps, making sure there are no overlaps, i.e. the 810 * kernel range is broken in several maps, named [kernel].N, as we don't have 811 * the original ELF section names vmlinux have. 812 */ 813 static int maps__split_kallsyms(struct maps *kmaps, struct dso *dso, u64 delta, 814 struct map *initial_map) 815 { 816 struct machine *machine; 817 struct map *curr_map = initial_map; 818 struct symbol *pos; 819 int count = 0, moved = 0; 820 struct rb_root_cached *root = &dso->symbols; 821 struct rb_node *next = rb_first_cached(root); 822 int kernel_range = 0; 823 bool x86_64; 824 825 if (!kmaps) 826 return -1; 827 828 machine = kmaps->machine; 829 830 x86_64 = machine__is(machine, "x86_64"); 831 832 while (next) { 833 char *module; 834 835 pos = rb_entry(next, struct symbol, rb_node); 836 next = rb_next(&pos->rb_node); 837 838 module = strchr(pos->name, '\t'); 839 if (module) { 840 if (!symbol_conf.use_modules) 841 goto discard_symbol; 842 843 *module++ = '\0'; 844 845 if (strcmp(curr_map->dso->short_name, module)) { 846 if (curr_map != initial_map && 847 dso->kernel == DSO_SPACE__KERNEL_GUEST && 848 machine__is_default_guest(machine)) { 849 /* 850 * We assume all symbols of a module are 851 * continuous in * kallsyms, so curr_map 852 * points to a module and all its 853 * symbols are in its kmap. Mark it as 854 * loaded. 855 */ 856 dso__set_loaded(curr_map->dso); 857 } 858 859 curr_map = maps__find_by_name(kmaps, module); 860 if (curr_map == NULL) { 861 pr_debug("%s/proc/{kallsyms,modules} " 862 "inconsistency while looking " 863 "for \"%s\" module!\n", 864 machine->root_dir, module); 865 curr_map = initial_map; 866 goto discard_symbol; 867 } 868 869 if (curr_map->dso->loaded && 870 !machine__is_default_guest(machine)) 871 goto discard_symbol; 872 } 873 /* 874 * So that we look just like we get from .ko files, 875 * i.e. not prelinked, relative to initial_map->start. 876 */ 877 pos->start = curr_map->map_ip(curr_map, pos->start); 878 pos->end = curr_map->map_ip(curr_map, pos->end); 879 } else if (x86_64 && is_entry_trampoline(pos->name)) { 880 /* 881 * These symbols are not needed anymore since the 882 * trampoline maps refer to the text section and it's 883 * symbols instead. Avoid having to deal with 884 * relocations, and the assumption that the first symbol 885 * is the start of kernel text, by simply removing the 886 * symbols at this point. 887 */ 888 goto discard_symbol; 889 } else if (curr_map != initial_map) { 890 char dso_name[PATH_MAX]; 891 struct dso *ndso; 892 893 if (delta) { 894 /* Kernel was relocated at boot time */ 895 pos->start -= delta; 896 pos->end -= delta; 897 } 898 899 if (count == 0) { 900 curr_map = initial_map; 901 goto add_symbol; 902 } 903 904 if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 905 snprintf(dso_name, sizeof(dso_name), 906 "[guest.kernel].%d", 907 kernel_range++); 908 else 909 snprintf(dso_name, sizeof(dso_name), 910 "[kernel].%d", 911 kernel_range++); 912 913 ndso = dso__new(dso_name); 914 if (ndso == NULL) 915 return -1; 916 917 ndso->kernel = dso->kernel; 918 919 curr_map = map__new2(pos->start, ndso); 920 if (curr_map == NULL) { 921 dso__put(ndso); 922 return -1; 923 } 924 925 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 926 maps__insert(kmaps, curr_map); 927 ++kernel_range; 928 } else if (delta) { 929 /* Kernel was relocated at boot time */ 930 pos->start -= delta; 931 pos->end -= delta; 932 } 933 add_symbol: 934 if (curr_map != initial_map) { 935 rb_erase_cached(&pos->rb_node, root); 936 symbols__insert(&curr_map->dso->symbols, pos); 937 ++moved; 938 } else 939 ++count; 940 941 continue; 942 discard_symbol: 943 rb_erase_cached(&pos->rb_node, root); 944 symbol__delete(pos); 945 } 946 947 if (curr_map != initial_map && 948 dso->kernel == DSO_SPACE__KERNEL_GUEST && 949 machine__is_default_guest(kmaps->machine)) { 950 dso__set_loaded(curr_map->dso); 951 } 952 953 return count + moved; 954 } 955 956 bool symbol__restricted_filename(const char *filename, 957 const char *restricted_filename) 958 { 959 bool restricted = false; 960 961 if (symbol_conf.kptr_restrict) { 962 char *r = realpath(filename, NULL); 963 964 if (r != NULL) { 965 restricted = strcmp(r, restricted_filename) == 0; 966 free(r); 967 return restricted; 968 } 969 } 970 971 return restricted; 972 } 973 974 struct module_info { 975 struct rb_node rb_node; 976 char *name; 977 u64 start; 978 }; 979 980 static void add_module(struct module_info *mi, struct rb_root *modules) 981 { 982 struct rb_node **p = &modules->rb_node; 983 struct rb_node *parent = NULL; 984 struct module_info *m; 985 986 while (*p != NULL) { 987 parent = *p; 988 m = rb_entry(parent, struct module_info, rb_node); 989 if (strcmp(mi->name, m->name) < 0) 990 p = &(*p)->rb_left; 991 else 992 p = &(*p)->rb_right; 993 } 994 rb_link_node(&mi->rb_node, parent, p); 995 rb_insert_color(&mi->rb_node, modules); 996 } 997 998 static void delete_modules(struct rb_root *modules) 999 { 1000 struct module_info *mi; 1001 struct rb_node *next = rb_first(modules); 1002 1003 while (next) { 1004 mi = rb_entry(next, struct module_info, rb_node); 1005 next = rb_next(&mi->rb_node); 1006 rb_erase(&mi->rb_node, modules); 1007 zfree(&mi->name); 1008 free(mi); 1009 } 1010 } 1011 1012 static struct module_info *find_module(const char *name, 1013 struct rb_root *modules) 1014 { 1015 struct rb_node *n = modules->rb_node; 1016 1017 while (n) { 1018 struct module_info *m; 1019 int cmp; 1020 1021 m = rb_entry(n, struct module_info, rb_node); 1022 cmp = strcmp(name, m->name); 1023 if (cmp < 0) 1024 n = n->rb_left; 1025 else if (cmp > 0) 1026 n = n->rb_right; 1027 else 1028 return m; 1029 } 1030 1031 return NULL; 1032 } 1033 1034 static int __read_proc_modules(void *arg, const char *name, u64 start, 1035 u64 size __maybe_unused) 1036 { 1037 struct rb_root *modules = arg; 1038 struct module_info *mi; 1039 1040 mi = zalloc(sizeof(struct module_info)); 1041 if (!mi) 1042 return -ENOMEM; 1043 1044 mi->name = strdup(name); 1045 mi->start = start; 1046 1047 if (!mi->name) { 1048 free(mi); 1049 return -ENOMEM; 1050 } 1051 1052 add_module(mi, modules); 1053 1054 return 0; 1055 } 1056 1057 static int read_proc_modules(const char *filename, struct rb_root *modules) 1058 { 1059 if (symbol__restricted_filename(filename, "/proc/modules")) 1060 return -1; 1061 1062 if (modules__parse(filename, modules, __read_proc_modules)) { 1063 delete_modules(modules); 1064 return -1; 1065 } 1066 1067 return 0; 1068 } 1069 1070 int compare_proc_modules(const char *from, const char *to) 1071 { 1072 struct rb_root from_modules = RB_ROOT; 1073 struct rb_root to_modules = RB_ROOT; 1074 struct rb_node *from_node, *to_node; 1075 struct module_info *from_m, *to_m; 1076 int ret = -1; 1077 1078 if (read_proc_modules(from, &from_modules)) 1079 return -1; 1080 1081 if (read_proc_modules(to, &to_modules)) 1082 goto out_delete_from; 1083 1084 from_node = rb_first(&from_modules); 1085 to_node = rb_first(&to_modules); 1086 while (from_node) { 1087 if (!to_node) 1088 break; 1089 1090 from_m = rb_entry(from_node, struct module_info, rb_node); 1091 to_m = rb_entry(to_node, struct module_info, rb_node); 1092 1093 if (from_m->start != to_m->start || 1094 strcmp(from_m->name, to_m->name)) 1095 break; 1096 1097 from_node = rb_next(from_node); 1098 to_node = rb_next(to_node); 1099 } 1100 1101 if (!from_node && !to_node) 1102 ret = 0; 1103 1104 delete_modules(&to_modules); 1105 out_delete_from: 1106 delete_modules(&from_modules); 1107 1108 return ret; 1109 } 1110 1111 static int do_validate_kcore_modules(const char *filename, struct maps *kmaps) 1112 { 1113 struct rb_root modules = RB_ROOT; 1114 struct map *old_map; 1115 int err; 1116 1117 err = read_proc_modules(filename, &modules); 1118 if (err) 1119 return err; 1120 1121 maps__for_each_entry(kmaps, old_map) { 1122 struct module_info *mi; 1123 1124 if (!__map__is_kmodule(old_map)) { 1125 continue; 1126 } 1127 1128 /* Module must be in memory at the same address */ 1129 mi = find_module(old_map->dso->short_name, &modules); 1130 if (!mi || mi->start != old_map->start) { 1131 err = -EINVAL; 1132 goto out; 1133 } 1134 } 1135 out: 1136 delete_modules(&modules); 1137 return err; 1138 } 1139 1140 /* 1141 * If kallsyms is referenced by name then we look for filename in the same 1142 * directory. 1143 */ 1144 static bool filename_from_kallsyms_filename(char *filename, 1145 const char *base_name, 1146 const char *kallsyms_filename) 1147 { 1148 char *name; 1149 1150 strcpy(filename, kallsyms_filename); 1151 name = strrchr(filename, '/'); 1152 if (!name) 1153 return false; 1154 1155 name += 1; 1156 1157 if (!strcmp(name, "kallsyms")) { 1158 strcpy(name, base_name); 1159 return true; 1160 } 1161 1162 return false; 1163 } 1164 1165 static int validate_kcore_modules(const char *kallsyms_filename, 1166 struct map *map) 1167 { 1168 struct maps *kmaps = map__kmaps(map); 1169 char modules_filename[PATH_MAX]; 1170 1171 if (!kmaps) 1172 return -EINVAL; 1173 1174 if (!filename_from_kallsyms_filename(modules_filename, "modules", 1175 kallsyms_filename)) 1176 return -EINVAL; 1177 1178 if (do_validate_kcore_modules(modules_filename, kmaps)) 1179 return -EINVAL; 1180 1181 return 0; 1182 } 1183 1184 static int validate_kcore_addresses(const char *kallsyms_filename, 1185 struct map *map) 1186 { 1187 struct kmap *kmap = map__kmap(map); 1188 1189 if (!kmap) 1190 return -EINVAL; 1191 1192 if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) { 1193 u64 start; 1194 1195 if (kallsyms__get_function_start(kallsyms_filename, 1196 kmap->ref_reloc_sym->name, &start)) 1197 return -ENOENT; 1198 if (start != kmap->ref_reloc_sym->addr) 1199 return -EINVAL; 1200 } 1201 1202 return validate_kcore_modules(kallsyms_filename, map); 1203 } 1204 1205 struct kcore_mapfn_data { 1206 struct dso *dso; 1207 struct list_head maps; 1208 }; 1209 1210 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data) 1211 { 1212 struct kcore_mapfn_data *md = data; 1213 struct map *map; 1214 1215 map = map__new2(start, md->dso); 1216 if (map == NULL) 1217 return -ENOMEM; 1218 1219 map->end = map->start + len; 1220 map->pgoff = pgoff; 1221 1222 list_add(&map->node, &md->maps); 1223 1224 return 0; 1225 } 1226 1227 /* 1228 * Merges map into maps by splitting the new map within the existing map 1229 * regions. 1230 */ 1231 int maps__merge_in(struct maps *kmaps, struct map *new_map) 1232 { 1233 struct map *old_map; 1234 LIST_HEAD(merged); 1235 1236 maps__for_each_entry(kmaps, old_map) { 1237 /* no overload with this one */ 1238 if (new_map->end < old_map->start || 1239 new_map->start >= old_map->end) 1240 continue; 1241 1242 if (new_map->start < old_map->start) { 1243 /* 1244 * |new...... 1245 * |old.... 1246 */ 1247 if (new_map->end < old_map->end) { 1248 /* 1249 * |new......| -> |new..| 1250 * |old....| -> |old....| 1251 */ 1252 new_map->end = old_map->start; 1253 } else { 1254 /* 1255 * |new.............| -> |new..| |new..| 1256 * |old....| -> |old....| 1257 */ 1258 struct map *m = map__clone(new_map); 1259 1260 if (!m) 1261 return -ENOMEM; 1262 1263 m->end = old_map->start; 1264 list_add_tail(&m->node, &merged); 1265 new_map->pgoff += old_map->end - new_map->start; 1266 new_map->start = old_map->end; 1267 } 1268 } else { 1269 /* 1270 * |new...... 1271 * |old.... 1272 */ 1273 if (new_map->end < old_map->end) { 1274 /* 1275 * |new..| -> x 1276 * |old.........| -> |old.........| 1277 */ 1278 map__put(new_map); 1279 new_map = NULL; 1280 break; 1281 } else { 1282 /* 1283 * |new......| -> |new...| 1284 * |old....| -> |old....| 1285 */ 1286 new_map->pgoff += old_map->end - new_map->start; 1287 new_map->start = old_map->end; 1288 } 1289 } 1290 } 1291 1292 while (!list_empty(&merged)) { 1293 old_map = list_entry(merged.next, struct map, node); 1294 list_del_init(&old_map->node); 1295 maps__insert(kmaps, old_map); 1296 map__put(old_map); 1297 } 1298 1299 if (new_map) { 1300 maps__insert(kmaps, new_map); 1301 map__put(new_map); 1302 } 1303 return 0; 1304 } 1305 1306 static int dso__load_kcore(struct dso *dso, struct map *map, 1307 const char *kallsyms_filename) 1308 { 1309 struct maps *kmaps = map__kmaps(map); 1310 struct kcore_mapfn_data md; 1311 struct map *old_map, *new_map, *replacement_map = NULL, *next; 1312 struct machine *machine; 1313 bool is_64_bit; 1314 int err, fd; 1315 char kcore_filename[PATH_MAX]; 1316 u64 stext; 1317 1318 if (!kmaps) 1319 return -EINVAL; 1320 1321 machine = kmaps->machine; 1322 1323 /* This function requires that the map is the kernel map */ 1324 if (!__map__is_kernel(map)) 1325 return -EINVAL; 1326 1327 if (!filename_from_kallsyms_filename(kcore_filename, "kcore", 1328 kallsyms_filename)) 1329 return -EINVAL; 1330 1331 /* Modules and kernel must be present at their original addresses */ 1332 if (validate_kcore_addresses(kallsyms_filename, map)) 1333 return -EINVAL; 1334 1335 md.dso = dso; 1336 INIT_LIST_HEAD(&md.maps); 1337 1338 fd = open(kcore_filename, O_RDONLY); 1339 if (fd < 0) { 1340 pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n", 1341 kcore_filename); 1342 return -EINVAL; 1343 } 1344 1345 /* Read new maps into temporary lists */ 1346 err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md, 1347 &is_64_bit); 1348 if (err) 1349 goto out_err; 1350 dso->is_64_bit = is_64_bit; 1351 1352 if (list_empty(&md.maps)) { 1353 err = -EINVAL; 1354 goto out_err; 1355 } 1356 1357 /* Remove old maps */ 1358 maps__for_each_entry_safe(kmaps, old_map, next) { 1359 /* 1360 * We need to preserve eBPF maps even if they are 1361 * covered by kcore, because we need to access 1362 * eBPF dso for source data. 1363 */ 1364 if (old_map != map && !__map__is_bpf_prog(old_map)) 1365 maps__remove(kmaps, old_map); 1366 } 1367 machine->trampolines_mapped = false; 1368 1369 /* Find the kernel map using the '_stext' symbol */ 1370 if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) { 1371 list_for_each_entry(new_map, &md.maps, node) { 1372 if (stext >= new_map->start && stext < new_map->end) { 1373 replacement_map = new_map; 1374 break; 1375 } 1376 } 1377 } 1378 1379 if (!replacement_map) 1380 replacement_map = list_entry(md.maps.next, struct map, node); 1381 1382 /* Add new maps */ 1383 while (!list_empty(&md.maps)) { 1384 new_map = list_entry(md.maps.next, struct map, node); 1385 list_del_init(&new_map->node); 1386 if (new_map == replacement_map) { 1387 map->start = new_map->start; 1388 map->end = new_map->end; 1389 map->pgoff = new_map->pgoff; 1390 map->map_ip = new_map->map_ip; 1391 map->unmap_ip = new_map->unmap_ip; 1392 /* Ensure maps are correctly ordered */ 1393 map__get(map); 1394 maps__remove(kmaps, map); 1395 maps__insert(kmaps, map); 1396 map__put(map); 1397 map__put(new_map); 1398 } else { 1399 /* 1400 * Merge kcore map into existing maps, 1401 * and ensure that current maps (eBPF) 1402 * stay intact. 1403 */ 1404 if (maps__merge_in(kmaps, new_map)) 1405 goto out_err; 1406 } 1407 } 1408 1409 if (machine__is(machine, "x86_64")) { 1410 u64 addr; 1411 1412 /* 1413 * If one of the corresponding symbols is there, assume the 1414 * entry trampoline maps are too. 1415 */ 1416 if (!kallsyms__get_function_start(kallsyms_filename, 1417 ENTRY_TRAMPOLINE_NAME, 1418 &addr)) 1419 machine->trampolines_mapped = true; 1420 } 1421 1422 /* 1423 * Set the data type and long name so that kcore can be read via 1424 * dso__data_read_addr(). 1425 */ 1426 if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 1427 dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE; 1428 else 1429 dso->binary_type = DSO_BINARY_TYPE__KCORE; 1430 dso__set_long_name(dso, strdup(kcore_filename), true); 1431 1432 close(fd); 1433 1434 if (map->prot & PROT_EXEC) 1435 pr_debug("Using %s for kernel object code\n", kcore_filename); 1436 else 1437 pr_debug("Using %s for kernel data\n", kcore_filename); 1438 1439 return 0; 1440 1441 out_err: 1442 while (!list_empty(&md.maps)) { 1443 map = list_entry(md.maps.next, struct map, node); 1444 list_del_init(&map->node); 1445 map__put(map); 1446 } 1447 close(fd); 1448 return -EINVAL; 1449 } 1450 1451 /* 1452 * If the kernel is relocated at boot time, kallsyms won't match. Compute the 1453 * delta based on the relocation reference symbol. 1454 */ 1455 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta) 1456 { 1457 u64 addr; 1458 1459 if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name) 1460 return 0; 1461 1462 if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr)) 1463 return -1; 1464 1465 *delta = addr - kmap->ref_reloc_sym->addr; 1466 return 0; 1467 } 1468 1469 int __dso__load_kallsyms(struct dso *dso, const char *filename, 1470 struct map *map, bool no_kcore) 1471 { 1472 struct kmap *kmap = map__kmap(map); 1473 u64 delta = 0; 1474 1475 if (symbol__restricted_filename(filename, "/proc/kallsyms")) 1476 return -1; 1477 1478 if (!kmap || !kmap->kmaps) 1479 return -1; 1480 1481 if (dso__load_all_kallsyms(dso, filename) < 0) 1482 return -1; 1483 1484 if (kallsyms__delta(kmap, filename, &delta)) 1485 return -1; 1486 1487 symbols__fixup_end(&dso->symbols, true); 1488 symbols__fixup_duplicate(&dso->symbols); 1489 1490 if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 1491 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS; 1492 else 1493 dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS; 1494 1495 if (!no_kcore && !dso__load_kcore(dso, map, filename)) 1496 return maps__split_kallsyms_for_kcore(kmap->kmaps, dso); 1497 else 1498 return maps__split_kallsyms(kmap->kmaps, dso, delta, map); 1499 } 1500 1501 int dso__load_kallsyms(struct dso *dso, const char *filename, 1502 struct map *map) 1503 { 1504 return __dso__load_kallsyms(dso, filename, map, false); 1505 } 1506 1507 static int dso__load_perf_map(const char *map_path, struct dso *dso) 1508 { 1509 char *line = NULL; 1510 size_t n; 1511 FILE *file; 1512 int nr_syms = 0; 1513 1514 file = fopen(map_path, "r"); 1515 if (file == NULL) 1516 goto out_failure; 1517 1518 while (!feof(file)) { 1519 u64 start, size; 1520 struct symbol *sym; 1521 int line_len, len; 1522 1523 line_len = getline(&line, &n, file); 1524 if (line_len < 0) 1525 break; 1526 1527 if (!line) 1528 goto out_failure; 1529 1530 line[--line_len] = '\0'; /* \n */ 1531 1532 len = hex2u64(line, &start); 1533 1534 len++; 1535 if (len + 2 >= line_len) 1536 continue; 1537 1538 len += hex2u64(line + len, &size); 1539 1540 len++; 1541 if (len + 2 >= line_len) 1542 continue; 1543 1544 sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len); 1545 1546 if (sym == NULL) 1547 goto out_delete_line; 1548 1549 symbols__insert(&dso->symbols, sym); 1550 nr_syms++; 1551 } 1552 1553 free(line); 1554 fclose(file); 1555 1556 return nr_syms; 1557 1558 out_delete_line: 1559 free(line); 1560 out_failure: 1561 return -1; 1562 } 1563 1564 #ifdef HAVE_LIBBFD_SUPPORT 1565 #define PACKAGE 'perf' 1566 #include <bfd.h> 1567 1568 static int bfd_symbols__cmpvalue(const void *a, const void *b) 1569 { 1570 const asymbol *as = *(const asymbol **)a, *bs = *(const asymbol **)b; 1571 1572 if (bfd_asymbol_value(as) != bfd_asymbol_value(bs)) 1573 return bfd_asymbol_value(as) - bfd_asymbol_value(bs); 1574 1575 return bfd_asymbol_name(as)[0] - bfd_asymbol_name(bs)[0]; 1576 } 1577 1578 static int bfd2elf_binding(asymbol *symbol) 1579 { 1580 if (symbol->flags & BSF_WEAK) 1581 return STB_WEAK; 1582 if (symbol->flags & BSF_GLOBAL) 1583 return STB_GLOBAL; 1584 if (symbol->flags & BSF_LOCAL) 1585 return STB_LOCAL; 1586 return -1; 1587 } 1588 1589 int dso__load_bfd_symbols(struct dso *dso, const char *debugfile) 1590 { 1591 int err = -1; 1592 long symbols_size, symbols_count, i; 1593 asection *section; 1594 asymbol **symbols, *sym; 1595 struct symbol *symbol; 1596 bfd *abfd; 1597 u64 start, len; 1598 1599 abfd = bfd_openr(debugfile, NULL); 1600 if (!abfd) 1601 return -1; 1602 1603 if (!bfd_check_format(abfd, bfd_object)) { 1604 pr_debug2("%s: cannot read %s bfd file.\n", __func__, 1605 dso->long_name); 1606 goto out_close; 1607 } 1608 1609 if (bfd_get_flavour(abfd) == bfd_target_elf_flavour) 1610 goto out_close; 1611 1612 symbols_size = bfd_get_symtab_upper_bound(abfd); 1613 if (symbols_size == 0) { 1614 bfd_close(abfd); 1615 return 0; 1616 } 1617 1618 if (symbols_size < 0) 1619 goto out_close; 1620 1621 symbols = malloc(symbols_size); 1622 if (!symbols) 1623 goto out_close; 1624 1625 symbols_count = bfd_canonicalize_symtab(abfd, symbols); 1626 if (symbols_count < 0) 1627 goto out_free; 1628 1629 section = bfd_get_section_by_name(abfd, ".text"); 1630 if (section) { 1631 for (i = 0; i < symbols_count; ++i) { 1632 if (!strcmp(bfd_asymbol_name(symbols[i]), "__ImageBase") || 1633 !strcmp(bfd_asymbol_name(symbols[i]), "__image_base__")) 1634 break; 1635 } 1636 if (i < symbols_count) { 1637 /* PE symbols can only have 4 bytes, so use .text high bits */ 1638 dso->text_offset = section->vma - (u32)section->vma; 1639 dso->text_offset += (u32)bfd_asymbol_value(symbols[i]); 1640 } else { 1641 dso->text_offset = section->vma - section->filepos; 1642 } 1643 } 1644 1645 qsort(symbols, symbols_count, sizeof(asymbol *), bfd_symbols__cmpvalue); 1646 1647 #ifdef bfd_get_section 1648 #define bfd_asymbol_section bfd_get_section 1649 #endif 1650 for (i = 0; i < symbols_count; ++i) { 1651 sym = symbols[i]; 1652 section = bfd_asymbol_section(sym); 1653 if (bfd2elf_binding(sym) < 0) 1654 continue; 1655 1656 while (i + 1 < symbols_count && 1657 bfd_asymbol_section(symbols[i + 1]) == section && 1658 bfd2elf_binding(symbols[i + 1]) < 0) 1659 i++; 1660 1661 if (i + 1 < symbols_count && 1662 bfd_asymbol_section(symbols[i + 1]) == section) 1663 len = symbols[i + 1]->value - sym->value; 1664 else 1665 len = section->size - sym->value; 1666 1667 start = bfd_asymbol_value(sym) - dso->text_offset; 1668 symbol = symbol__new(start, len, bfd2elf_binding(sym), STT_FUNC, 1669 bfd_asymbol_name(sym)); 1670 if (!symbol) 1671 goto out_free; 1672 1673 symbols__insert(&dso->symbols, symbol); 1674 } 1675 #ifdef bfd_get_section 1676 #undef bfd_asymbol_section 1677 #endif 1678 1679 symbols__fixup_end(&dso->symbols, false); 1680 symbols__fixup_duplicate(&dso->symbols); 1681 dso->adjust_symbols = 1; 1682 1683 err = 0; 1684 out_free: 1685 free(symbols); 1686 out_close: 1687 bfd_close(abfd); 1688 return err; 1689 } 1690 #endif 1691 1692 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod, 1693 enum dso_binary_type type) 1694 { 1695 switch (type) { 1696 case DSO_BINARY_TYPE__JAVA_JIT: 1697 case DSO_BINARY_TYPE__DEBUGLINK: 1698 case DSO_BINARY_TYPE__SYSTEM_PATH_DSO: 1699 case DSO_BINARY_TYPE__FEDORA_DEBUGINFO: 1700 case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO: 1701 case DSO_BINARY_TYPE__MIXEDUP_UBUNTU_DEBUGINFO: 1702 case DSO_BINARY_TYPE__BUILDID_DEBUGINFO: 1703 case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO: 1704 return !kmod && dso->kernel == DSO_SPACE__USER; 1705 1706 case DSO_BINARY_TYPE__KALLSYMS: 1707 case DSO_BINARY_TYPE__VMLINUX: 1708 case DSO_BINARY_TYPE__KCORE: 1709 return dso->kernel == DSO_SPACE__KERNEL; 1710 1711 case DSO_BINARY_TYPE__GUEST_KALLSYMS: 1712 case DSO_BINARY_TYPE__GUEST_VMLINUX: 1713 case DSO_BINARY_TYPE__GUEST_KCORE: 1714 return dso->kernel == DSO_SPACE__KERNEL_GUEST; 1715 1716 case DSO_BINARY_TYPE__GUEST_KMODULE: 1717 case DSO_BINARY_TYPE__GUEST_KMODULE_COMP: 1718 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE: 1719 case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP: 1720 /* 1721 * kernel modules know their symtab type - it's set when 1722 * creating a module dso in machine__addnew_module_map(). 1723 */ 1724 return kmod && dso->symtab_type == type; 1725 1726 case DSO_BINARY_TYPE__BUILD_ID_CACHE: 1727 case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO: 1728 return true; 1729 1730 case DSO_BINARY_TYPE__BPF_PROG_INFO: 1731 case DSO_BINARY_TYPE__BPF_IMAGE: 1732 case DSO_BINARY_TYPE__OOL: 1733 case DSO_BINARY_TYPE__NOT_FOUND: 1734 default: 1735 return false; 1736 } 1737 } 1738 1739 /* Checks for the existence of the perf-<pid>.map file in two different 1740 * locations. First, if the process is a separate mount namespace, check in 1741 * that namespace using the pid of the innermost pid namespace. If's not in a 1742 * namespace, or the file can't be found there, try in the mount namespace of 1743 * the tracing process using our view of its pid. 1744 */ 1745 static int dso__find_perf_map(char *filebuf, size_t bufsz, 1746 struct nsinfo **nsip) 1747 { 1748 struct nscookie nsc; 1749 struct nsinfo *nsi; 1750 struct nsinfo *nnsi; 1751 int rc = -1; 1752 1753 nsi = *nsip; 1754 1755 if (nsinfo__need_setns(nsi)) { 1756 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__nstgid(nsi)); 1757 nsinfo__mountns_enter(nsi, &nsc); 1758 rc = access(filebuf, R_OK); 1759 nsinfo__mountns_exit(&nsc); 1760 if (rc == 0) 1761 return rc; 1762 } 1763 1764 nnsi = nsinfo__copy(nsi); 1765 if (nnsi) { 1766 nsinfo__put(nsi); 1767 1768 nsinfo__clear_need_setns(nnsi); 1769 snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsinfo__tgid(nnsi)); 1770 *nsip = nnsi; 1771 rc = 0; 1772 } 1773 1774 return rc; 1775 } 1776 1777 int dso__load(struct dso *dso, struct map *map) 1778 { 1779 char *name; 1780 int ret = -1; 1781 u_int i; 1782 struct machine *machine = NULL; 1783 char *root_dir = (char *) ""; 1784 int ss_pos = 0; 1785 struct symsrc ss_[2]; 1786 struct symsrc *syms_ss = NULL, *runtime_ss = NULL; 1787 bool kmod; 1788 bool perfmap; 1789 struct build_id bid; 1790 struct nscookie nsc; 1791 char newmapname[PATH_MAX]; 1792 const char *map_path = dso->long_name; 1793 1794 perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0; 1795 if (perfmap) { 1796 if (dso->nsinfo && (dso__find_perf_map(newmapname, 1797 sizeof(newmapname), &dso->nsinfo) == 0)) { 1798 map_path = newmapname; 1799 } 1800 } 1801 1802 nsinfo__mountns_enter(dso->nsinfo, &nsc); 1803 pthread_mutex_lock(&dso->lock); 1804 1805 /* check again under the dso->lock */ 1806 if (dso__loaded(dso)) { 1807 ret = 1; 1808 goto out; 1809 } 1810 1811 kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE || 1812 dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP || 1813 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE || 1814 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP; 1815 1816 if (dso->kernel && !kmod) { 1817 if (dso->kernel == DSO_SPACE__KERNEL) 1818 ret = dso__load_kernel_sym(dso, map); 1819 else if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 1820 ret = dso__load_guest_kernel_sym(dso, map); 1821 1822 machine = map__kmaps(map)->machine; 1823 if (machine__is(machine, "x86_64")) 1824 machine__map_x86_64_entry_trampolines(machine, dso); 1825 goto out; 1826 } 1827 1828 dso->adjust_symbols = 0; 1829 1830 if (perfmap) { 1831 ret = dso__load_perf_map(map_path, dso); 1832 dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT : 1833 DSO_BINARY_TYPE__NOT_FOUND; 1834 goto out; 1835 } 1836 1837 if (machine) 1838 root_dir = machine->root_dir; 1839 1840 name = malloc(PATH_MAX); 1841 if (!name) 1842 goto out; 1843 1844 /* 1845 * Read the build id if possible. This is required for 1846 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work 1847 */ 1848 if (!dso->has_build_id && 1849 is_regular_file(dso->long_name)) { 1850 __symbol__join_symfs(name, PATH_MAX, dso->long_name); 1851 if (filename__read_build_id(name, &bid) > 0) 1852 dso__set_build_id(dso, &bid); 1853 } 1854 1855 /* 1856 * Iterate over candidate debug images. 1857 * Keep track of "interesting" ones (those which have a symtab, dynsym, 1858 * and/or opd section) for processing. 1859 */ 1860 for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) { 1861 struct symsrc *ss = &ss_[ss_pos]; 1862 bool next_slot = false; 1863 bool is_reg; 1864 bool nsexit; 1865 int bfdrc = -1; 1866 int sirc = -1; 1867 1868 enum dso_binary_type symtab_type = binary_type_symtab[i]; 1869 1870 nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE || 1871 symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO); 1872 1873 if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type)) 1874 continue; 1875 1876 if (dso__read_binary_type_filename(dso, symtab_type, 1877 root_dir, name, PATH_MAX)) 1878 continue; 1879 1880 if (nsexit) 1881 nsinfo__mountns_exit(&nsc); 1882 1883 is_reg = is_regular_file(name); 1884 if (!is_reg && errno == ENOENT && dso->nsinfo) { 1885 char *new_name = filename_with_chroot(dso->nsinfo->pid, 1886 name); 1887 if (new_name) { 1888 is_reg = is_regular_file(new_name); 1889 strlcpy(name, new_name, PATH_MAX); 1890 free(new_name); 1891 } 1892 } 1893 1894 #ifdef HAVE_LIBBFD_SUPPORT 1895 if (is_reg) 1896 bfdrc = dso__load_bfd_symbols(dso, name); 1897 #endif 1898 if (is_reg && bfdrc < 0) 1899 sirc = symsrc__init(ss, dso, name, symtab_type); 1900 1901 if (nsexit) 1902 nsinfo__mountns_enter(dso->nsinfo, &nsc); 1903 1904 if (bfdrc == 0) { 1905 ret = 0; 1906 break; 1907 } 1908 1909 if (!is_reg || sirc < 0) 1910 continue; 1911 1912 if (!syms_ss && symsrc__has_symtab(ss)) { 1913 syms_ss = ss; 1914 next_slot = true; 1915 if (!dso->symsrc_filename) 1916 dso->symsrc_filename = strdup(name); 1917 } 1918 1919 if (!runtime_ss && symsrc__possibly_runtime(ss)) { 1920 runtime_ss = ss; 1921 next_slot = true; 1922 } 1923 1924 if (next_slot) { 1925 ss_pos++; 1926 1927 if (syms_ss && runtime_ss) 1928 break; 1929 } else { 1930 symsrc__destroy(ss); 1931 } 1932 1933 } 1934 1935 if (!runtime_ss && !syms_ss) 1936 goto out_free; 1937 1938 if (runtime_ss && !syms_ss) { 1939 syms_ss = runtime_ss; 1940 } 1941 1942 /* We'll have to hope for the best */ 1943 if (!runtime_ss && syms_ss) 1944 runtime_ss = syms_ss; 1945 1946 if (syms_ss) 1947 ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod); 1948 else 1949 ret = -1; 1950 1951 if (ret > 0) { 1952 int nr_plt; 1953 1954 nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss); 1955 if (nr_plt > 0) 1956 ret += nr_plt; 1957 } 1958 1959 for (; ss_pos > 0; ss_pos--) 1960 symsrc__destroy(&ss_[ss_pos - 1]); 1961 out_free: 1962 free(name); 1963 if (ret < 0 && strstr(dso->name, " (deleted)") != NULL) 1964 ret = 0; 1965 out: 1966 dso__set_loaded(dso); 1967 pthread_mutex_unlock(&dso->lock); 1968 nsinfo__mountns_exit(&nsc); 1969 1970 return ret; 1971 } 1972 1973 static int map__strcmp(const void *a, const void *b) 1974 { 1975 const struct map *ma = *(const struct map **)a, *mb = *(const struct map **)b; 1976 return strcmp(ma->dso->short_name, mb->dso->short_name); 1977 } 1978 1979 static int map__strcmp_name(const void *name, const void *b) 1980 { 1981 const struct map *map = *(const struct map **)b; 1982 return strcmp(name, map->dso->short_name); 1983 } 1984 1985 void __maps__sort_by_name(struct maps *maps) 1986 { 1987 qsort(maps->maps_by_name, maps->nr_maps, sizeof(struct map *), map__strcmp); 1988 } 1989 1990 static int map__groups__sort_by_name_from_rbtree(struct maps *maps) 1991 { 1992 struct map *map; 1993 struct map **maps_by_name = realloc(maps->maps_by_name, maps->nr_maps * sizeof(map)); 1994 int i = 0; 1995 1996 if (maps_by_name == NULL) 1997 return -1; 1998 1999 maps->maps_by_name = maps_by_name; 2000 maps->nr_maps_allocated = maps->nr_maps; 2001 2002 maps__for_each_entry(maps, map) 2003 maps_by_name[i++] = map; 2004 2005 __maps__sort_by_name(maps); 2006 return 0; 2007 } 2008 2009 static struct map *__maps__find_by_name(struct maps *maps, const char *name) 2010 { 2011 struct map **mapp; 2012 2013 if (maps->maps_by_name == NULL && 2014 map__groups__sort_by_name_from_rbtree(maps)) 2015 return NULL; 2016 2017 mapp = bsearch(name, maps->maps_by_name, maps->nr_maps, sizeof(*mapp), map__strcmp_name); 2018 if (mapp) 2019 return *mapp; 2020 return NULL; 2021 } 2022 2023 struct map *maps__find_by_name(struct maps *maps, const char *name) 2024 { 2025 struct map *map; 2026 2027 down_read(&maps->lock); 2028 2029 if (maps->last_search_by_name && strcmp(maps->last_search_by_name->dso->short_name, name) == 0) { 2030 map = maps->last_search_by_name; 2031 goto out_unlock; 2032 } 2033 /* 2034 * If we have maps->maps_by_name, then the name isn't in the rbtree, 2035 * as maps->maps_by_name mirrors the rbtree when lookups by name are 2036 * made. 2037 */ 2038 map = __maps__find_by_name(maps, name); 2039 if (map || maps->maps_by_name != NULL) 2040 goto out_unlock; 2041 2042 /* Fallback to traversing the rbtree... */ 2043 maps__for_each_entry(maps, map) 2044 if (strcmp(map->dso->short_name, name) == 0) { 2045 maps->last_search_by_name = map; 2046 goto out_unlock; 2047 } 2048 2049 map = NULL; 2050 2051 out_unlock: 2052 up_read(&maps->lock); 2053 return map; 2054 } 2055 2056 int dso__load_vmlinux(struct dso *dso, struct map *map, 2057 const char *vmlinux, bool vmlinux_allocated) 2058 { 2059 int err = -1; 2060 struct symsrc ss; 2061 char symfs_vmlinux[PATH_MAX]; 2062 enum dso_binary_type symtab_type; 2063 2064 if (vmlinux[0] == '/') 2065 snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux); 2066 else 2067 symbol__join_symfs(symfs_vmlinux, vmlinux); 2068 2069 if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 2070 symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX; 2071 else 2072 symtab_type = DSO_BINARY_TYPE__VMLINUX; 2073 2074 if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type)) 2075 return -1; 2076 2077 err = dso__load_sym(dso, map, &ss, &ss, 0); 2078 symsrc__destroy(&ss); 2079 2080 if (err > 0) { 2081 if (dso->kernel == DSO_SPACE__KERNEL_GUEST) 2082 dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX; 2083 else 2084 dso->binary_type = DSO_BINARY_TYPE__VMLINUX; 2085 dso__set_long_name(dso, vmlinux, vmlinux_allocated); 2086 dso__set_loaded(dso); 2087 pr_debug("Using %s for symbols\n", symfs_vmlinux); 2088 } 2089 2090 return err; 2091 } 2092 2093 int dso__load_vmlinux_path(struct dso *dso, struct map *map) 2094 { 2095 int i, err = 0; 2096 char *filename = NULL; 2097 2098 pr_debug("Looking at the vmlinux_path (%d entries long)\n", 2099 vmlinux_path__nr_entries + 1); 2100 2101 for (i = 0; i < vmlinux_path__nr_entries; ++i) { 2102 err = dso__load_vmlinux(dso, map, vmlinux_path[i], false); 2103 if (err > 0) 2104 goto out; 2105 } 2106 2107 if (!symbol_conf.ignore_vmlinux_buildid) 2108 filename = dso__build_id_filename(dso, NULL, 0, false); 2109 if (filename != NULL) { 2110 err = dso__load_vmlinux(dso, map, filename, true); 2111 if (err > 0) 2112 goto out; 2113 free(filename); 2114 } 2115 out: 2116 return err; 2117 } 2118 2119 static bool visible_dir_filter(const char *name, struct dirent *d) 2120 { 2121 if (d->d_type != DT_DIR) 2122 return false; 2123 return lsdir_no_dot_filter(name, d); 2124 } 2125 2126 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz) 2127 { 2128 char kallsyms_filename[PATH_MAX]; 2129 int ret = -1; 2130 struct strlist *dirs; 2131 struct str_node *nd; 2132 2133 dirs = lsdir(dir, visible_dir_filter); 2134 if (!dirs) 2135 return -1; 2136 2137 strlist__for_each_entry(nd, dirs) { 2138 scnprintf(kallsyms_filename, sizeof(kallsyms_filename), 2139 "%s/%s/kallsyms", dir, nd->s); 2140 if (!validate_kcore_addresses(kallsyms_filename, map)) { 2141 strlcpy(dir, kallsyms_filename, dir_sz); 2142 ret = 0; 2143 break; 2144 } 2145 } 2146 2147 strlist__delete(dirs); 2148 2149 return ret; 2150 } 2151 2152 /* 2153 * Use open(O_RDONLY) to check readability directly instead of access(R_OK) 2154 * since access(R_OK) only checks with real UID/GID but open() use effective 2155 * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO). 2156 */ 2157 static bool filename__readable(const char *file) 2158 { 2159 int fd = open(file, O_RDONLY); 2160 if (fd < 0) 2161 return false; 2162 close(fd); 2163 return true; 2164 } 2165 2166 static char *dso__find_kallsyms(struct dso *dso, struct map *map) 2167 { 2168 struct build_id bid; 2169 char sbuild_id[SBUILD_ID_SIZE]; 2170 bool is_host = false; 2171 char path[PATH_MAX]; 2172 2173 if (!dso->has_build_id) { 2174 /* 2175 * Last resort, if we don't have a build-id and couldn't find 2176 * any vmlinux file, try the running kernel kallsyms table. 2177 */ 2178 goto proc_kallsyms; 2179 } 2180 2181 if (sysfs__read_build_id("/sys/kernel/notes", &bid) == 0) 2182 is_host = dso__build_id_equal(dso, &bid); 2183 2184 /* Try a fast path for /proc/kallsyms if possible */ 2185 if (is_host) { 2186 /* 2187 * Do not check the build-id cache, unless we know we cannot use 2188 * /proc/kcore or module maps don't match to /proc/kallsyms. 2189 * To check readability of /proc/kcore, do not use access(R_OK) 2190 * since /proc/kcore requires CAP_SYS_RAWIO to read and access 2191 * can't check it. 2192 */ 2193 if (filename__readable("/proc/kcore") && 2194 !validate_kcore_addresses("/proc/kallsyms", map)) 2195 goto proc_kallsyms; 2196 } 2197 2198 build_id__sprintf(&dso->bid, sbuild_id); 2199 2200 /* Find kallsyms in build-id cache with kcore */ 2201 scnprintf(path, sizeof(path), "%s/%s/%s", 2202 buildid_dir, DSO__NAME_KCORE, sbuild_id); 2203 2204 if (!find_matching_kcore(map, path, sizeof(path))) 2205 return strdup(path); 2206 2207 /* Use current /proc/kallsyms if possible */ 2208 if (is_host) { 2209 proc_kallsyms: 2210 return strdup("/proc/kallsyms"); 2211 } 2212 2213 /* Finally, find a cache of kallsyms */ 2214 if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) { 2215 pr_err("No kallsyms or vmlinux with build-id %s was found\n", 2216 sbuild_id); 2217 return NULL; 2218 } 2219 2220 return strdup(path); 2221 } 2222 2223 static int dso__load_kernel_sym(struct dso *dso, struct map *map) 2224 { 2225 int err; 2226 const char *kallsyms_filename = NULL; 2227 char *kallsyms_allocated_filename = NULL; 2228 char *filename = NULL; 2229 2230 /* 2231 * Step 1: if the user specified a kallsyms or vmlinux filename, use 2232 * it and only it, reporting errors to the user if it cannot be used. 2233 * 2234 * For instance, try to analyse an ARM perf.data file _without_ a 2235 * build-id, or if the user specifies the wrong path to the right 2236 * vmlinux file, obviously we can't fallback to another vmlinux (a 2237 * x86_86 one, on the machine where analysis is being performed, say), 2238 * or worse, /proc/kallsyms. 2239 * 2240 * If the specified file _has_ a build-id and there is a build-id 2241 * section in the perf.data file, we will still do the expected 2242 * validation in dso__load_vmlinux and will bail out if they don't 2243 * match. 2244 */ 2245 if (symbol_conf.kallsyms_name != NULL) { 2246 kallsyms_filename = symbol_conf.kallsyms_name; 2247 goto do_kallsyms; 2248 } 2249 2250 if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) { 2251 return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false); 2252 } 2253 2254 /* 2255 * Before checking on common vmlinux locations, check if it's 2256 * stored as standard build id binary (not kallsyms) under 2257 * .debug cache. 2258 */ 2259 if (!symbol_conf.ignore_vmlinux_buildid) 2260 filename = __dso__build_id_filename(dso, NULL, 0, false, false); 2261 if (filename != NULL) { 2262 err = dso__load_vmlinux(dso, map, filename, true); 2263 if (err > 0) 2264 return err; 2265 free(filename); 2266 } 2267 2268 if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) { 2269 err = dso__load_vmlinux_path(dso, map); 2270 if (err > 0) 2271 return err; 2272 } 2273 2274 /* do not try local files if a symfs was given */ 2275 if (symbol_conf.symfs[0] != 0) 2276 return -1; 2277 2278 kallsyms_allocated_filename = dso__find_kallsyms(dso, map); 2279 if (!kallsyms_allocated_filename) 2280 return -1; 2281 2282 kallsyms_filename = kallsyms_allocated_filename; 2283 2284 do_kallsyms: 2285 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2286 if (err > 0) 2287 pr_debug("Using %s for symbols\n", kallsyms_filename); 2288 free(kallsyms_allocated_filename); 2289 2290 if (err > 0 && !dso__is_kcore(dso)) { 2291 dso->binary_type = DSO_BINARY_TYPE__KALLSYMS; 2292 dso__set_long_name(dso, DSO__NAME_KALLSYMS, false); 2293 map__fixup_start(map); 2294 map__fixup_end(map); 2295 } 2296 2297 return err; 2298 } 2299 2300 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map) 2301 { 2302 int err; 2303 const char *kallsyms_filename = NULL; 2304 struct machine *machine = map__kmaps(map)->machine; 2305 char path[PATH_MAX]; 2306 2307 if (machine__is_default_guest(machine)) { 2308 /* 2309 * if the user specified a vmlinux filename, use it and only 2310 * it, reporting errors to the user if it cannot be used. 2311 * Or use file guest_kallsyms inputted by user on commandline 2312 */ 2313 if (symbol_conf.default_guest_vmlinux_name != NULL) { 2314 err = dso__load_vmlinux(dso, map, 2315 symbol_conf.default_guest_vmlinux_name, 2316 false); 2317 return err; 2318 } 2319 2320 kallsyms_filename = symbol_conf.default_guest_kallsyms; 2321 if (!kallsyms_filename) 2322 return -1; 2323 } else { 2324 sprintf(path, "%s/proc/kallsyms", machine->root_dir); 2325 kallsyms_filename = path; 2326 } 2327 2328 err = dso__load_kallsyms(dso, kallsyms_filename, map); 2329 if (err > 0) 2330 pr_debug("Using %s for symbols\n", kallsyms_filename); 2331 if (err > 0 && !dso__is_kcore(dso)) { 2332 dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS; 2333 dso__set_long_name(dso, machine->mmap_name, false); 2334 map__fixup_start(map); 2335 map__fixup_end(map); 2336 } 2337 2338 return err; 2339 } 2340 2341 static void vmlinux_path__exit(void) 2342 { 2343 while (--vmlinux_path__nr_entries >= 0) 2344 zfree(&vmlinux_path[vmlinux_path__nr_entries]); 2345 vmlinux_path__nr_entries = 0; 2346 2347 zfree(&vmlinux_path); 2348 } 2349 2350 static const char * const vmlinux_paths[] = { 2351 "vmlinux", 2352 "/boot/vmlinux" 2353 }; 2354 2355 static const char * const vmlinux_paths_upd[] = { 2356 "/boot/vmlinux-%s", 2357 "/usr/lib/debug/boot/vmlinux-%s", 2358 "/lib/modules/%s/build/vmlinux", 2359 "/usr/lib/debug/lib/modules/%s/vmlinux", 2360 "/usr/lib/debug/boot/vmlinux-%s.debug" 2361 }; 2362 2363 static int vmlinux_path__add(const char *new_entry) 2364 { 2365 vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry); 2366 if (vmlinux_path[vmlinux_path__nr_entries] == NULL) 2367 return -1; 2368 ++vmlinux_path__nr_entries; 2369 2370 return 0; 2371 } 2372 2373 static int vmlinux_path__init(struct perf_env *env) 2374 { 2375 struct utsname uts; 2376 char bf[PATH_MAX]; 2377 char *kernel_version; 2378 unsigned int i; 2379 2380 vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) + 2381 ARRAY_SIZE(vmlinux_paths_upd))); 2382 if (vmlinux_path == NULL) 2383 return -1; 2384 2385 for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++) 2386 if (vmlinux_path__add(vmlinux_paths[i]) < 0) 2387 goto out_fail; 2388 2389 /* only try kernel version if no symfs was given */ 2390 if (symbol_conf.symfs[0] != 0) 2391 return 0; 2392 2393 if (env) { 2394 kernel_version = env->os_release; 2395 } else { 2396 if (uname(&uts) < 0) 2397 goto out_fail; 2398 2399 kernel_version = uts.release; 2400 } 2401 2402 for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) { 2403 snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version); 2404 if (vmlinux_path__add(bf) < 0) 2405 goto out_fail; 2406 } 2407 2408 return 0; 2409 2410 out_fail: 2411 vmlinux_path__exit(); 2412 return -1; 2413 } 2414 2415 int setup_list(struct strlist **list, const char *list_str, 2416 const char *list_name) 2417 { 2418 if (list_str == NULL) 2419 return 0; 2420 2421 *list = strlist__new(list_str, NULL); 2422 if (!*list) { 2423 pr_err("problems parsing %s list\n", list_name); 2424 return -1; 2425 } 2426 2427 symbol_conf.has_filter = true; 2428 return 0; 2429 } 2430 2431 int setup_intlist(struct intlist **list, const char *list_str, 2432 const char *list_name) 2433 { 2434 if (list_str == NULL) 2435 return 0; 2436 2437 *list = intlist__new(list_str); 2438 if (!*list) { 2439 pr_err("problems parsing %s list\n", list_name); 2440 return -1; 2441 } 2442 return 0; 2443 } 2444 2445 static int setup_addrlist(struct intlist **addr_list, struct strlist *sym_list) 2446 { 2447 struct str_node *pos, *tmp; 2448 unsigned long val; 2449 char *sep; 2450 const char *end; 2451 int i = 0, err; 2452 2453 *addr_list = intlist__new(NULL); 2454 if (!*addr_list) 2455 return -1; 2456 2457 strlist__for_each_entry_safe(pos, tmp, sym_list) { 2458 errno = 0; 2459 val = strtoul(pos->s, &sep, 16); 2460 if (errno || (sep == pos->s)) 2461 continue; 2462 2463 if (*sep != '\0') { 2464 end = pos->s + strlen(pos->s) - 1; 2465 while (end >= sep && isspace(*end)) 2466 end--; 2467 2468 if (end >= sep) 2469 continue; 2470 } 2471 2472 err = intlist__add(*addr_list, val); 2473 if (err) 2474 break; 2475 2476 strlist__remove(sym_list, pos); 2477 i++; 2478 } 2479 2480 if (i == 0) { 2481 intlist__delete(*addr_list); 2482 *addr_list = NULL; 2483 } 2484 2485 return 0; 2486 } 2487 2488 static bool symbol__read_kptr_restrict(void) 2489 { 2490 bool value = false; 2491 FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r"); 2492 2493 if (fp != NULL) { 2494 char line[8]; 2495 2496 if (fgets(line, sizeof(line), fp) != NULL) 2497 value = perf_cap__capable(CAP_SYSLOG) ? 2498 (atoi(line) >= 2) : 2499 (atoi(line) != 0); 2500 2501 fclose(fp); 2502 } 2503 2504 /* Per kernel/kallsyms.c: 2505 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG 2506 */ 2507 if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG)) 2508 value = true; 2509 2510 return value; 2511 } 2512 2513 int symbol__annotation_init(void) 2514 { 2515 if (symbol_conf.init_annotation) 2516 return 0; 2517 2518 if (symbol_conf.initialized) { 2519 pr_err("Annotation needs to be init before symbol__init()\n"); 2520 return -1; 2521 } 2522 2523 symbol_conf.priv_size += sizeof(struct annotation); 2524 symbol_conf.init_annotation = true; 2525 return 0; 2526 } 2527 2528 int symbol__init(struct perf_env *env) 2529 { 2530 const char *symfs; 2531 2532 if (symbol_conf.initialized) 2533 return 0; 2534 2535 symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64)); 2536 2537 symbol__elf_init(); 2538 2539 if (symbol_conf.sort_by_name) 2540 symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) - 2541 sizeof(struct symbol)); 2542 2543 if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0) 2544 return -1; 2545 2546 if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') { 2547 pr_err("'.' is the only non valid --field-separator argument\n"); 2548 return -1; 2549 } 2550 2551 if (setup_list(&symbol_conf.dso_list, 2552 symbol_conf.dso_list_str, "dso") < 0) 2553 return -1; 2554 2555 if (setup_list(&symbol_conf.comm_list, 2556 symbol_conf.comm_list_str, "comm") < 0) 2557 goto out_free_dso_list; 2558 2559 if (setup_intlist(&symbol_conf.pid_list, 2560 symbol_conf.pid_list_str, "pid") < 0) 2561 goto out_free_comm_list; 2562 2563 if (setup_intlist(&symbol_conf.tid_list, 2564 symbol_conf.tid_list_str, "tid") < 0) 2565 goto out_free_pid_list; 2566 2567 if (setup_list(&symbol_conf.sym_list, 2568 symbol_conf.sym_list_str, "symbol") < 0) 2569 goto out_free_tid_list; 2570 2571 if (symbol_conf.sym_list && 2572 setup_addrlist(&symbol_conf.addr_list, symbol_conf.sym_list) < 0) 2573 goto out_free_sym_list; 2574 2575 if (setup_list(&symbol_conf.bt_stop_list, 2576 symbol_conf.bt_stop_list_str, "symbol") < 0) 2577 goto out_free_sym_list; 2578 2579 /* 2580 * A path to symbols of "/" is identical to "" 2581 * reset here for simplicity. 2582 */ 2583 symfs = realpath(symbol_conf.symfs, NULL); 2584 if (symfs == NULL) 2585 symfs = symbol_conf.symfs; 2586 if (strcmp(symfs, "/") == 0) 2587 symbol_conf.symfs = ""; 2588 if (symfs != symbol_conf.symfs) 2589 free((void *)symfs); 2590 2591 symbol_conf.kptr_restrict = symbol__read_kptr_restrict(); 2592 2593 symbol_conf.initialized = true; 2594 return 0; 2595 2596 out_free_sym_list: 2597 strlist__delete(symbol_conf.sym_list); 2598 intlist__delete(symbol_conf.addr_list); 2599 out_free_tid_list: 2600 intlist__delete(symbol_conf.tid_list); 2601 out_free_pid_list: 2602 intlist__delete(symbol_conf.pid_list); 2603 out_free_comm_list: 2604 strlist__delete(symbol_conf.comm_list); 2605 out_free_dso_list: 2606 strlist__delete(symbol_conf.dso_list); 2607 return -1; 2608 } 2609 2610 void symbol__exit(void) 2611 { 2612 if (!symbol_conf.initialized) 2613 return; 2614 strlist__delete(symbol_conf.bt_stop_list); 2615 strlist__delete(symbol_conf.sym_list); 2616 strlist__delete(symbol_conf.dso_list); 2617 strlist__delete(symbol_conf.comm_list); 2618 intlist__delete(symbol_conf.tid_list); 2619 intlist__delete(symbol_conf.pid_list); 2620 intlist__delete(symbol_conf.addr_list); 2621 vmlinux_path__exit(); 2622 symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL; 2623 symbol_conf.bt_stop_list = NULL; 2624 symbol_conf.initialized = false; 2625 } 2626 2627 int symbol__config_symfs(const struct option *opt __maybe_unused, 2628 const char *dir, int unset __maybe_unused) 2629 { 2630 char *bf = NULL; 2631 int ret; 2632 2633 symbol_conf.symfs = strdup(dir); 2634 if (symbol_conf.symfs == NULL) 2635 return -ENOMEM; 2636 2637 /* skip the locally configured cache if a symfs is given, and 2638 * config buildid dir to symfs/.debug 2639 */ 2640 ret = asprintf(&bf, "%s/%s", dir, ".debug"); 2641 if (ret < 0) 2642 return -ENOMEM; 2643 2644 set_buildid_dir(bf); 2645 2646 free(bf); 2647 return 0; 2648 } 2649 2650 struct mem_info *mem_info__get(struct mem_info *mi) 2651 { 2652 if (mi) 2653 refcount_inc(&mi->refcnt); 2654 return mi; 2655 } 2656 2657 void mem_info__put(struct mem_info *mi) 2658 { 2659 if (mi && refcount_dec_and_test(&mi->refcnt)) 2660 free(mi); 2661 } 2662 2663 struct mem_info *mem_info__new(void) 2664 { 2665 struct mem_info *mi = zalloc(sizeof(*mi)); 2666 2667 if (mi) 2668 refcount_set(&mi->refcnt, 1); 2669 return mi; 2670 } 2671 2672 /* 2673 * Checks that user supplied symbol kernel files are accessible because 2674 * the default mechanism for accessing elf files fails silently. i.e. if 2675 * debug syms for a build ID aren't found perf carries on normally. When 2676 * they are user supplied we should assume that the user doesn't want to 2677 * silently fail. 2678 */ 2679 int symbol__validate_sym_arguments(void) 2680 { 2681 if (symbol_conf.vmlinux_name && 2682 access(symbol_conf.vmlinux_name, R_OK)) { 2683 pr_err("Invalid file: %s\n", symbol_conf.vmlinux_name); 2684 return -EINVAL; 2685 } 2686 if (symbol_conf.kallsyms_name && 2687 access(symbol_conf.kallsyms_name, R_OK)) { 2688 pr_err("Invalid file: %s\n", symbol_conf.kallsyms_name); 2689 return -EINVAL; 2690 } 2691 return 0; 2692 } 2693