1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-cxx.h" 16 #include "demangle-ocaml.h" 17 #include "demangle-java.h" 18 #include "demangle-rust.h" 19 #include "machine.h" 20 #include "vdso.h" 21 #include "debug.h" 22 #include "util/copyfile.h" 23 #include <linux/ctype.h> 24 #include <linux/kernel.h> 25 #include <linux/zalloc.h> 26 #include <symbol/kallsyms.h> 27 #include <internal/lib.h> 28 29 #ifdef HAVE_LIBBFD_SUPPORT 30 #define PACKAGE 'perf' 31 #include <bfd.h> 32 #endif 33 34 #if defined(HAVE_LIBBFD_SUPPORT) || defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 35 #ifndef DMGL_PARAMS 36 #define DMGL_PARAMS (1 << 0) /* Include function args */ 37 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 38 #endif 39 #endif 40 41 #ifndef EM_AARCH64 42 #define EM_AARCH64 183 /* ARM 64 bit */ 43 #endif 44 45 #ifndef ELF32_ST_VISIBILITY 46 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 47 #endif 48 49 /* For ELF64 the definitions are the same. */ 50 #ifndef ELF64_ST_VISIBILITY 51 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 52 #endif 53 54 /* How to extract information held in the st_other field. */ 55 #ifndef GELF_ST_VISIBILITY 56 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 57 #endif 58 59 typedef Elf64_Nhdr GElf_Nhdr; 60 61 62 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 63 static int elf_getphdrnum(Elf *elf, size_t *dst) 64 { 65 GElf_Ehdr gehdr; 66 GElf_Ehdr *ehdr; 67 68 ehdr = gelf_getehdr(elf, &gehdr); 69 if (!ehdr) 70 return -1; 71 72 *dst = ehdr->e_phnum; 73 74 return 0; 75 } 76 #endif 77 78 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 79 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 80 { 81 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 82 return -1; 83 } 84 #endif 85 86 #ifndef NT_GNU_BUILD_ID 87 #define NT_GNU_BUILD_ID 3 88 #endif 89 90 /** 91 * elf_symtab__for_each_symbol - iterate thru all the symbols 92 * 93 * @syms: struct elf_symtab instance to iterate 94 * @idx: uint32_t idx 95 * @sym: GElf_Sym iterator 96 */ 97 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 98 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 99 idx < nr_syms; \ 100 idx++, gelf_getsym(syms, idx, &sym)) 101 102 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 103 { 104 return GELF_ST_TYPE(sym->st_info); 105 } 106 107 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 108 { 109 return GELF_ST_VISIBILITY(sym->st_other); 110 } 111 112 #ifndef STT_GNU_IFUNC 113 #define STT_GNU_IFUNC 10 114 #endif 115 116 static inline int elf_sym__is_function(const GElf_Sym *sym) 117 { 118 return (elf_sym__type(sym) == STT_FUNC || 119 elf_sym__type(sym) == STT_GNU_IFUNC) && 120 sym->st_name != 0 && 121 sym->st_shndx != SHN_UNDEF; 122 } 123 124 static inline bool elf_sym__is_object(const GElf_Sym *sym) 125 { 126 return elf_sym__type(sym) == STT_OBJECT && 127 sym->st_name != 0 && 128 sym->st_shndx != SHN_UNDEF; 129 } 130 131 static inline int elf_sym__is_label(const GElf_Sym *sym) 132 { 133 return elf_sym__type(sym) == STT_NOTYPE && 134 sym->st_name != 0 && 135 sym->st_shndx != SHN_UNDEF && 136 sym->st_shndx != SHN_ABS && 137 elf_sym__visibility(sym) != STV_HIDDEN && 138 elf_sym__visibility(sym) != STV_INTERNAL; 139 } 140 141 static bool elf_sym__filter(GElf_Sym *sym) 142 { 143 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 144 } 145 146 static inline const char *elf_sym__name(const GElf_Sym *sym, 147 const Elf_Data *symstrs) 148 { 149 return symstrs->d_buf + sym->st_name; 150 } 151 152 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 153 const Elf_Data *secstrs) 154 { 155 return secstrs->d_buf + shdr->sh_name; 156 } 157 158 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 159 const Elf_Data *secstrs) 160 { 161 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 162 } 163 164 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 165 const Elf_Data *secstrs) 166 { 167 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 168 } 169 170 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 171 { 172 return elf_sec__is_text(shdr, secstrs) || 173 elf_sec__is_data(shdr, secstrs); 174 } 175 176 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 177 { 178 Elf_Scn *sec = NULL; 179 GElf_Shdr shdr; 180 size_t cnt = 1; 181 182 while ((sec = elf_nextscn(elf, sec)) != NULL) { 183 gelf_getshdr(sec, &shdr); 184 185 if ((addr >= shdr.sh_addr) && 186 (addr < (shdr.sh_addr + shdr.sh_size))) 187 return cnt; 188 189 ++cnt; 190 } 191 192 return -1; 193 } 194 195 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 196 GElf_Shdr *shp, const char *name, size_t *idx) 197 { 198 Elf_Scn *sec = NULL; 199 size_t cnt = 1; 200 201 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 202 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 203 return NULL; 204 205 while ((sec = elf_nextscn(elf, sec)) != NULL) { 206 char *str; 207 208 gelf_getshdr(sec, shp); 209 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 210 if (str && !strcmp(name, str)) { 211 if (idx) 212 *idx = cnt; 213 return sec; 214 } 215 ++cnt; 216 } 217 218 return NULL; 219 } 220 221 bool filename__has_section(const char *filename, const char *sec) 222 { 223 int fd; 224 Elf *elf; 225 GElf_Ehdr ehdr; 226 GElf_Shdr shdr; 227 bool found = false; 228 229 fd = open(filename, O_RDONLY); 230 if (fd < 0) 231 return false; 232 233 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 234 if (elf == NULL) 235 goto out; 236 237 if (gelf_getehdr(elf, &ehdr) == NULL) 238 goto elf_out; 239 240 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 241 242 elf_out: 243 elf_end(elf); 244 out: 245 close(fd); 246 return found; 247 } 248 249 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 250 { 251 size_t i, phdrnum; 252 u64 sz; 253 254 if (elf_getphdrnum(elf, &phdrnum)) 255 return -1; 256 257 for (i = 0; i < phdrnum; i++) { 258 if (gelf_getphdr(elf, i, phdr) == NULL) 259 return -1; 260 261 if (phdr->p_type != PT_LOAD) 262 continue; 263 264 sz = max(phdr->p_memsz, phdr->p_filesz); 265 if (!sz) 266 continue; 267 268 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 269 return 0; 270 } 271 272 /* Not found any valid program header */ 273 return -1; 274 } 275 276 static bool want_demangle(bool is_kernel_sym) 277 { 278 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 279 } 280 281 /* 282 * Demangle C++ function signature, typically replaced by demangle-cxx.cpp 283 * version. 284 */ 285 __weak char *cxx_demangle_sym(const char *str __maybe_unused, bool params __maybe_unused, 286 bool modifiers __maybe_unused) 287 { 288 #ifdef HAVE_LIBBFD_SUPPORT 289 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 290 291 return bfd_demangle(NULL, str, flags); 292 #elif defined(HAVE_CPLUS_DEMANGLE_SUPPORT) 293 int flags = (params ? DMGL_PARAMS : 0) | (modifiers ? DMGL_ANSI : 0); 294 295 return cplus_demangle(str, flags); 296 #else 297 return NULL; 298 #endif 299 } 300 301 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 302 { 303 char *demangled = NULL; 304 305 /* 306 * We need to figure out if the object was created from C++ sources 307 * DWARF DW_compile_unit has this, but we don't always have access 308 * to it... 309 */ 310 if (!want_demangle(dso->kernel || kmodule)) 311 return demangled; 312 313 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 314 if (demangled == NULL) { 315 demangled = ocaml_demangle_sym(elf_name); 316 if (demangled == NULL) { 317 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 318 } 319 } 320 else if (rust_is_mangled(demangled)) 321 /* 322 * Input to Rust demangling is the BFD-demangled 323 * name which it Rust-demangles in place. 324 */ 325 rust_demangle_sym(demangled); 326 327 return demangled; 328 } 329 330 struct rel_info { 331 u32 nr_entries; 332 u32 *sorted; 333 bool is_rela; 334 Elf_Data *reldata; 335 GElf_Rela rela; 336 GElf_Rel rel; 337 }; 338 339 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 340 { 341 idx = ri->sorted ? ri->sorted[idx] : idx; 342 if (ri->is_rela) { 343 gelf_getrela(ri->reldata, idx, &ri->rela); 344 return GELF_R_SYM(ri->rela.r_info); 345 } 346 gelf_getrel(ri->reldata, idx, &ri->rel); 347 return GELF_R_SYM(ri->rel.r_info); 348 } 349 350 static u64 get_rel_offset(struct rel_info *ri, u32 x) 351 { 352 if (ri->is_rela) { 353 GElf_Rela rela; 354 355 gelf_getrela(ri->reldata, x, &rela); 356 return rela.r_offset; 357 } else { 358 GElf_Rel rel; 359 360 gelf_getrel(ri->reldata, x, &rel); 361 return rel.r_offset; 362 } 363 } 364 365 static int rel_cmp(const void *a, const void *b, void *r) 366 { 367 struct rel_info *ri = r; 368 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 369 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 370 371 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 372 } 373 374 static int sort_rel(struct rel_info *ri) 375 { 376 size_t sz = sizeof(ri->sorted[0]); 377 u32 i; 378 379 ri->sorted = calloc(ri->nr_entries, sz); 380 if (!ri->sorted) 381 return -1; 382 for (i = 0; i < ri->nr_entries; i++) 383 ri->sorted[i] = i; 384 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 385 return 0; 386 } 387 388 /* 389 * For x86_64, the GNU linker is putting IFUNC information in the relocation 390 * addend. 391 */ 392 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 393 { 394 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 395 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 396 } 397 398 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 399 struct rel_info *ri, char *buf, size_t buf_sz) 400 { 401 u64 addr = ri->rela.r_addend; 402 struct symbol *sym; 403 GElf_Phdr phdr; 404 405 if (!addend_may_be_ifunc(ehdr, ri)) 406 return false; 407 408 if (elf_read_program_header(elf, addr, &phdr)) 409 return false; 410 411 addr -= phdr.p_vaddr - phdr.p_offset; 412 413 sym = dso__find_symbol_nocache(dso, addr); 414 415 /* Expecting the address to be an IFUNC or IFUNC alias */ 416 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 417 return false; 418 419 snprintf(buf, buf_sz, "%s@plt", sym->name); 420 421 return true; 422 } 423 424 static void exit_rel(struct rel_info *ri) 425 { 426 zfree(&ri->sorted); 427 } 428 429 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 430 u64 *plt_header_size, u64 *plt_entry_size) 431 { 432 switch (ehdr->e_machine) { 433 case EM_ARM: 434 *plt_header_size = 20; 435 *plt_entry_size = 12; 436 return true; 437 case EM_AARCH64: 438 *plt_header_size = 32; 439 *plt_entry_size = 16; 440 return true; 441 case EM_SPARC: 442 *plt_header_size = 48; 443 *plt_entry_size = 12; 444 return true; 445 case EM_SPARCV9: 446 *plt_header_size = 128; 447 *plt_entry_size = 32; 448 return true; 449 case EM_386: 450 case EM_X86_64: 451 *plt_entry_size = shdr_plt->sh_entsize; 452 /* Size is 8 or 16, if not, assume alignment indicates size */ 453 if (*plt_entry_size != 8 && *plt_entry_size != 16) 454 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 455 *plt_header_size = *plt_entry_size; 456 break; 457 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 458 *plt_header_size = shdr_plt->sh_entsize; 459 *plt_entry_size = shdr_plt->sh_entsize; 460 break; 461 } 462 if (*plt_entry_size) 463 return true; 464 pr_debug("Missing PLT entry size for %s\n", dso->long_name); 465 return false; 466 } 467 468 static bool machine_is_x86(GElf_Half e_machine) 469 { 470 return e_machine == EM_386 || e_machine == EM_X86_64; 471 } 472 473 struct rela_dyn { 474 GElf_Addr offset; 475 u32 sym_idx; 476 }; 477 478 struct rela_dyn_info { 479 struct dso *dso; 480 Elf_Data *plt_got_data; 481 u32 nr_entries; 482 struct rela_dyn *sorted; 483 Elf_Data *dynsym_data; 484 Elf_Data *dynstr_data; 485 Elf_Data *rela_dyn_data; 486 }; 487 488 static void exit_rela_dyn(struct rela_dyn_info *di) 489 { 490 zfree(&di->sorted); 491 } 492 493 static int cmp_offset(const void *a, const void *b) 494 { 495 const struct rela_dyn *va = a; 496 const struct rela_dyn *vb = b; 497 498 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 499 } 500 501 static int sort_rela_dyn(struct rela_dyn_info *di) 502 { 503 u32 i, n; 504 505 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 506 if (!di->sorted) 507 return -1; 508 509 /* Get data for sorting: the offset and symbol index */ 510 for (i = 0, n = 0; i < di->nr_entries; i++) { 511 GElf_Rela rela; 512 u32 sym_idx; 513 514 gelf_getrela(di->rela_dyn_data, i, &rela); 515 sym_idx = GELF_R_SYM(rela.r_info); 516 if (sym_idx) { 517 di->sorted[n].sym_idx = sym_idx; 518 di->sorted[n].offset = rela.r_offset; 519 n += 1; 520 } 521 } 522 523 /* Sort by offset */ 524 di->nr_entries = n; 525 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 526 527 return 0; 528 } 529 530 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 531 { 532 GElf_Shdr rela_dyn_shdr; 533 GElf_Shdr shdr; 534 535 di->plt_got_data = elf_getdata(scn, NULL); 536 537 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 538 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 539 return; 540 541 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 542 di->rela_dyn_data = elf_getdata(scn, NULL); 543 544 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 545 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 546 return; 547 548 di->dynsym_data = elf_getdata(scn, NULL); 549 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 550 551 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 552 return; 553 554 /* Sort into offset order */ 555 sort_rela_dyn(di); 556 } 557 558 /* Get instruction displacement from a plt entry for x86_64 */ 559 static u32 get_x86_64_plt_disp(const u8 *p) 560 { 561 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 562 int n = 0; 563 564 /* Skip endbr64 */ 565 if (!memcmp(p, endbr64, sizeof(endbr64))) 566 n += sizeof(endbr64); 567 /* Skip bnd prefix */ 568 if (p[n] == 0xf2) 569 n += 1; 570 /* jmp with 4-byte displacement */ 571 if (p[n] == 0xff && p[n + 1] == 0x25) { 572 u32 disp; 573 574 n += 2; 575 /* Also add offset from start of entry to end of instruction */ 576 memcpy(&disp, p + n, sizeof(disp)); 577 return n + 4 + le32toh(disp); 578 } 579 return 0; 580 } 581 582 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 583 struct rela_dyn_info *di, 584 char *buf, size_t buf_sz) 585 { 586 struct rela_dyn vi, *vr; 587 const char *sym_name; 588 char *demangled; 589 GElf_Sym sym; 590 bool result; 591 u32 disp; 592 593 if (!di->sorted) 594 return false; 595 596 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 597 if (!disp) 598 return false; 599 600 /* Compute target offset of the .plt.got entry */ 601 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 602 603 /* Find that offset in .rela.dyn (sorted by offset) */ 604 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 605 if (!vr) 606 return false; 607 608 /* Get the associated symbol */ 609 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 610 sym_name = elf_sym__name(&sym, di->dynstr_data); 611 demangled = demangle_sym(di->dso, 0, sym_name); 612 if (demangled != NULL) 613 sym_name = demangled; 614 615 snprintf(buf, buf_sz, "%s@plt", sym_name); 616 617 result = *sym_name; 618 619 free(demangled); 620 621 return result; 622 } 623 624 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 625 GElf_Ehdr *ehdr, 626 char *buf, size_t buf_sz) 627 { 628 struct rela_dyn_info di = { .dso = dso }; 629 struct symbol *sym; 630 GElf_Shdr shdr; 631 Elf_Scn *scn; 632 int err = -1; 633 size_t i; 634 635 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 636 if (!scn || !shdr.sh_entsize) 637 return 0; 638 639 if (ehdr->e_machine == EM_X86_64) 640 get_rela_dyn_info(elf, ehdr, &di, scn); 641 642 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 643 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 644 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 645 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 646 if (!sym) 647 goto out; 648 symbols__insert(&dso->symbols, sym); 649 } 650 err = 0; 651 out: 652 exit_rela_dyn(&di); 653 return err; 654 } 655 656 /* 657 * We need to check if we have a .dynsym, so that we can handle the 658 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 659 * .dynsym or .symtab). 660 * And always look at the original dso, not at debuginfo packages, that 661 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 662 */ 663 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 664 { 665 uint32_t idx; 666 GElf_Sym sym; 667 u64 plt_offset, plt_header_size, plt_entry_size; 668 GElf_Shdr shdr_plt, plt_sec_shdr; 669 struct symbol *f, *plt_sym; 670 GElf_Shdr shdr_rel_plt, shdr_dynsym; 671 Elf_Data *syms, *symstrs; 672 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 673 GElf_Ehdr ehdr; 674 char sympltname[1024]; 675 Elf *elf; 676 int nr = 0, err = -1; 677 struct rel_info ri = { .is_rela = false }; 678 bool lazy_plt; 679 680 elf = ss->elf; 681 ehdr = ss->ehdr; 682 683 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 684 return 0; 685 686 /* 687 * A symbol from a previous section (e.g. .init) can have been expanded 688 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 689 * a symbol for .plt header. 690 */ 691 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 692 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 693 f->end = shdr_plt.sh_offset; 694 695 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 696 return 0; 697 698 /* Add a symbol for .plt header */ 699 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 700 if (!plt_sym) 701 goto out_elf_end; 702 symbols__insert(&dso->symbols, plt_sym); 703 704 /* Only x86 has .plt.got */ 705 if (machine_is_x86(ehdr.e_machine) && 706 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 707 goto out_elf_end; 708 709 /* Only x86 has .plt.sec */ 710 if (machine_is_x86(ehdr.e_machine) && 711 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 712 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 713 return 0; 714 /* Extend .plt symbol to entire .plt */ 715 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 716 /* Use .plt.sec offset */ 717 plt_offset = plt_sec_shdr.sh_offset; 718 lazy_plt = false; 719 } else { 720 plt_offset = shdr_plt.sh_offset; 721 lazy_plt = true; 722 } 723 724 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 725 ".rela.plt", NULL); 726 if (scn_plt_rel == NULL) { 727 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 728 ".rel.plt", NULL); 729 if (scn_plt_rel == NULL) 730 return 0; 731 } 732 733 if (shdr_rel_plt.sh_type != SHT_RELA && 734 shdr_rel_plt.sh_type != SHT_REL) 735 return 0; 736 737 if (!shdr_rel_plt.sh_link) 738 return 0; 739 740 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 741 scn_dynsym = ss->dynsym; 742 shdr_dynsym = ss->dynshdr; 743 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 744 /* 745 * A static executable can have a .plt due to IFUNCs, in which 746 * case .symtab is used not .dynsym. 747 */ 748 scn_dynsym = ss->symtab; 749 shdr_dynsym = ss->symshdr; 750 } else { 751 goto out_elf_end; 752 } 753 754 if (!scn_dynsym) 755 return 0; 756 757 /* 758 * Fetch the relocation section to find the idxes to the GOT 759 * and the symbols in the .dynsym they refer to. 760 */ 761 ri.reldata = elf_getdata(scn_plt_rel, NULL); 762 if (!ri.reldata) 763 goto out_elf_end; 764 765 syms = elf_getdata(scn_dynsym, NULL); 766 if (syms == NULL) 767 goto out_elf_end; 768 769 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 770 if (scn_symstrs == NULL) 771 goto out_elf_end; 772 773 symstrs = elf_getdata(scn_symstrs, NULL); 774 if (symstrs == NULL) 775 goto out_elf_end; 776 777 if (symstrs->d_size == 0) 778 goto out_elf_end; 779 780 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 781 782 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 783 784 if (lazy_plt) { 785 /* 786 * Assume a .plt with the same number of entries as the number 787 * of relocation entries is not lazy and does not have a header. 788 */ 789 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 790 dso__delete_symbol(dso, plt_sym); 791 else 792 plt_offset += plt_header_size; 793 } 794 795 /* 796 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 797 * back in order. 798 */ 799 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 800 goto out_elf_end; 801 802 for (idx = 0; idx < ri.nr_entries; idx++) { 803 const char *elf_name = NULL; 804 char *demangled = NULL; 805 806 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 807 808 elf_name = elf_sym__name(&sym, symstrs); 809 demangled = demangle_sym(dso, 0, elf_name); 810 if (demangled) 811 elf_name = demangled; 812 if (*elf_name) 813 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 814 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 815 snprintf(sympltname, sizeof(sympltname), 816 "offset_%#" PRIx64 "@plt", plt_offset); 817 free(demangled); 818 819 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 820 if (!f) 821 goto out_elf_end; 822 823 plt_offset += plt_entry_size; 824 symbols__insert(&dso->symbols, f); 825 ++nr; 826 } 827 828 err = 0; 829 out_elf_end: 830 exit_rel(&ri); 831 if (err == 0) 832 return nr; 833 pr_debug("%s: problems reading %s PLT info.\n", 834 __func__, dso->long_name); 835 return 0; 836 } 837 838 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 839 { 840 return demangle_sym(dso, kmodule, elf_name); 841 } 842 843 /* 844 * Align offset to 4 bytes as needed for note name and descriptor data. 845 */ 846 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 847 848 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 849 { 850 int err = -1; 851 GElf_Ehdr ehdr; 852 GElf_Shdr shdr; 853 Elf_Data *data; 854 Elf_Scn *sec; 855 Elf_Kind ek; 856 void *ptr; 857 858 if (size < BUILD_ID_SIZE) 859 goto out; 860 861 ek = elf_kind(elf); 862 if (ek != ELF_K_ELF) 863 goto out; 864 865 if (gelf_getehdr(elf, &ehdr) == NULL) { 866 pr_err("%s: cannot get elf header.\n", __func__); 867 goto out; 868 } 869 870 /* 871 * Check following sections for notes: 872 * '.note.gnu.build-id' 873 * '.notes' 874 * '.note' (VDSO specific) 875 */ 876 do { 877 sec = elf_section_by_name(elf, &ehdr, &shdr, 878 ".note.gnu.build-id", NULL); 879 if (sec) 880 break; 881 882 sec = elf_section_by_name(elf, &ehdr, &shdr, 883 ".notes", NULL); 884 if (sec) 885 break; 886 887 sec = elf_section_by_name(elf, &ehdr, &shdr, 888 ".note", NULL); 889 if (sec) 890 break; 891 892 return err; 893 894 } while (0); 895 896 data = elf_getdata(sec, NULL); 897 if (data == NULL) 898 goto out; 899 900 ptr = data->d_buf; 901 while (ptr < (data->d_buf + data->d_size)) { 902 GElf_Nhdr *nhdr = ptr; 903 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 904 descsz = NOTE_ALIGN(nhdr->n_descsz); 905 const char *name; 906 907 ptr += sizeof(*nhdr); 908 name = ptr; 909 ptr += namesz; 910 if (nhdr->n_type == NT_GNU_BUILD_ID && 911 nhdr->n_namesz == sizeof("GNU")) { 912 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 913 size_t sz = min(size, descsz); 914 memcpy(bf, ptr, sz); 915 memset(bf + sz, 0, size - sz); 916 err = sz; 917 break; 918 } 919 } 920 ptr += descsz; 921 } 922 923 out: 924 return err; 925 } 926 927 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 928 929 static int read_build_id(const char *filename, struct build_id *bid) 930 { 931 size_t size = sizeof(bid->data); 932 int err = -1; 933 bfd *abfd; 934 935 abfd = bfd_openr(filename, NULL); 936 if (!abfd) 937 return -1; 938 939 if (!bfd_check_format(abfd, bfd_object)) { 940 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 941 goto out_close; 942 } 943 944 if (!abfd->build_id || abfd->build_id->size > size) 945 goto out_close; 946 947 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 948 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 949 err = bid->size = abfd->build_id->size; 950 951 out_close: 952 bfd_close(abfd); 953 return err; 954 } 955 956 #else // HAVE_LIBBFD_BUILDID_SUPPORT 957 958 static int read_build_id(const char *filename, struct build_id *bid) 959 { 960 size_t size = sizeof(bid->data); 961 int fd, err = -1; 962 Elf *elf; 963 964 if (size < BUILD_ID_SIZE) 965 goto out; 966 967 fd = open(filename, O_RDONLY); 968 if (fd < 0) 969 goto out; 970 971 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 972 if (elf == NULL) { 973 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 974 goto out_close; 975 } 976 977 err = elf_read_build_id(elf, bid->data, size); 978 if (err > 0) 979 bid->size = err; 980 981 elf_end(elf); 982 out_close: 983 close(fd); 984 out: 985 return err; 986 } 987 988 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 989 990 int filename__read_build_id(const char *filename, struct build_id *bid) 991 { 992 struct kmod_path m = { .name = NULL, }; 993 char path[PATH_MAX]; 994 int err; 995 996 if (!filename) 997 return -EFAULT; 998 999 err = kmod_path__parse(&m, filename); 1000 if (err) 1001 return -1; 1002 1003 if (m.comp) { 1004 int error = 0, fd; 1005 1006 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 1007 if (fd < 0) { 1008 pr_debug("Failed to decompress (error %d) %s\n", 1009 error, filename); 1010 return -1; 1011 } 1012 close(fd); 1013 filename = path; 1014 } 1015 1016 err = read_build_id(filename, bid); 1017 1018 if (m.comp) 1019 unlink(filename); 1020 return err; 1021 } 1022 1023 int sysfs__read_build_id(const char *filename, struct build_id *bid) 1024 { 1025 size_t size = sizeof(bid->data); 1026 int fd, err = -1; 1027 1028 fd = open(filename, O_RDONLY); 1029 if (fd < 0) 1030 goto out; 1031 1032 while (1) { 1033 char bf[BUFSIZ]; 1034 GElf_Nhdr nhdr; 1035 size_t namesz, descsz; 1036 1037 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1038 break; 1039 1040 namesz = NOTE_ALIGN(nhdr.n_namesz); 1041 descsz = NOTE_ALIGN(nhdr.n_descsz); 1042 if (nhdr.n_type == NT_GNU_BUILD_ID && 1043 nhdr.n_namesz == sizeof("GNU")) { 1044 if (read(fd, bf, namesz) != (ssize_t)namesz) 1045 break; 1046 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1047 size_t sz = min(descsz, size); 1048 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1049 memset(bid->data + sz, 0, size - sz); 1050 bid->size = sz; 1051 err = 0; 1052 break; 1053 } 1054 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1055 break; 1056 } else { 1057 int n = namesz + descsz; 1058 1059 if (n > (int)sizeof(bf)) { 1060 n = sizeof(bf); 1061 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1062 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1063 } 1064 if (read(fd, bf, n) != n) 1065 break; 1066 } 1067 } 1068 close(fd); 1069 out: 1070 return err; 1071 } 1072 1073 #ifdef HAVE_LIBBFD_SUPPORT 1074 1075 int filename__read_debuglink(const char *filename, char *debuglink, 1076 size_t size) 1077 { 1078 int err = -1; 1079 asection *section; 1080 bfd *abfd; 1081 1082 abfd = bfd_openr(filename, NULL); 1083 if (!abfd) 1084 return -1; 1085 1086 if (!bfd_check_format(abfd, bfd_object)) { 1087 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1088 goto out_close; 1089 } 1090 1091 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1092 if (!section) 1093 goto out_close; 1094 1095 if (section->size > size) 1096 goto out_close; 1097 1098 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1099 section->size)) 1100 goto out_close; 1101 1102 err = 0; 1103 1104 out_close: 1105 bfd_close(abfd); 1106 return err; 1107 } 1108 1109 #else 1110 1111 int filename__read_debuglink(const char *filename, char *debuglink, 1112 size_t size) 1113 { 1114 int fd, err = -1; 1115 Elf *elf; 1116 GElf_Ehdr ehdr; 1117 GElf_Shdr shdr; 1118 Elf_Data *data; 1119 Elf_Scn *sec; 1120 Elf_Kind ek; 1121 1122 fd = open(filename, O_RDONLY); 1123 if (fd < 0) 1124 goto out; 1125 1126 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1127 if (elf == NULL) { 1128 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1129 goto out_close; 1130 } 1131 1132 ek = elf_kind(elf); 1133 if (ek != ELF_K_ELF) 1134 goto out_elf_end; 1135 1136 if (gelf_getehdr(elf, &ehdr) == NULL) { 1137 pr_err("%s: cannot get elf header.\n", __func__); 1138 goto out_elf_end; 1139 } 1140 1141 sec = elf_section_by_name(elf, &ehdr, &shdr, 1142 ".gnu_debuglink", NULL); 1143 if (sec == NULL) 1144 goto out_elf_end; 1145 1146 data = elf_getdata(sec, NULL); 1147 if (data == NULL) 1148 goto out_elf_end; 1149 1150 /* the start of this section is a zero-terminated string */ 1151 strncpy(debuglink, data->d_buf, size); 1152 1153 err = 0; 1154 1155 out_elf_end: 1156 elf_end(elf); 1157 out_close: 1158 close(fd); 1159 out: 1160 return err; 1161 } 1162 1163 #endif 1164 1165 static int dso__swap_init(struct dso *dso, unsigned char eidata) 1166 { 1167 static unsigned int const endian = 1; 1168 1169 dso->needs_swap = DSO_SWAP__NO; 1170 1171 switch (eidata) { 1172 case ELFDATA2LSB: 1173 /* We are big endian, DSO is little endian. */ 1174 if (*(unsigned char const *)&endian != 1) 1175 dso->needs_swap = DSO_SWAP__YES; 1176 break; 1177 1178 case ELFDATA2MSB: 1179 /* We are little endian, DSO is big endian. */ 1180 if (*(unsigned char const *)&endian != 0) 1181 dso->needs_swap = DSO_SWAP__YES; 1182 break; 1183 1184 default: 1185 pr_err("unrecognized DSO data encoding %d\n", eidata); 1186 return -EINVAL; 1187 } 1188 1189 return 0; 1190 } 1191 1192 bool symsrc__possibly_runtime(struct symsrc *ss) 1193 { 1194 return ss->dynsym || ss->opdsec; 1195 } 1196 1197 bool symsrc__has_symtab(struct symsrc *ss) 1198 { 1199 return ss->symtab != NULL; 1200 } 1201 1202 void symsrc__destroy(struct symsrc *ss) 1203 { 1204 zfree(&ss->name); 1205 elf_end(ss->elf); 1206 close(ss->fd); 1207 } 1208 1209 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1210 { 1211 /* 1212 * Usually vmlinux is an ELF file with type ET_EXEC for most 1213 * architectures; except Arm64 kernel is linked with option 1214 * '-share', so need to check type ET_DYN. 1215 */ 1216 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1217 ehdr.e_type == ET_DYN; 1218 } 1219 1220 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1221 enum dso_binary_type type) 1222 { 1223 GElf_Ehdr ehdr; 1224 Elf *elf; 1225 int fd; 1226 1227 if (dso__needs_decompress(dso)) { 1228 fd = dso__decompress_kmodule_fd(dso, name); 1229 if (fd < 0) 1230 return -1; 1231 1232 type = dso->symtab_type; 1233 } else { 1234 fd = open(name, O_RDONLY); 1235 if (fd < 0) { 1236 dso->load_errno = errno; 1237 return -1; 1238 } 1239 } 1240 1241 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1242 if (elf == NULL) { 1243 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1244 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1245 goto out_close; 1246 } 1247 1248 if (gelf_getehdr(elf, &ehdr) == NULL) { 1249 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1250 pr_debug("%s: cannot get elf header.\n", __func__); 1251 goto out_elf_end; 1252 } 1253 1254 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1255 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1256 goto out_elf_end; 1257 } 1258 1259 /* Always reject images with a mismatched build-id: */ 1260 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 1261 u8 build_id[BUILD_ID_SIZE]; 1262 struct build_id bid; 1263 int size; 1264 1265 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1266 if (size <= 0) { 1267 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1268 goto out_elf_end; 1269 } 1270 1271 build_id__init(&bid, build_id, size); 1272 if (!dso__build_id_equal(dso, &bid)) { 1273 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1274 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1275 goto out_elf_end; 1276 } 1277 } 1278 1279 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1280 1281 ss->symtab_idx = 0; 1282 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1283 &ss->symtab_idx); 1284 if (ss->symshdr.sh_type != SHT_SYMTAB) 1285 ss->symtab = NULL; 1286 1287 ss->dynsym_idx = 0; 1288 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1289 &ss->dynsym_idx); 1290 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1291 ss->dynsym = NULL; 1292 1293 ss->opdidx = 0; 1294 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1295 &ss->opdidx); 1296 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1297 ss->opdsec = NULL; 1298 1299 if (dso->kernel == DSO_SPACE__USER) 1300 ss->adjust_symbols = true; 1301 else 1302 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1303 1304 ss->name = strdup(name); 1305 if (!ss->name) { 1306 dso->load_errno = errno; 1307 goto out_elf_end; 1308 } 1309 1310 ss->elf = elf; 1311 ss->fd = fd; 1312 ss->ehdr = ehdr; 1313 ss->type = type; 1314 1315 return 0; 1316 1317 out_elf_end: 1318 elf_end(elf); 1319 out_close: 1320 close(fd); 1321 return -1; 1322 } 1323 1324 /** 1325 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1326 * @kmap: kernel maps and relocation reference symbol 1327 * 1328 * This function returns %true if we are dealing with the kernel maps and the 1329 * relocation reference symbol has not yet been found. Otherwise %false is 1330 * returned. 1331 */ 1332 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1333 { 1334 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1335 !kmap->ref_reloc_sym->unrelocated_addr; 1336 } 1337 1338 /** 1339 * ref_reloc - kernel relocation offset. 1340 * @kmap: kernel maps and relocation reference symbol 1341 * 1342 * This function returns the offset of kernel addresses as determined by using 1343 * the relocation reference symbol i.e. if the kernel has not been relocated 1344 * then the return value is zero. 1345 */ 1346 static u64 ref_reloc(struct kmap *kmap) 1347 { 1348 if (kmap && kmap->ref_reloc_sym && 1349 kmap->ref_reloc_sym->unrelocated_addr) 1350 return kmap->ref_reloc_sym->addr - 1351 kmap->ref_reloc_sym->unrelocated_addr; 1352 return 0; 1353 } 1354 1355 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1356 GElf_Sym *sym __maybe_unused) { } 1357 1358 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1359 GElf_Sym *sym, GElf_Shdr *shdr, 1360 struct maps *kmaps, struct kmap *kmap, 1361 struct dso **curr_dsop, struct map **curr_mapp, 1362 const char *section_name, 1363 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1364 { 1365 struct dso *curr_dso = *curr_dsop; 1366 struct map *curr_map; 1367 char dso_name[PATH_MAX]; 1368 1369 /* Adjust symbol to map to file offset */ 1370 if (adjust_kernel_syms) 1371 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1372 1373 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1374 return 0; 1375 1376 if (strcmp(section_name, ".text") == 0) { 1377 /* 1378 * The initial kernel mapping is based on 1379 * kallsyms and identity maps. Overwrite it to 1380 * map to the kernel dso. 1381 */ 1382 if (*remap_kernel && dso->kernel && !kmodule) { 1383 *remap_kernel = false; 1384 map__set_start(map, shdr->sh_addr + ref_reloc(kmap)); 1385 map__set_end(map, map__start(map) + shdr->sh_size); 1386 map__set_pgoff(map, shdr->sh_offset); 1387 map__set_map_ip(map, map__dso_map_ip); 1388 map__set_unmap_ip(map, map__dso_unmap_ip); 1389 /* Ensure maps are correctly ordered */ 1390 if (kmaps) { 1391 int err; 1392 1393 map__get(map); 1394 maps__remove(kmaps, map); 1395 err = maps__insert(kmaps, map); 1396 map__put(map); 1397 if (err) 1398 return err; 1399 } 1400 } 1401 1402 /* 1403 * The initial module mapping is based on 1404 * /proc/modules mapped to offset zero. 1405 * Overwrite it to map to the module dso. 1406 */ 1407 if (*remap_kernel && kmodule) { 1408 *remap_kernel = false; 1409 map__set_pgoff(map, shdr->sh_offset); 1410 } 1411 1412 *curr_mapp = map; 1413 *curr_dsop = dso; 1414 return 0; 1415 } 1416 1417 if (!kmap) 1418 return 0; 1419 1420 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1421 1422 curr_map = maps__find_by_name(kmaps, dso_name); 1423 if (curr_map == NULL) { 1424 u64 start = sym->st_value; 1425 1426 if (kmodule) 1427 start += map__start(map) + shdr->sh_offset; 1428 1429 curr_dso = dso__new(dso_name); 1430 if (curr_dso == NULL) 1431 return -1; 1432 curr_dso->kernel = dso->kernel; 1433 curr_dso->long_name = dso->long_name; 1434 curr_dso->long_name_len = dso->long_name_len; 1435 curr_map = map__new2(start, curr_dso); 1436 dso__put(curr_dso); 1437 if (curr_map == NULL) 1438 return -1; 1439 1440 if (curr_dso->kernel) 1441 map__kmap(curr_map)->kmaps = kmaps; 1442 1443 if (adjust_kernel_syms) { 1444 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap)); 1445 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size); 1446 map__set_pgoff(curr_map, shdr->sh_offset); 1447 } else { 1448 map__set_map_ip(curr_map, identity__map_ip); 1449 map__set_unmap_ip(curr_map, identity__map_ip); 1450 } 1451 curr_dso->symtab_type = dso->symtab_type; 1452 if (maps__insert(kmaps, curr_map)) 1453 return -1; 1454 /* 1455 * Add it before we drop the reference to curr_map, i.e. while 1456 * we still are sure to have a reference to this DSO via 1457 * *curr_map->dso. 1458 */ 1459 dsos__add(&maps__machine(kmaps)->dsos, curr_dso); 1460 /* kmaps already got it */ 1461 map__put(curr_map); 1462 dso__set_loaded(curr_dso); 1463 *curr_mapp = curr_map; 1464 *curr_dsop = curr_dso; 1465 } else 1466 *curr_dsop = map__dso(curr_map); 1467 1468 return 0; 1469 } 1470 1471 static int 1472 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1473 struct symsrc *runtime_ss, int kmodule, int dynsym) 1474 { 1475 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1476 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1477 struct map *curr_map = map; 1478 struct dso *curr_dso = dso; 1479 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1480 uint32_t nr_syms; 1481 int err = -1; 1482 uint32_t idx; 1483 GElf_Ehdr ehdr; 1484 GElf_Shdr shdr; 1485 GElf_Shdr tshdr; 1486 Elf_Data *syms, *opddata = NULL; 1487 GElf_Sym sym; 1488 Elf_Scn *sec, *sec_strndx; 1489 Elf *elf; 1490 int nr = 0; 1491 bool remap_kernel = false, adjust_kernel_syms = false; 1492 1493 if (kmap && !kmaps) 1494 return -1; 1495 1496 elf = syms_ss->elf; 1497 ehdr = syms_ss->ehdr; 1498 if (dynsym) { 1499 sec = syms_ss->dynsym; 1500 shdr = syms_ss->dynshdr; 1501 } else { 1502 sec = syms_ss->symtab; 1503 shdr = syms_ss->symshdr; 1504 } 1505 1506 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1507 ".text", NULL)) 1508 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1509 1510 if (runtime_ss->opdsec) 1511 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1512 1513 syms = elf_getdata(sec, NULL); 1514 if (syms == NULL) 1515 goto out_elf_end; 1516 1517 sec = elf_getscn(elf, shdr.sh_link); 1518 if (sec == NULL) 1519 goto out_elf_end; 1520 1521 symstrs = elf_getdata(sec, NULL); 1522 if (symstrs == NULL) 1523 goto out_elf_end; 1524 1525 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1526 if (sec_strndx == NULL) 1527 goto out_elf_end; 1528 1529 secstrs_run = elf_getdata(sec_strndx, NULL); 1530 if (secstrs_run == NULL) 1531 goto out_elf_end; 1532 1533 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1534 if (sec_strndx == NULL) 1535 goto out_elf_end; 1536 1537 secstrs_sym = elf_getdata(sec_strndx, NULL); 1538 if (secstrs_sym == NULL) 1539 goto out_elf_end; 1540 1541 nr_syms = shdr.sh_size / shdr.sh_entsize; 1542 1543 memset(&sym, 0, sizeof(sym)); 1544 1545 /* 1546 * The kernel relocation symbol is needed in advance in order to adjust 1547 * kernel maps correctly. 1548 */ 1549 if (ref_reloc_sym_not_found(kmap)) { 1550 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1551 const char *elf_name = elf_sym__name(&sym, symstrs); 1552 1553 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1554 continue; 1555 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1556 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr); 1557 break; 1558 } 1559 } 1560 1561 /* 1562 * Handle any relocation of vdso necessary because older kernels 1563 * attempted to prelink vdso to its virtual address. 1564 */ 1565 if (dso__is_vdso(dso)) 1566 map__set_reloc(map, map__start(map) - dso->text_offset); 1567 1568 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1569 /* 1570 * Initial kernel and module mappings do not map to the dso. 1571 * Flag the fixups. 1572 */ 1573 if (dso->kernel) { 1574 remap_kernel = true; 1575 adjust_kernel_syms = dso->adjust_symbols; 1576 } 1577 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1578 struct symbol *f; 1579 const char *elf_name = elf_sym__name(&sym, symstrs); 1580 char *demangled = NULL; 1581 int is_label = elf_sym__is_label(&sym); 1582 const char *section_name; 1583 bool used_opd = false; 1584 1585 if (!is_label && !elf_sym__filter(&sym)) 1586 continue; 1587 1588 /* Reject ARM ELF "mapping symbols": these aren't unique and 1589 * don't identify functions, so will confuse the profile 1590 * output: */ 1591 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1592 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1593 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1594 continue; 1595 } 1596 1597 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1598 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1599 u64 *opd = opddata->d_buf + offset; 1600 sym.st_value = DSO__SWAP(dso, u64, *opd); 1601 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1602 sym.st_value); 1603 used_opd = true; 1604 } 1605 1606 /* 1607 * When loading symbols in a data mapping, ABS symbols (which 1608 * has a value of SHN_ABS in its st_shndx) failed at 1609 * elf_getscn(). And it marks the loading as a failure so 1610 * already loaded symbols cannot be fixed up. 1611 * 1612 * I'm not sure what should be done. Just ignore them for now. 1613 * - Namhyung Kim 1614 */ 1615 if (sym.st_shndx == SHN_ABS) 1616 continue; 1617 1618 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1619 if (!sec) 1620 goto out_elf_end; 1621 1622 gelf_getshdr(sec, &shdr); 1623 1624 /* 1625 * If the attribute bit SHF_ALLOC is not set, the section 1626 * doesn't occupy memory during process execution. 1627 * E.g. ".gnu.warning.*" section is used by linker to generate 1628 * warnings when calling deprecated functions, the symbols in 1629 * the section aren't loaded to memory during process execution, 1630 * so skip them. 1631 */ 1632 if (!(shdr.sh_flags & SHF_ALLOC)) 1633 continue; 1634 1635 secstrs = secstrs_sym; 1636 1637 /* 1638 * We have to fallback to runtime when syms' section header has 1639 * NOBITS set. NOBITS results in file offset (sh_offset) not 1640 * being incremented. So sh_offset used below has different 1641 * values for syms (invalid) and runtime (valid). 1642 */ 1643 if (shdr.sh_type == SHT_NOBITS) { 1644 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1645 if (!sec) 1646 goto out_elf_end; 1647 1648 gelf_getshdr(sec, &shdr); 1649 secstrs = secstrs_run; 1650 } 1651 1652 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1653 continue; 1654 1655 section_name = elf_sec__name(&shdr, secstrs); 1656 1657 /* On ARM, symbols for thumb functions have 1 added to 1658 * the symbol address as a flag - remove it */ 1659 if ((ehdr.e_machine == EM_ARM) && 1660 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1661 (sym.st_value & 1)) 1662 --sym.st_value; 1663 1664 if (dso->kernel) { 1665 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1666 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1667 goto out_elf_end; 1668 } else if ((used_opd && runtime_ss->adjust_symbols) || 1669 (!used_opd && syms_ss->adjust_symbols)) { 1670 GElf_Phdr phdr; 1671 1672 if (elf_read_program_header(runtime_ss->elf, 1673 (u64)sym.st_value, &phdr)) { 1674 pr_debug4("%s: failed to find program header for " 1675 "symbol: %s st_value: %#" PRIx64 "\n", 1676 __func__, elf_name, (u64)sym.st_value); 1677 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1678 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1679 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1680 (u64)shdr.sh_offset); 1681 /* 1682 * Fail to find program header, let's rollback 1683 * to use shdr.sh_addr and shdr.sh_offset to 1684 * calibrate symbol's file address, though this 1685 * is not necessary for normal C ELF file, we 1686 * still need to handle java JIT symbols in this 1687 * case. 1688 */ 1689 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1690 } else { 1691 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1692 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1693 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1694 (u64)phdr.p_offset); 1695 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1696 } 1697 } 1698 1699 demangled = demangle_sym(dso, kmodule, elf_name); 1700 if (demangled != NULL) 1701 elf_name = demangled; 1702 1703 f = symbol__new(sym.st_value, sym.st_size, 1704 GELF_ST_BIND(sym.st_info), 1705 GELF_ST_TYPE(sym.st_info), elf_name); 1706 free(demangled); 1707 if (!f) 1708 goto out_elf_end; 1709 1710 arch__sym_update(f, &sym); 1711 1712 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1713 nr++; 1714 } 1715 1716 /* 1717 * For misannotated, zeroed, ASM function sizes. 1718 */ 1719 if (nr > 0) { 1720 symbols__fixup_end(&dso->symbols, false); 1721 symbols__fixup_duplicate(&dso->symbols); 1722 if (kmap) { 1723 /* 1724 * We need to fixup this here too because we create new 1725 * maps here, for things like vsyscall sections. 1726 */ 1727 maps__fixup_end(kmaps); 1728 } 1729 } 1730 err = nr; 1731 out_elf_end: 1732 return err; 1733 } 1734 1735 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1736 struct symsrc *runtime_ss, int kmodule) 1737 { 1738 int nr = 0; 1739 int err = -1; 1740 1741 dso->symtab_type = syms_ss->type; 1742 dso->is_64_bit = syms_ss->is_64_bit; 1743 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1744 1745 /* 1746 * Modules may already have symbols from kallsyms, but those symbols 1747 * have the wrong values for the dso maps, so remove them. 1748 */ 1749 if (kmodule && syms_ss->symtab) 1750 symbols__delete(&dso->symbols); 1751 1752 if (!syms_ss->symtab) { 1753 /* 1754 * If the vmlinux is stripped, fail so we will fall back 1755 * to using kallsyms. The vmlinux runtime symbols aren't 1756 * of much use. 1757 */ 1758 if (dso->kernel) 1759 return err; 1760 } else { 1761 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1762 kmodule, 0); 1763 if (err < 0) 1764 return err; 1765 nr = err; 1766 } 1767 1768 if (syms_ss->dynsym) { 1769 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1770 kmodule, 1); 1771 if (err < 0) 1772 return err; 1773 err += nr; 1774 } 1775 1776 return err; 1777 } 1778 1779 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1780 { 1781 GElf_Phdr phdr; 1782 size_t i, phdrnum; 1783 int err; 1784 u64 sz; 1785 1786 if (elf_getphdrnum(elf, &phdrnum)) 1787 return -1; 1788 1789 for (i = 0; i < phdrnum; i++) { 1790 if (gelf_getphdr(elf, i, &phdr) == NULL) 1791 return -1; 1792 if (phdr.p_type != PT_LOAD) 1793 continue; 1794 if (exe) { 1795 if (!(phdr.p_flags & PF_X)) 1796 continue; 1797 } else { 1798 if (!(phdr.p_flags & PF_R)) 1799 continue; 1800 } 1801 sz = min(phdr.p_memsz, phdr.p_filesz); 1802 if (!sz) 1803 continue; 1804 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1805 if (err) 1806 return err; 1807 } 1808 return 0; 1809 } 1810 1811 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1812 bool *is_64_bit) 1813 { 1814 int err; 1815 Elf *elf; 1816 1817 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1818 if (elf == NULL) 1819 return -1; 1820 1821 if (is_64_bit) 1822 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1823 1824 err = elf_read_maps(elf, exe, mapfn, data); 1825 1826 elf_end(elf); 1827 return err; 1828 } 1829 1830 enum dso_type dso__type_fd(int fd) 1831 { 1832 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1833 GElf_Ehdr ehdr; 1834 Elf_Kind ek; 1835 Elf *elf; 1836 1837 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1838 if (elf == NULL) 1839 goto out; 1840 1841 ek = elf_kind(elf); 1842 if (ek != ELF_K_ELF) 1843 goto out_end; 1844 1845 if (gelf_getclass(elf) == ELFCLASS64) { 1846 dso_type = DSO__TYPE_64BIT; 1847 goto out_end; 1848 } 1849 1850 if (gelf_getehdr(elf, &ehdr) == NULL) 1851 goto out_end; 1852 1853 if (ehdr.e_machine == EM_X86_64) 1854 dso_type = DSO__TYPE_X32BIT; 1855 else 1856 dso_type = DSO__TYPE_32BIT; 1857 out_end: 1858 elf_end(elf); 1859 out: 1860 return dso_type; 1861 } 1862 1863 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1864 { 1865 ssize_t r; 1866 size_t n; 1867 int err = -1; 1868 char *buf = malloc(page_size); 1869 1870 if (buf == NULL) 1871 return -1; 1872 1873 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1874 goto out; 1875 1876 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1877 goto out; 1878 1879 while (len) { 1880 n = page_size; 1881 if (len < n) 1882 n = len; 1883 /* Use read because mmap won't work on proc files */ 1884 r = read(from, buf, n); 1885 if (r < 0) 1886 goto out; 1887 if (!r) 1888 break; 1889 n = r; 1890 r = write(to, buf, n); 1891 if (r < 0) 1892 goto out; 1893 if ((size_t)r != n) 1894 goto out; 1895 len -= n; 1896 } 1897 1898 err = 0; 1899 out: 1900 free(buf); 1901 return err; 1902 } 1903 1904 struct kcore { 1905 int fd; 1906 int elfclass; 1907 Elf *elf; 1908 GElf_Ehdr ehdr; 1909 }; 1910 1911 static int kcore__open(struct kcore *kcore, const char *filename) 1912 { 1913 GElf_Ehdr *ehdr; 1914 1915 kcore->fd = open(filename, O_RDONLY); 1916 if (kcore->fd == -1) 1917 return -1; 1918 1919 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1920 if (!kcore->elf) 1921 goto out_close; 1922 1923 kcore->elfclass = gelf_getclass(kcore->elf); 1924 if (kcore->elfclass == ELFCLASSNONE) 1925 goto out_end; 1926 1927 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1928 if (!ehdr) 1929 goto out_end; 1930 1931 return 0; 1932 1933 out_end: 1934 elf_end(kcore->elf); 1935 out_close: 1936 close(kcore->fd); 1937 return -1; 1938 } 1939 1940 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1941 bool temp) 1942 { 1943 kcore->elfclass = elfclass; 1944 1945 if (temp) 1946 kcore->fd = mkstemp(filename); 1947 else 1948 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1949 if (kcore->fd == -1) 1950 return -1; 1951 1952 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1953 if (!kcore->elf) 1954 goto out_close; 1955 1956 if (!gelf_newehdr(kcore->elf, elfclass)) 1957 goto out_end; 1958 1959 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1960 1961 return 0; 1962 1963 out_end: 1964 elf_end(kcore->elf); 1965 out_close: 1966 close(kcore->fd); 1967 unlink(filename); 1968 return -1; 1969 } 1970 1971 static void kcore__close(struct kcore *kcore) 1972 { 1973 elf_end(kcore->elf); 1974 close(kcore->fd); 1975 } 1976 1977 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1978 { 1979 GElf_Ehdr *ehdr = &to->ehdr; 1980 GElf_Ehdr *kehdr = &from->ehdr; 1981 1982 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1983 ehdr->e_type = kehdr->e_type; 1984 ehdr->e_machine = kehdr->e_machine; 1985 ehdr->e_version = kehdr->e_version; 1986 ehdr->e_entry = 0; 1987 ehdr->e_shoff = 0; 1988 ehdr->e_flags = kehdr->e_flags; 1989 ehdr->e_phnum = count; 1990 ehdr->e_shentsize = 0; 1991 ehdr->e_shnum = 0; 1992 ehdr->e_shstrndx = 0; 1993 1994 if (from->elfclass == ELFCLASS32) { 1995 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1996 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1997 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1998 } else { 1999 ehdr->e_phoff = sizeof(Elf64_Ehdr); 2000 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 2001 ehdr->e_phentsize = sizeof(Elf64_Phdr); 2002 } 2003 2004 if (!gelf_update_ehdr(to->elf, ehdr)) 2005 return -1; 2006 2007 if (!gelf_newphdr(to->elf, count)) 2008 return -1; 2009 2010 return 0; 2011 } 2012 2013 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 2014 u64 addr, u64 len) 2015 { 2016 GElf_Phdr phdr = { 2017 .p_type = PT_LOAD, 2018 .p_flags = PF_R | PF_W | PF_X, 2019 .p_offset = offset, 2020 .p_vaddr = addr, 2021 .p_paddr = 0, 2022 .p_filesz = len, 2023 .p_memsz = len, 2024 .p_align = page_size, 2025 }; 2026 2027 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 2028 return -1; 2029 2030 return 0; 2031 } 2032 2033 static off_t kcore__write(struct kcore *kcore) 2034 { 2035 return elf_update(kcore->elf, ELF_C_WRITE); 2036 } 2037 2038 struct phdr_data { 2039 off_t offset; 2040 off_t rel; 2041 u64 addr; 2042 u64 len; 2043 struct list_head node; 2044 struct phdr_data *remaps; 2045 }; 2046 2047 struct sym_data { 2048 u64 addr; 2049 struct list_head node; 2050 }; 2051 2052 struct kcore_copy_info { 2053 u64 stext; 2054 u64 etext; 2055 u64 first_symbol; 2056 u64 last_symbol; 2057 u64 first_module; 2058 u64 first_module_symbol; 2059 u64 last_module_symbol; 2060 size_t phnum; 2061 struct list_head phdrs; 2062 struct list_head syms; 2063 }; 2064 2065 #define kcore_copy__for_each_phdr(k, p) \ 2066 list_for_each_entry((p), &(k)->phdrs, node) 2067 2068 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2069 { 2070 struct phdr_data *p = zalloc(sizeof(*p)); 2071 2072 if (p) { 2073 p->addr = addr; 2074 p->len = len; 2075 p->offset = offset; 2076 } 2077 2078 return p; 2079 } 2080 2081 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2082 u64 addr, u64 len, 2083 off_t offset) 2084 { 2085 struct phdr_data *p = phdr_data__new(addr, len, offset); 2086 2087 if (p) 2088 list_add_tail(&p->node, &kci->phdrs); 2089 2090 return p; 2091 } 2092 2093 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2094 { 2095 struct phdr_data *p, *tmp; 2096 2097 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2098 list_del_init(&p->node); 2099 free(p); 2100 } 2101 } 2102 2103 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2104 u64 addr) 2105 { 2106 struct sym_data *s = zalloc(sizeof(*s)); 2107 2108 if (s) { 2109 s->addr = addr; 2110 list_add_tail(&s->node, &kci->syms); 2111 } 2112 2113 return s; 2114 } 2115 2116 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2117 { 2118 struct sym_data *s, *tmp; 2119 2120 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2121 list_del_init(&s->node); 2122 free(s); 2123 } 2124 } 2125 2126 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2127 u64 start) 2128 { 2129 struct kcore_copy_info *kci = arg; 2130 2131 if (!kallsyms__is_function(type)) 2132 return 0; 2133 2134 if (strchr(name, '[')) { 2135 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2136 kci->first_module_symbol = start; 2137 if (start > kci->last_module_symbol) 2138 kci->last_module_symbol = start; 2139 return 0; 2140 } 2141 2142 if (!kci->first_symbol || start < kci->first_symbol) 2143 kci->first_symbol = start; 2144 2145 if (!kci->last_symbol || start > kci->last_symbol) 2146 kci->last_symbol = start; 2147 2148 if (!strcmp(name, "_stext")) { 2149 kci->stext = start; 2150 return 0; 2151 } 2152 2153 if (!strcmp(name, "_etext")) { 2154 kci->etext = start; 2155 return 0; 2156 } 2157 2158 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2159 return -1; 2160 2161 return 0; 2162 } 2163 2164 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2165 const char *dir) 2166 { 2167 char kallsyms_filename[PATH_MAX]; 2168 2169 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2170 2171 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2172 return -1; 2173 2174 if (kallsyms__parse(kallsyms_filename, kci, 2175 kcore_copy__process_kallsyms) < 0) 2176 return -1; 2177 2178 return 0; 2179 } 2180 2181 static int kcore_copy__process_modules(void *arg, 2182 const char *name __maybe_unused, 2183 u64 start, u64 size __maybe_unused) 2184 { 2185 struct kcore_copy_info *kci = arg; 2186 2187 if (!kci->first_module || start < kci->first_module) 2188 kci->first_module = start; 2189 2190 return 0; 2191 } 2192 2193 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2194 const char *dir) 2195 { 2196 char modules_filename[PATH_MAX]; 2197 2198 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2199 2200 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2201 return -1; 2202 2203 if (modules__parse(modules_filename, kci, 2204 kcore_copy__process_modules) < 0) 2205 return -1; 2206 2207 return 0; 2208 } 2209 2210 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2211 u64 pgoff, u64 s, u64 e) 2212 { 2213 u64 len, offset; 2214 2215 if (s < start || s >= end) 2216 return 0; 2217 2218 offset = (s - start) + pgoff; 2219 len = e < end ? e - s : end - s; 2220 2221 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2222 } 2223 2224 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2225 { 2226 struct kcore_copy_info *kci = data; 2227 u64 end = start + len; 2228 struct sym_data *sdat; 2229 2230 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2231 return -1; 2232 2233 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2234 kci->last_module_symbol)) 2235 return -1; 2236 2237 list_for_each_entry(sdat, &kci->syms, node) { 2238 u64 s = round_down(sdat->addr, page_size); 2239 2240 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2241 return -1; 2242 } 2243 2244 return 0; 2245 } 2246 2247 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2248 { 2249 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2250 return -1; 2251 2252 return 0; 2253 } 2254 2255 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2256 { 2257 struct phdr_data *p, *k = NULL; 2258 u64 kend; 2259 2260 if (!kci->stext) 2261 return; 2262 2263 /* Find phdr that corresponds to the kernel map (contains stext) */ 2264 kcore_copy__for_each_phdr(kci, p) { 2265 u64 pend = p->addr + p->len - 1; 2266 2267 if (p->addr <= kci->stext && pend >= kci->stext) { 2268 k = p; 2269 break; 2270 } 2271 } 2272 2273 if (!k) 2274 return; 2275 2276 kend = k->offset + k->len; 2277 2278 /* Find phdrs that remap the kernel */ 2279 kcore_copy__for_each_phdr(kci, p) { 2280 u64 pend = p->offset + p->len; 2281 2282 if (p == k) 2283 continue; 2284 2285 if (p->offset >= k->offset && pend <= kend) 2286 p->remaps = k; 2287 } 2288 } 2289 2290 static void kcore_copy__layout(struct kcore_copy_info *kci) 2291 { 2292 struct phdr_data *p; 2293 off_t rel = 0; 2294 2295 kcore_copy__find_remaps(kci); 2296 2297 kcore_copy__for_each_phdr(kci, p) { 2298 if (!p->remaps) { 2299 p->rel = rel; 2300 rel += p->len; 2301 } 2302 kci->phnum += 1; 2303 } 2304 2305 kcore_copy__for_each_phdr(kci, p) { 2306 struct phdr_data *k = p->remaps; 2307 2308 if (k) 2309 p->rel = p->offset - k->offset + k->rel; 2310 } 2311 } 2312 2313 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2314 Elf *elf) 2315 { 2316 if (kcore_copy__parse_kallsyms(kci, dir)) 2317 return -1; 2318 2319 if (kcore_copy__parse_modules(kci, dir)) 2320 return -1; 2321 2322 if (kci->stext) 2323 kci->stext = round_down(kci->stext, page_size); 2324 else 2325 kci->stext = round_down(kci->first_symbol, page_size); 2326 2327 if (kci->etext) { 2328 kci->etext = round_up(kci->etext, page_size); 2329 } else if (kci->last_symbol) { 2330 kci->etext = round_up(kci->last_symbol, page_size); 2331 kci->etext += page_size; 2332 } 2333 2334 if (kci->first_module_symbol && 2335 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2336 kci->first_module = kci->first_module_symbol; 2337 2338 kci->first_module = round_down(kci->first_module, page_size); 2339 2340 if (kci->last_module_symbol) { 2341 kci->last_module_symbol = round_up(kci->last_module_symbol, 2342 page_size); 2343 kci->last_module_symbol += page_size; 2344 } 2345 2346 if (!kci->stext || !kci->etext) 2347 return -1; 2348 2349 if (kci->first_module && !kci->last_module_symbol) 2350 return -1; 2351 2352 if (kcore_copy__read_maps(kci, elf)) 2353 return -1; 2354 2355 kcore_copy__layout(kci); 2356 2357 return 0; 2358 } 2359 2360 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2361 const char *name) 2362 { 2363 char from_filename[PATH_MAX]; 2364 char to_filename[PATH_MAX]; 2365 2366 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2367 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2368 2369 return copyfile_mode(from_filename, to_filename, 0400); 2370 } 2371 2372 static int kcore_copy__unlink(const char *dir, const char *name) 2373 { 2374 char filename[PATH_MAX]; 2375 2376 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2377 2378 return unlink(filename); 2379 } 2380 2381 static int kcore_copy__compare_fds(int from, int to) 2382 { 2383 char *buf_from; 2384 char *buf_to; 2385 ssize_t ret; 2386 size_t len; 2387 int err = -1; 2388 2389 buf_from = malloc(page_size); 2390 buf_to = malloc(page_size); 2391 if (!buf_from || !buf_to) 2392 goto out; 2393 2394 while (1) { 2395 /* Use read because mmap won't work on proc files */ 2396 ret = read(from, buf_from, page_size); 2397 if (ret < 0) 2398 goto out; 2399 2400 if (!ret) 2401 break; 2402 2403 len = ret; 2404 2405 if (readn(to, buf_to, len) != (int)len) 2406 goto out; 2407 2408 if (memcmp(buf_from, buf_to, len)) 2409 goto out; 2410 } 2411 2412 err = 0; 2413 out: 2414 free(buf_to); 2415 free(buf_from); 2416 return err; 2417 } 2418 2419 static int kcore_copy__compare_files(const char *from_filename, 2420 const char *to_filename) 2421 { 2422 int from, to, err = -1; 2423 2424 from = open(from_filename, O_RDONLY); 2425 if (from < 0) 2426 return -1; 2427 2428 to = open(to_filename, O_RDONLY); 2429 if (to < 0) 2430 goto out_close_from; 2431 2432 err = kcore_copy__compare_fds(from, to); 2433 2434 close(to); 2435 out_close_from: 2436 close(from); 2437 return err; 2438 } 2439 2440 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2441 const char *name) 2442 { 2443 char from_filename[PATH_MAX]; 2444 char to_filename[PATH_MAX]; 2445 2446 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2447 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2448 2449 return kcore_copy__compare_files(from_filename, to_filename); 2450 } 2451 2452 /** 2453 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2454 * @from_dir: from directory 2455 * @to_dir: to directory 2456 * 2457 * This function copies kallsyms, modules and kcore files from one directory to 2458 * another. kallsyms and modules are copied entirely. Only code segments are 2459 * copied from kcore. It is assumed that two segments suffice: one for the 2460 * kernel proper and one for all the modules. The code segments are determined 2461 * from kallsyms and modules files. The kernel map starts at _stext or the 2462 * lowest function symbol, and ends at _etext or the highest function symbol. 2463 * The module map starts at the lowest module address and ends at the highest 2464 * module symbol. Start addresses are rounded down to the nearest page. End 2465 * addresses are rounded up to the nearest page. An extra page is added to the 2466 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2467 * symbol too. Because it contains only code sections, the resulting kcore is 2468 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2469 * is not the same for the kernel map and the modules map. That happens because 2470 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2471 * kallsyms file is compared with its copy to check that modules have not been 2472 * loaded or unloaded while the copies were taking place. 2473 * 2474 * Return: %0 on success, %-1 on failure. 2475 */ 2476 int kcore_copy(const char *from_dir, const char *to_dir) 2477 { 2478 struct kcore kcore; 2479 struct kcore extract; 2480 int idx = 0, err = -1; 2481 off_t offset, sz; 2482 struct kcore_copy_info kci = { .stext = 0, }; 2483 char kcore_filename[PATH_MAX]; 2484 char extract_filename[PATH_MAX]; 2485 struct phdr_data *p; 2486 2487 INIT_LIST_HEAD(&kci.phdrs); 2488 INIT_LIST_HEAD(&kci.syms); 2489 2490 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2491 return -1; 2492 2493 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2494 goto out_unlink_kallsyms; 2495 2496 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2497 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2498 2499 if (kcore__open(&kcore, kcore_filename)) 2500 goto out_unlink_modules; 2501 2502 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2503 goto out_kcore_close; 2504 2505 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2506 goto out_kcore_close; 2507 2508 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2509 goto out_extract_close; 2510 2511 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2512 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2513 offset = round_up(offset, page_size); 2514 2515 kcore_copy__for_each_phdr(&kci, p) { 2516 off_t offs = p->rel + offset; 2517 2518 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2519 goto out_extract_close; 2520 } 2521 2522 sz = kcore__write(&extract); 2523 if (sz < 0 || sz > offset) 2524 goto out_extract_close; 2525 2526 kcore_copy__for_each_phdr(&kci, p) { 2527 off_t offs = p->rel + offset; 2528 2529 if (p->remaps) 2530 continue; 2531 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2532 goto out_extract_close; 2533 } 2534 2535 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2536 goto out_extract_close; 2537 2538 err = 0; 2539 2540 out_extract_close: 2541 kcore__close(&extract); 2542 if (err) 2543 unlink(extract_filename); 2544 out_kcore_close: 2545 kcore__close(&kcore); 2546 out_unlink_modules: 2547 if (err) 2548 kcore_copy__unlink(to_dir, "modules"); 2549 out_unlink_kallsyms: 2550 if (err) 2551 kcore_copy__unlink(to_dir, "kallsyms"); 2552 2553 kcore_copy__free_phdrs(&kci); 2554 kcore_copy__free_syms(&kci); 2555 2556 return err; 2557 } 2558 2559 int kcore_extract__create(struct kcore_extract *kce) 2560 { 2561 struct kcore kcore; 2562 struct kcore extract; 2563 size_t count = 1; 2564 int idx = 0, err = -1; 2565 off_t offset = page_size, sz; 2566 2567 if (kcore__open(&kcore, kce->kcore_filename)) 2568 return -1; 2569 2570 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2571 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2572 goto out_kcore_close; 2573 2574 if (kcore__copy_hdr(&kcore, &extract, count)) 2575 goto out_extract_close; 2576 2577 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2578 goto out_extract_close; 2579 2580 sz = kcore__write(&extract); 2581 if (sz < 0 || sz > offset) 2582 goto out_extract_close; 2583 2584 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2585 goto out_extract_close; 2586 2587 err = 0; 2588 2589 out_extract_close: 2590 kcore__close(&extract); 2591 if (err) 2592 unlink(kce->extract_filename); 2593 out_kcore_close: 2594 kcore__close(&kcore); 2595 2596 return err; 2597 } 2598 2599 void kcore_extract__delete(struct kcore_extract *kce) 2600 { 2601 unlink(kce->extract_filename); 2602 } 2603 2604 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2605 2606 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2607 { 2608 if (!base_off) 2609 return; 2610 2611 if (tmp->bit32) 2612 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2613 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2614 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2615 else 2616 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2617 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2618 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2619 } 2620 2621 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2622 GElf_Addr base_off) 2623 { 2624 if (!base_off) 2625 return; 2626 2627 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2628 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2629 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2630 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2631 } 2632 2633 /** 2634 * populate_sdt_note : Parse raw data and identify SDT note 2635 * @elf: elf of the opened file 2636 * @data: raw data of a section with description offset applied 2637 * @len: note description size 2638 * @type: type of the note 2639 * @sdt_notes: List to add the SDT note 2640 * 2641 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2642 * if its an SDT note, it appends to @sdt_notes list. 2643 */ 2644 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2645 struct list_head *sdt_notes) 2646 { 2647 const char *provider, *name, *args; 2648 struct sdt_note *tmp = NULL; 2649 GElf_Ehdr ehdr; 2650 GElf_Shdr shdr; 2651 int ret = -EINVAL; 2652 2653 union { 2654 Elf64_Addr a64[NR_ADDR]; 2655 Elf32_Addr a32[NR_ADDR]; 2656 } buf; 2657 2658 Elf_Data dst = { 2659 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2660 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2661 .d_off = 0, .d_align = 0 2662 }; 2663 Elf_Data src = { 2664 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2665 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2666 .d_align = 0 2667 }; 2668 2669 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2670 if (!tmp) { 2671 ret = -ENOMEM; 2672 goto out_err; 2673 } 2674 2675 INIT_LIST_HEAD(&tmp->note_list); 2676 2677 if (len < dst.d_size + 3) 2678 goto out_free_note; 2679 2680 /* Translation from file representation to memory representation */ 2681 if (gelf_xlatetom(*elf, &dst, &src, 2682 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2683 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2684 goto out_free_note; 2685 } 2686 2687 /* Populate the fields of sdt_note */ 2688 provider = data + dst.d_size; 2689 2690 name = (const char *)memchr(provider, '\0', data + len - provider); 2691 if (name++ == NULL) 2692 goto out_free_note; 2693 2694 tmp->provider = strdup(provider); 2695 if (!tmp->provider) { 2696 ret = -ENOMEM; 2697 goto out_free_note; 2698 } 2699 tmp->name = strdup(name); 2700 if (!tmp->name) { 2701 ret = -ENOMEM; 2702 goto out_free_prov; 2703 } 2704 2705 args = memchr(name, '\0', data + len - name); 2706 2707 /* 2708 * There is no argument if: 2709 * - We reached the end of the note; 2710 * - There is not enough room to hold a potential string; 2711 * - The argument string is empty or just contains ':'. 2712 */ 2713 if (args == NULL || data + len - args < 2 || 2714 args[1] == ':' || args[1] == '\0') 2715 tmp->args = NULL; 2716 else { 2717 tmp->args = strdup(++args); 2718 if (!tmp->args) { 2719 ret = -ENOMEM; 2720 goto out_free_name; 2721 } 2722 } 2723 2724 if (gelf_getclass(*elf) == ELFCLASS32) { 2725 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2726 tmp->bit32 = true; 2727 } else { 2728 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2729 tmp->bit32 = false; 2730 } 2731 2732 if (!gelf_getehdr(*elf, &ehdr)) { 2733 pr_debug("%s : cannot get elf header.\n", __func__); 2734 ret = -EBADF; 2735 goto out_free_args; 2736 } 2737 2738 /* Adjust the prelink effect : 2739 * Find out the .stapsdt.base section. 2740 * This scn will help us to handle prelinking (if present). 2741 * Compare the retrieved file offset of the base section with the 2742 * base address in the description of the SDT note. If its different, 2743 * then accordingly, adjust the note location. 2744 */ 2745 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2746 sdt_adjust_loc(tmp, shdr.sh_offset); 2747 2748 /* Adjust reference counter offset */ 2749 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2750 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2751 2752 list_add_tail(&tmp->note_list, sdt_notes); 2753 return 0; 2754 2755 out_free_args: 2756 zfree(&tmp->args); 2757 out_free_name: 2758 zfree(&tmp->name); 2759 out_free_prov: 2760 zfree(&tmp->provider); 2761 out_free_note: 2762 free(tmp); 2763 out_err: 2764 return ret; 2765 } 2766 2767 /** 2768 * construct_sdt_notes_list : constructs a list of SDT notes 2769 * @elf : elf to look into 2770 * @sdt_notes : empty list_head 2771 * 2772 * Scans the sections in 'elf' for the section 2773 * .note.stapsdt. It, then calls populate_sdt_note to find 2774 * out the SDT events and populates the 'sdt_notes'. 2775 */ 2776 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2777 { 2778 GElf_Ehdr ehdr; 2779 Elf_Scn *scn = NULL; 2780 Elf_Data *data; 2781 GElf_Shdr shdr; 2782 size_t shstrndx, next; 2783 GElf_Nhdr nhdr; 2784 size_t name_off, desc_off, offset; 2785 int ret = 0; 2786 2787 if (gelf_getehdr(elf, &ehdr) == NULL) { 2788 ret = -EBADF; 2789 goto out_ret; 2790 } 2791 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2792 ret = -EBADF; 2793 goto out_ret; 2794 } 2795 2796 /* Look for the required section */ 2797 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2798 if (!scn) { 2799 ret = -ENOENT; 2800 goto out_ret; 2801 } 2802 2803 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2804 ret = -ENOENT; 2805 goto out_ret; 2806 } 2807 2808 data = elf_getdata(scn, NULL); 2809 2810 /* Get the SDT notes */ 2811 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2812 &desc_off)) > 0; offset = next) { 2813 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2814 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2815 sizeof(SDT_NOTE_NAME))) { 2816 /* Check the type of the note */ 2817 if (nhdr.n_type != SDT_NOTE_TYPE) 2818 goto out_ret; 2819 2820 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2821 nhdr.n_descsz, sdt_notes); 2822 if (ret < 0) 2823 goto out_ret; 2824 } 2825 } 2826 if (list_empty(sdt_notes)) 2827 ret = -ENOENT; 2828 2829 out_ret: 2830 return ret; 2831 } 2832 2833 /** 2834 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2835 * @head : empty list_head 2836 * @target : file to find SDT notes from 2837 * 2838 * This opens the file, initializes 2839 * the ELF and then calls construct_sdt_notes_list. 2840 */ 2841 int get_sdt_note_list(struct list_head *head, const char *target) 2842 { 2843 Elf *elf; 2844 int fd, ret; 2845 2846 fd = open(target, O_RDONLY); 2847 if (fd < 0) 2848 return -EBADF; 2849 2850 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2851 if (!elf) { 2852 ret = -EBADF; 2853 goto out_close; 2854 } 2855 ret = construct_sdt_notes_list(elf, head); 2856 elf_end(elf); 2857 out_close: 2858 close(fd); 2859 return ret; 2860 } 2861 2862 /** 2863 * cleanup_sdt_note_list : free the sdt notes' list 2864 * @sdt_notes: sdt notes' list 2865 * 2866 * Free up the SDT notes in @sdt_notes. 2867 * Returns the number of SDT notes free'd. 2868 */ 2869 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2870 { 2871 struct sdt_note *tmp, *pos; 2872 int nr_free = 0; 2873 2874 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2875 list_del_init(&pos->note_list); 2876 zfree(&pos->args); 2877 zfree(&pos->name); 2878 zfree(&pos->provider); 2879 free(pos); 2880 nr_free++; 2881 } 2882 return nr_free; 2883 } 2884 2885 /** 2886 * sdt_notes__get_count: Counts the number of sdt events 2887 * @start: list_head to sdt_notes list 2888 * 2889 * Returns the number of SDT notes in a list 2890 */ 2891 int sdt_notes__get_count(struct list_head *start) 2892 { 2893 struct sdt_note *sdt_ptr; 2894 int count = 0; 2895 2896 list_for_each_entry(sdt_ptr, start, note_list) 2897 count++; 2898 return count; 2899 } 2900 #endif 2901 2902 void symbol__elf_init(void) 2903 { 2904 elf_version(EV_CURRENT); 2905 } 2906