xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision c6fddb28)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-java.h"
16 #include "demangle-rust.h"
17 #include "machine.h"
18 #include "vdso.h"
19 #include "debug.h"
20 #include "util/copyfile.h"
21 #include <linux/ctype.h>
22 #include <linux/kernel.h>
23 #include <linux/zalloc.h>
24 #include <symbol/kallsyms.h>
25 #include <internal/lib.h>
26 
27 #ifndef EM_AARCH64
28 #define EM_AARCH64	183  /* ARM 64 bit */
29 #endif
30 
31 #ifndef ELF32_ST_VISIBILITY
32 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
33 #endif
34 
35 /* For ELF64 the definitions are the same.  */
36 #ifndef ELF64_ST_VISIBILITY
37 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
38 #endif
39 
40 /* How to extract information held in the st_other field.  */
41 #ifndef GELF_ST_VISIBILITY
42 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
43 #endif
44 
45 typedef Elf64_Nhdr GElf_Nhdr;
46 
47 #ifndef DMGL_PARAMS
48 #define DMGL_NO_OPTS     0              /* For readability... */
49 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
50 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
51 #endif
52 
53 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
54 extern char *cplus_demangle(const char *, int);
55 
56 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
57 {
58 	return cplus_demangle(c, i);
59 }
60 #else
61 #ifdef NO_DEMANGLE
62 static inline char *bfd_demangle(void __maybe_unused *v,
63 				 const char __maybe_unused *c,
64 				 int __maybe_unused i)
65 {
66 	return NULL;
67 }
68 #else
69 #define PACKAGE 'perf'
70 #include <bfd.h>
71 #endif
72 #endif
73 
74 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
75 static int elf_getphdrnum(Elf *elf, size_t *dst)
76 {
77 	GElf_Ehdr gehdr;
78 	GElf_Ehdr *ehdr;
79 
80 	ehdr = gelf_getehdr(elf, &gehdr);
81 	if (!ehdr)
82 		return -1;
83 
84 	*dst = ehdr->e_phnum;
85 
86 	return 0;
87 }
88 #endif
89 
90 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
91 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
92 {
93 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
94 	return -1;
95 }
96 #endif
97 
98 #ifndef NT_GNU_BUILD_ID
99 #define NT_GNU_BUILD_ID 3
100 #endif
101 
102 /**
103  * elf_symtab__for_each_symbol - iterate thru all the symbols
104  *
105  * @syms: struct elf_symtab instance to iterate
106  * @idx: uint32_t idx
107  * @sym: GElf_Sym iterator
108  */
109 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
110 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
111 	     idx < nr_syms; \
112 	     idx++, gelf_getsym(syms, idx, &sym))
113 
114 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
115 {
116 	return GELF_ST_TYPE(sym->st_info);
117 }
118 
119 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
120 {
121 	return GELF_ST_VISIBILITY(sym->st_other);
122 }
123 
124 #ifndef STT_GNU_IFUNC
125 #define STT_GNU_IFUNC 10
126 #endif
127 
128 static inline int elf_sym__is_function(const GElf_Sym *sym)
129 {
130 	return (elf_sym__type(sym) == STT_FUNC ||
131 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
132 	       sym->st_name != 0 &&
133 	       sym->st_shndx != SHN_UNDEF;
134 }
135 
136 static inline bool elf_sym__is_object(const GElf_Sym *sym)
137 {
138 	return elf_sym__type(sym) == STT_OBJECT &&
139 		sym->st_name != 0 &&
140 		sym->st_shndx != SHN_UNDEF;
141 }
142 
143 static inline int elf_sym__is_label(const GElf_Sym *sym)
144 {
145 	return elf_sym__type(sym) == STT_NOTYPE &&
146 		sym->st_name != 0 &&
147 		sym->st_shndx != SHN_UNDEF &&
148 		sym->st_shndx != SHN_ABS &&
149 		elf_sym__visibility(sym) != STV_HIDDEN &&
150 		elf_sym__visibility(sym) != STV_INTERNAL;
151 }
152 
153 static bool elf_sym__filter(GElf_Sym *sym)
154 {
155 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
156 }
157 
158 static inline const char *elf_sym__name(const GElf_Sym *sym,
159 					const Elf_Data *symstrs)
160 {
161 	return symstrs->d_buf + sym->st_name;
162 }
163 
164 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
165 					const Elf_Data *secstrs)
166 {
167 	return secstrs->d_buf + shdr->sh_name;
168 }
169 
170 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
171 					const Elf_Data *secstrs)
172 {
173 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
174 }
175 
176 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
177 				    const Elf_Data *secstrs)
178 {
179 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
180 }
181 
182 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
183 {
184 	return elf_sec__is_text(shdr, secstrs) ||
185 	       elf_sec__is_data(shdr, secstrs);
186 }
187 
188 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
189 {
190 	Elf_Scn *sec = NULL;
191 	GElf_Shdr shdr;
192 	size_t cnt = 1;
193 
194 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
195 		gelf_getshdr(sec, &shdr);
196 
197 		if ((addr >= shdr.sh_addr) &&
198 		    (addr < (shdr.sh_addr + shdr.sh_size)))
199 			return cnt;
200 
201 		++cnt;
202 	}
203 
204 	return -1;
205 }
206 
207 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
208 			     GElf_Shdr *shp, const char *name, size_t *idx)
209 {
210 	Elf_Scn *sec = NULL;
211 	size_t cnt = 1;
212 
213 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
214 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
215 		return NULL;
216 
217 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
218 		char *str;
219 
220 		gelf_getshdr(sec, shp);
221 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
222 		if (str && !strcmp(name, str)) {
223 			if (idx)
224 				*idx = cnt;
225 			return sec;
226 		}
227 		++cnt;
228 	}
229 
230 	return NULL;
231 }
232 
233 static bool want_demangle(bool is_kernel_sym)
234 {
235 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
236 }
237 
238 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
239 {
240 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
241 	char *demangled = NULL;
242 
243 	/*
244 	 * We need to figure out if the object was created from C++ sources
245 	 * DWARF DW_compile_unit has this, but we don't always have access
246 	 * to it...
247 	 */
248 	if (!want_demangle(dso->kernel || kmodule))
249 	    return demangled;
250 
251 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
252 	if (demangled == NULL)
253 		demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
254 	else if (rust_is_mangled(demangled))
255 		/*
256 		    * Input to Rust demangling is the BFD-demangled
257 		    * name which it Rust-demangles in place.
258 		    */
259 		rust_demangle_sym(demangled);
260 
261 	return demangled;
262 }
263 
264 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
265 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
266 	     idx < nr_entries; \
267 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
268 
269 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
270 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
271 	     idx < nr_entries; \
272 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
273 
274 /*
275  * We need to check if we have a .dynsym, so that we can handle the
276  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
277  * .dynsym or .symtab).
278  * And always look at the original dso, not at debuginfo packages, that
279  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
280  */
281 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
282 {
283 	uint32_t nr_rel_entries, idx;
284 	GElf_Sym sym;
285 	u64 plt_offset, plt_header_size, plt_entry_size;
286 	GElf_Shdr shdr_plt;
287 	struct symbol *f;
288 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
289 	Elf_Data *reldata, *syms, *symstrs;
290 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
291 	size_t dynsym_idx;
292 	GElf_Ehdr ehdr;
293 	char sympltname[1024];
294 	Elf *elf;
295 	int nr = 0, symidx, err = 0;
296 
297 	if (!ss->dynsym)
298 		return 0;
299 
300 	elf = ss->elf;
301 	ehdr = ss->ehdr;
302 
303 	scn_dynsym = ss->dynsym;
304 	shdr_dynsym = ss->dynshdr;
305 	dynsym_idx = ss->dynsym_idx;
306 
307 	if (scn_dynsym == NULL)
308 		goto out_elf_end;
309 
310 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
311 					  ".rela.plt", NULL);
312 	if (scn_plt_rel == NULL) {
313 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
314 						  ".rel.plt", NULL);
315 		if (scn_plt_rel == NULL)
316 			goto out_elf_end;
317 	}
318 
319 	err = -1;
320 
321 	if (shdr_rel_plt.sh_link != dynsym_idx)
322 		goto out_elf_end;
323 
324 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
325 		goto out_elf_end;
326 
327 	/*
328 	 * Fetch the relocation section to find the idxes to the GOT
329 	 * and the symbols in the .dynsym they refer to.
330 	 */
331 	reldata = elf_getdata(scn_plt_rel, NULL);
332 	if (reldata == NULL)
333 		goto out_elf_end;
334 
335 	syms = elf_getdata(scn_dynsym, NULL);
336 	if (syms == NULL)
337 		goto out_elf_end;
338 
339 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
340 	if (scn_symstrs == NULL)
341 		goto out_elf_end;
342 
343 	symstrs = elf_getdata(scn_symstrs, NULL);
344 	if (symstrs == NULL)
345 		goto out_elf_end;
346 
347 	if (symstrs->d_size == 0)
348 		goto out_elf_end;
349 
350 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
351 	plt_offset = shdr_plt.sh_offset;
352 	switch (ehdr.e_machine) {
353 		case EM_ARM:
354 			plt_header_size = 20;
355 			plt_entry_size = 12;
356 			break;
357 
358 		case EM_AARCH64:
359 			plt_header_size = 32;
360 			plt_entry_size = 16;
361 			break;
362 
363 		case EM_SPARC:
364 			plt_header_size = 48;
365 			plt_entry_size = 12;
366 			break;
367 
368 		case EM_SPARCV9:
369 			plt_header_size = 128;
370 			plt_entry_size = 32;
371 			break;
372 
373 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
374 			plt_header_size = shdr_plt.sh_entsize;
375 			plt_entry_size = shdr_plt.sh_entsize;
376 			break;
377 	}
378 	plt_offset += plt_header_size;
379 
380 	if (shdr_rel_plt.sh_type == SHT_RELA) {
381 		GElf_Rela pos_mem, *pos;
382 
383 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
384 					   nr_rel_entries) {
385 			const char *elf_name = NULL;
386 			char *demangled = NULL;
387 			symidx = GELF_R_SYM(pos->r_info);
388 			gelf_getsym(syms, symidx, &sym);
389 
390 			elf_name = elf_sym__name(&sym, symstrs);
391 			demangled = demangle_sym(dso, 0, elf_name);
392 			if (demangled != NULL)
393 				elf_name = demangled;
394 			snprintf(sympltname, sizeof(sympltname),
395 				 "%s@plt", elf_name);
396 			free(demangled);
397 
398 			f = symbol__new(plt_offset, plt_entry_size,
399 					STB_GLOBAL, STT_FUNC, sympltname);
400 			if (!f)
401 				goto out_elf_end;
402 
403 			plt_offset += plt_entry_size;
404 			symbols__insert(&dso->symbols, f);
405 			++nr;
406 		}
407 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
408 		GElf_Rel pos_mem, *pos;
409 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
410 					  nr_rel_entries) {
411 			const char *elf_name = NULL;
412 			char *demangled = NULL;
413 			symidx = GELF_R_SYM(pos->r_info);
414 			gelf_getsym(syms, symidx, &sym);
415 
416 			elf_name = elf_sym__name(&sym, symstrs);
417 			demangled = demangle_sym(dso, 0, elf_name);
418 			if (demangled != NULL)
419 				elf_name = demangled;
420 			snprintf(sympltname, sizeof(sympltname),
421 				 "%s@plt", elf_name);
422 			free(demangled);
423 
424 			f = symbol__new(plt_offset, plt_entry_size,
425 					STB_GLOBAL, STT_FUNC, sympltname);
426 			if (!f)
427 				goto out_elf_end;
428 
429 			plt_offset += plt_entry_size;
430 			symbols__insert(&dso->symbols, f);
431 			++nr;
432 		}
433 	}
434 
435 	err = 0;
436 out_elf_end:
437 	if (err == 0)
438 		return nr;
439 	pr_debug("%s: problems reading %s PLT info.\n",
440 		 __func__, dso->long_name);
441 	return 0;
442 }
443 
444 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
445 {
446 	return demangle_sym(dso, kmodule, elf_name);
447 }
448 
449 /*
450  * Align offset to 4 bytes as needed for note name and descriptor data.
451  */
452 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
453 
454 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
455 {
456 	int err = -1;
457 	GElf_Ehdr ehdr;
458 	GElf_Shdr shdr;
459 	Elf_Data *data;
460 	Elf_Scn *sec;
461 	Elf_Kind ek;
462 	void *ptr;
463 
464 	if (size < BUILD_ID_SIZE)
465 		goto out;
466 
467 	ek = elf_kind(elf);
468 	if (ek != ELF_K_ELF)
469 		goto out;
470 
471 	if (gelf_getehdr(elf, &ehdr) == NULL) {
472 		pr_err("%s: cannot get elf header.\n", __func__);
473 		goto out;
474 	}
475 
476 	/*
477 	 * Check following sections for notes:
478 	 *   '.note.gnu.build-id'
479 	 *   '.notes'
480 	 *   '.note' (VDSO specific)
481 	 */
482 	do {
483 		sec = elf_section_by_name(elf, &ehdr, &shdr,
484 					  ".note.gnu.build-id", NULL);
485 		if (sec)
486 			break;
487 
488 		sec = elf_section_by_name(elf, &ehdr, &shdr,
489 					  ".notes", NULL);
490 		if (sec)
491 			break;
492 
493 		sec = elf_section_by_name(elf, &ehdr, &shdr,
494 					  ".note", NULL);
495 		if (sec)
496 			break;
497 
498 		return err;
499 
500 	} while (0);
501 
502 	data = elf_getdata(sec, NULL);
503 	if (data == NULL)
504 		goto out;
505 
506 	ptr = data->d_buf;
507 	while (ptr < (data->d_buf + data->d_size)) {
508 		GElf_Nhdr *nhdr = ptr;
509 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
510 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
511 		const char *name;
512 
513 		ptr += sizeof(*nhdr);
514 		name = ptr;
515 		ptr += namesz;
516 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
517 		    nhdr->n_namesz == sizeof("GNU")) {
518 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
519 				size_t sz = min(size, descsz);
520 				memcpy(bf, ptr, sz);
521 				memset(bf + sz, 0, size - sz);
522 				err = descsz;
523 				break;
524 			}
525 		}
526 		ptr += descsz;
527 	}
528 
529 out:
530 	return err;
531 }
532 
533 int filename__read_build_id(const char *filename, void *bf, size_t size)
534 {
535 	int fd, err = -1;
536 	Elf *elf;
537 
538 	if (size < BUILD_ID_SIZE)
539 		goto out;
540 
541 	fd = open(filename, O_RDONLY);
542 	if (fd < 0)
543 		goto out;
544 
545 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
546 	if (elf == NULL) {
547 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
548 		goto out_close;
549 	}
550 
551 	err = elf_read_build_id(elf, bf, size);
552 
553 	elf_end(elf);
554 out_close:
555 	close(fd);
556 out:
557 	return err;
558 }
559 
560 int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
561 {
562 	int fd, err = -1;
563 
564 	if (size < BUILD_ID_SIZE)
565 		goto out;
566 
567 	fd = open(filename, O_RDONLY);
568 	if (fd < 0)
569 		goto out;
570 
571 	while (1) {
572 		char bf[BUFSIZ];
573 		GElf_Nhdr nhdr;
574 		size_t namesz, descsz;
575 
576 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
577 			break;
578 
579 		namesz = NOTE_ALIGN(nhdr.n_namesz);
580 		descsz = NOTE_ALIGN(nhdr.n_descsz);
581 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
582 		    nhdr.n_namesz == sizeof("GNU")) {
583 			if (read(fd, bf, namesz) != (ssize_t)namesz)
584 				break;
585 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
586 				size_t sz = min(descsz, size);
587 				if (read(fd, build_id, sz) == (ssize_t)sz) {
588 					memset(build_id + sz, 0, size - sz);
589 					err = 0;
590 					break;
591 				}
592 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
593 				break;
594 		} else {
595 			int n = namesz + descsz;
596 
597 			if (n > (int)sizeof(bf)) {
598 				n = sizeof(bf);
599 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
600 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
601 			}
602 			if (read(fd, bf, n) != n)
603 				break;
604 		}
605 	}
606 	close(fd);
607 out:
608 	return err;
609 }
610 
611 int filename__read_debuglink(const char *filename, char *debuglink,
612 			     size_t size)
613 {
614 	int fd, err = -1;
615 	Elf *elf;
616 	GElf_Ehdr ehdr;
617 	GElf_Shdr shdr;
618 	Elf_Data *data;
619 	Elf_Scn *sec;
620 	Elf_Kind ek;
621 
622 	fd = open(filename, O_RDONLY);
623 	if (fd < 0)
624 		goto out;
625 
626 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
627 	if (elf == NULL) {
628 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
629 		goto out_close;
630 	}
631 
632 	ek = elf_kind(elf);
633 	if (ek != ELF_K_ELF)
634 		goto out_elf_end;
635 
636 	if (gelf_getehdr(elf, &ehdr) == NULL) {
637 		pr_err("%s: cannot get elf header.\n", __func__);
638 		goto out_elf_end;
639 	}
640 
641 	sec = elf_section_by_name(elf, &ehdr, &shdr,
642 				  ".gnu_debuglink", NULL);
643 	if (sec == NULL)
644 		goto out_elf_end;
645 
646 	data = elf_getdata(sec, NULL);
647 	if (data == NULL)
648 		goto out_elf_end;
649 
650 	/* the start of this section is a zero-terminated string */
651 	strncpy(debuglink, data->d_buf, size);
652 
653 	err = 0;
654 
655 out_elf_end:
656 	elf_end(elf);
657 out_close:
658 	close(fd);
659 out:
660 	return err;
661 }
662 
663 static int dso__swap_init(struct dso *dso, unsigned char eidata)
664 {
665 	static unsigned int const endian = 1;
666 
667 	dso->needs_swap = DSO_SWAP__NO;
668 
669 	switch (eidata) {
670 	case ELFDATA2LSB:
671 		/* We are big endian, DSO is little endian. */
672 		if (*(unsigned char const *)&endian != 1)
673 			dso->needs_swap = DSO_SWAP__YES;
674 		break;
675 
676 	case ELFDATA2MSB:
677 		/* We are little endian, DSO is big endian. */
678 		if (*(unsigned char const *)&endian != 0)
679 			dso->needs_swap = DSO_SWAP__YES;
680 		break;
681 
682 	default:
683 		pr_err("unrecognized DSO data encoding %d\n", eidata);
684 		return -EINVAL;
685 	}
686 
687 	return 0;
688 }
689 
690 bool symsrc__possibly_runtime(struct symsrc *ss)
691 {
692 	return ss->dynsym || ss->opdsec;
693 }
694 
695 bool symsrc__has_symtab(struct symsrc *ss)
696 {
697 	return ss->symtab != NULL;
698 }
699 
700 void symsrc__destroy(struct symsrc *ss)
701 {
702 	zfree(&ss->name);
703 	elf_end(ss->elf);
704 	close(ss->fd);
705 }
706 
707 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
708 {
709 	/*
710 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
711 	 * architectures; except Arm64 kernel is linked with option
712 	 * '-share', so need to check type ET_DYN.
713 	 */
714 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
715 	       ehdr.e_type == ET_DYN;
716 }
717 
718 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
719 		 enum dso_binary_type type)
720 {
721 	GElf_Ehdr ehdr;
722 	Elf *elf;
723 	int fd;
724 
725 	if (dso__needs_decompress(dso)) {
726 		fd = dso__decompress_kmodule_fd(dso, name);
727 		if (fd < 0)
728 			return -1;
729 
730 		type = dso->symtab_type;
731 	} else {
732 		fd = open(name, O_RDONLY);
733 		if (fd < 0) {
734 			dso->load_errno = errno;
735 			return -1;
736 		}
737 	}
738 
739 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
740 	if (elf == NULL) {
741 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
742 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
743 		goto out_close;
744 	}
745 
746 	if (gelf_getehdr(elf, &ehdr) == NULL) {
747 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
748 		pr_debug("%s: cannot get elf header.\n", __func__);
749 		goto out_elf_end;
750 	}
751 
752 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
753 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
754 		goto out_elf_end;
755 	}
756 
757 	/* Always reject images with a mismatched build-id: */
758 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
759 		u8 build_id[BUILD_ID_SIZE];
760 
761 		if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
762 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
763 			goto out_elf_end;
764 		}
765 
766 		if (!dso__build_id_equal(dso, build_id)) {
767 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
768 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
769 			goto out_elf_end;
770 		}
771 	}
772 
773 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
774 
775 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
776 			NULL);
777 	if (ss->symshdr.sh_type != SHT_SYMTAB)
778 		ss->symtab = NULL;
779 
780 	ss->dynsym_idx = 0;
781 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
782 			&ss->dynsym_idx);
783 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
784 		ss->dynsym = NULL;
785 
786 	ss->opdidx = 0;
787 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
788 			&ss->opdidx);
789 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
790 		ss->opdsec = NULL;
791 
792 	if (dso->kernel == DSO_TYPE_USER)
793 		ss->adjust_symbols = true;
794 	else
795 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
796 
797 	ss->name   = strdup(name);
798 	if (!ss->name) {
799 		dso->load_errno = errno;
800 		goto out_elf_end;
801 	}
802 
803 	ss->elf    = elf;
804 	ss->fd     = fd;
805 	ss->ehdr   = ehdr;
806 	ss->type   = type;
807 
808 	return 0;
809 
810 out_elf_end:
811 	elf_end(elf);
812 out_close:
813 	close(fd);
814 	return -1;
815 }
816 
817 /**
818  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
819  * @kmap: kernel maps and relocation reference symbol
820  *
821  * This function returns %true if we are dealing with the kernel maps and the
822  * relocation reference symbol has not yet been found.  Otherwise %false is
823  * returned.
824  */
825 static bool ref_reloc_sym_not_found(struct kmap *kmap)
826 {
827 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
828 	       !kmap->ref_reloc_sym->unrelocated_addr;
829 }
830 
831 /**
832  * ref_reloc - kernel relocation offset.
833  * @kmap: kernel maps and relocation reference symbol
834  *
835  * This function returns the offset of kernel addresses as determined by using
836  * the relocation reference symbol i.e. if the kernel has not been relocated
837  * then the return value is zero.
838  */
839 static u64 ref_reloc(struct kmap *kmap)
840 {
841 	if (kmap && kmap->ref_reloc_sym &&
842 	    kmap->ref_reloc_sym->unrelocated_addr)
843 		return kmap->ref_reloc_sym->addr -
844 		       kmap->ref_reloc_sym->unrelocated_addr;
845 	return 0;
846 }
847 
848 void __weak arch__sym_update(struct symbol *s __maybe_unused,
849 		GElf_Sym *sym __maybe_unused) { }
850 
851 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
852 				      GElf_Sym *sym, GElf_Shdr *shdr,
853 				      struct maps *kmaps, struct kmap *kmap,
854 				      struct dso **curr_dsop, struct map **curr_mapp,
855 				      const char *section_name,
856 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
857 {
858 	struct dso *curr_dso = *curr_dsop;
859 	struct map *curr_map;
860 	char dso_name[PATH_MAX];
861 
862 	/* Adjust symbol to map to file offset */
863 	if (adjust_kernel_syms)
864 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
865 
866 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
867 		return 0;
868 
869 	if (strcmp(section_name, ".text") == 0) {
870 		/*
871 		 * The initial kernel mapping is based on
872 		 * kallsyms and identity maps.  Overwrite it to
873 		 * map to the kernel dso.
874 		 */
875 		if (*remap_kernel && dso->kernel) {
876 			*remap_kernel = false;
877 			map->start = shdr->sh_addr + ref_reloc(kmap);
878 			map->end = map->start + shdr->sh_size;
879 			map->pgoff = shdr->sh_offset;
880 			map->map_ip = map__map_ip;
881 			map->unmap_ip = map__unmap_ip;
882 			/* Ensure maps are correctly ordered */
883 			if (kmaps) {
884 				map__get(map);
885 				maps__remove(kmaps, map);
886 				maps__insert(kmaps, map);
887 				map__put(map);
888 			}
889 		}
890 
891 		/*
892 		 * The initial module mapping is based on
893 		 * /proc/modules mapped to offset zero.
894 		 * Overwrite it to map to the module dso.
895 		 */
896 		if (*remap_kernel && kmodule) {
897 			*remap_kernel = false;
898 			map->pgoff = shdr->sh_offset;
899 		}
900 
901 		*curr_mapp = map;
902 		*curr_dsop = dso;
903 		return 0;
904 	}
905 
906 	if (!kmap)
907 		return 0;
908 
909 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
910 
911 	curr_map = maps__find_by_name(kmaps, dso_name);
912 	if (curr_map == NULL) {
913 		u64 start = sym->st_value;
914 
915 		if (kmodule)
916 			start += map->start + shdr->sh_offset;
917 
918 		curr_dso = dso__new(dso_name);
919 		if (curr_dso == NULL)
920 			return -1;
921 		curr_dso->kernel = dso->kernel;
922 		curr_dso->long_name = dso->long_name;
923 		curr_dso->long_name_len = dso->long_name_len;
924 		curr_map = map__new2(start, curr_dso);
925 		dso__put(curr_dso);
926 		if (curr_map == NULL)
927 			return -1;
928 
929 		if (curr_dso->kernel)
930 			map__kmap(curr_map)->kmaps = kmaps;
931 
932 		if (adjust_kernel_syms) {
933 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
934 			curr_map->end	 = curr_map->start + shdr->sh_size;
935 			curr_map->pgoff	 = shdr->sh_offset;
936 		} else {
937 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
938 		}
939 		curr_dso->symtab_type = dso->symtab_type;
940 		maps__insert(kmaps, curr_map);
941 		/*
942 		 * Add it before we drop the referece to curr_map, i.e. while
943 		 * we still are sure to have a reference to this DSO via
944 		 * *curr_map->dso.
945 		 */
946 		dsos__add(&kmaps->machine->dsos, curr_dso);
947 		/* kmaps already got it */
948 		map__put(curr_map);
949 		dso__set_loaded(curr_dso);
950 		*curr_mapp = curr_map;
951 		*curr_dsop = curr_dso;
952 	} else
953 		*curr_dsop = curr_map->dso;
954 
955 	return 0;
956 }
957 
958 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
959 		  struct symsrc *runtime_ss, int kmodule)
960 {
961 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
962 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
963 	struct map *curr_map = map;
964 	struct dso *curr_dso = dso;
965 	Elf_Data *symstrs, *secstrs;
966 	uint32_t nr_syms;
967 	int err = -1;
968 	uint32_t idx;
969 	GElf_Ehdr ehdr;
970 	GElf_Shdr shdr;
971 	GElf_Shdr tshdr;
972 	Elf_Data *syms, *opddata = NULL;
973 	GElf_Sym sym;
974 	Elf_Scn *sec, *sec_strndx;
975 	Elf *elf;
976 	int nr = 0;
977 	bool remap_kernel = false, adjust_kernel_syms = false;
978 
979 	if (kmap && !kmaps)
980 		return -1;
981 
982 	dso->symtab_type = syms_ss->type;
983 	dso->is_64_bit = syms_ss->is_64_bit;
984 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
985 
986 	/*
987 	 * Modules may already have symbols from kallsyms, but those symbols
988 	 * have the wrong values for the dso maps, so remove them.
989 	 */
990 	if (kmodule && syms_ss->symtab)
991 		symbols__delete(&dso->symbols);
992 
993 	if (!syms_ss->symtab) {
994 		/*
995 		 * If the vmlinux is stripped, fail so we will fall back
996 		 * to using kallsyms. The vmlinux runtime symbols aren't
997 		 * of much use.
998 		 */
999 		if (dso->kernel)
1000 			goto out_elf_end;
1001 
1002 		syms_ss->symtab  = syms_ss->dynsym;
1003 		syms_ss->symshdr = syms_ss->dynshdr;
1004 	}
1005 
1006 	elf = syms_ss->elf;
1007 	ehdr = syms_ss->ehdr;
1008 	sec = syms_ss->symtab;
1009 	shdr = syms_ss->symshdr;
1010 
1011 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1012 				".text", NULL))
1013 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1014 
1015 	if (runtime_ss->opdsec)
1016 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1017 
1018 	syms = elf_getdata(sec, NULL);
1019 	if (syms == NULL)
1020 		goto out_elf_end;
1021 
1022 	sec = elf_getscn(elf, shdr.sh_link);
1023 	if (sec == NULL)
1024 		goto out_elf_end;
1025 
1026 	symstrs = elf_getdata(sec, NULL);
1027 	if (symstrs == NULL)
1028 		goto out_elf_end;
1029 
1030 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1031 	if (sec_strndx == NULL)
1032 		goto out_elf_end;
1033 
1034 	secstrs = elf_getdata(sec_strndx, NULL);
1035 	if (secstrs == NULL)
1036 		goto out_elf_end;
1037 
1038 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1039 
1040 	memset(&sym, 0, sizeof(sym));
1041 
1042 	/*
1043 	 * The kernel relocation symbol is needed in advance in order to adjust
1044 	 * kernel maps correctly.
1045 	 */
1046 	if (ref_reloc_sym_not_found(kmap)) {
1047 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1048 			const char *elf_name = elf_sym__name(&sym, symstrs);
1049 
1050 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1051 				continue;
1052 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1053 			map->reloc = kmap->ref_reloc_sym->addr -
1054 				     kmap->ref_reloc_sym->unrelocated_addr;
1055 			break;
1056 		}
1057 	}
1058 
1059 	/*
1060 	 * Handle any relocation of vdso necessary because older kernels
1061 	 * attempted to prelink vdso to its virtual address.
1062 	 */
1063 	if (dso__is_vdso(dso))
1064 		map->reloc = map->start - dso->text_offset;
1065 
1066 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1067 	/*
1068 	 * Initial kernel and module mappings do not map to the dso.
1069 	 * Flag the fixups.
1070 	 */
1071 	if (dso->kernel || kmodule) {
1072 		remap_kernel = true;
1073 		adjust_kernel_syms = dso->adjust_symbols;
1074 	}
1075 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1076 		struct symbol *f;
1077 		const char *elf_name = elf_sym__name(&sym, symstrs);
1078 		char *demangled = NULL;
1079 		int is_label = elf_sym__is_label(&sym);
1080 		const char *section_name;
1081 		bool used_opd = false;
1082 
1083 		if (!is_label && !elf_sym__filter(&sym))
1084 			continue;
1085 
1086 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1087 		 * don't identify functions, so will confuse the profile
1088 		 * output: */
1089 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1090 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1091 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1092 				continue;
1093 		}
1094 
1095 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1096 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1097 			u64 *opd = opddata->d_buf + offset;
1098 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1099 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1100 					sym.st_value);
1101 			used_opd = true;
1102 		}
1103 		/*
1104 		 * When loading symbols in a data mapping, ABS symbols (which
1105 		 * has a value of SHN_ABS in its st_shndx) failed at
1106 		 * elf_getscn().  And it marks the loading as a failure so
1107 		 * already loaded symbols cannot be fixed up.
1108 		 *
1109 		 * I'm not sure what should be done. Just ignore them for now.
1110 		 * - Namhyung Kim
1111 		 */
1112 		if (sym.st_shndx == SHN_ABS)
1113 			continue;
1114 
1115 		sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1116 		if (!sec)
1117 			goto out_elf_end;
1118 
1119 		gelf_getshdr(sec, &shdr);
1120 
1121 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1122 			continue;
1123 
1124 		section_name = elf_sec__name(&shdr, secstrs);
1125 
1126 		/* On ARM, symbols for thumb functions have 1 added to
1127 		 * the symbol address as a flag - remove it */
1128 		if ((ehdr.e_machine == EM_ARM) &&
1129 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1130 		    (sym.st_value & 1))
1131 			--sym.st_value;
1132 
1133 		if (dso->kernel || kmodule) {
1134 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1135 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1136 				goto out_elf_end;
1137 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1138 			   (!used_opd && syms_ss->adjust_symbols)) {
1139 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1140 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1141 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1142 				  (u64)shdr.sh_offset);
1143 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1144 		}
1145 
1146 		demangled = demangle_sym(dso, kmodule, elf_name);
1147 		if (demangled != NULL)
1148 			elf_name = demangled;
1149 
1150 		f = symbol__new(sym.st_value, sym.st_size,
1151 				GELF_ST_BIND(sym.st_info),
1152 				GELF_ST_TYPE(sym.st_info), elf_name);
1153 		free(demangled);
1154 		if (!f)
1155 			goto out_elf_end;
1156 
1157 		arch__sym_update(f, &sym);
1158 
1159 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1160 		nr++;
1161 	}
1162 
1163 	/*
1164 	 * For misannotated, zeroed, ASM function sizes.
1165 	 */
1166 	if (nr > 0) {
1167 		symbols__fixup_end(&dso->symbols);
1168 		symbols__fixup_duplicate(&dso->symbols);
1169 		if (kmap) {
1170 			/*
1171 			 * We need to fixup this here too because we create new
1172 			 * maps here, for things like vsyscall sections.
1173 			 */
1174 			maps__fixup_end(kmaps);
1175 		}
1176 	}
1177 	err = nr;
1178 out_elf_end:
1179 	return err;
1180 }
1181 
1182 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1183 {
1184 	GElf_Phdr phdr;
1185 	size_t i, phdrnum;
1186 	int err;
1187 	u64 sz;
1188 
1189 	if (elf_getphdrnum(elf, &phdrnum))
1190 		return -1;
1191 
1192 	for (i = 0; i < phdrnum; i++) {
1193 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1194 			return -1;
1195 		if (phdr.p_type != PT_LOAD)
1196 			continue;
1197 		if (exe) {
1198 			if (!(phdr.p_flags & PF_X))
1199 				continue;
1200 		} else {
1201 			if (!(phdr.p_flags & PF_R))
1202 				continue;
1203 		}
1204 		sz = min(phdr.p_memsz, phdr.p_filesz);
1205 		if (!sz)
1206 			continue;
1207 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1208 		if (err)
1209 			return err;
1210 	}
1211 	return 0;
1212 }
1213 
1214 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1215 		    bool *is_64_bit)
1216 {
1217 	int err;
1218 	Elf *elf;
1219 
1220 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1221 	if (elf == NULL)
1222 		return -1;
1223 
1224 	if (is_64_bit)
1225 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1226 
1227 	err = elf_read_maps(elf, exe, mapfn, data);
1228 
1229 	elf_end(elf);
1230 	return err;
1231 }
1232 
1233 enum dso_type dso__type_fd(int fd)
1234 {
1235 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1236 	GElf_Ehdr ehdr;
1237 	Elf_Kind ek;
1238 	Elf *elf;
1239 
1240 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1241 	if (elf == NULL)
1242 		goto out;
1243 
1244 	ek = elf_kind(elf);
1245 	if (ek != ELF_K_ELF)
1246 		goto out_end;
1247 
1248 	if (gelf_getclass(elf) == ELFCLASS64) {
1249 		dso_type = DSO__TYPE_64BIT;
1250 		goto out_end;
1251 	}
1252 
1253 	if (gelf_getehdr(elf, &ehdr) == NULL)
1254 		goto out_end;
1255 
1256 	if (ehdr.e_machine == EM_X86_64)
1257 		dso_type = DSO__TYPE_X32BIT;
1258 	else
1259 		dso_type = DSO__TYPE_32BIT;
1260 out_end:
1261 	elf_end(elf);
1262 out:
1263 	return dso_type;
1264 }
1265 
1266 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1267 {
1268 	ssize_t r;
1269 	size_t n;
1270 	int err = -1;
1271 	char *buf = malloc(page_size);
1272 
1273 	if (buf == NULL)
1274 		return -1;
1275 
1276 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1277 		goto out;
1278 
1279 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1280 		goto out;
1281 
1282 	while (len) {
1283 		n = page_size;
1284 		if (len < n)
1285 			n = len;
1286 		/* Use read because mmap won't work on proc files */
1287 		r = read(from, buf, n);
1288 		if (r < 0)
1289 			goto out;
1290 		if (!r)
1291 			break;
1292 		n = r;
1293 		r = write(to, buf, n);
1294 		if (r < 0)
1295 			goto out;
1296 		if ((size_t)r != n)
1297 			goto out;
1298 		len -= n;
1299 	}
1300 
1301 	err = 0;
1302 out:
1303 	free(buf);
1304 	return err;
1305 }
1306 
1307 struct kcore {
1308 	int fd;
1309 	int elfclass;
1310 	Elf *elf;
1311 	GElf_Ehdr ehdr;
1312 };
1313 
1314 static int kcore__open(struct kcore *kcore, const char *filename)
1315 {
1316 	GElf_Ehdr *ehdr;
1317 
1318 	kcore->fd = open(filename, O_RDONLY);
1319 	if (kcore->fd == -1)
1320 		return -1;
1321 
1322 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1323 	if (!kcore->elf)
1324 		goto out_close;
1325 
1326 	kcore->elfclass = gelf_getclass(kcore->elf);
1327 	if (kcore->elfclass == ELFCLASSNONE)
1328 		goto out_end;
1329 
1330 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1331 	if (!ehdr)
1332 		goto out_end;
1333 
1334 	return 0;
1335 
1336 out_end:
1337 	elf_end(kcore->elf);
1338 out_close:
1339 	close(kcore->fd);
1340 	return -1;
1341 }
1342 
1343 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1344 		       bool temp)
1345 {
1346 	kcore->elfclass = elfclass;
1347 
1348 	if (temp)
1349 		kcore->fd = mkstemp(filename);
1350 	else
1351 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1352 	if (kcore->fd == -1)
1353 		return -1;
1354 
1355 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1356 	if (!kcore->elf)
1357 		goto out_close;
1358 
1359 	if (!gelf_newehdr(kcore->elf, elfclass))
1360 		goto out_end;
1361 
1362 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1363 
1364 	return 0;
1365 
1366 out_end:
1367 	elf_end(kcore->elf);
1368 out_close:
1369 	close(kcore->fd);
1370 	unlink(filename);
1371 	return -1;
1372 }
1373 
1374 static void kcore__close(struct kcore *kcore)
1375 {
1376 	elf_end(kcore->elf);
1377 	close(kcore->fd);
1378 }
1379 
1380 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1381 {
1382 	GElf_Ehdr *ehdr = &to->ehdr;
1383 	GElf_Ehdr *kehdr = &from->ehdr;
1384 
1385 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1386 	ehdr->e_type      = kehdr->e_type;
1387 	ehdr->e_machine   = kehdr->e_machine;
1388 	ehdr->e_version   = kehdr->e_version;
1389 	ehdr->e_entry     = 0;
1390 	ehdr->e_shoff     = 0;
1391 	ehdr->e_flags     = kehdr->e_flags;
1392 	ehdr->e_phnum     = count;
1393 	ehdr->e_shentsize = 0;
1394 	ehdr->e_shnum     = 0;
1395 	ehdr->e_shstrndx  = 0;
1396 
1397 	if (from->elfclass == ELFCLASS32) {
1398 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1399 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1400 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1401 	} else {
1402 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1403 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1404 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1405 	}
1406 
1407 	if (!gelf_update_ehdr(to->elf, ehdr))
1408 		return -1;
1409 
1410 	if (!gelf_newphdr(to->elf, count))
1411 		return -1;
1412 
1413 	return 0;
1414 }
1415 
1416 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1417 			   u64 addr, u64 len)
1418 {
1419 	GElf_Phdr phdr = {
1420 		.p_type		= PT_LOAD,
1421 		.p_flags	= PF_R | PF_W | PF_X,
1422 		.p_offset	= offset,
1423 		.p_vaddr	= addr,
1424 		.p_paddr	= 0,
1425 		.p_filesz	= len,
1426 		.p_memsz	= len,
1427 		.p_align	= page_size,
1428 	};
1429 
1430 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1431 		return -1;
1432 
1433 	return 0;
1434 }
1435 
1436 static off_t kcore__write(struct kcore *kcore)
1437 {
1438 	return elf_update(kcore->elf, ELF_C_WRITE);
1439 }
1440 
1441 struct phdr_data {
1442 	off_t offset;
1443 	off_t rel;
1444 	u64 addr;
1445 	u64 len;
1446 	struct list_head node;
1447 	struct phdr_data *remaps;
1448 };
1449 
1450 struct sym_data {
1451 	u64 addr;
1452 	struct list_head node;
1453 };
1454 
1455 struct kcore_copy_info {
1456 	u64 stext;
1457 	u64 etext;
1458 	u64 first_symbol;
1459 	u64 last_symbol;
1460 	u64 first_module;
1461 	u64 last_module_symbol;
1462 	size_t phnum;
1463 	struct list_head phdrs;
1464 	struct list_head syms;
1465 };
1466 
1467 #define kcore_copy__for_each_phdr(k, p) \
1468 	list_for_each_entry((p), &(k)->phdrs, node)
1469 
1470 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1471 {
1472 	struct phdr_data *p = zalloc(sizeof(*p));
1473 
1474 	if (p) {
1475 		p->addr   = addr;
1476 		p->len    = len;
1477 		p->offset = offset;
1478 	}
1479 
1480 	return p;
1481 }
1482 
1483 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1484 						 u64 addr, u64 len,
1485 						 off_t offset)
1486 {
1487 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1488 
1489 	if (p)
1490 		list_add_tail(&p->node, &kci->phdrs);
1491 
1492 	return p;
1493 }
1494 
1495 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1496 {
1497 	struct phdr_data *p, *tmp;
1498 
1499 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1500 		list_del_init(&p->node);
1501 		free(p);
1502 	}
1503 }
1504 
1505 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1506 					    u64 addr)
1507 {
1508 	struct sym_data *s = zalloc(sizeof(*s));
1509 
1510 	if (s) {
1511 		s->addr = addr;
1512 		list_add_tail(&s->node, &kci->syms);
1513 	}
1514 
1515 	return s;
1516 }
1517 
1518 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1519 {
1520 	struct sym_data *s, *tmp;
1521 
1522 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1523 		list_del_init(&s->node);
1524 		free(s);
1525 	}
1526 }
1527 
1528 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1529 					u64 start)
1530 {
1531 	struct kcore_copy_info *kci = arg;
1532 
1533 	if (!kallsyms__is_function(type))
1534 		return 0;
1535 
1536 	if (strchr(name, '[')) {
1537 		if (start > kci->last_module_symbol)
1538 			kci->last_module_symbol = start;
1539 		return 0;
1540 	}
1541 
1542 	if (!kci->first_symbol || start < kci->first_symbol)
1543 		kci->first_symbol = start;
1544 
1545 	if (!kci->last_symbol || start > kci->last_symbol)
1546 		kci->last_symbol = start;
1547 
1548 	if (!strcmp(name, "_stext")) {
1549 		kci->stext = start;
1550 		return 0;
1551 	}
1552 
1553 	if (!strcmp(name, "_etext")) {
1554 		kci->etext = start;
1555 		return 0;
1556 	}
1557 
1558 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1559 		return -1;
1560 
1561 	return 0;
1562 }
1563 
1564 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1565 				      const char *dir)
1566 {
1567 	char kallsyms_filename[PATH_MAX];
1568 
1569 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1570 
1571 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1572 		return -1;
1573 
1574 	if (kallsyms__parse(kallsyms_filename, kci,
1575 			    kcore_copy__process_kallsyms) < 0)
1576 		return -1;
1577 
1578 	return 0;
1579 }
1580 
1581 static int kcore_copy__process_modules(void *arg,
1582 				       const char *name __maybe_unused,
1583 				       u64 start, u64 size __maybe_unused)
1584 {
1585 	struct kcore_copy_info *kci = arg;
1586 
1587 	if (!kci->first_module || start < kci->first_module)
1588 		kci->first_module = start;
1589 
1590 	return 0;
1591 }
1592 
1593 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1594 				     const char *dir)
1595 {
1596 	char modules_filename[PATH_MAX];
1597 
1598 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1599 
1600 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1601 		return -1;
1602 
1603 	if (modules__parse(modules_filename, kci,
1604 			   kcore_copy__process_modules) < 0)
1605 		return -1;
1606 
1607 	return 0;
1608 }
1609 
1610 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1611 			   u64 pgoff, u64 s, u64 e)
1612 {
1613 	u64 len, offset;
1614 
1615 	if (s < start || s >= end)
1616 		return 0;
1617 
1618 	offset = (s - start) + pgoff;
1619 	len = e < end ? e - s : end - s;
1620 
1621 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1622 }
1623 
1624 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1625 {
1626 	struct kcore_copy_info *kci = data;
1627 	u64 end = start + len;
1628 	struct sym_data *sdat;
1629 
1630 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1631 		return -1;
1632 
1633 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1634 			    kci->last_module_symbol))
1635 		return -1;
1636 
1637 	list_for_each_entry(sdat, &kci->syms, node) {
1638 		u64 s = round_down(sdat->addr, page_size);
1639 
1640 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1641 			return -1;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1648 {
1649 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1650 		return -1;
1651 
1652 	return 0;
1653 }
1654 
1655 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1656 {
1657 	struct phdr_data *p, *k = NULL;
1658 	u64 kend;
1659 
1660 	if (!kci->stext)
1661 		return;
1662 
1663 	/* Find phdr that corresponds to the kernel map (contains stext) */
1664 	kcore_copy__for_each_phdr(kci, p) {
1665 		u64 pend = p->addr + p->len - 1;
1666 
1667 		if (p->addr <= kci->stext && pend >= kci->stext) {
1668 			k = p;
1669 			break;
1670 		}
1671 	}
1672 
1673 	if (!k)
1674 		return;
1675 
1676 	kend = k->offset + k->len;
1677 
1678 	/* Find phdrs that remap the kernel */
1679 	kcore_copy__for_each_phdr(kci, p) {
1680 		u64 pend = p->offset + p->len;
1681 
1682 		if (p == k)
1683 			continue;
1684 
1685 		if (p->offset >= k->offset && pend <= kend)
1686 			p->remaps = k;
1687 	}
1688 }
1689 
1690 static void kcore_copy__layout(struct kcore_copy_info *kci)
1691 {
1692 	struct phdr_data *p;
1693 	off_t rel = 0;
1694 
1695 	kcore_copy__find_remaps(kci);
1696 
1697 	kcore_copy__for_each_phdr(kci, p) {
1698 		if (!p->remaps) {
1699 			p->rel = rel;
1700 			rel += p->len;
1701 		}
1702 		kci->phnum += 1;
1703 	}
1704 
1705 	kcore_copy__for_each_phdr(kci, p) {
1706 		struct phdr_data *k = p->remaps;
1707 
1708 		if (k)
1709 			p->rel = p->offset - k->offset + k->rel;
1710 	}
1711 }
1712 
1713 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1714 				 Elf *elf)
1715 {
1716 	if (kcore_copy__parse_kallsyms(kci, dir))
1717 		return -1;
1718 
1719 	if (kcore_copy__parse_modules(kci, dir))
1720 		return -1;
1721 
1722 	if (kci->stext)
1723 		kci->stext = round_down(kci->stext, page_size);
1724 	else
1725 		kci->stext = round_down(kci->first_symbol, page_size);
1726 
1727 	if (kci->etext) {
1728 		kci->etext = round_up(kci->etext, page_size);
1729 	} else if (kci->last_symbol) {
1730 		kci->etext = round_up(kci->last_symbol, page_size);
1731 		kci->etext += page_size;
1732 	}
1733 
1734 	kci->first_module = round_down(kci->first_module, page_size);
1735 
1736 	if (kci->last_module_symbol) {
1737 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1738 						   page_size);
1739 		kci->last_module_symbol += page_size;
1740 	}
1741 
1742 	if (!kci->stext || !kci->etext)
1743 		return -1;
1744 
1745 	if (kci->first_module && !kci->last_module_symbol)
1746 		return -1;
1747 
1748 	if (kcore_copy__read_maps(kci, elf))
1749 		return -1;
1750 
1751 	kcore_copy__layout(kci);
1752 
1753 	return 0;
1754 }
1755 
1756 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1757 				 const char *name)
1758 {
1759 	char from_filename[PATH_MAX];
1760 	char to_filename[PATH_MAX];
1761 
1762 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1763 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1764 
1765 	return copyfile_mode(from_filename, to_filename, 0400);
1766 }
1767 
1768 static int kcore_copy__unlink(const char *dir, const char *name)
1769 {
1770 	char filename[PATH_MAX];
1771 
1772 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1773 
1774 	return unlink(filename);
1775 }
1776 
1777 static int kcore_copy__compare_fds(int from, int to)
1778 {
1779 	char *buf_from;
1780 	char *buf_to;
1781 	ssize_t ret;
1782 	size_t len;
1783 	int err = -1;
1784 
1785 	buf_from = malloc(page_size);
1786 	buf_to = malloc(page_size);
1787 	if (!buf_from || !buf_to)
1788 		goto out;
1789 
1790 	while (1) {
1791 		/* Use read because mmap won't work on proc files */
1792 		ret = read(from, buf_from, page_size);
1793 		if (ret < 0)
1794 			goto out;
1795 
1796 		if (!ret)
1797 			break;
1798 
1799 		len = ret;
1800 
1801 		if (readn(to, buf_to, len) != (int)len)
1802 			goto out;
1803 
1804 		if (memcmp(buf_from, buf_to, len))
1805 			goto out;
1806 	}
1807 
1808 	err = 0;
1809 out:
1810 	free(buf_to);
1811 	free(buf_from);
1812 	return err;
1813 }
1814 
1815 static int kcore_copy__compare_files(const char *from_filename,
1816 				     const char *to_filename)
1817 {
1818 	int from, to, err = -1;
1819 
1820 	from = open(from_filename, O_RDONLY);
1821 	if (from < 0)
1822 		return -1;
1823 
1824 	to = open(to_filename, O_RDONLY);
1825 	if (to < 0)
1826 		goto out_close_from;
1827 
1828 	err = kcore_copy__compare_fds(from, to);
1829 
1830 	close(to);
1831 out_close_from:
1832 	close(from);
1833 	return err;
1834 }
1835 
1836 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1837 				    const char *name)
1838 {
1839 	char from_filename[PATH_MAX];
1840 	char to_filename[PATH_MAX];
1841 
1842 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1843 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1844 
1845 	return kcore_copy__compare_files(from_filename, to_filename);
1846 }
1847 
1848 /**
1849  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1850  * @from_dir: from directory
1851  * @to_dir: to directory
1852  *
1853  * This function copies kallsyms, modules and kcore files from one directory to
1854  * another.  kallsyms and modules are copied entirely.  Only code segments are
1855  * copied from kcore.  It is assumed that two segments suffice: one for the
1856  * kernel proper and one for all the modules.  The code segments are determined
1857  * from kallsyms and modules files.  The kernel map starts at _stext or the
1858  * lowest function symbol, and ends at _etext or the highest function symbol.
1859  * The module map starts at the lowest module address and ends at the highest
1860  * module symbol.  Start addresses are rounded down to the nearest page.  End
1861  * addresses are rounded up to the nearest page.  An extra page is added to the
1862  * highest kernel symbol and highest module symbol to, hopefully, encompass that
1863  * symbol too.  Because it contains only code sections, the resulting kcore is
1864  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
1865  * is not the same for the kernel map and the modules map.  That happens because
1866  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
1867  * kallsyms and modules files are compared with their copies to check that
1868  * modules have not been loaded or unloaded while the copies were taking place.
1869  *
1870  * Return: %0 on success, %-1 on failure.
1871  */
1872 int kcore_copy(const char *from_dir, const char *to_dir)
1873 {
1874 	struct kcore kcore;
1875 	struct kcore extract;
1876 	int idx = 0, err = -1;
1877 	off_t offset, sz;
1878 	struct kcore_copy_info kci = { .stext = 0, };
1879 	char kcore_filename[PATH_MAX];
1880 	char extract_filename[PATH_MAX];
1881 	struct phdr_data *p;
1882 
1883 	INIT_LIST_HEAD(&kci.phdrs);
1884 	INIT_LIST_HEAD(&kci.syms);
1885 
1886 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1887 		return -1;
1888 
1889 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1890 		goto out_unlink_kallsyms;
1891 
1892 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1893 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1894 
1895 	if (kcore__open(&kcore, kcore_filename))
1896 		goto out_unlink_modules;
1897 
1898 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1899 		goto out_kcore_close;
1900 
1901 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1902 		goto out_kcore_close;
1903 
1904 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1905 		goto out_extract_close;
1906 
1907 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1908 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1909 	offset = round_up(offset, page_size);
1910 
1911 	kcore_copy__for_each_phdr(&kci, p) {
1912 		off_t offs = p->rel + offset;
1913 
1914 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1915 			goto out_extract_close;
1916 	}
1917 
1918 	sz = kcore__write(&extract);
1919 	if (sz < 0 || sz > offset)
1920 		goto out_extract_close;
1921 
1922 	kcore_copy__for_each_phdr(&kci, p) {
1923 		off_t offs = p->rel + offset;
1924 
1925 		if (p->remaps)
1926 			continue;
1927 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1928 			goto out_extract_close;
1929 	}
1930 
1931 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1932 		goto out_extract_close;
1933 
1934 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1935 		goto out_extract_close;
1936 
1937 	err = 0;
1938 
1939 out_extract_close:
1940 	kcore__close(&extract);
1941 	if (err)
1942 		unlink(extract_filename);
1943 out_kcore_close:
1944 	kcore__close(&kcore);
1945 out_unlink_modules:
1946 	if (err)
1947 		kcore_copy__unlink(to_dir, "modules");
1948 out_unlink_kallsyms:
1949 	if (err)
1950 		kcore_copy__unlink(to_dir, "kallsyms");
1951 
1952 	kcore_copy__free_phdrs(&kci);
1953 	kcore_copy__free_syms(&kci);
1954 
1955 	return err;
1956 }
1957 
1958 int kcore_extract__create(struct kcore_extract *kce)
1959 {
1960 	struct kcore kcore;
1961 	struct kcore extract;
1962 	size_t count = 1;
1963 	int idx = 0, err = -1;
1964 	off_t offset = page_size, sz;
1965 
1966 	if (kcore__open(&kcore, kce->kcore_filename))
1967 		return -1;
1968 
1969 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1970 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1971 		goto out_kcore_close;
1972 
1973 	if (kcore__copy_hdr(&kcore, &extract, count))
1974 		goto out_extract_close;
1975 
1976 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1977 		goto out_extract_close;
1978 
1979 	sz = kcore__write(&extract);
1980 	if (sz < 0 || sz > offset)
1981 		goto out_extract_close;
1982 
1983 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1984 		goto out_extract_close;
1985 
1986 	err = 0;
1987 
1988 out_extract_close:
1989 	kcore__close(&extract);
1990 	if (err)
1991 		unlink(kce->extract_filename);
1992 out_kcore_close:
1993 	kcore__close(&kcore);
1994 
1995 	return err;
1996 }
1997 
1998 void kcore_extract__delete(struct kcore_extract *kce)
1999 {
2000 	unlink(kce->extract_filename);
2001 }
2002 
2003 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2004 
2005 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2006 {
2007 	if (!base_off)
2008 		return;
2009 
2010 	if (tmp->bit32)
2011 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2012 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2013 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2014 	else
2015 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2016 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2017 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2018 }
2019 
2020 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2021 			      GElf_Addr base_off)
2022 {
2023 	if (!base_off)
2024 		return;
2025 
2026 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2027 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2028 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2029 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2030 }
2031 
2032 /**
2033  * populate_sdt_note : Parse raw data and identify SDT note
2034  * @elf: elf of the opened file
2035  * @data: raw data of a section with description offset applied
2036  * @len: note description size
2037  * @type: type of the note
2038  * @sdt_notes: List to add the SDT note
2039  *
2040  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2041  * if its an SDT note, it appends to @sdt_notes list.
2042  */
2043 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2044 			     struct list_head *sdt_notes)
2045 {
2046 	const char *provider, *name, *args;
2047 	struct sdt_note *tmp = NULL;
2048 	GElf_Ehdr ehdr;
2049 	GElf_Shdr shdr;
2050 	int ret = -EINVAL;
2051 
2052 	union {
2053 		Elf64_Addr a64[NR_ADDR];
2054 		Elf32_Addr a32[NR_ADDR];
2055 	} buf;
2056 
2057 	Elf_Data dst = {
2058 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2059 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2060 		.d_off = 0, .d_align = 0
2061 	};
2062 	Elf_Data src = {
2063 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2064 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2065 		.d_align = 0
2066 	};
2067 
2068 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2069 	if (!tmp) {
2070 		ret = -ENOMEM;
2071 		goto out_err;
2072 	}
2073 
2074 	INIT_LIST_HEAD(&tmp->note_list);
2075 
2076 	if (len < dst.d_size + 3)
2077 		goto out_free_note;
2078 
2079 	/* Translation from file representation to memory representation */
2080 	if (gelf_xlatetom(*elf, &dst, &src,
2081 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2082 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2083 		goto out_free_note;
2084 	}
2085 
2086 	/* Populate the fields of sdt_note */
2087 	provider = data + dst.d_size;
2088 
2089 	name = (const char *)memchr(provider, '\0', data + len - provider);
2090 	if (name++ == NULL)
2091 		goto out_free_note;
2092 
2093 	tmp->provider = strdup(provider);
2094 	if (!tmp->provider) {
2095 		ret = -ENOMEM;
2096 		goto out_free_note;
2097 	}
2098 	tmp->name = strdup(name);
2099 	if (!tmp->name) {
2100 		ret = -ENOMEM;
2101 		goto out_free_prov;
2102 	}
2103 
2104 	args = memchr(name, '\0', data + len - name);
2105 
2106 	/*
2107 	 * There is no argument if:
2108 	 * - We reached the end of the note;
2109 	 * - There is not enough room to hold a potential string;
2110 	 * - The argument string is empty or just contains ':'.
2111 	 */
2112 	if (args == NULL || data + len - args < 2 ||
2113 		args[1] == ':' || args[1] == '\0')
2114 		tmp->args = NULL;
2115 	else {
2116 		tmp->args = strdup(++args);
2117 		if (!tmp->args) {
2118 			ret = -ENOMEM;
2119 			goto out_free_name;
2120 		}
2121 	}
2122 
2123 	if (gelf_getclass(*elf) == ELFCLASS32) {
2124 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2125 		tmp->bit32 = true;
2126 	} else {
2127 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2128 		tmp->bit32 = false;
2129 	}
2130 
2131 	if (!gelf_getehdr(*elf, &ehdr)) {
2132 		pr_debug("%s : cannot get elf header.\n", __func__);
2133 		ret = -EBADF;
2134 		goto out_free_args;
2135 	}
2136 
2137 	/* Adjust the prelink effect :
2138 	 * Find out the .stapsdt.base section.
2139 	 * This scn will help us to handle prelinking (if present).
2140 	 * Compare the retrieved file offset of the base section with the
2141 	 * base address in the description of the SDT note. If its different,
2142 	 * then accordingly, adjust the note location.
2143 	 */
2144 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2145 		sdt_adjust_loc(tmp, shdr.sh_offset);
2146 
2147 	/* Adjust reference counter offset */
2148 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2149 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2150 
2151 	list_add_tail(&tmp->note_list, sdt_notes);
2152 	return 0;
2153 
2154 out_free_args:
2155 	zfree(&tmp->args);
2156 out_free_name:
2157 	zfree(&tmp->name);
2158 out_free_prov:
2159 	zfree(&tmp->provider);
2160 out_free_note:
2161 	free(tmp);
2162 out_err:
2163 	return ret;
2164 }
2165 
2166 /**
2167  * construct_sdt_notes_list : constructs a list of SDT notes
2168  * @elf : elf to look into
2169  * @sdt_notes : empty list_head
2170  *
2171  * Scans the sections in 'elf' for the section
2172  * .note.stapsdt. It, then calls populate_sdt_note to find
2173  * out the SDT events and populates the 'sdt_notes'.
2174  */
2175 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2176 {
2177 	GElf_Ehdr ehdr;
2178 	Elf_Scn *scn = NULL;
2179 	Elf_Data *data;
2180 	GElf_Shdr shdr;
2181 	size_t shstrndx, next;
2182 	GElf_Nhdr nhdr;
2183 	size_t name_off, desc_off, offset;
2184 	int ret = 0;
2185 
2186 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2187 		ret = -EBADF;
2188 		goto out_ret;
2189 	}
2190 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2191 		ret = -EBADF;
2192 		goto out_ret;
2193 	}
2194 
2195 	/* Look for the required section */
2196 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2197 	if (!scn) {
2198 		ret = -ENOENT;
2199 		goto out_ret;
2200 	}
2201 
2202 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2203 		ret = -ENOENT;
2204 		goto out_ret;
2205 	}
2206 
2207 	data = elf_getdata(scn, NULL);
2208 
2209 	/* Get the SDT notes */
2210 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2211 					      &desc_off)) > 0; offset = next) {
2212 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2213 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2214 			    sizeof(SDT_NOTE_NAME))) {
2215 			/* Check the type of the note */
2216 			if (nhdr.n_type != SDT_NOTE_TYPE)
2217 				goto out_ret;
2218 
2219 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2220 						nhdr.n_descsz, sdt_notes);
2221 			if (ret < 0)
2222 				goto out_ret;
2223 		}
2224 	}
2225 	if (list_empty(sdt_notes))
2226 		ret = -ENOENT;
2227 
2228 out_ret:
2229 	return ret;
2230 }
2231 
2232 /**
2233  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2234  * @head : empty list_head
2235  * @target : file to find SDT notes from
2236  *
2237  * This opens the file, initializes
2238  * the ELF and then calls construct_sdt_notes_list.
2239  */
2240 int get_sdt_note_list(struct list_head *head, const char *target)
2241 {
2242 	Elf *elf;
2243 	int fd, ret;
2244 
2245 	fd = open(target, O_RDONLY);
2246 	if (fd < 0)
2247 		return -EBADF;
2248 
2249 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2250 	if (!elf) {
2251 		ret = -EBADF;
2252 		goto out_close;
2253 	}
2254 	ret = construct_sdt_notes_list(elf, head);
2255 	elf_end(elf);
2256 out_close:
2257 	close(fd);
2258 	return ret;
2259 }
2260 
2261 /**
2262  * cleanup_sdt_note_list : free the sdt notes' list
2263  * @sdt_notes: sdt notes' list
2264  *
2265  * Free up the SDT notes in @sdt_notes.
2266  * Returns the number of SDT notes free'd.
2267  */
2268 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2269 {
2270 	struct sdt_note *tmp, *pos;
2271 	int nr_free = 0;
2272 
2273 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2274 		list_del_init(&pos->note_list);
2275 		zfree(&pos->name);
2276 		zfree(&pos->provider);
2277 		free(pos);
2278 		nr_free++;
2279 	}
2280 	return nr_free;
2281 }
2282 
2283 /**
2284  * sdt_notes__get_count: Counts the number of sdt events
2285  * @start: list_head to sdt_notes list
2286  *
2287  * Returns the number of SDT notes in a list
2288  */
2289 int sdt_notes__get_count(struct list_head *start)
2290 {
2291 	struct sdt_note *sdt_ptr;
2292 	int count = 0;
2293 
2294 	list_for_each_entry(sdt_ptr, start, note_list)
2295 		count++;
2296 	return count;
2297 }
2298 #endif
2299 
2300 void symbol__elf_init(void)
2301 {
2302 	elf_version(EV_CURRENT);
2303 }
2304