xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "map.h"
11 #include "map_groups.h"
12 #include "symbol.h"
13 #include "demangle-java.h"
14 #include "demangle-rust.h"
15 #include "machine.h"
16 #include "vdso.h"
17 #include "debug.h"
18 #include "util.h"
19 #include <linux/ctype.h>
20 #include <linux/zalloc.h>
21 #include <symbol/kallsyms.h>
22 
23 #ifndef EM_AARCH64
24 #define EM_AARCH64	183  /* ARM 64 bit */
25 #endif
26 
27 #ifndef ELF32_ST_VISIBILITY
28 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
29 #endif
30 
31 /* For ELF64 the definitions are the same.  */
32 #ifndef ELF64_ST_VISIBILITY
33 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
34 #endif
35 
36 /* How to extract information held in the st_other field.  */
37 #ifndef GELF_ST_VISIBILITY
38 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
39 #endif
40 
41 typedef Elf64_Nhdr GElf_Nhdr;
42 
43 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
44 extern char *cplus_demangle(const char *, int);
45 
46 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
47 {
48 	return cplus_demangle(c, i);
49 }
50 #else
51 #ifdef NO_DEMANGLE
52 static inline char *bfd_demangle(void __maybe_unused *v,
53 				 const char __maybe_unused *c,
54 				 int __maybe_unused i)
55 {
56 	return NULL;
57 }
58 #else
59 #define PACKAGE 'perf'
60 #include <bfd.h>
61 #endif
62 #endif
63 
64 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
65 static int elf_getphdrnum(Elf *elf, size_t *dst)
66 {
67 	GElf_Ehdr gehdr;
68 	GElf_Ehdr *ehdr;
69 
70 	ehdr = gelf_getehdr(elf, &gehdr);
71 	if (!ehdr)
72 		return -1;
73 
74 	*dst = ehdr->e_phnum;
75 
76 	return 0;
77 }
78 #endif
79 
80 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
81 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
82 {
83 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
84 	return -1;
85 }
86 #endif
87 
88 #ifndef NT_GNU_BUILD_ID
89 #define NT_GNU_BUILD_ID 3
90 #endif
91 
92 /**
93  * elf_symtab__for_each_symbol - iterate thru all the symbols
94  *
95  * @syms: struct elf_symtab instance to iterate
96  * @idx: uint32_t idx
97  * @sym: GElf_Sym iterator
98  */
99 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
100 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
101 	     idx < nr_syms; \
102 	     idx++, gelf_getsym(syms, idx, &sym))
103 
104 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
105 {
106 	return GELF_ST_TYPE(sym->st_info);
107 }
108 
109 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
110 {
111 	return GELF_ST_VISIBILITY(sym->st_other);
112 }
113 
114 #ifndef STT_GNU_IFUNC
115 #define STT_GNU_IFUNC 10
116 #endif
117 
118 static inline int elf_sym__is_function(const GElf_Sym *sym)
119 {
120 	return (elf_sym__type(sym) == STT_FUNC ||
121 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
122 	       sym->st_name != 0 &&
123 	       sym->st_shndx != SHN_UNDEF;
124 }
125 
126 static inline bool elf_sym__is_object(const GElf_Sym *sym)
127 {
128 	return elf_sym__type(sym) == STT_OBJECT &&
129 		sym->st_name != 0 &&
130 		sym->st_shndx != SHN_UNDEF;
131 }
132 
133 static inline int elf_sym__is_label(const GElf_Sym *sym)
134 {
135 	return elf_sym__type(sym) == STT_NOTYPE &&
136 		sym->st_name != 0 &&
137 		sym->st_shndx != SHN_UNDEF &&
138 		sym->st_shndx != SHN_ABS &&
139 		elf_sym__visibility(sym) != STV_HIDDEN &&
140 		elf_sym__visibility(sym) != STV_INTERNAL;
141 }
142 
143 static bool elf_sym__filter(GElf_Sym *sym)
144 {
145 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
146 }
147 
148 static inline const char *elf_sym__name(const GElf_Sym *sym,
149 					const Elf_Data *symstrs)
150 {
151 	return symstrs->d_buf + sym->st_name;
152 }
153 
154 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
155 					const Elf_Data *secstrs)
156 {
157 	return secstrs->d_buf + shdr->sh_name;
158 }
159 
160 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
161 					const Elf_Data *secstrs)
162 {
163 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
164 }
165 
166 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
167 				    const Elf_Data *secstrs)
168 {
169 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
170 }
171 
172 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
173 {
174 	return elf_sec__is_text(shdr, secstrs) ||
175 	       elf_sec__is_data(shdr, secstrs);
176 }
177 
178 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
179 {
180 	Elf_Scn *sec = NULL;
181 	GElf_Shdr shdr;
182 	size_t cnt = 1;
183 
184 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
185 		gelf_getshdr(sec, &shdr);
186 
187 		if ((addr >= shdr.sh_addr) &&
188 		    (addr < (shdr.sh_addr + shdr.sh_size)))
189 			return cnt;
190 
191 		++cnt;
192 	}
193 
194 	return -1;
195 }
196 
197 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
198 			     GElf_Shdr *shp, const char *name, size_t *idx)
199 {
200 	Elf_Scn *sec = NULL;
201 	size_t cnt = 1;
202 
203 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
204 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
205 		return NULL;
206 
207 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
208 		char *str;
209 
210 		gelf_getshdr(sec, shp);
211 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
212 		if (str && !strcmp(name, str)) {
213 			if (idx)
214 				*idx = cnt;
215 			return sec;
216 		}
217 		++cnt;
218 	}
219 
220 	return NULL;
221 }
222 
223 static bool want_demangle(bool is_kernel_sym)
224 {
225 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
226 }
227 
228 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
229 {
230 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
231 	char *demangled = NULL;
232 
233 	/*
234 	 * We need to figure out if the object was created from C++ sources
235 	 * DWARF DW_compile_unit has this, but we don't always have access
236 	 * to it...
237 	 */
238 	if (!want_demangle(dso->kernel || kmodule))
239 	    return demangled;
240 
241 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
242 	if (demangled == NULL)
243 		demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
244 	else if (rust_is_mangled(demangled))
245 		/*
246 		    * Input to Rust demangling is the BFD-demangled
247 		    * name which it Rust-demangles in place.
248 		    */
249 		rust_demangle_sym(demangled);
250 
251 	return demangled;
252 }
253 
254 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
255 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
256 	     idx < nr_entries; \
257 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
258 
259 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
260 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
261 	     idx < nr_entries; \
262 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
263 
264 /*
265  * We need to check if we have a .dynsym, so that we can handle the
266  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
267  * .dynsym or .symtab).
268  * And always look at the original dso, not at debuginfo packages, that
269  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
270  */
271 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
272 {
273 	uint32_t nr_rel_entries, idx;
274 	GElf_Sym sym;
275 	u64 plt_offset, plt_header_size, plt_entry_size;
276 	GElf_Shdr shdr_plt;
277 	struct symbol *f;
278 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
279 	Elf_Data *reldata, *syms, *symstrs;
280 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
281 	size_t dynsym_idx;
282 	GElf_Ehdr ehdr;
283 	char sympltname[1024];
284 	Elf *elf;
285 	int nr = 0, symidx, err = 0;
286 
287 	if (!ss->dynsym)
288 		return 0;
289 
290 	elf = ss->elf;
291 	ehdr = ss->ehdr;
292 
293 	scn_dynsym = ss->dynsym;
294 	shdr_dynsym = ss->dynshdr;
295 	dynsym_idx = ss->dynsym_idx;
296 
297 	if (scn_dynsym == NULL)
298 		goto out_elf_end;
299 
300 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
301 					  ".rela.plt", NULL);
302 	if (scn_plt_rel == NULL) {
303 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
304 						  ".rel.plt", NULL);
305 		if (scn_plt_rel == NULL)
306 			goto out_elf_end;
307 	}
308 
309 	err = -1;
310 
311 	if (shdr_rel_plt.sh_link != dynsym_idx)
312 		goto out_elf_end;
313 
314 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
315 		goto out_elf_end;
316 
317 	/*
318 	 * Fetch the relocation section to find the idxes to the GOT
319 	 * and the symbols in the .dynsym they refer to.
320 	 */
321 	reldata = elf_getdata(scn_plt_rel, NULL);
322 	if (reldata == NULL)
323 		goto out_elf_end;
324 
325 	syms = elf_getdata(scn_dynsym, NULL);
326 	if (syms == NULL)
327 		goto out_elf_end;
328 
329 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
330 	if (scn_symstrs == NULL)
331 		goto out_elf_end;
332 
333 	symstrs = elf_getdata(scn_symstrs, NULL);
334 	if (symstrs == NULL)
335 		goto out_elf_end;
336 
337 	if (symstrs->d_size == 0)
338 		goto out_elf_end;
339 
340 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
341 	plt_offset = shdr_plt.sh_offset;
342 	switch (ehdr.e_machine) {
343 		case EM_ARM:
344 			plt_header_size = 20;
345 			plt_entry_size = 12;
346 			break;
347 
348 		case EM_AARCH64:
349 			plt_header_size = 32;
350 			plt_entry_size = 16;
351 			break;
352 
353 		case EM_SPARC:
354 			plt_header_size = 48;
355 			plt_entry_size = 12;
356 			break;
357 
358 		case EM_SPARCV9:
359 			plt_header_size = 128;
360 			plt_entry_size = 32;
361 			break;
362 
363 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
364 			plt_header_size = shdr_plt.sh_entsize;
365 			plt_entry_size = shdr_plt.sh_entsize;
366 			break;
367 	}
368 	plt_offset += plt_header_size;
369 
370 	if (shdr_rel_plt.sh_type == SHT_RELA) {
371 		GElf_Rela pos_mem, *pos;
372 
373 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
374 					   nr_rel_entries) {
375 			const char *elf_name = NULL;
376 			char *demangled = NULL;
377 			symidx = GELF_R_SYM(pos->r_info);
378 			gelf_getsym(syms, symidx, &sym);
379 
380 			elf_name = elf_sym__name(&sym, symstrs);
381 			demangled = demangle_sym(dso, 0, elf_name);
382 			if (demangled != NULL)
383 				elf_name = demangled;
384 			snprintf(sympltname, sizeof(sympltname),
385 				 "%s@plt", elf_name);
386 			free(demangled);
387 
388 			f = symbol__new(plt_offset, plt_entry_size,
389 					STB_GLOBAL, STT_FUNC, sympltname);
390 			if (!f)
391 				goto out_elf_end;
392 
393 			plt_offset += plt_entry_size;
394 			symbols__insert(&dso->symbols, f);
395 			++nr;
396 		}
397 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
398 		GElf_Rel pos_mem, *pos;
399 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
400 					  nr_rel_entries) {
401 			const char *elf_name = NULL;
402 			char *demangled = NULL;
403 			symidx = GELF_R_SYM(pos->r_info);
404 			gelf_getsym(syms, symidx, &sym);
405 
406 			elf_name = elf_sym__name(&sym, symstrs);
407 			demangled = demangle_sym(dso, 0, elf_name);
408 			if (demangled != NULL)
409 				elf_name = demangled;
410 			snprintf(sympltname, sizeof(sympltname),
411 				 "%s@plt", elf_name);
412 			free(demangled);
413 
414 			f = symbol__new(plt_offset, plt_entry_size,
415 					STB_GLOBAL, STT_FUNC, sympltname);
416 			if (!f)
417 				goto out_elf_end;
418 
419 			plt_offset += plt_entry_size;
420 			symbols__insert(&dso->symbols, f);
421 			++nr;
422 		}
423 	}
424 
425 	err = 0;
426 out_elf_end:
427 	if (err == 0)
428 		return nr;
429 	pr_debug("%s: problems reading %s PLT info.\n",
430 		 __func__, dso->long_name);
431 	return 0;
432 }
433 
434 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
435 {
436 	return demangle_sym(dso, kmodule, elf_name);
437 }
438 
439 /*
440  * Align offset to 4 bytes as needed for note name and descriptor data.
441  */
442 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
443 
444 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
445 {
446 	int err = -1;
447 	GElf_Ehdr ehdr;
448 	GElf_Shdr shdr;
449 	Elf_Data *data;
450 	Elf_Scn *sec;
451 	Elf_Kind ek;
452 	void *ptr;
453 
454 	if (size < BUILD_ID_SIZE)
455 		goto out;
456 
457 	ek = elf_kind(elf);
458 	if (ek != ELF_K_ELF)
459 		goto out;
460 
461 	if (gelf_getehdr(elf, &ehdr) == NULL) {
462 		pr_err("%s: cannot get elf header.\n", __func__);
463 		goto out;
464 	}
465 
466 	/*
467 	 * Check following sections for notes:
468 	 *   '.note.gnu.build-id'
469 	 *   '.notes'
470 	 *   '.note' (VDSO specific)
471 	 */
472 	do {
473 		sec = elf_section_by_name(elf, &ehdr, &shdr,
474 					  ".note.gnu.build-id", NULL);
475 		if (sec)
476 			break;
477 
478 		sec = elf_section_by_name(elf, &ehdr, &shdr,
479 					  ".notes", NULL);
480 		if (sec)
481 			break;
482 
483 		sec = elf_section_by_name(elf, &ehdr, &shdr,
484 					  ".note", NULL);
485 		if (sec)
486 			break;
487 
488 		return err;
489 
490 	} while (0);
491 
492 	data = elf_getdata(sec, NULL);
493 	if (data == NULL)
494 		goto out;
495 
496 	ptr = data->d_buf;
497 	while (ptr < (data->d_buf + data->d_size)) {
498 		GElf_Nhdr *nhdr = ptr;
499 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
500 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
501 		const char *name;
502 
503 		ptr += sizeof(*nhdr);
504 		name = ptr;
505 		ptr += namesz;
506 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
507 		    nhdr->n_namesz == sizeof("GNU")) {
508 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
509 				size_t sz = min(size, descsz);
510 				memcpy(bf, ptr, sz);
511 				memset(bf + sz, 0, size - sz);
512 				err = descsz;
513 				break;
514 			}
515 		}
516 		ptr += descsz;
517 	}
518 
519 out:
520 	return err;
521 }
522 
523 int filename__read_build_id(const char *filename, void *bf, size_t size)
524 {
525 	int fd, err = -1;
526 	Elf *elf;
527 
528 	if (size < BUILD_ID_SIZE)
529 		goto out;
530 
531 	fd = open(filename, O_RDONLY);
532 	if (fd < 0)
533 		goto out;
534 
535 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
536 	if (elf == NULL) {
537 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
538 		goto out_close;
539 	}
540 
541 	err = elf_read_build_id(elf, bf, size);
542 
543 	elf_end(elf);
544 out_close:
545 	close(fd);
546 out:
547 	return err;
548 }
549 
550 int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
551 {
552 	int fd, err = -1;
553 
554 	if (size < BUILD_ID_SIZE)
555 		goto out;
556 
557 	fd = open(filename, O_RDONLY);
558 	if (fd < 0)
559 		goto out;
560 
561 	while (1) {
562 		char bf[BUFSIZ];
563 		GElf_Nhdr nhdr;
564 		size_t namesz, descsz;
565 
566 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
567 			break;
568 
569 		namesz = NOTE_ALIGN(nhdr.n_namesz);
570 		descsz = NOTE_ALIGN(nhdr.n_descsz);
571 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
572 		    nhdr.n_namesz == sizeof("GNU")) {
573 			if (read(fd, bf, namesz) != (ssize_t)namesz)
574 				break;
575 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
576 				size_t sz = min(descsz, size);
577 				if (read(fd, build_id, sz) == (ssize_t)sz) {
578 					memset(build_id + sz, 0, size - sz);
579 					err = 0;
580 					break;
581 				}
582 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
583 				break;
584 		} else {
585 			int n = namesz + descsz;
586 
587 			if (n > (int)sizeof(bf)) {
588 				n = sizeof(bf);
589 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
590 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
591 			}
592 			if (read(fd, bf, n) != n)
593 				break;
594 		}
595 	}
596 	close(fd);
597 out:
598 	return err;
599 }
600 
601 int filename__read_debuglink(const char *filename, char *debuglink,
602 			     size_t size)
603 {
604 	int fd, err = -1;
605 	Elf *elf;
606 	GElf_Ehdr ehdr;
607 	GElf_Shdr shdr;
608 	Elf_Data *data;
609 	Elf_Scn *sec;
610 	Elf_Kind ek;
611 
612 	fd = open(filename, O_RDONLY);
613 	if (fd < 0)
614 		goto out;
615 
616 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
617 	if (elf == NULL) {
618 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
619 		goto out_close;
620 	}
621 
622 	ek = elf_kind(elf);
623 	if (ek != ELF_K_ELF)
624 		goto out_elf_end;
625 
626 	if (gelf_getehdr(elf, &ehdr) == NULL) {
627 		pr_err("%s: cannot get elf header.\n", __func__);
628 		goto out_elf_end;
629 	}
630 
631 	sec = elf_section_by_name(elf, &ehdr, &shdr,
632 				  ".gnu_debuglink", NULL);
633 	if (sec == NULL)
634 		goto out_elf_end;
635 
636 	data = elf_getdata(sec, NULL);
637 	if (data == NULL)
638 		goto out_elf_end;
639 
640 	/* the start of this section is a zero-terminated string */
641 	strncpy(debuglink, data->d_buf, size);
642 
643 	err = 0;
644 
645 out_elf_end:
646 	elf_end(elf);
647 out_close:
648 	close(fd);
649 out:
650 	return err;
651 }
652 
653 static int dso__swap_init(struct dso *dso, unsigned char eidata)
654 {
655 	static unsigned int const endian = 1;
656 
657 	dso->needs_swap = DSO_SWAP__NO;
658 
659 	switch (eidata) {
660 	case ELFDATA2LSB:
661 		/* We are big endian, DSO is little endian. */
662 		if (*(unsigned char const *)&endian != 1)
663 			dso->needs_swap = DSO_SWAP__YES;
664 		break;
665 
666 	case ELFDATA2MSB:
667 		/* We are little endian, DSO is big endian. */
668 		if (*(unsigned char const *)&endian != 0)
669 			dso->needs_swap = DSO_SWAP__YES;
670 		break;
671 
672 	default:
673 		pr_err("unrecognized DSO data encoding %d\n", eidata);
674 		return -EINVAL;
675 	}
676 
677 	return 0;
678 }
679 
680 bool symsrc__possibly_runtime(struct symsrc *ss)
681 {
682 	return ss->dynsym || ss->opdsec;
683 }
684 
685 bool symsrc__has_symtab(struct symsrc *ss)
686 {
687 	return ss->symtab != NULL;
688 }
689 
690 void symsrc__destroy(struct symsrc *ss)
691 {
692 	zfree(&ss->name);
693 	elf_end(ss->elf);
694 	close(ss->fd);
695 }
696 
697 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr)
698 {
699 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL;
700 }
701 
702 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
703 		 enum dso_binary_type type)
704 {
705 	GElf_Ehdr ehdr;
706 	Elf *elf;
707 	int fd;
708 
709 	if (dso__needs_decompress(dso)) {
710 		fd = dso__decompress_kmodule_fd(dso, name);
711 		if (fd < 0)
712 			return -1;
713 
714 		type = dso->symtab_type;
715 	} else {
716 		fd = open(name, O_RDONLY);
717 		if (fd < 0) {
718 			dso->load_errno = errno;
719 			return -1;
720 		}
721 	}
722 
723 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
724 	if (elf == NULL) {
725 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
726 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
727 		goto out_close;
728 	}
729 
730 	if (gelf_getehdr(elf, &ehdr) == NULL) {
731 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
732 		pr_debug("%s: cannot get elf header.\n", __func__);
733 		goto out_elf_end;
734 	}
735 
736 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
737 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
738 		goto out_elf_end;
739 	}
740 
741 	/* Always reject images with a mismatched build-id: */
742 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
743 		u8 build_id[BUILD_ID_SIZE];
744 
745 		if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
746 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
747 			goto out_elf_end;
748 		}
749 
750 		if (!dso__build_id_equal(dso, build_id)) {
751 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
752 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
753 			goto out_elf_end;
754 		}
755 	}
756 
757 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
758 
759 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
760 			NULL);
761 	if (ss->symshdr.sh_type != SHT_SYMTAB)
762 		ss->symtab = NULL;
763 
764 	ss->dynsym_idx = 0;
765 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
766 			&ss->dynsym_idx);
767 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
768 		ss->dynsym = NULL;
769 
770 	ss->opdidx = 0;
771 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
772 			&ss->opdidx);
773 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
774 		ss->opdsec = NULL;
775 
776 	if (dso->kernel == DSO_TYPE_USER)
777 		ss->adjust_symbols = true;
778 	else
779 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
780 
781 	ss->name   = strdup(name);
782 	if (!ss->name) {
783 		dso->load_errno = errno;
784 		goto out_elf_end;
785 	}
786 
787 	ss->elf    = elf;
788 	ss->fd     = fd;
789 	ss->ehdr   = ehdr;
790 	ss->type   = type;
791 
792 	return 0;
793 
794 out_elf_end:
795 	elf_end(elf);
796 out_close:
797 	close(fd);
798 	return -1;
799 }
800 
801 /**
802  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
803  * @kmap: kernel maps and relocation reference symbol
804  *
805  * This function returns %true if we are dealing with the kernel maps and the
806  * relocation reference symbol has not yet been found.  Otherwise %false is
807  * returned.
808  */
809 static bool ref_reloc_sym_not_found(struct kmap *kmap)
810 {
811 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
812 	       !kmap->ref_reloc_sym->unrelocated_addr;
813 }
814 
815 /**
816  * ref_reloc - kernel relocation offset.
817  * @kmap: kernel maps and relocation reference symbol
818  *
819  * This function returns the offset of kernel addresses as determined by using
820  * the relocation reference symbol i.e. if the kernel has not been relocated
821  * then the return value is zero.
822  */
823 static u64 ref_reloc(struct kmap *kmap)
824 {
825 	if (kmap && kmap->ref_reloc_sym &&
826 	    kmap->ref_reloc_sym->unrelocated_addr)
827 		return kmap->ref_reloc_sym->addr -
828 		       kmap->ref_reloc_sym->unrelocated_addr;
829 	return 0;
830 }
831 
832 void __weak arch__sym_update(struct symbol *s __maybe_unused,
833 		GElf_Sym *sym __maybe_unused) { }
834 
835 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
836 				      GElf_Sym *sym, GElf_Shdr *shdr,
837 				      struct map_groups *kmaps, struct kmap *kmap,
838 				      struct dso **curr_dsop, struct map **curr_mapp,
839 				      const char *section_name,
840 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
841 {
842 	struct dso *curr_dso = *curr_dsop;
843 	struct map *curr_map;
844 	char dso_name[PATH_MAX];
845 
846 	/* Adjust symbol to map to file offset */
847 	if (adjust_kernel_syms)
848 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
849 
850 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
851 		return 0;
852 
853 	if (strcmp(section_name, ".text") == 0) {
854 		/*
855 		 * The initial kernel mapping is based on
856 		 * kallsyms and identity maps.  Overwrite it to
857 		 * map to the kernel dso.
858 		 */
859 		if (*remap_kernel && dso->kernel) {
860 			*remap_kernel = false;
861 			map->start = shdr->sh_addr + ref_reloc(kmap);
862 			map->end = map->start + shdr->sh_size;
863 			map->pgoff = shdr->sh_offset;
864 			map->map_ip = map__map_ip;
865 			map->unmap_ip = map__unmap_ip;
866 			/* Ensure maps are correctly ordered */
867 			if (kmaps) {
868 				map__get(map);
869 				map_groups__remove(kmaps, map);
870 				map_groups__insert(kmaps, map);
871 				map__put(map);
872 			}
873 		}
874 
875 		/*
876 		 * The initial module mapping is based on
877 		 * /proc/modules mapped to offset zero.
878 		 * Overwrite it to map to the module dso.
879 		 */
880 		if (*remap_kernel && kmodule) {
881 			*remap_kernel = false;
882 			map->pgoff = shdr->sh_offset;
883 		}
884 
885 		*curr_mapp = map;
886 		*curr_dsop = dso;
887 		return 0;
888 	}
889 
890 	if (!kmap)
891 		return 0;
892 
893 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
894 
895 	curr_map = map_groups__find_by_name(kmaps, dso_name);
896 	if (curr_map == NULL) {
897 		u64 start = sym->st_value;
898 
899 		if (kmodule)
900 			start += map->start + shdr->sh_offset;
901 
902 		curr_dso = dso__new(dso_name);
903 		if (curr_dso == NULL)
904 			return -1;
905 		curr_dso->kernel = dso->kernel;
906 		curr_dso->long_name = dso->long_name;
907 		curr_dso->long_name_len = dso->long_name_len;
908 		curr_map = map__new2(start, curr_dso);
909 		dso__put(curr_dso);
910 		if (curr_map == NULL)
911 			return -1;
912 
913 		if (adjust_kernel_syms) {
914 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
915 			curr_map->end	 = curr_map->start + shdr->sh_size;
916 			curr_map->pgoff	 = shdr->sh_offset;
917 		} else {
918 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
919 		}
920 		curr_dso->symtab_type = dso->symtab_type;
921 		map_groups__insert(kmaps, curr_map);
922 		/*
923 		 * Add it before we drop the referece to curr_map, i.e. while
924 		 * we still are sure to have a reference to this DSO via
925 		 * *curr_map->dso.
926 		 */
927 		dsos__add(&map->groups->machine->dsos, curr_dso);
928 		/* kmaps already got it */
929 		map__put(curr_map);
930 		dso__set_loaded(curr_dso);
931 		*curr_mapp = curr_map;
932 		*curr_dsop = curr_dso;
933 	} else
934 		*curr_dsop = curr_map->dso;
935 
936 	return 0;
937 }
938 
939 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
940 		  struct symsrc *runtime_ss, int kmodule)
941 {
942 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
943 	struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL;
944 	struct map *curr_map = map;
945 	struct dso *curr_dso = dso;
946 	Elf_Data *symstrs, *secstrs;
947 	uint32_t nr_syms;
948 	int err = -1;
949 	uint32_t idx;
950 	GElf_Ehdr ehdr;
951 	GElf_Shdr shdr;
952 	GElf_Shdr tshdr;
953 	Elf_Data *syms, *opddata = NULL;
954 	GElf_Sym sym;
955 	Elf_Scn *sec, *sec_strndx;
956 	Elf *elf;
957 	int nr = 0;
958 	bool remap_kernel = false, adjust_kernel_syms = false;
959 
960 	if (kmap && !kmaps)
961 		return -1;
962 
963 	dso->symtab_type = syms_ss->type;
964 	dso->is_64_bit = syms_ss->is_64_bit;
965 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
966 
967 	/*
968 	 * Modules may already have symbols from kallsyms, but those symbols
969 	 * have the wrong values for the dso maps, so remove them.
970 	 */
971 	if (kmodule && syms_ss->symtab)
972 		symbols__delete(&dso->symbols);
973 
974 	if (!syms_ss->symtab) {
975 		/*
976 		 * If the vmlinux is stripped, fail so we will fall back
977 		 * to using kallsyms. The vmlinux runtime symbols aren't
978 		 * of much use.
979 		 */
980 		if (dso->kernel)
981 			goto out_elf_end;
982 
983 		syms_ss->symtab  = syms_ss->dynsym;
984 		syms_ss->symshdr = syms_ss->dynshdr;
985 	}
986 
987 	elf = syms_ss->elf;
988 	ehdr = syms_ss->ehdr;
989 	sec = syms_ss->symtab;
990 	shdr = syms_ss->symshdr;
991 
992 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
993 				".text", NULL))
994 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
995 
996 	if (runtime_ss->opdsec)
997 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
998 
999 	syms = elf_getdata(sec, NULL);
1000 	if (syms == NULL)
1001 		goto out_elf_end;
1002 
1003 	sec = elf_getscn(elf, shdr.sh_link);
1004 	if (sec == NULL)
1005 		goto out_elf_end;
1006 
1007 	symstrs = elf_getdata(sec, NULL);
1008 	if (symstrs == NULL)
1009 		goto out_elf_end;
1010 
1011 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1012 	if (sec_strndx == NULL)
1013 		goto out_elf_end;
1014 
1015 	secstrs = elf_getdata(sec_strndx, NULL);
1016 	if (secstrs == NULL)
1017 		goto out_elf_end;
1018 
1019 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1020 
1021 	memset(&sym, 0, sizeof(sym));
1022 
1023 	/*
1024 	 * The kernel relocation symbol is needed in advance in order to adjust
1025 	 * kernel maps correctly.
1026 	 */
1027 	if (ref_reloc_sym_not_found(kmap)) {
1028 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1029 			const char *elf_name = elf_sym__name(&sym, symstrs);
1030 
1031 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1032 				continue;
1033 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1034 			map->reloc = kmap->ref_reloc_sym->addr -
1035 				     kmap->ref_reloc_sym->unrelocated_addr;
1036 			break;
1037 		}
1038 	}
1039 
1040 	/*
1041 	 * Handle any relocation of vdso necessary because older kernels
1042 	 * attempted to prelink vdso to its virtual address.
1043 	 */
1044 	if (dso__is_vdso(dso))
1045 		map->reloc = map->start - dso->text_offset;
1046 
1047 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1048 	/*
1049 	 * Initial kernel and module mappings do not map to the dso.
1050 	 * Flag the fixups.
1051 	 */
1052 	if (dso->kernel || kmodule) {
1053 		remap_kernel = true;
1054 		adjust_kernel_syms = dso->adjust_symbols;
1055 	}
1056 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1057 		struct symbol *f;
1058 		const char *elf_name = elf_sym__name(&sym, symstrs);
1059 		char *demangled = NULL;
1060 		int is_label = elf_sym__is_label(&sym);
1061 		const char *section_name;
1062 		bool used_opd = false;
1063 
1064 		if (!is_label && !elf_sym__filter(&sym))
1065 			continue;
1066 
1067 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1068 		 * don't identify functions, so will confuse the profile
1069 		 * output: */
1070 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1071 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1072 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1073 				continue;
1074 		}
1075 
1076 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1077 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1078 			u64 *opd = opddata->d_buf + offset;
1079 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1080 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1081 					sym.st_value);
1082 			used_opd = true;
1083 		}
1084 		/*
1085 		 * When loading symbols in a data mapping, ABS symbols (which
1086 		 * has a value of SHN_ABS in its st_shndx) failed at
1087 		 * elf_getscn().  And it marks the loading as a failure so
1088 		 * already loaded symbols cannot be fixed up.
1089 		 *
1090 		 * I'm not sure what should be done. Just ignore them for now.
1091 		 * - Namhyung Kim
1092 		 */
1093 		if (sym.st_shndx == SHN_ABS)
1094 			continue;
1095 
1096 		sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1097 		if (!sec)
1098 			goto out_elf_end;
1099 
1100 		gelf_getshdr(sec, &shdr);
1101 
1102 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1103 			continue;
1104 
1105 		section_name = elf_sec__name(&shdr, secstrs);
1106 
1107 		/* On ARM, symbols for thumb functions have 1 added to
1108 		 * the symbol address as a flag - remove it */
1109 		if ((ehdr.e_machine == EM_ARM) &&
1110 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1111 		    (sym.st_value & 1))
1112 			--sym.st_value;
1113 
1114 		if (dso->kernel || kmodule) {
1115 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1116 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1117 				goto out_elf_end;
1118 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1119 			   (!used_opd && syms_ss->adjust_symbols)) {
1120 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1121 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1122 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1123 				  (u64)shdr.sh_offset);
1124 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1125 		}
1126 
1127 		demangled = demangle_sym(dso, kmodule, elf_name);
1128 		if (demangled != NULL)
1129 			elf_name = demangled;
1130 
1131 		f = symbol__new(sym.st_value, sym.st_size,
1132 				GELF_ST_BIND(sym.st_info),
1133 				GELF_ST_TYPE(sym.st_info), elf_name);
1134 		free(demangled);
1135 		if (!f)
1136 			goto out_elf_end;
1137 
1138 		arch__sym_update(f, &sym);
1139 
1140 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1141 		nr++;
1142 	}
1143 
1144 	/*
1145 	 * For misannotated, zeroed, ASM function sizes.
1146 	 */
1147 	if (nr > 0) {
1148 		symbols__fixup_end(&dso->symbols);
1149 		symbols__fixup_duplicate(&dso->symbols);
1150 		if (kmap) {
1151 			/*
1152 			 * We need to fixup this here too because we create new
1153 			 * maps here, for things like vsyscall sections.
1154 			 */
1155 			map_groups__fixup_end(kmaps);
1156 		}
1157 	}
1158 	err = nr;
1159 out_elf_end:
1160 	return err;
1161 }
1162 
1163 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1164 {
1165 	GElf_Phdr phdr;
1166 	size_t i, phdrnum;
1167 	int err;
1168 	u64 sz;
1169 
1170 	if (elf_getphdrnum(elf, &phdrnum))
1171 		return -1;
1172 
1173 	for (i = 0; i < phdrnum; i++) {
1174 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1175 			return -1;
1176 		if (phdr.p_type != PT_LOAD)
1177 			continue;
1178 		if (exe) {
1179 			if (!(phdr.p_flags & PF_X))
1180 				continue;
1181 		} else {
1182 			if (!(phdr.p_flags & PF_R))
1183 				continue;
1184 		}
1185 		sz = min(phdr.p_memsz, phdr.p_filesz);
1186 		if (!sz)
1187 			continue;
1188 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1189 		if (err)
1190 			return err;
1191 	}
1192 	return 0;
1193 }
1194 
1195 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1196 		    bool *is_64_bit)
1197 {
1198 	int err;
1199 	Elf *elf;
1200 
1201 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1202 	if (elf == NULL)
1203 		return -1;
1204 
1205 	if (is_64_bit)
1206 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1207 
1208 	err = elf_read_maps(elf, exe, mapfn, data);
1209 
1210 	elf_end(elf);
1211 	return err;
1212 }
1213 
1214 enum dso_type dso__type_fd(int fd)
1215 {
1216 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1217 	GElf_Ehdr ehdr;
1218 	Elf_Kind ek;
1219 	Elf *elf;
1220 
1221 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1222 	if (elf == NULL)
1223 		goto out;
1224 
1225 	ek = elf_kind(elf);
1226 	if (ek != ELF_K_ELF)
1227 		goto out_end;
1228 
1229 	if (gelf_getclass(elf) == ELFCLASS64) {
1230 		dso_type = DSO__TYPE_64BIT;
1231 		goto out_end;
1232 	}
1233 
1234 	if (gelf_getehdr(elf, &ehdr) == NULL)
1235 		goto out_end;
1236 
1237 	if (ehdr.e_machine == EM_X86_64)
1238 		dso_type = DSO__TYPE_X32BIT;
1239 	else
1240 		dso_type = DSO__TYPE_32BIT;
1241 out_end:
1242 	elf_end(elf);
1243 out:
1244 	return dso_type;
1245 }
1246 
1247 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1248 {
1249 	ssize_t r;
1250 	size_t n;
1251 	int err = -1;
1252 	char *buf = malloc(page_size);
1253 
1254 	if (buf == NULL)
1255 		return -1;
1256 
1257 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1258 		goto out;
1259 
1260 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1261 		goto out;
1262 
1263 	while (len) {
1264 		n = page_size;
1265 		if (len < n)
1266 			n = len;
1267 		/* Use read because mmap won't work on proc files */
1268 		r = read(from, buf, n);
1269 		if (r < 0)
1270 			goto out;
1271 		if (!r)
1272 			break;
1273 		n = r;
1274 		r = write(to, buf, n);
1275 		if (r < 0)
1276 			goto out;
1277 		if ((size_t)r != n)
1278 			goto out;
1279 		len -= n;
1280 	}
1281 
1282 	err = 0;
1283 out:
1284 	free(buf);
1285 	return err;
1286 }
1287 
1288 struct kcore {
1289 	int fd;
1290 	int elfclass;
1291 	Elf *elf;
1292 	GElf_Ehdr ehdr;
1293 };
1294 
1295 static int kcore__open(struct kcore *kcore, const char *filename)
1296 {
1297 	GElf_Ehdr *ehdr;
1298 
1299 	kcore->fd = open(filename, O_RDONLY);
1300 	if (kcore->fd == -1)
1301 		return -1;
1302 
1303 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1304 	if (!kcore->elf)
1305 		goto out_close;
1306 
1307 	kcore->elfclass = gelf_getclass(kcore->elf);
1308 	if (kcore->elfclass == ELFCLASSNONE)
1309 		goto out_end;
1310 
1311 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1312 	if (!ehdr)
1313 		goto out_end;
1314 
1315 	return 0;
1316 
1317 out_end:
1318 	elf_end(kcore->elf);
1319 out_close:
1320 	close(kcore->fd);
1321 	return -1;
1322 }
1323 
1324 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1325 		       bool temp)
1326 {
1327 	kcore->elfclass = elfclass;
1328 
1329 	if (temp)
1330 		kcore->fd = mkstemp(filename);
1331 	else
1332 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1333 	if (kcore->fd == -1)
1334 		return -1;
1335 
1336 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1337 	if (!kcore->elf)
1338 		goto out_close;
1339 
1340 	if (!gelf_newehdr(kcore->elf, elfclass))
1341 		goto out_end;
1342 
1343 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1344 
1345 	return 0;
1346 
1347 out_end:
1348 	elf_end(kcore->elf);
1349 out_close:
1350 	close(kcore->fd);
1351 	unlink(filename);
1352 	return -1;
1353 }
1354 
1355 static void kcore__close(struct kcore *kcore)
1356 {
1357 	elf_end(kcore->elf);
1358 	close(kcore->fd);
1359 }
1360 
1361 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1362 {
1363 	GElf_Ehdr *ehdr = &to->ehdr;
1364 	GElf_Ehdr *kehdr = &from->ehdr;
1365 
1366 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1367 	ehdr->e_type      = kehdr->e_type;
1368 	ehdr->e_machine   = kehdr->e_machine;
1369 	ehdr->e_version   = kehdr->e_version;
1370 	ehdr->e_entry     = 0;
1371 	ehdr->e_shoff     = 0;
1372 	ehdr->e_flags     = kehdr->e_flags;
1373 	ehdr->e_phnum     = count;
1374 	ehdr->e_shentsize = 0;
1375 	ehdr->e_shnum     = 0;
1376 	ehdr->e_shstrndx  = 0;
1377 
1378 	if (from->elfclass == ELFCLASS32) {
1379 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1380 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1381 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1382 	} else {
1383 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1384 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1385 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1386 	}
1387 
1388 	if (!gelf_update_ehdr(to->elf, ehdr))
1389 		return -1;
1390 
1391 	if (!gelf_newphdr(to->elf, count))
1392 		return -1;
1393 
1394 	return 0;
1395 }
1396 
1397 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1398 			   u64 addr, u64 len)
1399 {
1400 	GElf_Phdr phdr = {
1401 		.p_type		= PT_LOAD,
1402 		.p_flags	= PF_R | PF_W | PF_X,
1403 		.p_offset	= offset,
1404 		.p_vaddr	= addr,
1405 		.p_paddr	= 0,
1406 		.p_filesz	= len,
1407 		.p_memsz	= len,
1408 		.p_align	= page_size,
1409 	};
1410 
1411 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1412 		return -1;
1413 
1414 	return 0;
1415 }
1416 
1417 static off_t kcore__write(struct kcore *kcore)
1418 {
1419 	return elf_update(kcore->elf, ELF_C_WRITE);
1420 }
1421 
1422 struct phdr_data {
1423 	off_t offset;
1424 	off_t rel;
1425 	u64 addr;
1426 	u64 len;
1427 	struct list_head node;
1428 	struct phdr_data *remaps;
1429 };
1430 
1431 struct sym_data {
1432 	u64 addr;
1433 	struct list_head node;
1434 };
1435 
1436 struct kcore_copy_info {
1437 	u64 stext;
1438 	u64 etext;
1439 	u64 first_symbol;
1440 	u64 last_symbol;
1441 	u64 first_module;
1442 	u64 last_module_symbol;
1443 	size_t phnum;
1444 	struct list_head phdrs;
1445 	struct list_head syms;
1446 };
1447 
1448 #define kcore_copy__for_each_phdr(k, p) \
1449 	list_for_each_entry((p), &(k)->phdrs, node)
1450 
1451 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1452 {
1453 	struct phdr_data *p = zalloc(sizeof(*p));
1454 
1455 	if (p) {
1456 		p->addr   = addr;
1457 		p->len    = len;
1458 		p->offset = offset;
1459 	}
1460 
1461 	return p;
1462 }
1463 
1464 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1465 						 u64 addr, u64 len,
1466 						 off_t offset)
1467 {
1468 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1469 
1470 	if (p)
1471 		list_add_tail(&p->node, &kci->phdrs);
1472 
1473 	return p;
1474 }
1475 
1476 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1477 {
1478 	struct phdr_data *p, *tmp;
1479 
1480 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1481 		list_del_init(&p->node);
1482 		free(p);
1483 	}
1484 }
1485 
1486 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1487 					    u64 addr)
1488 {
1489 	struct sym_data *s = zalloc(sizeof(*s));
1490 
1491 	if (s) {
1492 		s->addr = addr;
1493 		list_add_tail(&s->node, &kci->syms);
1494 	}
1495 
1496 	return s;
1497 }
1498 
1499 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1500 {
1501 	struct sym_data *s, *tmp;
1502 
1503 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1504 		list_del_init(&s->node);
1505 		free(s);
1506 	}
1507 }
1508 
1509 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1510 					u64 start)
1511 {
1512 	struct kcore_copy_info *kci = arg;
1513 
1514 	if (!kallsyms__is_function(type))
1515 		return 0;
1516 
1517 	if (strchr(name, '[')) {
1518 		if (start > kci->last_module_symbol)
1519 			kci->last_module_symbol = start;
1520 		return 0;
1521 	}
1522 
1523 	if (!kci->first_symbol || start < kci->first_symbol)
1524 		kci->first_symbol = start;
1525 
1526 	if (!kci->last_symbol || start > kci->last_symbol)
1527 		kci->last_symbol = start;
1528 
1529 	if (!strcmp(name, "_stext")) {
1530 		kci->stext = start;
1531 		return 0;
1532 	}
1533 
1534 	if (!strcmp(name, "_etext")) {
1535 		kci->etext = start;
1536 		return 0;
1537 	}
1538 
1539 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1540 		return -1;
1541 
1542 	return 0;
1543 }
1544 
1545 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1546 				      const char *dir)
1547 {
1548 	char kallsyms_filename[PATH_MAX];
1549 
1550 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1551 
1552 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1553 		return -1;
1554 
1555 	if (kallsyms__parse(kallsyms_filename, kci,
1556 			    kcore_copy__process_kallsyms) < 0)
1557 		return -1;
1558 
1559 	return 0;
1560 }
1561 
1562 static int kcore_copy__process_modules(void *arg,
1563 				       const char *name __maybe_unused,
1564 				       u64 start, u64 size __maybe_unused)
1565 {
1566 	struct kcore_copy_info *kci = arg;
1567 
1568 	if (!kci->first_module || start < kci->first_module)
1569 		kci->first_module = start;
1570 
1571 	return 0;
1572 }
1573 
1574 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1575 				     const char *dir)
1576 {
1577 	char modules_filename[PATH_MAX];
1578 
1579 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1580 
1581 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1582 		return -1;
1583 
1584 	if (modules__parse(modules_filename, kci,
1585 			   kcore_copy__process_modules) < 0)
1586 		return -1;
1587 
1588 	return 0;
1589 }
1590 
1591 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1592 			   u64 pgoff, u64 s, u64 e)
1593 {
1594 	u64 len, offset;
1595 
1596 	if (s < start || s >= end)
1597 		return 0;
1598 
1599 	offset = (s - start) + pgoff;
1600 	len = e < end ? e - s : end - s;
1601 
1602 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1603 }
1604 
1605 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1606 {
1607 	struct kcore_copy_info *kci = data;
1608 	u64 end = start + len;
1609 	struct sym_data *sdat;
1610 
1611 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1612 		return -1;
1613 
1614 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1615 			    kci->last_module_symbol))
1616 		return -1;
1617 
1618 	list_for_each_entry(sdat, &kci->syms, node) {
1619 		u64 s = round_down(sdat->addr, page_size);
1620 
1621 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1622 			return -1;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1629 {
1630 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1631 		return -1;
1632 
1633 	return 0;
1634 }
1635 
1636 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1637 {
1638 	struct phdr_data *p, *k = NULL;
1639 	u64 kend;
1640 
1641 	if (!kci->stext)
1642 		return;
1643 
1644 	/* Find phdr that corresponds to the kernel map (contains stext) */
1645 	kcore_copy__for_each_phdr(kci, p) {
1646 		u64 pend = p->addr + p->len - 1;
1647 
1648 		if (p->addr <= kci->stext && pend >= kci->stext) {
1649 			k = p;
1650 			break;
1651 		}
1652 	}
1653 
1654 	if (!k)
1655 		return;
1656 
1657 	kend = k->offset + k->len;
1658 
1659 	/* Find phdrs that remap the kernel */
1660 	kcore_copy__for_each_phdr(kci, p) {
1661 		u64 pend = p->offset + p->len;
1662 
1663 		if (p == k)
1664 			continue;
1665 
1666 		if (p->offset >= k->offset && pend <= kend)
1667 			p->remaps = k;
1668 	}
1669 }
1670 
1671 static void kcore_copy__layout(struct kcore_copy_info *kci)
1672 {
1673 	struct phdr_data *p;
1674 	off_t rel = 0;
1675 
1676 	kcore_copy__find_remaps(kci);
1677 
1678 	kcore_copy__for_each_phdr(kci, p) {
1679 		if (!p->remaps) {
1680 			p->rel = rel;
1681 			rel += p->len;
1682 		}
1683 		kci->phnum += 1;
1684 	}
1685 
1686 	kcore_copy__for_each_phdr(kci, p) {
1687 		struct phdr_data *k = p->remaps;
1688 
1689 		if (k)
1690 			p->rel = p->offset - k->offset + k->rel;
1691 	}
1692 }
1693 
1694 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1695 				 Elf *elf)
1696 {
1697 	if (kcore_copy__parse_kallsyms(kci, dir))
1698 		return -1;
1699 
1700 	if (kcore_copy__parse_modules(kci, dir))
1701 		return -1;
1702 
1703 	if (kci->stext)
1704 		kci->stext = round_down(kci->stext, page_size);
1705 	else
1706 		kci->stext = round_down(kci->first_symbol, page_size);
1707 
1708 	if (kci->etext) {
1709 		kci->etext = round_up(kci->etext, page_size);
1710 	} else if (kci->last_symbol) {
1711 		kci->etext = round_up(kci->last_symbol, page_size);
1712 		kci->etext += page_size;
1713 	}
1714 
1715 	kci->first_module = round_down(kci->first_module, page_size);
1716 
1717 	if (kci->last_module_symbol) {
1718 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1719 						   page_size);
1720 		kci->last_module_symbol += page_size;
1721 	}
1722 
1723 	if (!kci->stext || !kci->etext)
1724 		return -1;
1725 
1726 	if (kci->first_module && !kci->last_module_symbol)
1727 		return -1;
1728 
1729 	if (kcore_copy__read_maps(kci, elf))
1730 		return -1;
1731 
1732 	kcore_copy__layout(kci);
1733 
1734 	return 0;
1735 }
1736 
1737 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1738 				 const char *name)
1739 {
1740 	char from_filename[PATH_MAX];
1741 	char to_filename[PATH_MAX];
1742 
1743 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1744 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1745 
1746 	return copyfile_mode(from_filename, to_filename, 0400);
1747 }
1748 
1749 static int kcore_copy__unlink(const char *dir, const char *name)
1750 {
1751 	char filename[PATH_MAX];
1752 
1753 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1754 
1755 	return unlink(filename);
1756 }
1757 
1758 static int kcore_copy__compare_fds(int from, int to)
1759 {
1760 	char *buf_from;
1761 	char *buf_to;
1762 	ssize_t ret;
1763 	size_t len;
1764 	int err = -1;
1765 
1766 	buf_from = malloc(page_size);
1767 	buf_to = malloc(page_size);
1768 	if (!buf_from || !buf_to)
1769 		goto out;
1770 
1771 	while (1) {
1772 		/* Use read because mmap won't work on proc files */
1773 		ret = read(from, buf_from, page_size);
1774 		if (ret < 0)
1775 			goto out;
1776 
1777 		if (!ret)
1778 			break;
1779 
1780 		len = ret;
1781 
1782 		if (readn(to, buf_to, len) != (int)len)
1783 			goto out;
1784 
1785 		if (memcmp(buf_from, buf_to, len))
1786 			goto out;
1787 	}
1788 
1789 	err = 0;
1790 out:
1791 	free(buf_to);
1792 	free(buf_from);
1793 	return err;
1794 }
1795 
1796 static int kcore_copy__compare_files(const char *from_filename,
1797 				     const char *to_filename)
1798 {
1799 	int from, to, err = -1;
1800 
1801 	from = open(from_filename, O_RDONLY);
1802 	if (from < 0)
1803 		return -1;
1804 
1805 	to = open(to_filename, O_RDONLY);
1806 	if (to < 0)
1807 		goto out_close_from;
1808 
1809 	err = kcore_copy__compare_fds(from, to);
1810 
1811 	close(to);
1812 out_close_from:
1813 	close(from);
1814 	return err;
1815 }
1816 
1817 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1818 				    const char *name)
1819 {
1820 	char from_filename[PATH_MAX];
1821 	char to_filename[PATH_MAX];
1822 
1823 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1824 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1825 
1826 	return kcore_copy__compare_files(from_filename, to_filename);
1827 }
1828 
1829 /**
1830  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1831  * @from_dir: from directory
1832  * @to_dir: to directory
1833  *
1834  * This function copies kallsyms, modules and kcore files from one directory to
1835  * another.  kallsyms and modules are copied entirely.  Only code segments are
1836  * copied from kcore.  It is assumed that two segments suffice: one for the
1837  * kernel proper and one for all the modules.  The code segments are determined
1838  * from kallsyms and modules files.  The kernel map starts at _stext or the
1839  * lowest function symbol, and ends at _etext or the highest function symbol.
1840  * The module map starts at the lowest module address and ends at the highest
1841  * module symbol.  Start addresses are rounded down to the nearest page.  End
1842  * addresses are rounded up to the nearest page.  An extra page is added to the
1843  * highest kernel symbol and highest module symbol to, hopefully, encompass that
1844  * symbol too.  Because it contains only code sections, the resulting kcore is
1845  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
1846  * is not the same for the kernel map and the modules map.  That happens because
1847  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
1848  * kallsyms and modules files are compared with their copies to check that
1849  * modules have not been loaded or unloaded while the copies were taking place.
1850  *
1851  * Return: %0 on success, %-1 on failure.
1852  */
1853 int kcore_copy(const char *from_dir, const char *to_dir)
1854 {
1855 	struct kcore kcore;
1856 	struct kcore extract;
1857 	int idx = 0, err = -1;
1858 	off_t offset, sz;
1859 	struct kcore_copy_info kci = { .stext = 0, };
1860 	char kcore_filename[PATH_MAX];
1861 	char extract_filename[PATH_MAX];
1862 	struct phdr_data *p;
1863 
1864 	INIT_LIST_HEAD(&kci.phdrs);
1865 	INIT_LIST_HEAD(&kci.syms);
1866 
1867 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1868 		return -1;
1869 
1870 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1871 		goto out_unlink_kallsyms;
1872 
1873 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1874 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1875 
1876 	if (kcore__open(&kcore, kcore_filename))
1877 		goto out_unlink_modules;
1878 
1879 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1880 		goto out_kcore_close;
1881 
1882 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1883 		goto out_kcore_close;
1884 
1885 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1886 		goto out_extract_close;
1887 
1888 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1889 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1890 	offset = round_up(offset, page_size);
1891 
1892 	kcore_copy__for_each_phdr(&kci, p) {
1893 		off_t offs = p->rel + offset;
1894 
1895 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1896 			goto out_extract_close;
1897 	}
1898 
1899 	sz = kcore__write(&extract);
1900 	if (sz < 0 || sz > offset)
1901 		goto out_extract_close;
1902 
1903 	kcore_copy__for_each_phdr(&kci, p) {
1904 		off_t offs = p->rel + offset;
1905 
1906 		if (p->remaps)
1907 			continue;
1908 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1909 			goto out_extract_close;
1910 	}
1911 
1912 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1913 		goto out_extract_close;
1914 
1915 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1916 		goto out_extract_close;
1917 
1918 	err = 0;
1919 
1920 out_extract_close:
1921 	kcore__close(&extract);
1922 	if (err)
1923 		unlink(extract_filename);
1924 out_kcore_close:
1925 	kcore__close(&kcore);
1926 out_unlink_modules:
1927 	if (err)
1928 		kcore_copy__unlink(to_dir, "modules");
1929 out_unlink_kallsyms:
1930 	if (err)
1931 		kcore_copy__unlink(to_dir, "kallsyms");
1932 
1933 	kcore_copy__free_phdrs(&kci);
1934 	kcore_copy__free_syms(&kci);
1935 
1936 	return err;
1937 }
1938 
1939 int kcore_extract__create(struct kcore_extract *kce)
1940 {
1941 	struct kcore kcore;
1942 	struct kcore extract;
1943 	size_t count = 1;
1944 	int idx = 0, err = -1;
1945 	off_t offset = page_size, sz;
1946 
1947 	if (kcore__open(&kcore, kce->kcore_filename))
1948 		return -1;
1949 
1950 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1951 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1952 		goto out_kcore_close;
1953 
1954 	if (kcore__copy_hdr(&kcore, &extract, count))
1955 		goto out_extract_close;
1956 
1957 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1958 		goto out_extract_close;
1959 
1960 	sz = kcore__write(&extract);
1961 	if (sz < 0 || sz > offset)
1962 		goto out_extract_close;
1963 
1964 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1965 		goto out_extract_close;
1966 
1967 	err = 0;
1968 
1969 out_extract_close:
1970 	kcore__close(&extract);
1971 	if (err)
1972 		unlink(kce->extract_filename);
1973 out_kcore_close:
1974 	kcore__close(&kcore);
1975 
1976 	return err;
1977 }
1978 
1979 void kcore_extract__delete(struct kcore_extract *kce)
1980 {
1981 	unlink(kce->extract_filename);
1982 }
1983 
1984 #ifdef HAVE_GELF_GETNOTE_SUPPORT
1985 
1986 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
1987 {
1988 	if (!base_off)
1989 		return;
1990 
1991 	if (tmp->bit32)
1992 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
1993 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
1994 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
1995 	else
1996 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
1997 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
1998 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
1999 }
2000 
2001 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2002 			      GElf_Addr base_off)
2003 {
2004 	if (!base_off)
2005 		return;
2006 
2007 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2008 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2009 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2010 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2011 }
2012 
2013 /**
2014  * populate_sdt_note : Parse raw data and identify SDT note
2015  * @elf: elf of the opened file
2016  * @data: raw data of a section with description offset applied
2017  * @len: note description size
2018  * @type: type of the note
2019  * @sdt_notes: List to add the SDT note
2020  *
2021  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2022  * if its an SDT note, it appends to @sdt_notes list.
2023  */
2024 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2025 			     struct list_head *sdt_notes)
2026 {
2027 	const char *provider, *name, *args;
2028 	struct sdt_note *tmp = NULL;
2029 	GElf_Ehdr ehdr;
2030 	GElf_Shdr shdr;
2031 	int ret = -EINVAL;
2032 
2033 	union {
2034 		Elf64_Addr a64[NR_ADDR];
2035 		Elf32_Addr a32[NR_ADDR];
2036 	} buf;
2037 
2038 	Elf_Data dst = {
2039 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2040 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2041 		.d_off = 0, .d_align = 0
2042 	};
2043 	Elf_Data src = {
2044 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2045 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2046 		.d_align = 0
2047 	};
2048 
2049 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2050 	if (!tmp) {
2051 		ret = -ENOMEM;
2052 		goto out_err;
2053 	}
2054 
2055 	INIT_LIST_HEAD(&tmp->note_list);
2056 
2057 	if (len < dst.d_size + 3)
2058 		goto out_free_note;
2059 
2060 	/* Translation from file representation to memory representation */
2061 	if (gelf_xlatetom(*elf, &dst, &src,
2062 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2063 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2064 		goto out_free_note;
2065 	}
2066 
2067 	/* Populate the fields of sdt_note */
2068 	provider = data + dst.d_size;
2069 
2070 	name = (const char *)memchr(provider, '\0', data + len - provider);
2071 	if (name++ == NULL)
2072 		goto out_free_note;
2073 
2074 	tmp->provider = strdup(provider);
2075 	if (!tmp->provider) {
2076 		ret = -ENOMEM;
2077 		goto out_free_note;
2078 	}
2079 	tmp->name = strdup(name);
2080 	if (!tmp->name) {
2081 		ret = -ENOMEM;
2082 		goto out_free_prov;
2083 	}
2084 
2085 	args = memchr(name, '\0', data + len - name);
2086 
2087 	/*
2088 	 * There is no argument if:
2089 	 * - We reached the end of the note;
2090 	 * - There is not enough room to hold a potential string;
2091 	 * - The argument string is empty or just contains ':'.
2092 	 */
2093 	if (args == NULL || data + len - args < 2 ||
2094 		args[1] == ':' || args[1] == '\0')
2095 		tmp->args = NULL;
2096 	else {
2097 		tmp->args = strdup(++args);
2098 		if (!tmp->args) {
2099 			ret = -ENOMEM;
2100 			goto out_free_name;
2101 		}
2102 	}
2103 
2104 	if (gelf_getclass(*elf) == ELFCLASS32) {
2105 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2106 		tmp->bit32 = true;
2107 	} else {
2108 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2109 		tmp->bit32 = false;
2110 	}
2111 
2112 	if (!gelf_getehdr(*elf, &ehdr)) {
2113 		pr_debug("%s : cannot get elf header.\n", __func__);
2114 		ret = -EBADF;
2115 		goto out_free_args;
2116 	}
2117 
2118 	/* Adjust the prelink effect :
2119 	 * Find out the .stapsdt.base section.
2120 	 * This scn will help us to handle prelinking (if present).
2121 	 * Compare the retrieved file offset of the base section with the
2122 	 * base address in the description of the SDT note. If its different,
2123 	 * then accordingly, adjust the note location.
2124 	 */
2125 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2126 		sdt_adjust_loc(tmp, shdr.sh_offset);
2127 
2128 	/* Adjust reference counter offset */
2129 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2130 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2131 
2132 	list_add_tail(&tmp->note_list, sdt_notes);
2133 	return 0;
2134 
2135 out_free_args:
2136 	zfree(&tmp->args);
2137 out_free_name:
2138 	zfree(&tmp->name);
2139 out_free_prov:
2140 	zfree(&tmp->provider);
2141 out_free_note:
2142 	free(tmp);
2143 out_err:
2144 	return ret;
2145 }
2146 
2147 /**
2148  * construct_sdt_notes_list : constructs a list of SDT notes
2149  * @elf : elf to look into
2150  * @sdt_notes : empty list_head
2151  *
2152  * Scans the sections in 'elf' for the section
2153  * .note.stapsdt. It, then calls populate_sdt_note to find
2154  * out the SDT events and populates the 'sdt_notes'.
2155  */
2156 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2157 {
2158 	GElf_Ehdr ehdr;
2159 	Elf_Scn *scn = NULL;
2160 	Elf_Data *data;
2161 	GElf_Shdr shdr;
2162 	size_t shstrndx, next;
2163 	GElf_Nhdr nhdr;
2164 	size_t name_off, desc_off, offset;
2165 	int ret = 0;
2166 
2167 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2168 		ret = -EBADF;
2169 		goto out_ret;
2170 	}
2171 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2172 		ret = -EBADF;
2173 		goto out_ret;
2174 	}
2175 
2176 	/* Look for the required section */
2177 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2178 	if (!scn) {
2179 		ret = -ENOENT;
2180 		goto out_ret;
2181 	}
2182 
2183 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2184 		ret = -ENOENT;
2185 		goto out_ret;
2186 	}
2187 
2188 	data = elf_getdata(scn, NULL);
2189 
2190 	/* Get the SDT notes */
2191 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2192 					      &desc_off)) > 0; offset = next) {
2193 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2194 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2195 			    sizeof(SDT_NOTE_NAME))) {
2196 			/* Check the type of the note */
2197 			if (nhdr.n_type != SDT_NOTE_TYPE)
2198 				goto out_ret;
2199 
2200 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2201 						nhdr.n_descsz, sdt_notes);
2202 			if (ret < 0)
2203 				goto out_ret;
2204 		}
2205 	}
2206 	if (list_empty(sdt_notes))
2207 		ret = -ENOENT;
2208 
2209 out_ret:
2210 	return ret;
2211 }
2212 
2213 /**
2214  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2215  * @head : empty list_head
2216  * @target : file to find SDT notes from
2217  *
2218  * This opens the file, initializes
2219  * the ELF and then calls construct_sdt_notes_list.
2220  */
2221 int get_sdt_note_list(struct list_head *head, const char *target)
2222 {
2223 	Elf *elf;
2224 	int fd, ret;
2225 
2226 	fd = open(target, O_RDONLY);
2227 	if (fd < 0)
2228 		return -EBADF;
2229 
2230 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2231 	if (!elf) {
2232 		ret = -EBADF;
2233 		goto out_close;
2234 	}
2235 	ret = construct_sdt_notes_list(elf, head);
2236 	elf_end(elf);
2237 out_close:
2238 	close(fd);
2239 	return ret;
2240 }
2241 
2242 /**
2243  * cleanup_sdt_note_list : free the sdt notes' list
2244  * @sdt_notes: sdt notes' list
2245  *
2246  * Free up the SDT notes in @sdt_notes.
2247  * Returns the number of SDT notes free'd.
2248  */
2249 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2250 {
2251 	struct sdt_note *tmp, *pos;
2252 	int nr_free = 0;
2253 
2254 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2255 		list_del_init(&pos->note_list);
2256 		zfree(&pos->name);
2257 		zfree(&pos->provider);
2258 		free(pos);
2259 		nr_free++;
2260 	}
2261 	return nr_free;
2262 }
2263 
2264 /**
2265  * sdt_notes__get_count: Counts the number of sdt events
2266  * @start: list_head to sdt_notes list
2267  *
2268  * Returns the number of SDT notes in a list
2269  */
2270 int sdt_notes__get_count(struct list_head *start)
2271 {
2272 	struct sdt_note *sdt_ptr;
2273 	int count = 0;
2274 
2275 	list_for_each_entry(sdt_ptr, start, note_list)
2276 		count++;
2277 	return count;
2278 }
2279 #endif
2280 
2281 void symbol__elf_init(void)
2282 {
2283 	elf_version(EV_CURRENT);
2284 }
2285