1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <string.h> 6 #include <unistd.h> 7 #include <inttypes.h> 8 9 #include "symbol.h" 10 #include "demangle-java.h" 11 #include "demangle-rust.h" 12 #include "machine.h" 13 #include "vdso.h" 14 #include "debug.h" 15 #include "sane_ctype.h" 16 #include <symbol/kallsyms.h> 17 18 #ifndef EM_AARCH64 19 #define EM_AARCH64 183 /* ARM 64 bit */ 20 #endif 21 22 typedef Elf64_Nhdr GElf_Nhdr; 23 24 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 25 extern char *cplus_demangle(const char *, int); 26 27 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 28 { 29 return cplus_demangle(c, i); 30 } 31 #else 32 #ifdef NO_DEMANGLE 33 static inline char *bfd_demangle(void __maybe_unused *v, 34 const char __maybe_unused *c, 35 int __maybe_unused i) 36 { 37 return NULL; 38 } 39 #else 40 #define PACKAGE 'perf' 41 #include <bfd.h> 42 #endif 43 #endif 44 45 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 46 static int elf_getphdrnum(Elf *elf, size_t *dst) 47 { 48 GElf_Ehdr gehdr; 49 GElf_Ehdr *ehdr; 50 51 ehdr = gelf_getehdr(elf, &gehdr); 52 if (!ehdr) 53 return -1; 54 55 *dst = ehdr->e_phnum; 56 57 return 0; 58 } 59 #endif 60 61 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 62 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 63 { 64 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 65 return -1; 66 } 67 #endif 68 69 #ifndef NT_GNU_BUILD_ID 70 #define NT_GNU_BUILD_ID 3 71 #endif 72 73 /** 74 * elf_symtab__for_each_symbol - iterate thru all the symbols 75 * 76 * @syms: struct elf_symtab instance to iterate 77 * @idx: uint32_t idx 78 * @sym: GElf_Sym iterator 79 */ 80 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 81 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 82 idx < nr_syms; \ 83 idx++, gelf_getsym(syms, idx, &sym)) 84 85 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 86 { 87 return GELF_ST_TYPE(sym->st_info); 88 } 89 90 #ifndef STT_GNU_IFUNC 91 #define STT_GNU_IFUNC 10 92 #endif 93 94 static inline int elf_sym__is_function(const GElf_Sym *sym) 95 { 96 return (elf_sym__type(sym) == STT_FUNC || 97 elf_sym__type(sym) == STT_GNU_IFUNC) && 98 sym->st_name != 0 && 99 sym->st_shndx != SHN_UNDEF; 100 } 101 102 static inline bool elf_sym__is_object(const GElf_Sym *sym) 103 { 104 return elf_sym__type(sym) == STT_OBJECT && 105 sym->st_name != 0 && 106 sym->st_shndx != SHN_UNDEF; 107 } 108 109 static inline int elf_sym__is_label(const GElf_Sym *sym) 110 { 111 return elf_sym__type(sym) == STT_NOTYPE && 112 sym->st_name != 0 && 113 sym->st_shndx != SHN_UNDEF && 114 sym->st_shndx != SHN_ABS; 115 } 116 117 static bool elf_sym__filter(GElf_Sym *sym) 118 { 119 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 120 } 121 122 static inline const char *elf_sym__name(const GElf_Sym *sym, 123 const Elf_Data *symstrs) 124 { 125 return symstrs->d_buf + sym->st_name; 126 } 127 128 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 129 const Elf_Data *secstrs) 130 { 131 return secstrs->d_buf + shdr->sh_name; 132 } 133 134 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 135 const Elf_Data *secstrs) 136 { 137 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 138 } 139 140 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 141 const Elf_Data *secstrs) 142 { 143 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 144 } 145 146 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 147 { 148 return elf_sec__is_text(shdr, secstrs) || 149 elf_sec__is_data(shdr, secstrs); 150 } 151 152 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 153 { 154 Elf_Scn *sec = NULL; 155 GElf_Shdr shdr; 156 size_t cnt = 1; 157 158 while ((sec = elf_nextscn(elf, sec)) != NULL) { 159 gelf_getshdr(sec, &shdr); 160 161 if ((addr >= shdr.sh_addr) && 162 (addr < (shdr.sh_addr + shdr.sh_size))) 163 return cnt; 164 165 ++cnt; 166 } 167 168 return -1; 169 } 170 171 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 172 GElf_Shdr *shp, const char *name, size_t *idx) 173 { 174 Elf_Scn *sec = NULL; 175 size_t cnt = 1; 176 177 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 178 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 179 return NULL; 180 181 while ((sec = elf_nextscn(elf, sec)) != NULL) { 182 char *str; 183 184 gelf_getshdr(sec, shp); 185 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 186 if (str && !strcmp(name, str)) { 187 if (idx) 188 *idx = cnt; 189 return sec; 190 } 191 ++cnt; 192 } 193 194 return NULL; 195 } 196 197 static bool want_demangle(bool is_kernel_sym) 198 { 199 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 200 } 201 202 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 203 { 204 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 205 char *demangled = NULL; 206 207 /* 208 * We need to figure out if the object was created from C++ sources 209 * DWARF DW_compile_unit has this, but we don't always have access 210 * to it... 211 */ 212 if (!want_demangle(dso->kernel || kmodule)) 213 return demangled; 214 215 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 216 if (demangled == NULL) 217 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 218 else if (rust_is_mangled(demangled)) 219 /* 220 * Input to Rust demangling is the BFD-demangled 221 * name which it Rust-demangles in place. 222 */ 223 rust_demangle_sym(demangled); 224 225 return demangled; 226 } 227 228 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 229 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 230 idx < nr_entries; \ 231 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 232 233 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 234 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 235 idx < nr_entries; \ 236 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 237 238 /* 239 * We need to check if we have a .dynsym, so that we can handle the 240 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 241 * .dynsym or .symtab). 242 * And always look at the original dso, not at debuginfo packages, that 243 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 244 */ 245 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 246 { 247 uint32_t nr_rel_entries, idx; 248 GElf_Sym sym; 249 u64 plt_offset, plt_header_size, plt_entry_size; 250 GElf_Shdr shdr_plt; 251 struct symbol *f; 252 GElf_Shdr shdr_rel_plt, shdr_dynsym; 253 Elf_Data *reldata, *syms, *symstrs; 254 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 255 size_t dynsym_idx; 256 GElf_Ehdr ehdr; 257 char sympltname[1024]; 258 Elf *elf; 259 int nr = 0, symidx, err = 0; 260 261 if (!ss->dynsym) 262 return 0; 263 264 elf = ss->elf; 265 ehdr = ss->ehdr; 266 267 scn_dynsym = ss->dynsym; 268 shdr_dynsym = ss->dynshdr; 269 dynsym_idx = ss->dynsym_idx; 270 271 if (scn_dynsym == NULL) 272 goto out_elf_end; 273 274 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 275 ".rela.plt", NULL); 276 if (scn_plt_rel == NULL) { 277 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 278 ".rel.plt", NULL); 279 if (scn_plt_rel == NULL) 280 goto out_elf_end; 281 } 282 283 err = -1; 284 285 if (shdr_rel_plt.sh_link != dynsym_idx) 286 goto out_elf_end; 287 288 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 289 goto out_elf_end; 290 291 /* 292 * Fetch the relocation section to find the idxes to the GOT 293 * and the symbols in the .dynsym they refer to. 294 */ 295 reldata = elf_getdata(scn_plt_rel, NULL); 296 if (reldata == NULL) 297 goto out_elf_end; 298 299 syms = elf_getdata(scn_dynsym, NULL); 300 if (syms == NULL) 301 goto out_elf_end; 302 303 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 304 if (scn_symstrs == NULL) 305 goto out_elf_end; 306 307 symstrs = elf_getdata(scn_symstrs, NULL); 308 if (symstrs == NULL) 309 goto out_elf_end; 310 311 if (symstrs->d_size == 0) 312 goto out_elf_end; 313 314 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 315 plt_offset = shdr_plt.sh_offset; 316 switch (ehdr.e_machine) { 317 case EM_ARM: 318 plt_header_size = 20; 319 plt_entry_size = 12; 320 break; 321 322 case EM_AARCH64: 323 plt_header_size = 32; 324 plt_entry_size = 16; 325 break; 326 327 case EM_SPARC: 328 plt_header_size = 48; 329 plt_entry_size = 12; 330 break; 331 332 case EM_SPARCV9: 333 plt_header_size = 128; 334 plt_entry_size = 32; 335 break; 336 337 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 338 plt_header_size = shdr_plt.sh_entsize; 339 plt_entry_size = shdr_plt.sh_entsize; 340 break; 341 } 342 plt_offset += plt_header_size; 343 344 if (shdr_rel_plt.sh_type == SHT_RELA) { 345 GElf_Rela pos_mem, *pos; 346 347 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 348 nr_rel_entries) { 349 const char *elf_name = NULL; 350 char *demangled = NULL; 351 symidx = GELF_R_SYM(pos->r_info); 352 gelf_getsym(syms, symidx, &sym); 353 354 elf_name = elf_sym__name(&sym, symstrs); 355 demangled = demangle_sym(dso, 0, elf_name); 356 if (demangled != NULL) 357 elf_name = demangled; 358 snprintf(sympltname, sizeof(sympltname), 359 "%s@plt", elf_name); 360 free(demangled); 361 362 f = symbol__new(plt_offset, plt_entry_size, 363 STB_GLOBAL, STT_FUNC, sympltname); 364 if (!f) 365 goto out_elf_end; 366 367 plt_offset += plt_entry_size; 368 symbols__insert(&dso->symbols, f); 369 ++nr; 370 } 371 } else if (shdr_rel_plt.sh_type == SHT_REL) { 372 GElf_Rel pos_mem, *pos; 373 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 374 nr_rel_entries) { 375 const char *elf_name = NULL; 376 char *demangled = NULL; 377 symidx = GELF_R_SYM(pos->r_info); 378 gelf_getsym(syms, symidx, &sym); 379 380 elf_name = elf_sym__name(&sym, symstrs); 381 demangled = demangle_sym(dso, 0, elf_name); 382 if (demangled != NULL) 383 elf_name = demangled; 384 snprintf(sympltname, sizeof(sympltname), 385 "%s@plt", elf_name); 386 free(demangled); 387 388 f = symbol__new(plt_offset, plt_entry_size, 389 STB_GLOBAL, STT_FUNC, sympltname); 390 if (!f) 391 goto out_elf_end; 392 393 plt_offset += plt_entry_size; 394 symbols__insert(&dso->symbols, f); 395 ++nr; 396 } 397 } 398 399 err = 0; 400 out_elf_end: 401 if (err == 0) 402 return nr; 403 pr_debug("%s: problems reading %s PLT info.\n", 404 __func__, dso->long_name); 405 return 0; 406 } 407 408 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 409 { 410 return demangle_sym(dso, kmodule, elf_name); 411 } 412 413 /* 414 * Align offset to 4 bytes as needed for note name and descriptor data. 415 */ 416 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 417 418 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 419 { 420 int err = -1; 421 GElf_Ehdr ehdr; 422 GElf_Shdr shdr; 423 Elf_Data *data; 424 Elf_Scn *sec; 425 Elf_Kind ek; 426 void *ptr; 427 428 if (size < BUILD_ID_SIZE) 429 goto out; 430 431 ek = elf_kind(elf); 432 if (ek != ELF_K_ELF) 433 goto out; 434 435 if (gelf_getehdr(elf, &ehdr) == NULL) { 436 pr_err("%s: cannot get elf header.\n", __func__); 437 goto out; 438 } 439 440 /* 441 * Check following sections for notes: 442 * '.note.gnu.build-id' 443 * '.notes' 444 * '.note' (VDSO specific) 445 */ 446 do { 447 sec = elf_section_by_name(elf, &ehdr, &shdr, 448 ".note.gnu.build-id", NULL); 449 if (sec) 450 break; 451 452 sec = elf_section_by_name(elf, &ehdr, &shdr, 453 ".notes", NULL); 454 if (sec) 455 break; 456 457 sec = elf_section_by_name(elf, &ehdr, &shdr, 458 ".note", NULL); 459 if (sec) 460 break; 461 462 return err; 463 464 } while (0); 465 466 data = elf_getdata(sec, NULL); 467 if (data == NULL) 468 goto out; 469 470 ptr = data->d_buf; 471 while (ptr < (data->d_buf + data->d_size)) { 472 GElf_Nhdr *nhdr = ptr; 473 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 474 descsz = NOTE_ALIGN(nhdr->n_descsz); 475 const char *name; 476 477 ptr += sizeof(*nhdr); 478 name = ptr; 479 ptr += namesz; 480 if (nhdr->n_type == NT_GNU_BUILD_ID && 481 nhdr->n_namesz == sizeof("GNU")) { 482 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 483 size_t sz = min(size, descsz); 484 memcpy(bf, ptr, sz); 485 memset(bf + sz, 0, size - sz); 486 err = descsz; 487 break; 488 } 489 } 490 ptr += descsz; 491 } 492 493 out: 494 return err; 495 } 496 497 int filename__read_build_id(const char *filename, void *bf, size_t size) 498 { 499 int fd, err = -1; 500 Elf *elf; 501 502 if (size < BUILD_ID_SIZE) 503 goto out; 504 505 fd = open(filename, O_RDONLY); 506 if (fd < 0) 507 goto out; 508 509 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 510 if (elf == NULL) { 511 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 512 goto out_close; 513 } 514 515 err = elf_read_build_id(elf, bf, size); 516 517 elf_end(elf); 518 out_close: 519 close(fd); 520 out: 521 return err; 522 } 523 524 int sysfs__read_build_id(const char *filename, void *build_id, size_t size) 525 { 526 int fd, err = -1; 527 528 if (size < BUILD_ID_SIZE) 529 goto out; 530 531 fd = open(filename, O_RDONLY); 532 if (fd < 0) 533 goto out; 534 535 while (1) { 536 char bf[BUFSIZ]; 537 GElf_Nhdr nhdr; 538 size_t namesz, descsz; 539 540 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 541 break; 542 543 namesz = NOTE_ALIGN(nhdr.n_namesz); 544 descsz = NOTE_ALIGN(nhdr.n_descsz); 545 if (nhdr.n_type == NT_GNU_BUILD_ID && 546 nhdr.n_namesz == sizeof("GNU")) { 547 if (read(fd, bf, namesz) != (ssize_t)namesz) 548 break; 549 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 550 size_t sz = min(descsz, size); 551 if (read(fd, build_id, sz) == (ssize_t)sz) { 552 memset(build_id + sz, 0, size - sz); 553 err = 0; 554 break; 555 } 556 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 557 break; 558 } else { 559 int n = namesz + descsz; 560 561 if (n > (int)sizeof(bf)) { 562 n = sizeof(bf); 563 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 564 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 565 } 566 if (read(fd, bf, n) != n) 567 break; 568 } 569 } 570 close(fd); 571 out: 572 return err; 573 } 574 575 int filename__read_debuglink(const char *filename, char *debuglink, 576 size_t size) 577 { 578 int fd, err = -1; 579 Elf *elf; 580 GElf_Ehdr ehdr; 581 GElf_Shdr shdr; 582 Elf_Data *data; 583 Elf_Scn *sec; 584 Elf_Kind ek; 585 586 fd = open(filename, O_RDONLY); 587 if (fd < 0) 588 goto out; 589 590 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 591 if (elf == NULL) { 592 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 593 goto out_close; 594 } 595 596 ek = elf_kind(elf); 597 if (ek != ELF_K_ELF) 598 goto out_elf_end; 599 600 if (gelf_getehdr(elf, &ehdr) == NULL) { 601 pr_err("%s: cannot get elf header.\n", __func__); 602 goto out_elf_end; 603 } 604 605 sec = elf_section_by_name(elf, &ehdr, &shdr, 606 ".gnu_debuglink", NULL); 607 if (sec == NULL) 608 goto out_elf_end; 609 610 data = elf_getdata(sec, NULL); 611 if (data == NULL) 612 goto out_elf_end; 613 614 /* the start of this section is a zero-terminated string */ 615 strncpy(debuglink, data->d_buf, size); 616 617 err = 0; 618 619 out_elf_end: 620 elf_end(elf); 621 out_close: 622 close(fd); 623 out: 624 return err; 625 } 626 627 static int dso__swap_init(struct dso *dso, unsigned char eidata) 628 { 629 static unsigned int const endian = 1; 630 631 dso->needs_swap = DSO_SWAP__NO; 632 633 switch (eidata) { 634 case ELFDATA2LSB: 635 /* We are big endian, DSO is little endian. */ 636 if (*(unsigned char const *)&endian != 1) 637 dso->needs_swap = DSO_SWAP__YES; 638 break; 639 640 case ELFDATA2MSB: 641 /* We are little endian, DSO is big endian. */ 642 if (*(unsigned char const *)&endian != 0) 643 dso->needs_swap = DSO_SWAP__YES; 644 break; 645 646 default: 647 pr_err("unrecognized DSO data encoding %d\n", eidata); 648 return -EINVAL; 649 } 650 651 return 0; 652 } 653 654 bool symsrc__possibly_runtime(struct symsrc *ss) 655 { 656 return ss->dynsym || ss->opdsec; 657 } 658 659 bool symsrc__has_symtab(struct symsrc *ss) 660 { 661 return ss->symtab != NULL; 662 } 663 664 void symsrc__destroy(struct symsrc *ss) 665 { 666 zfree(&ss->name); 667 elf_end(ss->elf); 668 close(ss->fd); 669 } 670 671 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr) 672 { 673 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL; 674 } 675 676 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 677 enum dso_binary_type type) 678 { 679 int err = -1; 680 GElf_Ehdr ehdr; 681 Elf *elf; 682 int fd; 683 684 if (dso__needs_decompress(dso)) { 685 fd = dso__decompress_kmodule_fd(dso, name); 686 if (fd < 0) 687 return -1; 688 689 type = dso->symtab_type; 690 } else { 691 fd = open(name, O_RDONLY); 692 if (fd < 0) { 693 dso->load_errno = errno; 694 return -1; 695 } 696 } 697 698 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 699 if (elf == NULL) { 700 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 701 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 702 goto out_close; 703 } 704 705 if (gelf_getehdr(elf, &ehdr) == NULL) { 706 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 707 pr_debug("%s: cannot get elf header.\n", __func__); 708 goto out_elf_end; 709 } 710 711 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 712 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 713 goto out_elf_end; 714 } 715 716 /* Always reject images with a mismatched build-id: */ 717 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 718 u8 build_id[BUILD_ID_SIZE]; 719 720 if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) { 721 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 722 goto out_elf_end; 723 } 724 725 if (!dso__build_id_equal(dso, build_id)) { 726 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 727 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 728 goto out_elf_end; 729 } 730 } 731 732 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 733 734 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 735 NULL); 736 if (ss->symshdr.sh_type != SHT_SYMTAB) 737 ss->symtab = NULL; 738 739 ss->dynsym_idx = 0; 740 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 741 &ss->dynsym_idx); 742 if (ss->dynshdr.sh_type != SHT_DYNSYM) 743 ss->dynsym = NULL; 744 745 ss->opdidx = 0; 746 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 747 &ss->opdidx); 748 if (ss->opdshdr.sh_type != SHT_PROGBITS) 749 ss->opdsec = NULL; 750 751 if (dso->kernel == DSO_TYPE_USER) 752 ss->adjust_symbols = true; 753 else 754 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 755 756 ss->name = strdup(name); 757 if (!ss->name) { 758 dso->load_errno = errno; 759 goto out_elf_end; 760 } 761 762 ss->elf = elf; 763 ss->fd = fd; 764 ss->ehdr = ehdr; 765 ss->type = type; 766 767 return 0; 768 769 out_elf_end: 770 elf_end(elf); 771 out_close: 772 close(fd); 773 return err; 774 } 775 776 /** 777 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 778 * @kmap: kernel maps and relocation reference symbol 779 * 780 * This function returns %true if we are dealing with the kernel maps and the 781 * relocation reference symbol has not yet been found. Otherwise %false is 782 * returned. 783 */ 784 static bool ref_reloc_sym_not_found(struct kmap *kmap) 785 { 786 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 787 !kmap->ref_reloc_sym->unrelocated_addr; 788 } 789 790 /** 791 * ref_reloc - kernel relocation offset. 792 * @kmap: kernel maps and relocation reference symbol 793 * 794 * This function returns the offset of kernel addresses as determined by using 795 * the relocation reference symbol i.e. if the kernel has not been relocated 796 * then the return value is zero. 797 */ 798 static u64 ref_reloc(struct kmap *kmap) 799 { 800 if (kmap && kmap->ref_reloc_sym && 801 kmap->ref_reloc_sym->unrelocated_addr) 802 return kmap->ref_reloc_sym->addr - 803 kmap->ref_reloc_sym->unrelocated_addr; 804 return 0; 805 } 806 807 void __weak arch__sym_update(struct symbol *s __maybe_unused, 808 GElf_Sym *sym __maybe_unused) { } 809 810 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 811 GElf_Sym *sym, GElf_Shdr *shdr, 812 struct map_groups *kmaps, struct kmap *kmap, 813 struct dso **curr_dsop, struct map **curr_mapp, 814 const char *section_name, 815 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 816 { 817 struct dso *curr_dso = *curr_dsop; 818 struct map *curr_map; 819 char dso_name[PATH_MAX]; 820 821 /* Adjust symbol to map to file offset */ 822 if (adjust_kernel_syms) 823 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 824 825 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 826 return 0; 827 828 if (strcmp(section_name, ".text") == 0) { 829 /* 830 * The initial kernel mapping is based on 831 * kallsyms and identity maps. Overwrite it to 832 * map to the kernel dso. 833 */ 834 if (*remap_kernel && dso->kernel) { 835 *remap_kernel = false; 836 map->start = shdr->sh_addr + ref_reloc(kmap); 837 map->end = map->start + shdr->sh_size; 838 map->pgoff = shdr->sh_offset; 839 map->map_ip = map__map_ip; 840 map->unmap_ip = map__unmap_ip; 841 /* Ensure maps are correctly ordered */ 842 if (kmaps) { 843 map__get(map); 844 map_groups__remove(kmaps, map); 845 map_groups__insert(kmaps, map); 846 map__put(map); 847 } 848 } 849 850 /* 851 * The initial module mapping is based on 852 * /proc/modules mapped to offset zero. 853 * Overwrite it to map to the module dso. 854 */ 855 if (*remap_kernel && kmodule) { 856 *remap_kernel = false; 857 map->pgoff = shdr->sh_offset; 858 } 859 860 *curr_mapp = map; 861 *curr_dsop = dso; 862 return 0; 863 } 864 865 if (!kmap) 866 return 0; 867 868 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 869 870 curr_map = map_groups__find_by_name(kmaps, dso_name); 871 if (curr_map == NULL) { 872 u64 start = sym->st_value; 873 874 if (kmodule) 875 start += map->start + shdr->sh_offset; 876 877 curr_dso = dso__new(dso_name); 878 if (curr_dso == NULL) 879 return -1; 880 curr_dso->kernel = dso->kernel; 881 curr_dso->long_name = dso->long_name; 882 curr_dso->long_name_len = dso->long_name_len; 883 curr_map = map__new2(start, curr_dso); 884 dso__put(curr_dso); 885 if (curr_map == NULL) 886 return -1; 887 888 if (adjust_kernel_syms) { 889 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 890 curr_map->end = curr_map->start + shdr->sh_size; 891 curr_map->pgoff = shdr->sh_offset; 892 } else { 893 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 894 } 895 curr_dso->symtab_type = dso->symtab_type; 896 map_groups__insert(kmaps, curr_map); 897 /* 898 * Add it before we drop the referece to curr_map, i.e. while 899 * we still are sure to have a reference to this DSO via 900 * *curr_map->dso. 901 */ 902 dsos__add(&map->groups->machine->dsos, curr_dso); 903 /* kmaps already got it */ 904 map__put(curr_map); 905 dso__set_loaded(curr_dso); 906 *curr_mapp = curr_map; 907 *curr_dsop = curr_dso; 908 } else 909 *curr_dsop = curr_map->dso; 910 911 return 0; 912 } 913 914 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 915 struct symsrc *runtime_ss, int kmodule) 916 { 917 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 918 struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL; 919 struct map *curr_map = map; 920 struct dso *curr_dso = dso; 921 Elf_Data *symstrs, *secstrs; 922 uint32_t nr_syms; 923 int err = -1; 924 uint32_t idx; 925 GElf_Ehdr ehdr; 926 GElf_Shdr shdr; 927 GElf_Shdr tshdr; 928 Elf_Data *syms, *opddata = NULL; 929 GElf_Sym sym; 930 Elf_Scn *sec, *sec_strndx; 931 Elf *elf; 932 int nr = 0; 933 bool remap_kernel = false, adjust_kernel_syms = false; 934 935 if (kmap && !kmaps) 936 return -1; 937 938 dso->symtab_type = syms_ss->type; 939 dso->is_64_bit = syms_ss->is_64_bit; 940 dso->rel = syms_ss->ehdr.e_type == ET_REL; 941 942 /* 943 * Modules may already have symbols from kallsyms, but those symbols 944 * have the wrong values for the dso maps, so remove them. 945 */ 946 if (kmodule && syms_ss->symtab) 947 symbols__delete(&dso->symbols); 948 949 if (!syms_ss->symtab) { 950 /* 951 * If the vmlinux is stripped, fail so we will fall back 952 * to using kallsyms. The vmlinux runtime symbols aren't 953 * of much use. 954 */ 955 if (dso->kernel) 956 goto out_elf_end; 957 958 syms_ss->symtab = syms_ss->dynsym; 959 syms_ss->symshdr = syms_ss->dynshdr; 960 } 961 962 elf = syms_ss->elf; 963 ehdr = syms_ss->ehdr; 964 sec = syms_ss->symtab; 965 shdr = syms_ss->symshdr; 966 967 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 968 ".text", NULL)) 969 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 970 971 if (runtime_ss->opdsec) 972 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 973 974 syms = elf_getdata(sec, NULL); 975 if (syms == NULL) 976 goto out_elf_end; 977 978 sec = elf_getscn(elf, shdr.sh_link); 979 if (sec == NULL) 980 goto out_elf_end; 981 982 symstrs = elf_getdata(sec, NULL); 983 if (symstrs == NULL) 984 goto out_elf_end; 985 986 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 987 if (sec_strndx == NULL) 988 goto out_elf_end; 989 990 secstrs = elf_getdata(sec_strndx, NULL); 991 if (secstrs == NULL) 992 goto out_elf_end; 993 994 nr_syms = shdr.sh_size / shdr.sh_entsize; 995 996 memset(&sym, 0, sizeof(sym)); 997 998 /* 999 * The kernel relocation symbol is needed in advance in order to adjust 1000 * kernel maps correctly. 1001 */ 1002 if (ref_reloc_sym_not_found(kmap)) { 1003 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1004 const char *elf_name = elf_sym__name(&sym, symstrs); 1005 1006 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1007 continue; 1008 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1009 map->reloc = kmap->ref_reloc_sym->addr - 1010 kmap->ref_reloc_sym->unrelocated_addr; 1011 break; 1012 } 1013 } 1014 1015 /* 1016 * Handle any relocation of vdso necessary because older kernels 1017 * attempted to prelink vdso to its virtual address. 1018 */ 1019 if (dso__is_vdso(dso)) 1020 map->reloc = map->start - dso->text_offset; 1021 1022 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1023 /* 1024 * Initial kernel and module mappings do not map to the dso. 1025 * Flag the fixups. 1026 */ 1027 if (dso->kernel || kmodule) { 1028 remap_kernel = true; 1029 adjust_kernel_syms = dso->adjust_symbols; 1030 } 1031 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1032 struct symbol *f; 1033 const char *elf_name = elf_sym__name(&sym, symstrs); 1034 char *demangled = NULL; 1035 int is_label = elf_sym__is_label(&sym); 1036 const char *section_name; 1037 bool used_opd = false; 1038 1039 if (!is_label && !elf_sym__filter(&sym)) 1040 continue; 1041 1042 /* Reject ARM ELF "mapping symbols": these aren't unique and 1043 * don't identify functions, so will confuse the profile 1044 * output: */ 1045 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1046 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1047 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1048 continue; 1049 } 1050 1051 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1052 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1053 u64 *opd = opddata->d_buf + offset; 1054 sym.st_value = DSO__SWAP(dso, u64, *opd); 1055 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1056 sym.st_value); 1057 used_opd = true; 1058 } 1059 /* 1060 * When loading symbols in a data mapping, ABS symbols (which 1061 * has a value of SHN_ABS in its st_shndx) failed at 1062 * elf_getscn(). And it marks the loading as a failure so 1063 * already loaded symbols cannot be fixed up. 1064 * 1065 * I'm not sure what should be done. Just ignore them for now. 1066 * - Namhyung Kim 1067 */ 1068 if (sym.st_shndx == SHN_ABS) 1069 continue; 1070 1071 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1072 if (!sec) 1073 goto out_elf_end; 1074 1075 gelf_getshdr(sec, &shdr); 1076 1077 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1078 continue; 1079 1080 section_name = elf_sec__name(&shdr, secstrs); 1081 1082 /* On ARM, symbols for thumb functions have 1 added to 1083 * the symbol address as a flag - remove it */ 1084 if ((ehdr.e_machine == EM_ARM) && 1085 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1086 (sym.st_value & 1)) 1087 --sym.st_value; 1088 1089 if (dso->kernel || kmodule) { 1090 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1091 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1092 goto out_elf_end; 1093 } else if ((used_opd && runtime_ss->adjust_symbols) || 1094 (!used_opd && syms_ss->adjust_symbols)) { 1095 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1096 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__, 1097 (u64)sym.st_value, (u64)shdr.sh_addr, 1098 (u64)shdr.sh_offset); 1099 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1100 } 1101 1102 demangled = demangle_sym(dso, kmodule, elf_name); 1103 if (demangled != NULL) 1104 elf_name = demangled; 1105 1106 f = symbol__new(sym.st_value, sym.st_size, 1107 GELF_ST_BIND(sym.st_info), 1108 GELF_ST_TYPE(sym.st_info), elf_name); 1109 free(demangled); 1110 if (!f) 1111 goto out_elf_end; 1112 1113 arch__sym_update(f, &sym); 1114 1115 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1116 nr++; 1117 } 1118 1119 /* 1120 * For misannotated, zeroed, ASM function sizes. 1121 */ 1122 if (nr > 0) { 1123 symbols__fixup_end(&dso->symbols); 1124 symbols__fixup_duplicate(&dso->symbols); 1125 if (kmap) { 1126 /* 1127 * We need to fixup this here too because we create new 1128 * maps here, for things like vsyscall sections. 1129 */ 1130 map_groups__fixup_end(kmaps); 1131 } 1132 } 1133 err = nr; 1134 out_elf_end: 1135 return err; 1136 } 1137 1138 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1139 { 1140 GElf_Phdr phdr; 1141 size_t i, phdrnum; 1142 int err; 1143 u64 sz; 1144 1145 if (elf_getphdrnum(elf, &phdrnum)) 1146 return -1; 1147 1148 for (i = 0; i < phdrnum; i++) { 1149 if (gelf_getphdr(elf, i, &phdr) == NULL) 1150 return -1; 1151 if (phdr.p_type != PT_LOAD) 1152 continue; 1153 if (exe) { 1154 if (!(phdr.p_flags & PF_X)) 1155 continue; 1156 } else { 1157 if (!(phdr.p_flags & PF_R)) 1158 continue; 1159 } 1160 sz = min(phdr.p_memsz, phdr.p_filesz); 1161 if (!sz) 1162 continue; 1163 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1164 if (err) 1165 return err; 1166 } 1167 return 0; 1168 } 1169 1170 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1171 bool *is_64_bit) 1172 { 1173 int err; 1174 Elf *elf; 1175 1176 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1177 if (elf == NULL) 1178 return -1; 1179 1180 if (is_64_bit) 1181 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1182 1183 err = elf_read_maps(elf, exe, mapfn, data); 1184 1185 elf_end(elf); 1186 return err; 1187 } 1188 1189 enum dso_type dso__type_fd(int fd) 1190 { 1191 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1192 GElf_Ehdr ehdr; 1193 Elf_Kind ek; 1194 Elf *elf; 1195 1196 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1197 if (elf == NULL) 1198 goto out; 1199 1200 ek = elf_kind(elf); 1201 if (ek != ELF_K_ELF) 1202 goto out_end; 1203 1204 if (gelf_getclass(elf) == ELFCLASS64) { 1205 dso_type = DSO__TYPE_64BIT; 1206 goto out_end; 1207 } 1208 1209 if (gelf_getehdr(elf, &ehdr) == NULL) 1210 goto out_end; 1211 1212 if (ehdr.e_machine == EM_X86_64) 1213 dso_type = DSO__TYPE_X32BIT; 1214 else 1215 dso_type = DSO__TYPE_32BIT; 1216 out_end: 1217 elf_end(elf); 1218 out: 1219 return dso_type; 1220 } 1221 1222 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1223 { 1224 ssize_t r; 1225 size_t n; 1226 int err = -1; 1227 char *buf = malloc(page_size); 1228 1229 if (buf == NULL) 1230 return -1; 1231 1232 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1233 goto out; 1234 1235 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1236 goto out; 1237 1238 while (len) { 1239 n = page_size; 1240 if (len < n) 1241 n = len; 1242 /* Use read because mmap won't work on proc files */ 1243 r = read(from, buf, n); 1244 if (r < 0) 1245 goto out; 1246 if (!r) 1247 break; 1248 n = r; 1249 r = write(to, buf, n); 1250 if (r < 0) 1251 goto out; 1252 if ((size_t)r != n) 1253 goto out; 1254 len -= n; 1255 } 1256 1257 err = 0; 1258 out: 1259 free(buf); 1260 return err; 1261 } 1262 1263 struct kcore { 1264 int fd; 1265 int elfclass; 1266 Elf *elf; 1267 GElf_Ehdr ehdr; 1268 }; 1269 1270 static int kcore__open(struct kcore *kcore, const char *filename) 1271 { 1272 GElf_Ehdr *ehdr; 1273 1274 kcore->fd = open(filename, O_RDONLY); 1275 if (kcore->fd == -1) 1276 return -1; 1277 1278 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1279 if (!kcore->elf) 1280 goto out_close; 1281 1282 kcore->elfclass = gelf_getclass(kcore->elf); 1283 if (kcore->elfclass == ELFCLASSNONE) 1284 goto out_end; 1285 1286 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1287 if (!ehdr) 1288 goto out_end; 1289 1290 return 0; 1291 1292 out_end: 1293 elf_end(kcore->elf); 1294 out_close: 1295 close(kcore->fd); 1296 return -1; 1297 } 1298 1299 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1300 bool temp) 1301 { 1302 kcore->elfclass = elfclass; 1303 1304 if (temp) 1305 kcore->fd = mkstemp(filename); 1306 else 1307 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1308 if (kcore->fd == -1) 1309 return -1; 1310 1311 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1312 if (!kcore->elf) 1313 goto out_close; 1314 1315 if (!gelf_newehdr(kcore->elf, elfclass)) 1316 goto out_end; 1317 1318 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1319 1320 return 0; 1321 1322 out_end: 1323 elf_end(kcore->elf); 1324 out_close: 1325 close(kcore->fd); 1326 unlink(filename); 1327 return -1; 1328 } 1329 1330 static void kcore__close(struct kcore *kcore) 1331 { 1332 elf_end(kcore->elf); 1333 close(kcore->fd); 1334 } 1335 1336 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1337 { 1338 GElf_Ehdr *ehdr = &to->ehdr; 1339 GElf_Ehdr *kehdr = &from->ehdr; 1340 1341 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1342 ehdr->e_type = kehdr->e_type; 1343 ehdr->e_machine = kehdr->e_machine; 1344 ehdr->e_version = kehdr->e_version; 1345 ehdr->e_entry = 0; 1346 ehdr->e_shoff = 0; 1347 ehdr->e_flags = kehdr->e_flags; 1348 ehdr->e_phnum = count; 1349 ehdr->e_shentsize = 0; 1350 ehdr->e_shnum = 0; 1351 ehdr->e_shstrndx = 0; 1352 1353 if (from->elfclass == ELFCLASS32) { 1354 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1355 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1356 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1357 } else { 1358 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1359 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1360 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1361 } 1362 1363 if (!gelf_update_ehdr(to->elf, ehdr)) 1364 return -1; 1365 1366 if (!gelf_newphdr(to->elf, count)) 1367 return -1; 1368 1369 return 0; 1370 } 1371 1372 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1373 u64 addr, u64 len) 1374 { 1375 GElf_Phdr phdr = { 1376 .p_type = PT_LOAD, 1377 .p_flags = PF_R | PF_W | PF_X, 1378 .p_offset = offset, 1379 .p_vaddr = addr, 1380 .p_paddr = 0, 1381 .p_filesz = len, 1382 .p_memsz = len, 1383 .p_align = page_size, 1384 }; 1385 1386 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1387 return -1; 1388 1389 return 0; 1390 } 1391 1392 static off_t kcore__write(struct kcore *kcore) 1393 { 1394 return elf_update(kcore->elf, ELF_C_WRITE); 1395 } 1396 1397 struct phdr_data { 1398 off_t offset; 1399 off_t rel; 1400 u64 addr; 1401 u64 len; 1402 struct list_head node; 1403 struct phdr_data *remaps; 1404 }; 1405 1406 struct sym_data { 1407 u64 addr; 1408 struct list_head node; 1409 }; 1410 1411 struct kcore_copy_info { 1412 u64 stext; 1413 u64 etext; 1414 u64 first_symbol; 1415 u64 last_symbol; 1416 u64 first_module; 1417 u64 last_module_symbol; 1418 size_t phnum; 1419 struct list_head phdrs; 1420 struct list_head syms; 1421 }; 1422 1423 #define kcore_copy__for_each_phdr(k, p) \ 1424 list_for_each_entry((p), &(k)->phdrs, node) 1425 1426 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1427 { 1428 struct phdr_data *p = zalloc(sizeof(*p)); 1429 1430 if (p) { 1431 p->addr = addr; 1432 p->len = len; 1433 p->offset = offset; 1434 } 1435 1436 return p; 1437 } 1438 1439 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1440 u64 addr, u64 len, 1441 off_t offset) 1442 { 1443 struct phdr_data *p = phdr_data__new(addr, len, offset); 1444 1445 if (p) 1446 list_add_tail(&p->node, &kci->phdrs); 1447 1448 return p; 1449 } 1450 1451 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1452 { 1453 struct phdr_data *p, *tmp; 1454 1455 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1456 list_del(&p->node); 1457 free(p); 1458 } 1459 } 1460 1461 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1462 u64 addr) 1463 { 1464 struct sym_data *s = zalloc(sizeof(*s)); 1465 1466 if (s) { 1467 s->addr = addr; 1468 list_add_tail(&s->node, &kci->syms); 1469 } 1470 1471 return s; 1472 } 1473 1474 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1475 { 1476 struct sym_data *s, *tmp; 1477 1478 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1479 list_del(&s->node); 1480 free(s); 1481 } 1482 } 1483 1484 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1485 u64 start) 1486 { 1487 struct kcore_copy_info *kci = arg; 1488 1489 if (!kallsyms__is_function(type)) 1490 return 0; 1491 1492 if (strchr(name, '[')) { 1493 if (start > kci->last_module_symbol) 1494 kci->last_module_symbol = start; 1495 return 0; 1496 } 1497 1498 if (!kci->first_symbol || start < kci->first_symbol) 1499 kci->first_symbol = start; 1500 1501 if (!kci->last_symbol || start > kci->last_symbol) 1502 kci->last_symbol = start; 1503 1504 if (!strcmp(name, "_stext")) { 1505 kci->stext = start; 1506 return 0; 1507 } 1508 1509 if (!strcmp(name, "_etext")) { 1510 kci->etext = start; 1511 return 0; 1512 } 1513 1514 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1515 return -1; 1516 1517 return 0; 1518 } 1519 1520 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1521 const char *dir) 1522 { 1523 char kallsyms_filename[PATH_MAX]; 1524 1525 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1526 1527 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1528 return -1; 1529 1530 if (kallsyms__parse(kallsyms_filename, kci, 1531 kcore_copy__process_kallsyms) < 0) 1532 return -1; 1533 1534 return 0; 1535 } 1536 1537 static int kcore_copy__process_modules(void *arg, 1538 const char *name __maybe_unused, 1539 u64 start, u64 size __maybe_unused) 1540 { 1541 struct kcore_copy_info *kci = arg; 1542 1543 if (!kci->first_module || start < kci->first_module) 1544 kci->first_module = start; 1545 1546 return 0; 1547 } 1548 1549 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1550 const char *dir) 1551 { 1552 char modules_filename[PATH_MAX]; 1553 1554 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1555 1556 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1557 return -1; 1558 1559 if (modules__parse(modules_filename, kci, 1560 kcore_copy__process_modules) < 0) 1561 return -1; 1562 1563 return 0; 1564 } 1565 1566 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1567 u64 pgoff, u64 s, u64 e) 1568 { 1569 u64 len, offset; 1570 1571 if (s < start || s >= end) 1572 return 0; 1573 1574 offset = (s - start) + pgoff; 1575 len = e < end ? e - s : end - s; 1576 1577 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1578 } 1579 1580 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1581 { 1582 struct kcore_copy_info *kci = data; 1583 u64 end = start + len; 1584 struct sym_data *sdat; 1585 1586 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1587 return -1; 1588 1589 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1590 kci->last_module_symbol)) 1591 return -1; 1592 1593 list_for_each_entry(sdat, &kci->syms, node) { 1594 u64 s = round_down(sdat->addr, page_size); 1595 1596 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1597 return -1; 1598 } 1599 1600 return 0; 1601 } 1602 1603 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1604 { 1605 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1606 return -1; 1607 1608 return 0; 1609 } 1610 1611 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1612 { 1613 struct phdr_data *p, *k = NULL; 1614 u64 kend; 1615 1616 if (!kci->stext) 1617 return; 1618 1619 /* Find phdr that corresponds to the kernel map (contains stext) */ 1620 kcore_copy__for_each_phdr(kci, p) { 1621 u64 pend = p->addr + p->len - 1; 1622 1623 if (p->addr <= kci->stext && pend >= kci->stext) { 1624 k = p; 1625 break; 1626 } 1627 } 1628 1629 if (!k) 1630 return; 1631 1632 kend = k->offset + k->len; 1633 1634 /* Find phdrs that remap the kernel */ 1635 kcore_copy__for_each_phdr(kci, p) { 1636 u64 pend = p->offset + p->len; 1637 1638 if (p == k) 1639 continue; 1640 1641 if (p->offset >= k->offset && pend <= kend) 1642 p->remaps = k; 1643 } 1644 } 1645 1646 static void kcore_copy__layout(struct kcore_copy_info *kci) 1647 { 1648 struct phdr_data *p; 1649 off_t rel = 0; 1650 1651 kcore_copy__find_remaps(kci); 1652 1653 kcore_copy__for_each_phdr(kci, p) { 1654 if (!p->remaps) { 1655 p->rel = rel; 1656 rel += p->len; 1657 } 1658 kci->phnum += 1; 1659 } 1660 1661 kcore_copy__for_each_phdr(kci, p) { 1662 struct phdr_data *k = p->remaps; 1663 1664 if (k) 1665 p->rel = p->offset - k->offset + k->rel; 1666 } 1667 } 1668 1669 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1670 Elf *elf) 1671 { 1672 if (kcore_copy__parse_kallsyms(kci, dir)) 1673 return -1; 1674 1675 if (kcore_copy__parse_modules(kci, dir)) 1676 return -1; 1677 1678 if (kci->stext) 1679 kci->stext = round_down(kci->stext, page_size); 1680 else 1681 kci->stext = round_down(kci->first_symbol, page_size); 1682 1683 if (kci->etext) { 1684 kci->etext = round_up(kci->etext, page_size); 1685 } else if (kci->last_symbol) { 1686 kci->etext = round_up(kci->last_symbol, page_size); 1687 kci->etext += page_size; 1688 } 1689 1690 kci->first_module = round_down(kci->first_module, page_size); 1691 1692 if (kci->last_module_symbol) { 1693 kci->last_module_symbol = round_up(kci->last_module_symbol, 1694 page_size); 1695 kci->last_module_symbol += page_size; 1696 } 1697 1698 if (!kci->stext || !kci->etext) 1699 return -1; 1700 1701 if (kci->first_module && !kci->last_module_symbol) 1702 return -1; 1703 1704 if (kcore_copy__read_maps(kci, elf)) 1705 return -1; 1706 1707 kcore_copy__layout(kci); 1708 1709 return 0; 1710 } 1711 1712 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 1713 const char *name) 1714 { 1715 char from_filename[PATH_MAX]; 1716 char to_filename[PATH_MAX]; 1717 1718 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1719 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1720 1721 return copyfile_mode(from_filename, to_filename, 0400); 1722 } 1723 1724 static int kcore_copy__unlink(const char *dir, const char *name) 1725 { 1726 char filename[PATH_MAX]; 1727 1728 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 1729 1730 return unlink(filename); 1731 } 1732 1733 static int kcore_copy__compare_fds(int from, int to) 1734 { 1735 char *buf_from; 1736 char *buf_to; 1737 ssize_t ret; 1738 size_t len; 1739 int err = -1; 1740 1741 buf_from = malloc(page_size); 1742 buf_to = malloc(page_size); 1743 if (!buf_from || !buf_to) 1744 goto out; 1745 1746 while (1) { 1747 /* Use read because mmap won't work on proc files */ 1748 ret = read(from, buf_from, page_size); 1749 if (ret < 0) 1750 goto out; 1751 1752 if (!ret) 1753 break; 1754 1755 len = ret; 1756 1757 if (readn(to, buf_to, len) != (int)len) 1758 goto out; 1759 1760 if (memcmp(buf_from, buf_to, len)) 1761 goto out; 1762 } 1763 1764 err = 0; 1765 out: 1766 free(buf_to); 1767 free(buf_from); 1768 return err; 1769 } 1770 1771 static int kcore_copy__compare_files(const char *from_filename, 1772 const char *to_filename) 1773 { 1774 int from, to, err = -1; 1775 1776 from = open(from_filename, O_RDONLY); 1777 if (from < 0) 1778 return -1; 1779 1780 to = open(to_filename, O_RDONLY); 1781 if (to < 0) 1782 goto out_close_from; 1783 1784 err = kcore_copy__compare_fds(from, to); 1785 1786 close(to); 1787 out_close_from: 1788 close(from); 1789 return err; 1790 } 1791 1792 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 1793 const char *name) 1794 { 1795 char from_filename[PATH_MAX]; 1796 char to_filename[PATH_MAX]; 1797 1798 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1799 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1800 1801 return kcore_copy__compare_files(from_filename, to_filename); 1802 } 1803 1804 /** 1805 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 1806 * @from_dir: from directory 1807 * @to_dir: to directory 1808 * 1809 * This function copies kallsyms, modules and kcore files from one directory to 1810 * another. kallsyms and modules are copied entirely. Only code segments are 1811 * copied from kcore. It is assumed that two segments suffice: one for the 1812 * kernel proper and one for all the modules. The code segments are determined 1813 * from kallsyms and modules files. The kernel map starts at _stext or the 1814 * lowest function symbol, and ends at _etext or the highest function symbol. 1815 * The module map starts at the lowest module address and ends at the highest 1816 * module symbol. Start addresses are rounded down to the nearest page. End 1817 * addresses are rounded up to the nearest page. An extra page is added to the 1818 * highest kernel symbol and highest module symbol to, hopefully, encompass that 1819 * symbol too. Because it contains only code sections, the resulting kcore is 1820 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 1821 * is not the same for the kernel map and the modules map. That happens because 1822 * the data is copied adjacently whereas the original kcore has gaps. Finally, 1823 * kallsyms and modules files are compared with their copies to check that 1824 * modules have not been loaded or unloaded while the copies were taking place. 1825 * 1826 * Return: %0 on success, %-1 on failure. 1827 */ 1828 int kcore_copy(const char *from_dir, const char *to_dir) 1829 { 1830 struct kcore kcore; 1831 struct kcore extract; 1832 int idx = 0, err = -1; 1833 off_t offset, sz; 1834 struct kcore_copy_info kci = { .stext = 0, }; 1835 char kcore_filename[PATH_MAX]; 1836 char extract_filename[PATH_MAX]; 1837 struct phdr_data *p; 1838 1839 INIT_LIST_HEAD(&kci.phdrs); 1840 INIT_LIST_HEAD(&kci.syms); 1841 1842 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 1843 return -1; 1844 1845 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 1846 goto out_unlink_kallsyms; 1847 1848 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 1849 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 1850 1851 if (kcore__open(&kcore, kcore_filename)) 1852 goto out_unlink_modules; 1853 1854 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 1855 goto out_kcore_close; 1856 1857 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 1858 goto out_kcore_close; 1859 1860 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 1861 goto out_extract_close; 1862 1863 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 1864 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 1865 offset = round_up(offset, page_size); 1866 1867 kcore_copy__for_each_phdr(&kci, p) { 1868 off_t offs = p->rel + offset; 1869 1870 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 1871 goto out_extract_close; 1872 } 1873 1874 sz = kcore__write(&extract); 1875 if (sz < 0 || sz > offset) 1876 goto out_extract_close; 1877 1878 kcore_copy__for_each_phdr(&kci, p) { 1879 off_t offs = p->rel + offset; 1880 1881 if (p->remaps) 1882 continue; 1883 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 1884 goto out_extract_close; 1885 } 1886 1887 if (kcore_copy__compare_file(from_dir, to_dir, "modules")) 1888 goto out_extract_close; 1889 1890 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 1891 goto out_extract_close; 1892 1893 err = 0; 1894 1895 out_extract_close: 1896 kcore__close(&extract); 1897 if (err) 1898 unlink(extract_filename); 1899 out_kcore_close: 1900 kcore__close(&kcore); 1901 out_unlink_modules: 1902 if (err) 1903 kcore_copy__unlink(to_dir, "modules"); 1904 out_unlink_kallsyms: 1905 if (err) 1906 kcore_copy__unlink(to_dir, "kallsyms"); 1907 1908 kcore_copy__free_phdrs(&kci); 1909 kcore_copy__free_syms(&kci); 1910 1911 return err; 1912 } 1913 1914 int kcore_extract__create(struct kcore_extract *kce) 1915 { 1916 struct kcore kcore; 1917 struct kcore extract; 1918 size_t count = 1; 1919 int idx = 0, err = -1; 1920 off_t offset = page_size, sz; 1921 1922 if (kcore__open(&kcore, kce->kcore_filename)) 1923 return -1; 1924 1925 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 1926 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 1927 goto out_kcore_close; 1928 1929 if (kcore__copy_hdr(&kcore, &extract, count)) 1930 goto out_extract_close; 1931 1932 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 1933 goto out_extract_close; 1934 1935 sz = kcore__write(&extract); 1936 if (sz < 0 || sz > offset) 1937 goto out_extract_close; 1938 1939 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 1940 goto out_extract_close; 1941 1942 err = 0; 1943 1944 out_extract_close: 1945 kcore__close(&extract); 1946 if (err) 1947 unlink(kce->extract_filename); 1948 out_kcore_close: 1949 kcore__close(&kcore); 1950 1951 return err; 1952 } 1953 1954 void kcore_extract__delete(struct kcore_extract *kce) 1955 { 1956 unlink(kce->extract_filename); 1957 } 1958 1959 #ifdef HAVE_GELF_GETNOTE_SUPPORT 1960 1961 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 1962 { 1963 if (!base_off) 1964 return; 1965 1966 if (tmp->bit32) 1967 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 1968 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 1969 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 1970 else 1971 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 1972 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 1973 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 1974 } 1975 1976 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 1977 GElf_Addr base_off) 1978 { 1979 if (!base_off) 1980 return; 1981 1982 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 1983 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 1984 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 1985 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 1986 } 1987 1988 /** 1989 * populate_sdt_note : Parse raw data and identify SDT note 1990 * @elf: elf of the opened file 1991 * @data: raw data of a section with description offset applied 1992 * @len: note description size 1993 * @type: type of the note 1994 * @sdt_notes: List to add the SDT note 1995 * 1996 * Responsible for parsing the @data in section .note.stapsdt in @elf and 1997 * if its an SDT note, it appends to @sdt_notes list. 1998 */ 1999 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2000 struct list_head *sdt_notes) 2001 { 2002 const char *provider, *name, *args; 2003 struct sdt_note *tmp = NULL; 2004 GElf_Ehdr ehdr; 2005 GElf_Shdr shdr; 2006 int ret = -EINVAL; 2007 2008 union { 2009 Elf64_Addr a64[NR_ADDR]; 2010 Elf32_Addr a32[NR_ADDR]; 2011 } buf; 2012 2013 Elf_Data dst = { 2014 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2015 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2016 .d_off = 0, .d_align = 0 2017 }; 2018 Elf_Data src = { 2019 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2020 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2021 .d_align = 0 2022 }; 2023 2024 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2025 if (!tmp) { 2026 ret = -ENOMEM; 2027 goto out_err; 2028 } 2029 2030 INIT_LIST_HEAD(&tmp->note_list); 2031 2032 if (len < dst.d_size + 3) 2033 goto out_free_note; 2034 2035 /* Translation from file representation to memory representation */ 2036 if (gelf_xlatetom(*elf, &dst, &src, 2037 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2038 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2039 goto out_free_note; 2040 } 2041 2042 /* Populate the fields of sdt_note */ 2043 provider = data + dst.d_size; 2044 2045 name = (const char *)memchr(provider, '\0', data + len - provider); 2046 if (name++ == NULL) 2047 goto out_free_note; 2048 2049 tmp->provider = strdup(provider); 2050 if (!tmp->provider) { 2051 ret = -ENOMEM; 2052 goto out_free_note; 2053 } 2054 tmp->name = strdup(name); 2055 if (!tmp->name) { 2056 ret = -ENOMEM; 2057 goto out_free_prov; 2058 } 2059 2060 args = memchr(name, '\0', data + len - name); 2061 2062 /* 2063 * There is no argument if: 2064 * - We reached the end of the note; 2065 * - There is not enough room to hold a potential string; 2066 * - The argument string is empty or just contains ':'. 2067 */ 2068 if (args == NULL || data + len - args < 2 || 2069 args[1] == ':' || args[1] == '\0') 2070 tmp->args = NULL; 2071 else { 2072 tmp->args = strdup(++args); 2073 if (!tmp->args) { 2074 ret = -ENOMEM; 2075 goto out_free_name; 2076 } 2077 } 2078 2079 if (gelf_getclass(*elf) == ELFCLASS32) { 2080 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2081 tmp->bit32 = true; 2082 } else { 2083 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2084 tmp->bit32 = false; 2085 } 2086 2087 if (!gelf_getehdr(*elf, &ehdr)) { 2088 pr_debug("%s : cannot get elf header.\n", __func__); 2089 ret = -EBADF; 2090 goto out_free_args; 2091 } 2092 2093 /* Adjust the prelink effect : 2094 * Find out the .stapsdt.base section. 2095 * This scn will help us to handle prelinking (if present). 2096 * Compare the retrieved file offset of the base section with the 2097 * base address in the description of the SDT note. If its different, 2098 * then accordingly, adjust the note location. 2099 */ 2100 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2101 sdt_adjust_loc(tmp, shdr.sh_offset); 2102 2103 /* Adjust reference counter offset */ 2104 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2105 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2106 2107 list_add_tail(&tmp->note_list, sdt_notes); 2108 return 0; 2109 2110 out_free_args: 2111 free(tmp->args); 2112 out_free_name: 2113 free(tmp->name); 2114 out_free_prov: 2115 free(tmp->provider); 2116 out_free_note: 2117 free(tmp); 2118 out_err: 2119 return ret; 2120 } 2121 2122 /** 2123 * construct_sdt_notes_list : constructs a list of SDT notes 2124 * @elf : elf to look into 2125 * @sdt_notes : empty list_head 2126 * 2127 * Scans the sections in 'elf' for the section 2128 * .note.stapsdt. It, then calls populate_sdt_note to find 2129 * out the SDT events and populates the 'sdt_notes'. 2130 */ 2131 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2132 { 2133 GElf_Ehdr ehdr; 2134 Elf_Scn *scn = NULL; 2135 Elf_Data *data; 2136 GElf_Shdr shdr; 2137 size_t shstrndx, next; 2138 GElf_Nhdr nhdr; 2139 size_t name_off, desc_off, offset; 2140 int ret = 0; 2141 2142 if (gelf_getehdr(elf, &ehdr) == NULL) { 2143 ret = -EBADF; 2144 goto out_ret; 2145 } 2146 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2147 ret = -EBADF; 2148 goto out_ret; 2149 } 2150 2151 /* Look for the required section */ 2152 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2153 if (!scn) { 2154 ret = -ENOENT; 2155 goto out_ret; 2156 } 2157 2158 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2159 ret = -ENOENT; 2160 goto out_ret; 2161 } 2162 2163 data = elf_getdata(scn, NULL); 2164 2165 /* Get the SDT notes */ 2166 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2167 &desc_off)) > 0; offset = next) { 2168 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2169 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2170 sizeof(SDT_NOTE_NAME))) { 2171 /* Check the type of the note */ 2172 if (nhdr.n_type != SDT_NOTE_TYPE) 2173 goto out_ret; 2174 2175 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2176 nhdr.n_descsz, sdt_notes); 2177 if (ret < 0) 2178 goto out_ret; 2179 } 2180 } 2181 if (list_empty(sdt_notes)) 2182 ret = -ENOENT; 2183 2184 out_ret: 2185 return ret; 2186 } 2187 2188 /** 2189 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2190 * @head : empty list_head 2191 * @target : file to find SDT notes from 2192 * 2193 * This opens the file, initializes 2194 * the ELF and then calls construct_sdt_notes_list. 2195 */ 2196 int get_sdt_note_list(struct list_head *head, const char *target) 2197 { 2198 Elf *elf; 2199 int fd, ret; 2200 2201 fd = open(target, O_RDONLY); 2202 if (fd < 0) 2203 return -EBADF; 2204 2205 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2206 if (!elf) { 2207 ret = -EBADF; 2208 goto out_close; 2209 } 2210 ret = construct_sdt_notes_list(elf, head); 2211 elf_end(elf); 2212 out_close: 2213 close(fd); 2214 return ret; 2215 } 2216 2217 /** 2218 * cleanup_sdt_note_list : free the sdt notes' list 2219 * @sdt_notes: sdt notes' list 2220 * 2221 * Free up the SDT notes in @sdt_notes. 2222 * Returns the number of SDT notes free'd. 2223 */ 2224 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2225 { 2226 struct sdt_note *tmp, *pos; 2227 int nr_free = 0; 2228 2229 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2230 list_del(&pos->note_list); 2231 free(pos->name); 2232 free(pos->provider); 2233 free(pos); 2234 nr_free++; 2235 } 2236 return nr_free; 2237 } 2238 2239 /** 2240 * sdt_notes__get_count: Counts the number of sdt events 2241 * @start: list_head to sdt_notes list 2242 * 2243 * Returns the number of SDT notes in a list 2244 */ 2245 int sdt_notes__get_count(struct list_head *start) 2246 { 2247 struct sdt_note *sdt_ptr; 2248 int count = 0; 2249 2250 list_for_each_entry(sdt_ptr, start, note_list) 2251 count++; 2252 return count; 2253 } 2254 #endif 2255 2256 void symbol__elf_init(void) 2257 { 2258 elf_version(EV_CURRENT); 2259 } 2260