xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 979ac5ef)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-ocaml.h"
16 #include "demangle-java.h"
17 #include "demangle-rust.h"
18 #include "machine.h"
19 #include "vdso.h"
20 #include "debug.h"
21 #include "util/copyfile.h"
22 #include <linux/ctype.h>
23 #include <linux/kernel.h>
24 #include <linux/zalloc.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27 
28 #ifndef EM_AARCH64
29 #define EM_AARCH64	183  /* ARM 64 bit */
30 #endif
31 
32 #ifndef ELF32_ST_VISIBILITY
33 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
34 #endif
35 
36 /* For ELF64 the definitions are the same.  */
37 #ifndef ELF64_ST_VISIBILITY
38 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
39 #endif
40 
41 /* How to extract information held in the st_other field.  */
42 #ifndef GELF_ST_VISIBILITY
43 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
44 #endif
45 
46 typedef Elf64_Nhdr GElf_Nhdr;
47 
48 #ifndef DMGL_PARAMS
49 #define DMGL_NO_OPTS     0              /* For readability... */
50 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
51 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
52 #endif
53 
54 #ifdef HAVE_LIBBFD_SUPPORT
55 #define PACKAGE 'perf'
56 #include <bfd.h>
57 #else
58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
59 extern char *cplus_demangle(const char *, int);
60 
61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
62 {
63 	return cplus_demangle(c, i);
64 }
65 #else
66 #ifdef NO_DEMANGLE
67 static inline char *bfd_demangle(void __maybe_unused *v,
68 				 const char __maybe_unused *c,
69 				 int __maybe_unused i)
70 {
71 	return NULL;
72 }
73 #endif
74 #endif
75 #endif
76 
77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
78 static int elf_getphdrnum(Elf *elf, size_t *dst)
79 {
80 	GElf_Ehdr gehdr;
81 	GElf_Ehdr *ehdr;
82 
83 	ehdr = gelf_getehdr(elf, &gehdr);
84 	if (!ehdr)
85 		return -1;
86 
87 	*dst = ehdr->e_phnum;
88 
89 	return 0;
90 }
91 #endif
92 
93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
95 {
96 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
97 	return -1;
98 }
99 #endif
100 
101 #ifndef NT_GNU_BUILD_ID
102 #define NT_GNU_BUILD_ID 3
103 #endif
104 
105 /**
106  * elf_symtab__for_each_symbol - iterate thru all the symbols
107  *
108  * @syms: struct elf_symtab instance to iterate
109  * @idx: uint32_t idx
110  * @sym: GElf_Sym iterator
111  */
112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
113 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
114 	     idx < nr_syms; \
115 	     idx++, gelf_getsym(syms, idx, &sym))
116 
117 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
118 {
119 	return GELF_ST_TYPE(sym->st_info);
120 }
121 
122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
123 {
124 	return GELF_ST_VISIBILITY(sym->st_other);
125 }
126 
127 #ifndef STT_GNU_IFUNC
128 #define STT_GNU_IFUNC 10
129 #endif
130 
131 static inline int elf_sym__is_function(const GElf_Sym *sym)
132 {
133 	return (elf_sym__type(sym) == STT_FUNC ||
134 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
135 	       sym->st_name != 0 &&
136 	       sym->st_shndx != SHN_UNDEF;
137 }
138 
139 static inline bool elf_sym__is_object(const GElf_Sym *sym)
140 {
141 	return elf_sym__type(sym) == STT_OBJECT &&
142 		sym->st_name != 0 &&
143 		sym->st_shndx != SHN_UNDEF;
144 }
145 
146 static inline int elf_sym__is_label(const GElf_Sym *sym)
147 {
148 	return elf_sym__type(sym) == STT_NOTYPE &&
149 		sym->st_name != 0 &&
150 		sym->st_shndx != SHN_UNDEF &&
151 		sym->st_shndx != SHN_ABS &&
152 		elf_sym__visibility(sym) != STV_HIDDEN &&
153 		elf_sym__visibility(sym) != STV_INTERNAL;
154 }
155 
156 static bool elf_sym__filter(GElf_Sym *sym)
157 {
158 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
159 }
160 
161 static inline const char *elf_sym__name(const GElf_Sym *sym,
162 					const Elf_Data *symstrs)
163 {
164 	return symstrs->d_buf + sym->st_name;
165 }
166 
167 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
168 					const Elf_Data *secstrs)
169 {
170 	return secstrs->d_buf + shdr->sh_name;
171 }
172 
173 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
174 					const Elf_Data *secstrs)
175 {
176 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
177 }
178 
179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
180 				    const Elf_Data *secstrs)
181 {
182 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
183 }
184 
185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
186 {
187 	return elf_sec__is_text(shdr, secstrs) ||
188 	       elf_sec__is_data(shdr, secstrs);
189 }
190 
191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
192 {
193 	Elf_Scn *sec = NULL;
194 	GElf_Shdr shdr;
195 	size_t cnt = 1;
196 
197 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
198 		gelf_getshdr(sec, &shdr);
199 
200 		if ((addr >= shdr.sh_addr) &&
201 		    (addr < (shdr.sh_addr + shdr.sh_size)))
202 			return cnt;
203 
204 		++cnt;
205 	}
206 
207 	return -1;
208 }
209 
210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
211 			     GElf_Shdr *shp, const char *name, size_t *idx)
212 {
213 	Elf_Scn *sec = NULL;
214 	size_t cnt = 1;
215 
216 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
217 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
218 		return NULL;
219 
220 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
221 		char *str;
222 
223 		gelf_getshdr(sec, shp);
224 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
225 		if (str && !strcmp(name, str)) {
226 			if (idx)
227 				*idx = cnt;
228 			return sec;
229 		}
230 		++cnt;
231 	}
232 
233 	return NULL;
234 }
235 
236 bool filename__has_section(const char *filename, const char *sec)
237 {
238 	int fd;
239 	Elf *elf;
240 	GElf_Ehdr ehdr;
241 	GElf_Shdr shdr;
242 	bool found = false;
243 
244 	fd = open(filename, O_RDONLY);
245 	if (fd < 0)
246 		return false;
247 
248 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
249 	if (elf == NULL)
250 		goto out;
251 
252 	if (gelf_getehdr(elf, &ehdr) == NULL)
253 		goto elf_out;
254 
255 	found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
256 
257 elf_out:
258 	elf_end(elf);
259 out:
260 	close(fd);
261 	return found;
262 }
263 
264 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
265 {
266 	size_t i, phdrnum;
267 	u64 sz;
268 
269 	if (elf_getphdrnum(elf, &phdrnum))
270 		return -1;
271 
272 	for (i = 0; i < phdrnum; i++) {
273 		if (gelf_getphdr(elf, i, phdr) == NULL)
274 			return -1;
275 
276 		if (phdr->p_type != PT_LOAD)
277 			continue;
278 
279 		sz = max(phdr->p_memsz, phdr->p_filesz);
280 		if (!sz)
281 			continue;
282 
283 		if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
284 			return 0;
285 	}
286 
287 	/* Not found any valid program header */
288 	return -1;
289 }
290 
291 static bool want_demangle(bool is_kernel_sym)
292 {
293 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
294 }
295 
296 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
297 {
298 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
299 	char *demangled = NULL;
300 
301 	/*
302 	 * We need to figure out if the object was created from C++ sources
303 	 * DWARF DW_compile_unit has this, but we don't always have access
304 	 * to it...
305 	 */
306 	if (!want_demangle(dso->kernel || kmodule))
307 	    return demangled;
308 
309 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
310 	if (demangled == NULL) {
311 		demangled = ocaml_demangle_sym(elf_name);
312 		if (demangled == NULL) {
313 			demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
314 		}
315 	}
316 	else if (rust_is_mangled(demangled))
317 		/*
318 		    * Input to Rust demangling is the BFD-demangled
319 		    * name which it Rust-demangles in place.
320 		    */
321 		rust_demangle_sym(demangled);
322 
323 	return demangled;
324 }
325 
326 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
327 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
328 	     idx < nr_entries; \
329 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
330 
331 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
332 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
333 	     idx < nr_entries; \
334 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
335 
336 /*
337  * We need to check if we have a .dynsym, so that we can handle the
338  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
339  * .dynsym or .symtab).
340  * And always look at the original dso, not at debuginfo packages, that
341  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
342  */
343 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
344 {
345 	uint32_t nr_rel_entries, idx;
346 	GElf_Sym sym;
347 	u64 plt_offset, plt_header_size, plt_entry_size;
348 	GElf_Shdr shdr_plt;
349 	struct symbol *f;
350 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
351 	Elf_Data *reldata, *syms, *symstrs;
352 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
353 	size_t dynsym_idx;
354 	GElf_Ehdr ehdr;
355 	char sympltname[1024];
356 	Elf *elf;
357 	int nr = 0, symidx, err = 0;
358 
359 	if (!ss->dynsym)
360 		return 0;
361 
362 	elf = ss->elf;
363 	ehdr = ss->ehdr;
364 
365 	scn_dynsym = ss->dynsym;
366 	shdr_dynsym = ss->dynshdr;
367 	dynsym_idx = ss->dynsym_idx;
368 
369 	if (scn_dynsym == NULL)
370 		goto out_elf_end;
371 
372 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
373 					  ".rela.plt", NULL);
374 	if (scn_plt_rel == NULL) {
375 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
376 						  ".rel.plt", NULL);
377 		if (scn_plt_rel == NULL)
378 			goto out_elf_end;
379 	}
380 
381 	err = -1;
382 
383 	if (shdr_rel_plt.sh_link != dynsym_idx)
384 		goto out_elf_end;
385 
386 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
387 		goto out_elf_end;
388 
389 	/*
390 	 * Fetch the relocation section to find the idxes to the GOT
391 	 * and the symbols in the .dynsym they refer to.
392 	 */
393 	reldata = elf_getdata(scn_plt_rel, NULL);
394 	if (reldata == NULL)
395 		goto out_elf_end;
396 
397 	syms = elf_getdata(scn_dynsym, NULL);
398 	if (syms == NULL)
399 		goto out_elf_end;
400 
401 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
402 	if (scn_symstrs == NULL)
403 		goto out_elf_end;
404 
405 	symstrs = elf_getdata(scn_symstrs, NULL);
406 	if (symstrs == NULL)
407 		goto out_elf_end;
408 
409 	if (symstrs->d_size == 0)
410 		goto out_elf_end;
411 
412 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
413 	plt_offset = shdr_plt.sh_offset;
414 	switch (ehdr.e_machine) {
415 		case EM_ARM:
416 			plt_header_size = 20;
417 			plt_entry_size = 12;
418 			break;
419 
420 		case EM_AARCH64:
421 			plt_header_size = 32;
422 			plt_entry_size = 16;
423 			break;
424 
425 		case EM_SPARC:
426 			plt_header_size = 48;
427 			plt_entry_size = 12;
428 			break;
429 
430 		case EM_SPARCV9:
431 			plt_header_size = 128;
432 			plt_entry_size = 32;
433 			break;
434 
435 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
436 			plt_header_size = shdr_plt.sh_entsize;
437 			plt_entry_size = shdr_plt.sh_entsize;
438 			break;
439 	}
440 	plt_offset += plt_header_size;
441 
442 	if (shdr_rel_plt.sh_type == SHT_RELA) {
443 		GElf_Rela pos_mem, *pos;
444 
445 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
446 					   nr_rel_entries) {
447 			const char *elf_name = NULL;
448 			char *demangled = NULL;
449 			symidx = GELF_R_SYM(pos->r_info);
450 			gelf_getsym(syms, symidx, &sym);
451 
452 			elf_name = elf_sym__name(&sym, symstrs);
453 			demangled = demangle_sym(dso, 0, elf_name);
454 			if (demangled != NULL)
455 				elf_name = demangled;
456 			snprintf(sympltname, sizeof(sympltname),
457 				 "%s@plt", elf_name);
458 			free(demangled);
459 
460 			f = symbol__new(plt_offset, plt_entry_size,
461 					STB_GLOBAL, STT_FUNC, sympltname);
462 			if (!f)
463 				goto out_elf_end;
464 
465 			plt_offset += plt_entry_size;
466 			symbols__insert(&dso->symbols, f);
467 			++nr;
468 		}
469 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
470 		GElf_Rel pos_mem, *pos;
471 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
472 					  nr_rel_entries) {
473 			const char *elf_name = NULL;
474 			char *demangled = NULL;
475 			symidx = GELF_R_SYM(pos->r_info);
476 			gelf_getsym(syms, symidx, &sym);
477 
478 			elf_name = elf_sym__name(&sym, symstrs);
479 			demangled = demangle_sym(dso, 0, elf_name);
480 			if (demangled != NULL)
481 				elf_name = demangled;
482 			snprintf(sympltname, sizeof(sympltname),
483 				 "%s@plt", elf_name);
484 			free(demangled);
485 
486 			f = symbol__new(plt_offset, plt_entry_size,
487 					STB_GLOBAL, STT_FUNC, sympltname);
488 			if (!f)
489 				goto out_elf_end;
490 
491 			plt_offset += plt_entry_size;
492 			symbols__insert(&dso->symbols, f);
493 			++nr;
494 		}
495 	}
496 
497 	err = 0;
498 out_elf_end:
499 	if (err == 0)
500 		return nr;
501 	pr_debug("%s: problems reading %s PLT info.\n",
502 		 __func__, dso->long_name);
503 	return 0;
504 }
505 
506 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
507 {
508 	return demangle_sym(dso, kmodule, elf_name);
509 }
510 
511 /*
512  * Align offset to 4 bytes as needed for note name and descriptor data.
513  */
514 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
515 
516 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
517 {
518 	int err = -1;
519 	GElf_Ehdr ehdr;
520 	GElf_Shdr shdr;
521 	Elf_Data *data;
522 	Elf_Scn *sec;
523 	Elf_Kind ek;
524 	void *ptr;
525 
526 	if (size < BUILD_ID_SIZE)
527 		goto out;
528 
529 	ek = elf_kind(elf);
530 	if (ek != ELF_K_ELF)
531 		goto out;
532 
533 	if (gelf_getehdr(elf, &ehdr) == NULL) {
534 		pr_err("%s: cannot get elf header.\n", __func__);
535 		goto out;
536 	}
537 
538 	/*
539 	 * Check following sections for notes:
540 	 *   '.note.gnu.build-id'
541 	 *   '.notes'
542 	 *   '.note' (VDSO specific)
543 	 */
544 	do {
545 		sec = elf_section_by_name(elf, &ehdr, &shdr,
546 					  ".note.gnu.build-id", NULL);
547 		if (sec)
548 			break;
549 
550 		sec = elf_section_by_name(elf, &ehdr, &shdr,
551 					  ".notes", NULL);
552 		if (sec)
553 			break;
554 
555 		sec = elf_section_by_name(elf, &ehdr, &shdr,
556 					  ".note", NULL);
557 		if (sec)
558 			break;
559 
560 		return err;
561 
562 	} while (0);
563 
564 	data = elf_getdata(sec, NULL);
565 	if (data == NULL)
566 		goto out;
567 
568 	ptr = data->d_buf;
569 	while (ptr < (data->d_buf + data->d_size)) {
570 		GElf_Nhdr *nhdr = ptr;
571 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
572 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
573 		const char *name;
574 
575 		ptr += sizeof(*nhdr);
576 		name = ptr;
577 		ptr += namesz;
578 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
579 		    nhdr->n_namesz == sizeof("GNU")) {
580 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
581 				size_t sz = min(size, descsz);
582 				memcpy(bf, ptr, sz);
583 				memset(bf + sz, 0, size - sz);
584 				err = descsz;
585 				break;
586 			}
587 		}
588 		ptr += descsz;
589 	}
590 
591 out:
592 	return err;
593 }
594 
595 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
596 
597 static int read_build_id(const char *filename, struct build_id *bid)
598 {
599 	size_t size = sizeof(bid->data);
600 	int err = -1;
601 	bfd *abfd;
602 
603 	abfd = bfd_openr(filename, NULL);
604 	if (!abfd)
605 		return -1;
606 
607 	if (!bfd_check_format(abfd, bfd_object)) {
608 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
609 		goto out_close;
610 	}
611 
612 	if (!abfd->build_id || abfd->build_id->size > size)
613 		goto out_close;
614 
615 	memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
616 	memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
617 	err = bid->size = abfd->build_id->size;
618 
619 out_close:
620 	bfd_close(abfd);
621 	return err;
622 }
623 
624 #else // HAVE_LIBBFD_BUILDID_SUPPORT
625 
626 static int read_build_id(const char *filename, struct build_id *bid)
627 {
628 	size_t size = sizeof(bid->data);
629 	int fd, err = -1;
630 	Elf *elf;
631 
632 	if (size < BUILD_ID_SIZE)
633 		goto out;
634 
635 	fd = open(filename, O_RDONLY);
636 	if (fd < 0)
637 		goto out;
638 
639 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
640 	if (elf == NULL) {
641 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
642 		goto out_close;
643 	}
644 
645 	err = elf_read_build_id(elf, bid->data, size);
646 	if (err > 0)
647 		bid->size = err;
648 
649 	elf_end(elf);
650 out_close:
651 	close(fd);
652 out:
653 	return err;
654 }
655 
656 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
657 
658 int filename__read_build_id(const char *filename, struct build_id *bid)
659 {
660 	struct kmod_path m = { .name = NULL, };
661 	char path[PATH_MAX];
662 	int err;
663 
664 	if (!filename)
665 		return -EFAULT;
666 
667 	err = kmod_path__parse(&m, filename);
668 	if (err)
669 		return -1;
670 
671 	if (m.comp) {
672 		int error = 0, fd;
673 
674 		fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
675 		if (fd < 0) {
676 			pr_debug("Failed to decompress (error %d) %s\n",
677 				 error, filename);
678 			return -1;
679 		}
680 		close(fd);
681 		filename = path;
682 	}
683 
684 	err = read_build_id(filename, bid);
685 
686 	if (m.comp)
687 		unlink(filename);
688 	return err;
689 }
690 
691 int sysfs__read_build_id(const char *filename, struct build_id *bid)
692 {
693 	size_t size = sizeof(bid->data);
694 	int fd, err = -1;
695 
696 	fd = open(filename, O_RDONLY);
697 	if (fd < 0)
698 		goto out;
699 
700 	while (1) {
701 		char bf[BUFSIZ];
702 		GElf_Nhdr nhdr;
703 		size_t namesz, descsz;
704 
705 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
706 			break;
707 
708 		namesz = NOTE_ALIGN(nhdr.n_namesz);
709 		descsz = NOTE_ALIGN(nhdr.n_descsz);
710 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
711 		    nhdr.n_namesz == sizeof("GNU")) {
712 			if (read(fd, bf, namesz) != (ssize_t)namesz)
713 				break;
714 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
715 				size_t sz = min(descsz, size);
716 				if (read(fd, bid->data, sz) == (ssize_t)sz) {
717 					memset(bid->data + sz, 0, size - sz);
718 					bid->size = sz;
719 					err = 0;
720 					break;
721 				}
722 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
723 				break;
724 		} else {
725 			int n = namesz + descsz;
726 
727 			if (n > (int)sizeof(bf)) {
728 				n = sizeof(bf);
729 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
730 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
731 			}
732 			if (read(fd, bf, n) != n)
733 				break;
734 		}
735 	}
736 	close(fd);
737 out:
738 	return err;
739 }
740 
741 #ifdef HAVE_LIBBFD_SUPPORT
742 
743 int filename__read_debuglink(const char *filename, char *debuglink,
744 			     size_t size)
745 {
746 	int err = -1;
747 	asection *section;
748 	bfd *abfd;
749 
750 	abfd = bfd_openr(filename, NULL);
751 	if (!abfd)
752 		return -1;
753 
754 	if (!bfd_check_format(abfd, bfd_object)) {
755 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
756 		goto out_close;
757 	}
758 
759 	section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
760 	if (!section)
761 		goto out_close;
762 
763 	if (section->size > size)
764 		goto out_close;
765 
766 	if (!bfd_get_section_contents(abfd, section, debuglink, 0,
767 				      section->size))
768 		goto out_close;
769 
770 	err = 0;
771 
772 out_close:
773 	bfd_close(abfd);
774 	return err;
775 }
776 
777 #else
778 
779 int filename__read_debuglink(const char *filename, char *debuglink,
780 			     size_t size)
781 {
782 	int fd, err = -1;
783 	Elf *elf;
784 	GElf_Ehdr ehdr;
785 	GElf_Shdr shdr;
786 	Elf_Data *data;
787 	Elf_Scn *sec;
788 	Elf_Kind ek;
789 
790 	fd = open(filename, O_RDONLY);
791 	if (fd < 0)
792 		goto out;
793 
794 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
795 	if (elf == NULL) {
796 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
797 		goto out_close;
798 	}
799 
800 	ek = elf_kind(elf);
801 	if (ek != ELF_K_ELF)
802 		goto out_elf_end;
803 
804 	if (gelf_getehdr(elf, &ehdr) == NULL) {
805 		pr_err("%s: cannot get elf header.\n", __func__);
806 		goto out_elf_end;
807 	}
808 
809 	sec = elf_section_by_name(elf, &ehdr, &shdr,
810 				  ".gnu_debuglink", NULL);
811 	if (sec == NULL)
812 		goto out_elf_end;
813 
814 	data = elf_getdata(sec, NULL);
815 	if (data == NULL)
816 		goto out_elf_end;
817 
818 	/* the start of this section is a zero-terminated string */
819 	strncpy(debuglink, data->d_buf, size);
820 
821 	err = 0;
822 
823 out_elf_end:
824 	elf_end(elf);
825 out_close:
826 	close(fd);
827 out:
828 	return err;
829 }
830 
831 #endif
832 
833 static int dso__swap_init(struct dso *dso, unsigned char eidata)
834 {
835 	static unsigned int const endian = 1;
836 
837 	dso->needs_swap = DSO_SWAP__NO;
838 
839 	switch (eidata) {
840 	case ELFDATA2LSB:
841 		/* We are big endian, DSO is little endian. */
842 		if (*(unsigned char const *)&endian != 1)
843 			dso->needs_swap = DSO_SWAP__YES;
844 		break;
845 
846 	case ELFDATA2MSB:
847 		/* We are little endian, DSO is big endian. */
848 		if (*(unsigned char const *)&endian != 0)
849 			dso->needs_swap = DSO_SWAP__YES;
850 		break;
851 
852 	default:
853 		pr_err("unrecognized DSO data encoding %d\n", eidata);
854 		return -EINVAL;
855 	}
856 
857 	return 0;
858 }
859 
860 bool symsrc__possibly_runtime(struct symsrc *ss)
861 {
862 	return ss->dynsym || ss->opdsec;
863 }
864 
865 bool symsrc__has_symtab(struct symsrc *ss)
866 {
867 	return ss->symtab != NULL;
868 }
869 
870 void symsrc__destroy(struct symsrc *ss)
871 {
872 	zfree(&ss->name);
873 	elf_end(ss->elf);
874 	close(ss->fd);
875 }
876 
877 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
878 {
879 	/*
880 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
881 	 * architectures; except Arm64 kernel is linked with option
882 	 * '-share', so need to check type ET_DYN.
883 	 */
884 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
885 	       ehdr.e_type == ET_DYN;
886 }
887 
888 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
889 		 enum dso_binary_type type)
890 {
891 	GElf_Ehdr ehdr;
892 	Elf *elf;
893 	int fd;
894 
895 	if (dso__needs_decompress(dso)) {
896 		fd = dso__decompress_kmodule_fd(dso, name);
897 		if (fd < 0)
898 			return -1;
899 
900 		type = dso->symtab_type;
901 	} else {
902 		fd = open(name, O_RDONLY);
903 		if (fd < 0) {
904 			dso->load_errno = errno;
905 			return -1;
906 		}
907 	}
908 
909 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
910 	if (elf == NULL) {
911 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
912 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
913 		goto out_close;
914 	}
915 
916 	if (gelf_getehdr(elf, &ehdr) == NULL) {
917 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
918 		pr_debug("%s: cannot get elf header.\n", __func__);
919 		goto out_elf_end;
920 	}
921 
922 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
923 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
924 		goto out_elf_end;
925 	}
926 
927 	/* Always reject images with a mismatched build-id: */
928 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
929 		u8 build_id[BUILD_ID_SIZE];
930 		struct build_id bid;
931 		int size;
932 
933 		size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
934 		if (size <= 0) {
935 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
936 			goto out_elf_end;
937 		}
938 
939 		build_id__init(&bid, build_id, size);
940 		if (!dso__build_id_equal(dso, &bid)) {
941 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
942 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
943 			goto out_elf_end;
944 		}
945 	}
946 
947 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
948 
949 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
950 			NULL);
951 	if (ss->symshdr.sh_type != SHT_SYMTAB)
952 		ss->symtab = NULL;
953 
954 	ss->dynsym_idx = 0;
955 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
956 			&ss->dynsym_idx);
957 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
958 		ss->dynsym = NULL;
959 
960 	ss->opdidx = 0;
961 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
962 			&ss->opdidx);
963 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
964 		ss->opdsec = NULL;
965 
966 	if (dso->kernel == DSO_SPACE__USER)
967 		ss->adjust_symbols = true;
968 	else
969 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
970 
971 	ss->name   = strdup(name);
972 	if (!ss->name) {
973 		dso->load_errno = errno;
974 		goto out_elf_end;
975 	}
976 
977 	ss->elf    = elf;
978 	ss->fd     = fd;
979 	ss->ehdr   = ehdr;
980 	ss->type   = type;
981 
982 	return 0;
983 
984 out_elf_end:
985 	elf_end(elf);
986 out_close:
987 	close(fd);
988 	return -1;
989 }
990 
991 /**
992  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
993  * @kmap: kernel maps and relocation reference symbol
994  *
995  * This function returns %true if we are dealing with the kernel maps and the
996  * relocation reference symbol has not yet been found.  Otherwise %false is
997  * returned.
998  */
999 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1000 {
1001 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1002 	       !kmap->ref_reloc_sym->unrelocated_addr;
1003 }
1004 
1005 /**
1006  * ref_reloc - kernel relocation offset.
1007  * @kmap: kernel maps and relocation reference symbol
1008  *
1009  * This function returns the offset of kernel addresses as determined by using
1010  * the relocation reference symbol i.e. if the kernel has not been relocated
1011  * then the return value is zero.
1012  */
1013 static u64 ref_reloc(struct kmap *kmap)
1014 {
1015 	if (kmap && kmap->ref_reloc_sym &&
1016 	    kmap->ref_reloc_sym->unrelocated_addr)
1017 		return kmap->ref_reloc_sym->addr -
1018 		       kmap->ref_reloc_sym->unrelocated_addr;
1019 	return 0;
1020 }
1021 
1022 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1023 		GElf_Sym *sym __maybe_unused) { }
1024 
1025 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1026 				      GElf_Sym *sym, GElf_Shdr *shdr,
1027 				      struct maps *kmaps, struct kmap *kmap,
1028 				      struct dso **curr_dsop, struct map **curr_mapp,
1029 				      const char *section_name,
1030 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1031 {
1032 	struct dso *curr_dso = *curr_dsop;
1033 	struct map *curr_map;
1034 	char dso_name[PATH_MAX];
1035 
1036 	/* Adjust symbol to map to file offset */
1037 	if (adjust_kernel_syms)
1038 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1039 
1040 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1041 		return 0;
1042 
1043 	if (strcmp(section_name, ".text") == 0) {
1044 		/*
1045 		 * The initial kernel mapping is based on
1046 		 * kallsyms and identity maps.  Overwrite it to
1047 		 * map to the kernel dso.
1048 		 */
1049 		if (*remap_kernel && dso->kernel && !kmodule) {
1050 			*remap_kernel = false;
1051 			map->start = shdr->sh_addr + ref_reloc(kmap);
1052 			map->end = map->start + shdr->sh_size;
1053 			map->pgoff = shdr->sh_offset;
1054 			map->map_ip = map__map_ip;
1055 			map->unmap_ip = map__unmap_ip;
1056 			/* Ensure maps are correctly ordered */
1057 			if (kmaps) {
1058 				map__get(map);
1059 				maps__remove(kmaps, map);
1060 				maps__insert(kmaps, map);
1061 				map__put(map);
1062 			}
1063 		}
1064 
1065 		/*
1066 		 * The initial module mapping is based on
1067 		 * /proc/modules mapped to offset zero.
1068 		 * Overwrite it to map to the module dso.
1069 		 */
1070 		if (*remap_kernel && kmodule) {
1071 			*remap_kernel = false;
1072 			map->pgoff = shdr->sh_offset;
1073 		}
1074 
1075 		*curr_mapp = map;
1076 		*curr_dsop = dso;
1077 		return 0;
1078 	}
1079 
1080 	if (!kmap)
1081 		return 0;
1082 
1083 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1084 
1085 	curr_map = maps__find_by_name(kmaps, dso_name);
1086 	if (curr_map == NULL) {
1087 		u64 start = sym->st_value;
1088 
1089 		if (kmodule)
1090 			start += map->start + shdr->sh_offset;
1091 
1092 		curr_dso = dso__new(dso_name);
1093 		if (curr_dso == NULL)
1094 			return -1;
1095 		curr_dso->kernel = dso->kernel;
1096 		curr_dso->long_name = dso->long_name;
1097 		curr_dso->long_name_len = dso->long_name_len;
1098 		curr_map = map__new2(start, curr_dso);
1099 		dso__put(curr_dso);
1100 		if (curr_map == NULL)
1101 			return -1;
1102 
1103 		if (curr_dso->kernel)
1104 			map__kmap(curr_map)->kmaps = kmaps;
1105 
1106 		if (adjust_kernel_syms) {
1107 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
1108 			curr_map->end	 = curr_map->start + shdr->sh_size;
1109 			curr_map->pgoff	 = shdr->sh_offset;
1110 		} else {
1111 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1112 		}
1113 		curr_dso->symtab_type = dso->symtab_type;
1114 		maps__insert(kmaps, curr_map);
1115 		/*
1116 		 * Add it before we drop the reference to curr_map, i.e. while
1117 		 * we still are sure to have a reference to this DSO via
1118 		 * *curr_map->dso.
1119 		 */
1120 		dsos__add(&kmaps->machine->dsos, curr_dso);
1121 		/* kmaps already got it */
1122 		map__put(curr_map);
1123 		dso__set_loaded(curr_dso);
1124 		*curr_mapp = curr_map;
1125 		*curr_dsop = curr_dso;
1126 	} else
1127 		*curr_dsop = curr_map->dso;
1128 
1129 	return 0;
1130 }
1131 
1132 static int
1133 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1134 		       struct symsrc *runtime_ss, int kmodule, int dynsym)
1135 {
1136 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1137 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1138 	struct map *curr_map = map;
1139 	struct dso *curr_dso = dso;
1140 	Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1141 	uint32_t nr_syms;
1142 	int err = -1;
1143 	uint32_t idx;
1144 	GElf_Ehdr ehdr;
1145 	GElf_Shdr shdr;
1146 	GElf_Shdr tshdr;
1147 	Elf_Data *syms, *opddata = NULL;
1148 	GElf_Sym sym;
1149 	Elf_Scn *sec, *sec_strndx;
1150 	Elf *elf;
1151 	int nr = 0;
1152 	bool remap_kernel = false, adjust_kernel_syms = false;
1153 
1154 	if (kmap && !kmaps)
1155 		return -1;
1156 
1157 	elf = syms_ss->elf;
1158 	ehdr = syms_ss->ehdr;
1159 	if (dynsym) {
1160 		sec  = syms_ss->dynsym;
1161 		shdr = syms_ss->dynshdr;
1162 	} else {
1163 		sec =  syms_ss->symtab;
1164 		shdr = syms_ss->symshdr;
1165 	}
1166 
1167 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1168 				".text", NULL))
1169 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1170 
1171 	if (runtime_ss->opdsec)
1172 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1173 
1174 	syms = elf_getdata(sec, NULL);
1175 	if (syms == NULL)
1176 		goto out_elf_end;
1177 
1178 	sec = elf_getscn(elf, shdr.sh_link);
1179 	if (sec == NULL)
1180 		goto out_elf_end;
1181 
1182 	symstrs = elf_getdata(sec, NULL);
1183 	if (symstrs == NULL)
1184 		goto out_elf_end;
1185 
1186 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1187 	if (sec_strndx == NULL)
1188 		goto out_elf_end;
1189 
1190 	secstrs_run = elf_getdata(sec_strndx, NULL);
1191 	if (secstrs_run == NULL)
1192 		goto out_elf_end;
1193 
1194 	sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1195 	if (sec_strndx == NULL)
1196 		goto out_elf_end;
1197 
1198 	secstrs_sym = elf_getdata(sec_strndx, NULL);
1199 	if (secstrs_sym == NULL)
1200 		goto out_elf_end;
1201 
1202 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1203 
1204 	memset(&sym, 0, sizeof(sym));
1205 
1206 	/*
1207 	 * The kernel relocation symbol is needed in advance in order to adjust
1208 	 * kernel maps correctly.
1209 	 */
1210 	if (ref_reloc_sym_not_found(kmap)) {
1211 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1212 			const char *elf_name = elf_sym__name(&sym, symstrs);
1213 
1214 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1215 				continue;
1216 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1217 			map->reloc = kmap->ref_reloc_sym->addr -
1218 				     kmap->ref_reloc_sym->unrelocated_addr;
1219 			break;
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Handle any relocation of vdso necessary because older kernels
1225 	 * attempted to prelink vdso to its virtual address.
1226 	 */
1227 	if (dso__is_vdso(dso))
1228 		map->reloc = map->start - dso->text_offset;
1229 
1230 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1231 	/*
1232 	 * Initial kernel and module mappings do not map to the dso.
1233 	 * Flag the fixups.
1234 	 */
1235 	if (dso->kernel) {
1236 		remap_kernel = true;
1237 		adjust_kernel_syms = dso->adjust_symbols;
1238 	}
1239 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1240 		struct symbol *f;
1241 		const char *elf_name = elf_sym__name(&sym, symstrs);
1242 		char *demangled = NULL;
1243 		int is_label = elf_sym__is_label(&sym);
1244 		const char *section_name;
1245 		bool used_opd = false;
1246 
1247 		if (!is_label && !elf_sym__filter(&sym))
1248 			continue;
1249 
1250 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1251 		 * don't identify functions, so will confuse the profile
1252 		 * output: */
1253 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1254 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1255 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1256 				continue;
1257 		}
1258 
1259 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1260 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1261 			u64 *opd = opddata->d_buf + offset;
1262 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1263 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1264 					sym.st_value);
1265 			used_opd = true;
1266 		}
1267 
1268 		/*
1269 		 * When loading symbols in a data mapping, ABS symbols (which
1270 		 * has a value of SHN_ABS in its st_shndx) failed at
1271 		 * elf_getscn().  And it marks the loading as a failure so
1272 		 * already loaded symbols cannot be fixed up.
1273 		 *
1274 		 * I'm not sure what should be done. Just ignore them for now.
1275 		 * - Namhyung Kim
1276 		 */
1277 		if (sym.st_shndx == SHN_ABS)
1278 			continue;
1279 
1280 		sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1281 		if (!sec)
1282 			goto out_elf_end;
1283 
1284 		gelf_getshdr(sec, &shdr);
1285 
1286 		/*
1287 		 * If the attribute bit SHF_ALLOC is not set, the section
1288 		 * doesn't occupy memory during process execution.
1289 		 * E.g. ".gnu.warning.*" section is used by linker to generate
1290 		 * warnings when calling deprecated functions, the symbols in
1291 		 * the section aren't loaded to memory during process execution,
1292 		 * so skip them.
1293 		 */
1294 		if (!(shdr.sh_flags & SHF_ALLOC))
1295 			continue;
1296 
1297 		secstrs = secstrs_sym;
1298 
1299 		/*
1300 		 * We have to fallback to runtime when syms' section header has
1301 		 * NOBITS set. NOBITS results in file offset (sh_offset) not
1302 		 * being incremented. So sh_offset used below has different
1303 		 * values for syms (invalid) and runtime (valid).
1304 		 */
1305 		if (shdr.sh_type == SHT_NOBITS) {
1306 			sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1307 			if (!sec)
1308 				goto out_elf_end;
1309 
1310 			gelf_getshdr(sec, &shdr);
1311 			secstrs = secstrs_run;
1312 		}
1313 
1314 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1315 			continue;
1316 
1317 		section_name = elf_sec__name(&shdr, secstrs);
1318 
1319 		/* On ARM, symbols for thumb functions have 1 added to
1320 		 * the symbol address as a flag - remove it */
1321 		if ((ehdr.e_machine == EM_ARM) &&
1322 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1323 		    (sym.st_value & 1))
1324 			--sym.st_value;
1325 
1326 		if (dso->kernel) {
1327 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1328 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1329 				goto out_elf_end;
1330 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1331 			   (!used_opd && syms_ss->adjust_symbols)) {
1332 			GElf_Phdr phdr;
1333 
1334 			if (elf_read_program_header(runtime_ss->elf,
1335 						    (u64)sym.st_value, &phdr)) {
1336 				pr_debug4("%s: failed to find program header for "
1337 					   "symbol: %s st_value: %#" PRIx64 "\n",
1338 					   __func__, elf_name, (u64)sym.st_value);
1339 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1340 					"sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1341 					__func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1342 					(u64)shdr.sh_offset);
1343 				/*
1344 				 * Fail to find program header, let's rollback
1345 				 * to use shdr.sh_addr and shdr.sh_offset to
1346 				 * calibrate symbol's file address, though this
1347 				 * is not necessary for normal C ELF file, we
1348 				 * still need to handle java JIT symbols in this
1349 				 * case.
1350 				 */
1351 				sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1352 			} else {
1353 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1354 					"p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1355 					__func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1356 					(u64)phdr.p_offset);
1357 				sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1358 			}
1359 		}
1360 
1361 		demangled = demangle_sym(dso, kmodule, elf_name);
1362 		if (demangled != NULL)
1363 			elf_name = demangled;
1364 
1365 		f = symbol__new(sym.st_value, sym.st_size,
1366 				GELF_ST_BIND(sym.st_info),
1367 				GELF_ST_TYPE(sym.st_info), elf_name);
1368 		free(demangled);
1369 		if (!f)
1370 			goto out_elf_end;
1371 
1372 		arch__sym_update(f, &sym);
1373 
1374 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1375 		nr++;
1376 	}
1377 
1378 	/*
1379 	 * For misannotated, zeroed, ASM function sizes.
1380 	 */
1381 	if (nr > 0) {
1382 		symbols__fixup_end(&dso->symbols, false);
1383 		symbols__fixup_duplicate(&dso->symbols);
1384 		if (kmap) {
1385 			/*
1386 			 * We need to fixup this here too because we create new
1387 			 * maps here, for things like vsyscall sections.
1388 			 */
1389 			maps__fixup_end(kmaps);
1390 		}
1391 	}
1392 	err = nr;
1393 out_elf_end:
1394 	return err;
1395 }
1396 
1397 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1398 		  struct symsrc *runtime_ss, int kmodule)
1399 {
1400 	int nr = 0;
1401 	int err = -1;
1402 
1403 	dso->symtab_type = syms_ss->type;
1404 	dso->is_64_bit = syms_ss->is_64_bit;
1405 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
1406 
1407 	/*
1408 	 * Modules may already have symbols from kallsyms, but those symbols
1409 	 * have the wrong values for the dso maps, so remove them.
1410 	 */
1411 	if (kmodule && syms_ss->symtab)
1412 		symbols__delete(&dso->symbols);
1413 
1414 	if (!syms_ss->symtab) {
1415 		/*
1416 		 * If the vmlinux is stripped, fail so we will fall back
1417 		 * to using kallsyms. The vmlinux runtime symbols aren't
1418 		 * of much use.
1419 		 */
1420 		if (dso->kernel)
1421 			return err;
1422 	} else  {
1423 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1424 					     kmodule, 0);
1425 		if (err < 0)
1426 			return err;
1427 		nr = err;
1428 	}
1429 
1430 	if (syms_ss->dynsym) {
1431 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1432 					     kmodule, 1);
1433 		if (err < 0)
1434 			return err;
1435 		err += nr;
1436 	}
1437 
1438 	return err;
1439 }
1440 
1441 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1442 {
1443 	GElf_Phdr phdr;
1444 	size_t i, phdrnum;
1445 	int err;
1446 	u64 sz;
1447 
1448 	if (elf_getphdrnum(elf, &phdrnum))
1449 		return -1;
1450 
1451 	for (i = 0; i < phdrnum; i++) {
1452 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1453 			return -1;
1454 		if (phdr.p_type != PT_LOAD)
1455 			continue;
1456 		if (exe) {
1457 			if (!(phdr.p_flags & PF_X))
1458 				continue;
1459 		} else {
1460 			if (!(phdr.p_flags & PF_R))
1461 				continue;
1462 		}
1463 		sz = min(phdr.p_memsz, phdr.p_filesz);
1464 		if (!sz)
1465 			continue;
1466 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1467 		if (err)
1468 			return err;
1469 	}
1470 	return 0;
1471 }
1472 
1473 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1474 		    bool *is_64_bit)
1475 {
1476 	int err;
1477 	Elf *elf;
1478 
1479 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1480 	if (elf == NULL)
1481 		return -1;
1482 
1483 	if (is_64_bit)
1484 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1485 
1486 	err = elf_read_maps(elf, exe, mapfn, data);
1487 
1488 	elf_end(elf);
1489 	return err;
1490 }
1491 
1492 enum dso_type dso__type_fd(int fd)
1493 {
1494 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1495 	GElf_Ehdr ehdr;
1496 	Elf_Kind ek;
1497 	Elf *elf;
1498 
1499 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1500 	if (elf == NULL)
1501 		goto out;
1502 
1503 	ek = elf_kind(elf);
1504 	if (ek != ELF_K_ELF)
1505 		goto out_end;
1506 
1507 	if (gelf_getclass(elf) == ELFCLASS64) {
1508 		dso_type = DSO__TYPE_64BIT;
1509 		goto out_end;
1510 	}
1511 
1512 	if (gelf_getehdr(elf, &ehdr) == NULL)
1513 		goto out_end;
1514 
1515 	if (ehdr.e_machine == EM_X86_64)
1516 		dso_type = DSO__TYPE_X32BIT;
1517 	else
1518 		dso_type = DSO__TYPE_32BIT;
1519 out_end:
1520 	elf_end(elf);
1521 out:
1522 	return dso_type;
1523 }
1524 
1525 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1526 {
1527 	ssize_t r;
1528 	size_t n;
1529 	int err = -1;
1530 	char *buf = malloc(page_size);
1531 
1532 	if (buf == NULL)
1533 		return -1;
1534 
1535 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1536 		goto out;
1537 
1538 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1539 		goto out;
1540 
1541 	while (len) {
1542 		n = page_size;
1543 		if (len < n)
1544 			n = len;
1545 		/* Use read because mmap won't work on proc files */
1546 		r = read(from, buf, n);
1547 		if (r < 0)
1548 			goto out;
1549 		if (!r)
1550 			break;
1551 		n = r;
1552 		r = write(to, buf, n);
1553 		if (r < 0)
1554 			goto out;
1555 		if ((size_t)r != n)
1556 			goto out;
1557 		len -= n;
1558 	}
1559 
1560 	err = 0;
1561 out:
1562 	free(buf);
1563 	return err;
1564 }
1565 
1566 struct kcore {
1567 	int fd;
1568 	int elfclass;
1569 	Elf *elf;
1570 	GElf_Ehdr ehdr;
1571 };
1572 
1573 static int kcore__open(struct kcore *kcore, const char *filename)
1574 {
1575 	GElf_Ehdr *ehdr;
1576 
1577 	kcore->fd = open(filename, O_RDONLY);
1578 	if (kcore->fd == -1)
1579 		return -1;
1580 
1581 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1582 	if (!kcore->elf)
1583 		goto out_close;
1584 
1585 	kcore->elfclass = gelf_getclass(kcore->elf);
1586 	if (kcore->elfclass == ELFCLASSNONE)
1587 		goto out_end;
1588 
1589 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1590 	if (!ehdr)
1591 		goto out_end;
1592 
1593 	return 0;
1594 
1595 out_end:
1596 	elf_end(kcore->elf);
1597 out_close:
1598 	close(kcore->fd);
1599 	return -1;
1600 }
1601 
1602 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1603 		       bool temp)
1604 {
1605 	kcore->elfclass = elfclass;
1606 
1607 	if (temp)
1608 		kcore->fd = mkstemp(filename);
1609 	else
1610 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1611 	if (kcore->fd == -1)
1612 		return -1;
1613 
1614 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1615 	if (!kcore->elf)
1616 		goto out_close;
1617 
1618 	if (!gelf_newehdr(kcore->elf, elfclass))
1619 		goto out_end;
1620 
1621 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1622 
1623 	return 0;
1624 
1625 out_end:
1626 	elf_end(kcore->elf);
1627 out_close:
1628 	close(kcore->fd);
1629 	unlink(filename);
1630 	return -1;
1631 }
1632 
1633 static void kcore__close(struct kcore *kcore)
1634 {
1635 	elf_end(kcore->elf);
1636 	close(kcore->fd);
1637 }
1638 
1639 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1640 {
1641 	GElf_Ehdr *ehdr = &to->ehdr;
1642 	GElf_Ehdr *kehdr = &from->ehdr;
1643 
1644 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1645 	ehdr->e_type      = kehdr->e_type;
1646 	ehdr->e_machine   = kehdr->e_machine;
1647 	ehdr->e_version   = kehdr->e_version;
1648 	ehdr->e_entry     = 0;
1649 	ehdr->e_shoff     = 0;
1650 	ehdr->e_flags     = kehdr->e_flags;
1651 	ehdr->e_phnum     = count;
1652 	ehdr->e_shentsize = 0;
1653 	ehdr->e_shnum     = 0;
1654 	ehdr->e_shstrndx  = 0;
1655 
1656 	if (from->elfclass == ELFCLASS32) {
1657 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1658 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1659 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1660 	} else {
1661 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1662 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1663 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1664 	}
1665 
1666 	if (!gelf_update_ehdr(to->elf, ehdr))
1667 		return -1;
1668 
1669 	if (!gelf_newphdr(to->elf, count))
1670 		return -1;
1671 
1672 	return 0;
1673 }
1674 
1675 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1676 			   u64 addr, u64 len)
1677 {
1678 	GElf_Phdr phdr = {
1679 		.p_type		= PT_LOAD,
1680 		.p_flags	= PF_R | PF_W | PF_X,
1681 		.p_offset	= offset,
1682 		.p_vaddr	= addr,
1683 		.p_paddr	= 0,
1684 		.p_filesz	= len,
1685 		.p_memsz	= len,
1686 		.p_align	= page_size,
1687 	};
1688 
1689 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1690 		return -1;
1691 
1692 	return 0;
1693 }
1694 
1695 static off_t kcore__write(struct kcore *kcore)
1696 {
1697 	return elf_update(kcore->elf, ELF_C_WRITE);
1698 }
1699 
1700 struct phdr_data {
1701 	off_t offset;
1702 	off_t rel;
1703 	u64 addr;
1704 	u64 len;
1705 	struct list_head node;
1706 	struct phdr_data *remaps;
1707 };
1708 
1709 struct sym_data {
1710 	u64 addr;
1711 	struct list_head node;
1712 };
1713 
1714 struct kcore_copy_info {
1715 	u64 stext;
1716 	u64 etext;
1717 	u64 first_symbol;
1718 	u64 last_symbol;
1719 	u64 first_module;
1720 	u64 first_module_symbol;
1721 	u64 last_module_symbol;
1722 	size_t phnum;
1723 	struct list_head phdrs;
1724 	struct list_head syms;
1725 };
1726 
1727 #define kcore_copy__for_each_phdr(k, p) \
1728 	list_for_each_entry((p), &(k)->phdrs, node)
1729 
1730 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1731 {
1732 	struct phdr_data *p = zalloc(sizeof(*p));
1733 
1734 	if (p) {
1735 		p->addr   = addr;
1736 		p->len    = len;
1737 		p->offset = offset;
1738 	}
1739 
1740 	return p;
1741 }
1742 
1743 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1744 						 u64 addr, u64 len,
1745 						 off_t offset)
1746 {
1747 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1748 
1749 	if (p)
1750 		list_add_tail(&p->node, &kci->phdrs);
1751 
1752 	return p;
1753 }
1754 
1755 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1756 {
1757 	struct phdr_data *p, *tmp;
1758 
1759 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1760 		list_del_init(&p->node);
1761 		free(p);
1762 	}
1763 }
1764 
1765 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1766 					    u64 addr)
1767 {
1768 	struct sym_data *s = zalloc(sizeof(*s));
1769 
1770 	if (s) {
1771 		s->addr = addr;
1772 		list_add_tail(&s->node, &kci->syms);
1773 	}
1774 
1775 	return s;
1776 }
1777 
1778 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1779 {
1780 	struct sym_data *s, *tmp;
1781 
1782 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1783 		list_del_init(&s->node);
1784 		free(s);
1785 	}
1786 }
1787 
1788 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1789 					u64 start)
1790 {
1791 	struct kcore_copy_info *kci = arg;
1792 
1793 	if (!kallsyms__is_function(type))
1794 		return 0;
1795 
1796 	if (strchr(name, '[')) {
1797 		if (!kci->first_module_symbol || start < kci->first_module_symbol)
1798 			kci->first_module_symbol = start;
1799 		if (start > kci->last_module_symbol)
1800 			kci->last_module_symbol = start;
1801 		return 0;
1802 	}
1803 
1804 	if (!kci->first_symbol || start < kci->first_symbol)
1805 		kci->first_symbol = start;
1806 
1807 	if (!kci->last_symbol || start > kci->last_symbol)
1808 		kci->last_symbol = start;
1809 
1810 	if (!strcmp(name, "_stext")) {
1811 		kci->stext = start;
1812 		return 0;
1813 	}
1814 
1815 	if (!strcmp(name, "_etext")) {
1816 		kci->etext = start;
1817 		return 0;
1818 	}
1819 
1820 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1821 		return -1;
1822 
1823 	return 0;
1824 }
1825 
1826 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1827 				      const char *dir)
1828 {
1829 	char kallsyms_filename[PATH_MAX];
1830 
1831 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1832 
1833 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1834 		return -1;
1835 
1836 	if (kallsyms__parse(kallsyms_filename, kci,
1837 			    kcore_copy__process_kallsyms) < 0)
1838 		return -1;
1839 
1840 	return 0;
1841 }
1842 
1843 static int kcore_copy__process_modules(void *arg,
1844 				       const char *name __maybe_unused,
1845 				       u64 start, u64 size __maybe_unused)
1846 {
1847 	struct kcore_copy_info *kci = arg;
1848 
1849 	if (!kci->first_module || start < kci->first_module)
1850 		kci->first_module = start;
1851 
1852 	return 0;
1853 }
1854 
1855 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1856 				     const char *dir)
1857 {
1858 	char modules_filename[PATH_MAX];
1859 
1860 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1861 
1862 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1863 		return -1;
1864 
1865 	if (modules__parse(modules_filename, kci,
1866 			   kcore_copy__process_modules) < 0)
1867 		return -1;
1868 
1869 	return 0;
1870 }
1871 
1872 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1873 			   u64 pgoff, u64 s, u64 e)
1874 {
1875 	u64 len, offset;
1876 
1877 	if (s < start || s >= end)
1878 		return 0;
1879 
1880 	offset = (s - start) + pgoff;
1881 	len = e < end ? e - s : end - s;
1882 
1883 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1884 }
1885 
1886 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1887 {
1888 	struct kcore_copy_info *kci = data;
1889 	u64 end = start + len;
1890 	struct sym_data *sdat;
1891 
1892 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1893 		return -1;
1894 
1895 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1896 			    kci->last_module_symbol))
1897 		return -1;
1898 
1899 	list_for_each_entry(sdat, &kci->syms, node) {
1900 		u64 s = round_down(sdat->addr, page_size);
1901 
1902 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1903 			return -1;
1904 	}
1905 
1906 	return 0;
1907 }
1908 
1909 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1910 {
1911 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1912 		return -1;
1913 
1914 	return 0;
1915 }
1916 
1917 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1918 {
1919 	struct phdr_data *p, *k = NULL;
1920 	u64 kend;
1921 
1922 	if (!kci->stext)
1923 		return;
1924 
1925 	/* Find phdr that corresponds to the kernel map (contains stext) */
1926 	kcore_copy__for_each_phdr(kci, p) {
1927 		u64 pend = p->addr + p->len - 1;
1928 
1929 		if (p->addr <= kci->stext && pend >= kci->stext) {
1930 			k = p;
1931 			break;
1932 		}
1933 	}
1934 
1935 	if (!k)
1936 		return;
1937 
1938 	kend = k->offset + k->len;
1939 
1940 	/* Find phdrs that remap the kernel */
1941 	kcore_copy__for_each_phdr(kci, p) {
1942 		u64 pend = p->offset + p->len;
1943 
1944 		if (p == k)
1945 			continue;
1946 
1947 		if (p->offset >= k->offset && pend <= kend)
1948 			p->remaps = k;
1949 	}
1950 }
1951 
1952 static void kcore_copy__layout(struct kcore_copy_info *kci)
1953 {
1954 	struct phdr_data *p;
1955 	off_t rel = 0;
1956 
1957 	kcore_copy__find_remaps(kci);
1958 
1959 	kcore_copy__for_each_phdr(kci, p) {
1960 		if (!p->remaps) {
1961 			p->rel = rel;
1962 			rel += p->len;
1963 		}
1964 		kci->phnum += 1;
1965 	}
1966 
1967 	kcore_copy__for_each_phdr(kci, p) {
1968 		struct phdr_data *k = p->remaps;
1969 
1970 		if (k)
1971 			p->rel = p->offset - k->offset + k->rel;
1972 	}
1973 }
1974 
1975 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1976 				 Elf *elf)
1977 {
1978 	if (kcore_copy__parse_kallsyms(kci, dir))
1979 		return -1;
1980 
1981 	if (kcore_copy__parse_modules(kci, dir))
1982 		return -1;
1983 
1984 	if (kci->stext)
1985 		kci->stext = round_down(kci->stext, page_size);
1986 	else
1987 		kci->stext = round_down(kci->first_symbol, page_size);
1988 
1989 	if (kci->etext) {
1990 		kci->etext = round_up(kci->etext, page_size);
1991 	} else if (kci->last_symbol) {
1992 		kci->etext = round_up(kci->last_symbol, page_size);
1993 		kci->etext += page_size;
1994 	}
1995 
1996 	if (kci->first_module_symbol &&
1997 	    (!kci->first_module || kci->first_module_symbol < kci->first_module))
1998 		kci->first_module = kci->first_module_symbol;
1999 
2000 	kci->first_module = round_down(kci->first_module, page_size);
2001 
2002 	if (kci->last_module_symbol) {
2003 		kci->last_module_symbol = round_up(kci->last_module_symbol,
2004 						   page_size);
2005 		kci->last_module_symbol += page_size;
2006 	}
2007 
2008 	if (!kci->stext || !kci->etext)
2009 		return -1;
2010 
2011 	if (kci->first_module && !kci->last_module_symbol)
2012 		return -1;
2013 
2014 	if (kcore_copy__read_maps(kci, elf))
2015 		return -1;
2016 
2017 	kcore_copy__layout(kci);
2018 
2019 	return 0;
2020 }
2021 
2022 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2023 				 const char *name)
2024 {
2025 	char from_filename[PATH_MAX];
2026 	char to_filename[PATH_MAX];
2027 
2028 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2029 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2030 
2031 	return copyfile_mode(from_filename, to_filename, 0400);
2032 }
2033 
2034 static int kcore_copy__unlink(const char *dir, const char *name)
2035 {
2036 	char filename[PATH_MAX];
2037 
2038 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2039 
2040 	return unlink(filename);
2041 }
2042 
2043 static int kcore_copy__compare_fds(int from, int to)
2044 {
2045 	char *buf_from;
2046 	char *buf_to;
2047 	ssize_t ret;
2048 	size_t len;
2049 	int err = -1;
2050 
2051 	buf_from = malloc(page_size);
2052 	buf_to = malloc(page_size);
2053 	if (!buf_from || !buf_to)
2054 		goto out;
2055 
2056 	while (1) {
2057 		/* Use read because mmap won't work on proc files */
2058 		ret = read(from, buf_from, page_size);
2059 		if (ret < 0)
2060 			goto out;
2061 
2062 		if (!ret)
2063 			break;
2064 
2065 		len = ret;
2066 
2067 		if (readn(to, buf_to, len) != (int)len)
2068 			goto out;
2069 
2070 		if (memcmp(buf_from, buf_to, len))
2071 			goto out;
2072 	}
2073 
2074 	err = 0;
2075 out:
2076 	free(buf_to);
2077 	free(buf_from);
2078 	return err;
2079 }
2080 
2081 static int kcore_copy__compare_files(const char *from_filename,
2082 				     const char *to_filename)
2083 {
2084 	int from, to, err = -1;
2085 
2086 	from = open(from_filename, O_RDONLY);
2087 	if (from < 0)
2088 		return -1;
2089 
2090 	to = open(to_filename, O_RDONLY);
2091 	if (to < 0)
2092 		goto out_close_from;
2093 
2094 	err = kcore_copy__compare_fds(from, to);
2095 
2096 	close(to);
2097 out_close_from:
2098 	close(from);
2099 	return err;
2100 }
2101 
2102 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2103 				    const char *name)
2104 {
2105 	char from_filename[PATH_MAX];
2106 	char to_filename[PATH_MAX];
2107 
2108 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2109 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2110 
2111 	return kcore_copy__compare_files(from_filename, to_filename);
2112 }
2113 
2114 /**
2115  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2116  * @from_dir: from directory
2117  * @to_dir: to directory
2118  *
2119  * This function copies kallsyms, modules and kcore files from one directory to
2120  * another.  kallsyms and modules are copied entirely.  Only code segments are
2121  * copied from kcore.  It is assumed that two segments suffice: one for the
2122  * kernel proper and one for all the modules.  The code segments are determined
2123  * from kallsyms and modules files.  The kernel map starts at _stext or the
2124  * lowest function symbol, and ends at _etext or the highest function symbol.
2125  * The module map starts at the lowest module address and ends at the highest
2126  * module symbol.  Start addresses are rounded down to the nearest page.  End
2127  * addresses are rounded up to the nearest page.  An extra page is added to the
2128  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2129  * symbol too.  Because it contains only code sections, the resulting kcore is
2130  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2131  * is not the same for the kernel map and the modules map.  That happens because
2132  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2133  * kallsyms file is compared with its copy to check that modules have not been
2134  * loaded or unloaded while the copies were taking place.
2135  *
2136  * Return: %0 on success, %-1 on failure.
2137  */
2138 int kcore_copy(const char *from_dir, const char *to_dir)
2139 {
2140 	struct kcore kcore;
2141 	struct kcore extract;
2142 	int idx = 0, err = -1;
2143 	off_t offset, sz;
2144 	struct kcore_copy_info kci = { .stext = 0, };
2145 	char kcore_filename[PATH_MAX];
2146 	char extract_filename[PATH_MAX];
2147 	struct phdr_data *p;
2148 
2149 	INIT_LIST_HEAD(&kci.phdrs);
2150 	INIT_LIST_HEAD(&kci.syms);
2151 
2152 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2153 		return -1;
2154 
2155 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2156 		goto out_unlink_kallsyms;
2157 
2158 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2159 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2160 
2161 	if (kcore__open(&kcore, kcore_filename))
2162 		goto out_unlink_modules;
2163 
2164 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2165 		goto out_kcore_close;
2166 
2167 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2168 		goto out_kcore_close;
2169 
2170 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2171 		goto out_extract_close;
2172 
2173 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2174 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2175 	offset = round_up(offset, page_size);
2176 
2177 	kcore_copy__for_each_phdr(&kci, p) {
2178 		off_t offs = p->rel + offset;
2179 
2180 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2181 			goto out_extract_close;
2182 	}
2183 
2184 	sz = kcore__write(&extract);
2185 	if (sz < 0 || sz > offset)
2186 		goto out_extract_close;
2187 
2188 	kcore_copy__for_each_phdr(&kci, p) {
2189 		off_t offs = p->rel + offset;
2190 
2191 		if (p->remaps)
2192 			continue;
2193 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2194 			goto out_extract_close;
2195 	}
2196 
2197 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2198 		goto out_extract_close;
2199 
2200 	err = 0;
2201 
2202 out_extract_close:
2203 	kcore__close(&extract);
2204 	if (err)
2205 		unlink(extract_filename);
2206 out_kcore_close:
2207 	kcore__close(&kcore);
2208 out_unlink_modules:
2209 	if (err)
2210 		kcore_copy__unlink(to_dir, "modules");
2211 out_unlink_kallsyms:
2212 	if (err)
2213 		kcore_copy__unlink(to_dir, "kallsyms");
2214 
2215 	kcore_copy__free_phdrs(&kci);
2216 	kcore_copy__free_syms(&kci);
2217 
2218 	return err;
2219 }
2220 
2221 int kcore_extract__create(struct kcore_extract *kce)
2222 {
2223 	struct kcore kcore;
2224 	struct kcore extract;
2225 	size_t count = 1;
2226 	int idx = 0, err = -1;
2227 	off_t offset = page_size, sz;
2228 
2229 	if (kcore__open(&kcore, kce->kcore_filename))
2230 		return -1;
2231 
2232 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2233 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2234 		goto out_kcore_close;
2235 
2236 	if (kcore__copy_hdr(&kcore, &extract, count))
2237 		goto out_extract_close;
2238 
2239 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2240 		goto out_extract_close;
2241 
2242 	sz = kcore__write(&extract);
2243 	if (sz < 0 || sz > offset)
2244 		goto out_extract_close;
2245 
2246 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2247 		goto out_extract_close;
2248 
2249 	err = 0;
2250 
2251 out_extract_close:
2252 	kcore__close(&extract);
2253 	if (err)
2254 		unlink(kce->extract_filename);
2255 out_kcore_close:
2256 	kcore__close(&kcore);
2257 
2258 	return err;
2259 }
2260 
2261 void kcore_extract__delete(struct kcore_extract *kce)
2262 {
2263 	unlink(kce->extract_filename);
2264 }
2265 
2266 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2267 
2268 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2269 {
2270 	if (!base_off)
2271 		return;
2272 
2273 	if (tmp->bit32)
2274 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2275 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2276 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2277 	else
2278 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2279 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2280 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2281 }
2282 
2283 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2284 			      GElf_Addr base_off)
2285 {
2286 	if (!base_off)
2287 		return;
2288 
2289 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2290 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2291 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2292 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2293 }
2294 
2295 /**
2296  * populate_sdt_note : Parse raw data and identify SDT note
2297  * @elf: elf of the opened file
2298  * @data: raw data of a section with description offset applied
2299  * @len: note description size
2300  * @type: type of the note
2301  * @sdt_notes: List to add the SDT note
2302  *
2303  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2304  * if its an SDT note, it appends to @sdt_notes list.
2305  */
2306 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2307 			     struct list_head *sdt_notes)
2308 {
2309 	const char *provider, *name, *args;
2310 	struct sdt_note *tmp = NULL;
2311 	GElf_Ehdr ehdr;
2312 	GElf_Shdr shdr;
2313 	int ret = -EINVAL;
2314 
2315 	union {
2316 		Elf64_Addr a64[NR_ADDR];
2317 		Elf32_Addr a32[NR_ADDR];
2318 	} buf;
2319 
2320 	Elf_Data dst = {
2321 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2322 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2323 		.d_off = 0, .d_align = 0
2324 	};
2325 	Elf_Data src = {
2326 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2327 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2328 		.d_align = 0
2329 	};
2330 
2331 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2332 	if (!tmp) {
2333 		ret = -ENOMEM;
2334 		goto out_err;
2335 	}
2336 
2337 	INIT_LIST_HEAD(&tmp->note_list);
2338 
2339 	if (len < dst.d_size + 3)
2340 		goto out_free_note;
2341 
2342 	/* Translation from file representation to memory representation */
2343 	if (gelf_xlatetom(*elf, &dst, &src,
2344 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2345 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2346 		goto out_free_note;
2347 	}
2348 
2349 	/* Populate the fields of sdt_note */
2350 	provider = data + dst.d_size;
2351 
2352 	name = (const char *)memchr(provider, '\0', data + len - provider);
2353 	if (name++ == NULL)
2354 		goto out_free_note;
2355 
2356 	tmp->provider = strdup(provider);
2357 	if (!tmp->provider) {
2358 		ret = -ENOMEM;
2359 		goto out_free_note;
2360 	}
2361 	tmp->name = strdup(name);
2362 	if (!tmp->name) {
2363 		ret = -ENOMEM;
2364 		goto out_free_prov;
2365 	}
2366 
2367 	args = memchr(name, '\0', data + len - name);
2368 
2369 	/*
2370 	 * There is no argument if:
2371 	 * - We reached the end of the note;
2372 	 * - There is not enough room to hold a potential string;
2373 	 * - The argument string is empty or just contains ':'.
2374 	 */
2375 	if (args == NULL || data + len - args < 2 ||
2376 		args[1] == ':' || args[1] == '\0')
2377 		tmp->args = NULL;
2378 	else {
2379 		tmp->args = strdup(++args);
2380 		if (!tmp->args) {
2381 			ret = -ENOMEM;
2382 			goto out_free_name;
2383 		}
2384 	}
2385 
2386 	if (gelf_getclass(*elf) == ELFCLASS32) {
2387 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2388 		tmp->bit32 = true;
2389 	} else {
2390 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2391 		tmp->bit32 = false;
2392 	}
2393 
2394 	if (!gelf_getehdr(*elf, &ehdr)) {
2395 		pr_debug("%s : cannot get elf header.\n", __func__);
2396 		ret = -EBADF;
2397 		goto out_free_args;
2398 	}
2399 
2400 	/* Adjust the prelink effect :
2401 	 * Find out the .stapsdt.base section.
2402 	 * This scn will help us to handle prelinking (if present).
2403 	 * Compare the retrieved file offset of the base section with the
2404 	 * base address in the description of the SDT note. If its different,
2405 	 * then accordingly, adjust the note location.
2406 	 */
2407 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2408 		sdt_adjust_loc(tmp, shdr.sh_offset);
2409 
2410 	/* Adjust reference counter offset */
2411 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2412 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2413 
2414 	list_add_tail(&tmp->note_list, sdt_notes);
2415 	return 0;
2416 
2417 out_free_args:
2418 	zfree(&tmp->args);
2419 out_free_name:
2420 	zfree(&tmp->name);
2421 out_free_prov:
2422 	zfree(&tmp->provider);
2423 out_free_note:
2424 	free(tmp);
2425 out_err:
2426 	return ret;
2427 }
2428 
2429 /**
2430  * construct_sdt_notes_list : constructs a list of SDT notes
2431  * @elf : elf to look into
2432  * @sdt_notes : empty list_head
2433  *
2434  * Scans the sections in 'elf' for the section
2435  * .note.stapsdt. It, then calls populate_sdt_note to find
2436  * out the SDT events and populates the 'sdt_notes'.
2437  */
2438 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2439 {
2440 	GElf_Ehdr ehdr;
2441 	Elf_Scn *scn = NULL;
2442 	Elf_Data *data;
2443 	GElf_Shdr shdr;
2444 	size_t shstrndx, next;
2445 	GElf_Nhdr nhdr;
2446 	size_t name_off, desc_off, offset;
2447 	int ret = 0;
2448 
2449 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2450 		ret = -EBADF;
2451 		goto out_ret;
2452 	}
2453 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2454 		ret = -EBADF;
2455 		goto out_ret;
2456 	}
2457 
2458 	/* Look for the required section */
2459 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2460 	if (!scn) {
2461 		ret = -ENOENT;
2462 		goto out_ret;
2463 	}
2464 
2465 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2466 		ret = -ENOENT;
2467 		goto out_ret;
2468 	}
2469 
2470 	data = elf_getdata(scn, NULL);
2471 
2472 	/* Get the SDT notes */
2473 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2474 					      &desc_off)) > 0; offset = next) {
2475 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2476 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2477 			    sizeof(SDT_NOTE_NAME))) {
2478 			/* Check the type of the note */
2479 			if (nhdr.n_type != SDT_NOTE_TYPE)
2480 				goto out_ret;
2481 
2482 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2483 						nhdr.n_descsz, sdt_notes);
2484 			if (ret < 0)
2485 				goto out_ret;
2486 		}
2487 	}
2488 	if (list_empty(sdt_notes))
2489 		ret = -ENOENT;
2490 
2491 out_ret:
2492 	return ret;
2493 }
2494 
2495 /**
2496  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2497  * @head : empty list_head
2498  * @target : file to find SDT notes from
2499  *
2500  * This opens the file, initializes
2501  * the ELF and then calls construct_sdt_notes_list.
2502  */
2503 int get_sdt_note_list(struct list_head *head, const char *target)
2504 {
2505 	Elf *elf;
2506 	int fd, ret;
2507 
2508 	fd = open(target, O_RDONLY);
2509 	if (fd < 0)
2510 		return -EBADF;
2511 
2512 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2513 	if (!elf) {
2514 		ret = -EBADF;
2515 		goto out_close;
2516 	}
2517 	ret = construct_sdt_notes_list(elf, head);
2518 	elf_end(elf);
2519 out_close:
2520 	close(fd);
2521 	return ret;
2522 }
2523 
2524 /**
2525  * cleanup_sdt_note_list : free the sdt notes' list
2526  * @sdt_notes: sdt notes' list
2527  *
2528  * Free up the SDT notes in @sdt_notes.
2529  * Returns the number of SDT notes free'd.
2530  */
2531 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2532 {
2533 	struct sdt_note *tmp, *pos;
2534 	int nr_free = 0;
2535 
2536 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2537 		list_del_init(&pos->note_list);
2538 		zfree(&pos->args);
2539 		zfree(&pos->name);
2540 		zfree(&pos->provider);
2541 		free(pos);
2542 		nr_free++;
2543 	}
2544 	return nr_free;
2545 }
2546 
2547 /**
2548  * sdt_notes__get_count: Counts the number of sdt events
2549  * @start: list_head to sdt_notes list
2550  *
2551  * Returns the number of SDT notes in a list
2552  */
2553 int sdt_notes__get_count(struct list_head *start)
2554 {
2555 	struct sdt_note *sdt_ptr;
2556 	int count = 0;
2557 
2558 	list_for_each_entry(sdt_ptr, start, note_list)
2559 		count++;
2560 	return count;
2561 }
2562 #endif
2563 
2564 void symbol__elf_init(void)
2565 {
2566 	elf_version(EV_CURRENT);
2567 }
2568