1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-cxx.h" 16 #include "demangle-ocaml.h" 17 #include "demangle-java.h" 18 #include "demangle-rust.h" 19 #include "machine.h" 20 #include "vdso.h" 21 #include "debug.h" 22 #include "util/copyfile.h" 23 #include <linux/ctype.h> 24 #include <linux/kernel.h> 25 #include <linux/zalloc.h> 26 #include <symbol/kallsyms.h> 27 #include <internal/lib.h> 28 29 #ifdef HAVE_LIBBFD_SUPPORT 30 #define PACKAGE 'perf' 31 #include <bfd.h> 32 #endif 33 34 #ifndef EM_AARCH64 35 #define EM_AARCH64 183 /* ARM 64 bit */ 36 #endif 37 38 #ifndef ELF32_ST_VISIBILITY 39 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 40 #endif 41 42 /* For ELF64 the definitions are the same. */ 43 #ifndef ELF64_ST_VISIBILITY 44 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 45 #endif 46 47 /* How to extract information held in the st_other field. */ 48 #ifndef GELF_ST_VISIBILITY 49 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 50 #endif 51 52 typedef Elf64_Nhdr GElf_Nhdr; 53 54 55 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 56 static int elf_getphdrnum(Elf *elf, size_t *dst) 57 { 58 GElf_Ehdr gehdr; 59 GElf_Ehdr *ehdr; 60 61 ehdr = gelf_getehdr(elf, &gehdr); 62 if (!ehdr) 63 return -1; 64 65 *dst = ehdr->e_phnum; 66 67 return 0; 68 } 69 #endif 70 71 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 72 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 73 { 74 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 75 return -1; 76 } 77 #endif 78 79 #ifndef NT_GNU_BUILD_ID 80 #define NT_GNU_BUILD_ID 3 81 #endif 82 83 /** 84 * elf_symtab__for_each_symbol - iterate thru all the symbols 85 * 86 * @syms: struct elf_symtab instance to iterate 87 * @idx: uint32_t idx 88 * @sym: GElf_Sym iterator 89 */ 90 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 91 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 92 idx < nr_syms; \ 93 idx++, gelf_getsym(syms, idx, &sym)) 94 95 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 96 { 97 return GELF_ST_TYPE(sym->st_info); 98 } 99 100 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 101 { 102 return GELF_ST_VISIBILITY(sym->st_other); 103 } 104 105 #ifndef STT_GNU_IFUNC 106 #define STT_GNU_IFUNC 10 107 #endif 108 109 static inline int elf_sym__is_function(const GElf_Sym *sym) 110 { 111 return (elf_sym__type(sym) == STT_FUNC || 112 elf_sym__type(sym) == STT_GNU_IFUNC) && 113 sym->st_name != 0 && 114 sym->st_shndx != SHN_UNDEF; 115 } 116 117 static inline bool elf_sym__is_object(const GElf_Sym *sym) 118 { 119 return elf_sym__type(sym) == STT_OBJECT && 120 sym->st_name != 0 && 121 sym->st_shndx != SHN_UNDEF; 122 } 123 124 static inline int elf_sym__is_label(const GElf_Sym *sym) 125 { 126 return elf_sym__type(sym) == STT_NOTYPE && 127 sym->st_name != 0 && 128 sym->st_shndx != SHN_UNDEF && 129 sym->st_shndx != SHN_ABS && 130 elf_sym__visibility(sym) != STV_HIDDEN && 131 elf_sym__visibility(sym) != STV_INTERNAL; 132 } 133 134 static bool elf_sym__filter(GElf_Sym *sym) 135 { 136 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 137 } 138 139 static inline const char *elf_sym__name(const GElf_Sym *sym, 140 const Elf_Data *symstrs) 141 { 142 return symstrs->d_buf + sym->st_name; 143 } 144 145 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 146 const Elf_Data *secstrs) 147 { 148 return secstrs->d_buf + shdr->sh_name; 149 } 150 151 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 152 const Elf_Data *secstrs) 153 { 154 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 155 } 156 157 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 158 const Elf_Data *secstrs) 159 { 160 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 161 } 162 163 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 164 { 165 return elf_sec__is_text(shdr, secstrs) || 166 elf_sec__is_data(shdr, secstrs); 167 } 168 169 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 170 { 171 Elf_Scn *sec = NULL; 172 GElf_Shdr shdr; 173 size_t cnt = 1; 174 175 while ((sec = elf_nextscn(elf, sec)) != NULL) { 176 gelf_getshdr(sec, &shdr); 177 178 if ((addr >= shdr.sh_addr) && 179 (addr < (shdr.sh_addr + shdr.sh_size))) 180 return cnt; 181 182 ++cnt; 183 } 184 185 return -1; 186 } 187 188 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 189 GElf_Shdr *shp, const char *name, size_t *idx) 190 { 191 Elf_Scn *sec = NULL; 192 size_t cnt = 1; 193 194 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 195 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 196 return NULL; 197 198 while ((sec = elf_nextscn(elf, sec)) != NULL) { 199 char *str; 200 201 gelf_getshdr(sec, shp); 202 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 203 if (str && !strcmp(name, str)) { 204 if (idx) 205 *idx = cnt; 206 return sec; 207 } 208 ++cnt; 209 } 210 211 return NULL; 212 } 213 214 bool filename__has_section(const char *filename, const char *sec) 215 { 216 int fd; 217 Elf *elf; 218 GElf_Ehdr ehdr; 219 GElf_Shdr shdr; 220 bool found = false; 221 222 fd = open(filename, O_RDONLY); 223 if (fd < 0) 224 return false; 225 226 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 227 if (elf == NULL) 228 goto out; 229 230 if (gelf_getehdr(elf, &ehdr) == NULL) 231 goto elf_out; 232 233 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL); 234 235 elf_out: 236 elf_end(elf); 237 out: 238 close(fd); 239 return found; 240 } 241 242 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr) 243 { 244 size_t i, phdrnum; 245 u64 sz; 246 247 if (elf_getphdrnum(elf, &phdrnum)) 248 return -1; 249 250 for (i = 0; i < phdrnum; i++) { 251 if (gelf_getphdr(elf, i, phdr) == NULL) 252 return -1; 253 254 if (phdr->p_type != PT_LOAD) 255 continue; 256 257 sz = max(phdr->p_memsz, phdr->p_filesz); 258 if (!sz) 259 continue; 260 261 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz)) 262 return 0; 263 } 264 265 /* Not found any valid program header */ 266 return -1; 267 } 268 269 static bool want_demangle(bool is_kernel_sym) 270 { 271 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 272 } 273 274 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 275 { 276 char *demangled = NULL; 277 278 /* 279 * We need to figure out if the object was created from C++ sources 280 * DWARF DW_compile_unit has this, but we don't always have access 281 * to it... 282 */ 283 if (!want_demangle(dso->kernel || kmodule)) 284 return demangled; 285 286 demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0); 287 if (demangled == NULL) { 288 demangled = ocaml_demangle_sym(elf_name); 289 if (demangled == NULL) { 290 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 291 } 292 } 293 else if (rust_is_mangled(demangled)) 294 /* 295 * Input to Rust demangling is the BFD-demangled 296 * name which it Rust-demangles in place. 297 */ 298 rust_demangle_sym(demangled); 299 300 return demangled; 301 } 302 303 struct rel_info { 304 u32 nr_entries; 305 u32 *sorted; 306 bool is_rela; 307 Elf_Data *reldata; 308 GElf_Rela rela; 309 GElf_Rel rel; 310 }; 311 312 static u32 get_rel_symidx(struct rel_info *ri, u32 idx) 313 { 314 idx = ri->sorted ? ri->sorted[idx] : idx; 315 if (ri->is_rela) { 316 gelf_getrela(ri->reldata, idx, &ri->rela); 317 return GELF_R_SYM(ri->rela.r_info); 318 } 319 gelf_getrel(ri->reldata, idx, &ri->rel); 320 return GELF_R_SYM(ri->rel.r_info); 321 } 322 323 static u64 get_rel_offset(struct rel_info *ri, u32 x) 324 { 325 if (ri->is_rela) { 326 GElf_Rela rela; 327 328 gelf_getrela(ri->reldata, x, &rela); 329 return rela.r_offset; 330 } else { 331 GElf_Rel rel; 332 333 gelf_getrel(ri->reldata, x, &rel); 334 return rel.r_offset; 335 } 336 } 337 338 static int rel_cmp(const void *a, const void *b, void *r) 339 { 340 struct rel_info *ri = r; 341 u64 a_offset = get_rel_offset(ri, *(const u32 *)a); 342 u64 b_offset = get_rel_offset(ri, *(const u32 *)b); 343 344 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0); 345 } 346 347 static int sort_rel(struct rel_info *ri) 348 { 349 size_t sz = sizeof(ri->sorted[0]); 350 u32 i; 351 352 ri->sorted = calloc(ri->nr_entries, sz); 353 if (!ri->sorted) 354 return -1; 355 for (i = 0; i < ri->nr_entries; i++) 356 ri->sorted[i] = i; 357 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri); 358 return 0; 359 } 360 361 /* 362 * For x86_64, the GNU linker is putting IFUNC information in the relocation 363 * addend. 364 */ 365 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri) 366 { 367 return ehdr->e_machine == EM_X86_64 && ri->is_rela && 368 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE; 369 } 370 371 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr, 372 struct rel_info *ri, char *buf, size_t buf_sz) 373 { 374 u64 addr = ri->rela.r_addend; 375 struct symbol *sym; 376 GElf_Phdr phdr; 377 378 if (!addend_may_be_ifunc(ehdr, ri)) 379 return false; 380 381 if (elf_read_program_header(elf, addr, &phdr)) 382 return false; 383 384 addr -= phdr.p_vaddr - phdr.p_offset; 385 386 sym = dso__find_symbol_nocache(dso, addr); 387 388 /* Expecting the address to be an IFUNC or IFUNC alias */ 389 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias)) 390 return false; 391 392 snprintf(buf, buf_sz, "%s@plt", sym->name); 393 394 return true; 395 } 396 397 static void exit_rel(struct rel_info *ri) 398 { 399 free(ri->sorted); 400 } 401 402 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt, 403 u64 *plt_header_size, u64 *plt_entry_size) 404 { 405 switch (ehdr->e_machine) { 406 case EM_ARM: 407 *plt_header_size = 20; 408 *plt_entry_size = 12; 409 return true; 410 case EM_AARCH64: 411 *plt_header_size = 32; 412 *plt_entry_size = 16; 413 return true; 414 case EM_SPARC: 415 *plt_header_size = 48; 416 *plt_entry_size = 12; 417 return true; 418 case EM_SPARCV9: 419 *plt_header_size = 128; 420 *plt_entry_size = 32; 421 return true; 422 case EM_386: 423 case EM_X86_64: 424 *plt_entry_size = shdr_plt->sh_entsize; 425 /* Size is 8 or 16, if not, assume alignment indicates size */ 426 if (*plt_entry_size != 8 && *plt_entry_size != 16) 427 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16; 428 *plt_header_size = *plt_entry_size; 429 break; 430 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 431 *plt_header_size = shdr_plt->sh_entsize; 432 *plt_entry_size = shdr_plt->sh_entsize; 433 break; 434 } 435 if (*plt_entry_size) 436 return true; 437 pr_debug("Missing PLT entry size for %s\n", dso->long_name); 438 return false; 439 } 440 441 static bool machine_is_x86(GElf_Half e_machine) 442 { 443 return e_machine == EM_386 || e_machine == EM_X86_64; 444 } 445 446 struct rela_dyn { 447 GElf_Addr offset; 448 u32 sym_idx; 449 }; 450 451 struct rela_dyn_info { 452 struct dso *dso; 453 Elf_Data *plt_got_data; 454 u32 nr_entries; 455 struct rela_dyn *sorted; 456 Elf_Data *dynsym_data; 457 Elf_Data *dynstr_data; 458 Elf_Data *rela_dyn_data; 459 }; 460 461 static void exit_rela_dyn(struct rela_dyn_info *di) 462 { 463 free(di->sorted); 464 } 465 466 static int cmp_offset(const void *a, const void *b) 467 { 468 const struct rela_dyn *va = a; 469 const struct rela_dyn *vb = b; 470 471 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0); 472 } 473 474 static int sort_rela_dyn(struct rela_dyn_info *di) 475 { 476 u32 i, n; 477 478 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0])); 479 if (!di->sorted) 480 return -1; 481 482 /* Get data for sorting: the offset and symbol index */ 483 for (i = 0, n = 0; i < di->nr_entries; i++) { 484 GElf_Rela rela; 485 u32 sym_idx; 486 487 gelf_getrela(di->rela_dyn_data, i, &rela); 488 sym_idx = GELF_R_SYM(rela.r_info); 489 if (sym_idx) { 490 di->sorted[n].sym_idx = sym_idx; 491 di->sorted[n].offset = rela.r_offset; 492 n += 1; 493 } 494 } 495 496 /* Sort by offset */ 497 di->nr_entries = n; 498 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset); 499 500 return 0; 501 } 502 503 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn) 504 { 505 GElf_Shdr rela_dyn_shdr; 506 GElf_Shdr shdr; 507 508 di->plt_got_data = elf_getdata(scn, NULL); 509 510 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL); 511 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize) 512 return; 513 514 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize; 515 di->rela_dyn_data = elf_getdata(scn, NULL); 516 517 scn = elf_getscn(elf, rela_dyn_shdr.sh_link); 518 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link) 519 return; 520 521 di->dynsym_data = elf_getdata(scn, NULL); 522 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL); 523 524 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data) 525 return; 526 527 /* Sort into offset order */ 528 sort_rela_dyn(di); 529 } 530 531 /* Get instruction displacement from a plt entry for x86_64 */ 532 static u32 get_x86_64_plt_disp(const u8 *p) 533 { 534 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa}; 535 int n = 0; 536 537 /* Skip endbr64 */ 538 if (!memcmp(p, endbr64, sizeof(endbr64))) 539 n += sizeof(endbr64); 540 /* Skip bnd prefix */ 541 if (p[n] == 0xf2) 542 n += 1; 543 /* jmp with 4-byte displacement */ 544 if (p[n] == 0xff && p[n + 1] == 0x25) { 545 n += 2; 546 /* Also add offset from start of entry to end of instruction */ 547 return n + 4 + le32toh(*(const u32 *)(p + n)); 548 } 549 return 0; 550 } 551 552 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i, 553 struct rela_dyn_info *di, 554 char *buf, size_t buf_sz) 555 { 556 struct rela_dyn vi, *vr; 557 const char *sym_name; 558 char *demangled; 559 GElf_Sym sym; 560 u32 disp; 561 562 if (!di->sorted) 563 return false; 564 565 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i); 566 if (!disp) 567 return false; 568 569 /* Compute target offset of the .plt.got entry */ 570 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp; 571 572 /* Find that offset in .rela.dyn (sorted by offset) */ 573 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset); 574 if (!vr) 575 return false; 576 577 /* Get the associated symbol */ 578 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym); 579 sym_name = elf_sym__name(&sym, di->dynstr_data); 580 demangled = demangle_sym(di->dso, 0, sym_name); 581 if (demangled != NULL) 582 sym_name = demangled; 583 584 snprintf(buf, buf_sz, "%s@plt", sym_name); 585 586 free(demangled); 587 588 return *sym_name; 589 } 590 591 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf, 592 GElf_Ehdr *ehdr, 593 char *buf, size_t buf_sz) 594 { 595 struct rela_dyn_info di = { .dso = dso }; 596 struct symbol *sym; 597 GElf_Shdr shdr; 598 Elf_Scn *scn; 599 int err = -1; 600 size_t i; 601 602 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL); 603 if (!scn || !shdr.sh_entsize) 604 return 0; 605 606 if (ehdr->e_machine == EM_X86_64) 607 get_rela_dyn_info(elf, ehdr, &di, scn); 608 609 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) { 610 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz)) 611 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i); 612 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf); 613 if (!sym) 614 goto out; 615 symbols__insert(&dso->symbols, sym); 616 } 617 err = 0; 618 out: 619 exit_rela_dyn(&di); 620 return err; 621 } 622 623 /* 624 * We need to check if we have a .dynsym, so that we can handle the 625 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 626 * .dynsym or .symtab). 627 * And always look at the original dso, not at debuginfo packages, that 628 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 629 */ 630 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 631 { 632 uint32_t idx; 633 GElf_Sym sym; 634 u64 plt_offset, plt_header_size, plt_entry_size; 635 GElf_Shdr shdr_plt, plt_sec_shdr; 636 struct symbol *f, *plt_sym; 637 GElf_Shdr shdr_rel_plt, shdr_dynsym; 638 Elf_Data *syms, *symstrs; 639 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 640 GElf_Ehdr ehdr; 641 char sympltname[1024]; 642 Elf *elf; 643 int nr = 0, err = -1; 644 struct rel_info ri = { .is_rela = false }; 645 bool lazy_plt; 646 647 elf = ss->elf; 648 ehdr = ss->ehdr; 649 650 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL)) 651 return 0; 652 653 /* 654 * A symbol from a previous section (e.g. .init) can have been expanded 655 * by symbols__fixup_end() to overlap .plt. Truncate it before adding 656 * a symbol for .plt header. 657 */ 658 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset); 659 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset) 660 f->end = shdr_plt.sh_offset; 661 662 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size)) 663 return 0; 664 665 /* Add a symbol for .plt header */ 666 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt"); 667 if (!plt_sym) 668 goto out_elf_end; 669 symbols__insert(&dso->symbols, plt_sym); 670 671 /* Only x86 has .plt.got */ 672 if (machine_is_x86(ehdr.e_machine) && 673 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname))) 674 goto out_elf_end; 675 676 /* Only x86 has .plt.sec */ 677 if (machine_is_x86(ehdr.e_machine) && 678 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) { 679 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size)) 680 return 0; 681 /* Extend .plt symbol to entire .plt */ 682 plt_sym->end = plt_sym->start + shdr_plt.sh_size; 683 /* Use .plt.sec offset */ 684 plt_offset = plt_sec_shdr.sh_offset; 685 lazy_plt = false; 686 } else { 687 plt_offset = shdr_plt.sh_offset; 688 lazy_plt = true; 689 } 690 691 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 692 ".rela.plt", NULL); 693 if (scn_plt_rel == NULL) { 694 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 695 ".rel.plt", NULL); 696 if (scn_plt_rel == NULL) 697 return 0; 698 } 699 700 if (shdr_rel_plt.sh_type != SHT_RELA && 701 shdr_rel_plt.sh_type != SHT_REL) 702 return 0; 703 704 if (!shdr_rel_plt.sh_link) 705 return 0; 706 707 if (shdr_rel_plt.sh_link == ss->dynsym_idx) { 708 scn_dynsym = ss->dynsym; 709 shdr_dynsym = ss->dynshdr; 710 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) { 711 /* 712 * A static executable can have a .plt due to IFUNCs, in which 713 * case .symtab is used not .dynsym. 714 */ 715 scn_dynsym = ss->symtab; 716 shdr_dynsym = ss->symshdr; 717 } else { 718 goto out_elf_end; 719 } 720 721 if (!scn_dynsym) 722 return 0; 723 724 /* 725 * Fetch the relocation section to find the idxes to the GOT 726 * and the symbols in the .dynsym they refer to. 727 */ 728 ri.reldata = elf_getdata(scn_plt_rel, NULL); 729 if (!ri.reldata) 730 goto out_elf_end; 731 732 syms = elf_getdata(scn_dynsym, NULL); 733 if (syms == NULL) 734 goto out_elf_end; 735 736 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 737 if (scn_symstrs == NULL) 738 goto out_elf_end; 739 740 symstrs = elf_getdata(scn_symstrs, NULL); 741 if (symstrs == NULL) 742 goto out_elf_end; 743 744 if (symstrs->d_size == 0) 745 goto out_elf_end; 746 747 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 748 749 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA; 750 751 if (lazy_plt) { 752 /* 753 * Assume a .plt with the same number of entries as the number 754 * of relocation entries is not lazy and does not have a header. 755 */ 756 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size) 757 dso__delete_symbol(dso, plt_sym); 758 else 759 plt_offset += plt_header_size; 760 } 761 762 /* 763 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get 764 * back in order. 765 */ 766 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri)) 767 goto out_elf_end; 768 769 for (idx = 0; idx < ri.nr_entries; idx++) { 770 const char *elf_name = NULL; 771 char *demangled = NULL; 772 773 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym); 774 775 elf_name = elf_sym__name(&sym, symstrs); 776 demangled = demangle_sym(dso, 0, elf_name); 777 if (demangled) 778 elf_name = demangled; 779 if (*elf_name) 780 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name); 781 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname))) 782 snprintf(sympltname, sizeof(sympltname), 783 "offset_%#" PRIx64 "@plt", plt_offset); 784 free(demangled); 785 786 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname); 787 if (!f) 788 goto out_elf_end; 789 790 plt_offset += plt_entry_size; 791 symbols__insert(&dso->symbols, f); 792 ++nr; 793 } 794 795 err = 0; 796 out_elf_end: 797 exit_rel(&ri); 798 if (err == 0) 799 return nr; 800 pr_debug("%s: problems reading %s PLT info.\n", 801 __func__, dso->long_name); 802 return 0; 803 } 804 805 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 806 { 807 return demangle_sym(dso, kmodule, elf_name); 808 } 809 810 /* 811 * Align offset to 4 bytes as needed for note name and descriptor data. 812 */ 813 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 814 815 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 816 { 817 int err = -1; 818 GElf_Ehdr ehdr; 819 GElf_Shdr shdr; 820 Elf_Data *data; 821 Elf_Scn *sec; 822 Elf_Kind ek; 823 void *ptr; 824 825 if (size < BUILD_ID_SIZE) 826 goto out; 827 828 ek = elf_kind(elf); 829 if (ek != ELF_K_ELF) 830 goto out; 831 832 if (gelf_getehdr(elf, &ehdr) == NULL) { 833 pr_err("%s: cannot get elf header.\n", __func__); 834 goto out; 835 } 836 837 /* 838 * Check following sections for notes: 839 * '.note.gnu.build-id' 840 * '.notes' 841 * '.note' (VDSO specific) 842 */ 843 do { 844 sec = elf_section_by_name(elf, &ehdr, &shdr, 845 ".note.gnu.build-id", NULL); 846 if (sec) 847 break; 848 849 sec = elf_section_by_name(elf, &ehdr, &shdr, 850 ".notes", NULL); 851 if (sec) 852 break; 853 854 sec = elf_section_by_name(elf, &ehdr, &shdr, 855 ".note", NULL); 856 if (sec) 857 break; 858 859 return err; 860 861 } while (0); 862 863 data = elf_getdata(sec, NULL); 864 if (data == NULL) 865 goto out; 866 867 ptr = data->d_buf; 868 while (ptr < (data->d_buf + data->d_size)) { 869 GElf_Nhdr *nhdr = ptr; 870 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 871 descsz = NOTE_ALIGN(nhdr->n_descsz); 872 const char *name; 873 874 ptr += sizeof(*nhdr); 875 name = ptr; 876 ptr += namesz; 877 if (nhdr->n_type == NT_GNU_BUILD_ID && 878 nhdr->n_namesz == sizeof("GNU")) { 879 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 880 size_t sz = min(size, descsz); 881 memcpy(bf, ptr, sz); 882 memset(bf + sz, 0, size - sz); 883 err = descsz; 884 break; 885 } 886 } 887 ptr += descsz; 888 } 889 890 out: 891 return err; 892 } 893 894 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT 895 896 static int read_build_id(const char *filename, struct build_id *bid) 897 { 898 size_t size = sizeof(bid->data); 899 int err = -1; 900 bfd *abfd; 901 902 abfd = bfd_openr(filename, NULL); 903 if (!abfd) 904 return -1; 905 906 if (!bfd_check_format(abfd, bfd_object)) { 907 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 908 goto out_close; 909 } 910 911 if (!abfd->build_id || abfd->build_id->size > size) 912 goto out_close; 913 914 memcpy(bid->data, abfd->build_id->data, abfd->build_id->size); 915 memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size); 916 err = bid->size = abfd->build_id->size; 917 918 out_close: 919 bfd_close(abfd); 920 return err; 921 } 922 923 #else // HAVE_LIBBFD_BUILDID_SUPPORT 924 925 static int read_build_id(const char *filename, struct build_id *bid) 926 { 927 size_t size = sizeof(bid->data); 928 int fd, err = -1; 929 Elf *elf; 930 931 if (size < BUILD_ID_SIZE) 932 goto out; 933 934 fd = open(filename, O_RDONLY); 935 if (fd < 0) 936 goto out; 937 938 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 939 if (elf == NULL) { 940 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 941 goto out_close; 942 } 943 944 err = elf_read_build_id(elf, bid->data, size); 945 if (err > 0) 946 bid->size = err; 947 948 elf_end(elf); 949 out_close: 950 close(fd); 951 out: 952 return err; 953 } 954 955 #endif // HAVE_LIBBFD_BUILDID_SUPPORT 956 957 int filename__read_build_id(const char *filename, struct build_id *bid) 958 { 959 struct kmod_path m = { .name = NULL, }; 960 char path[PATH_MAX]; 961 int err; 962 963 if (!filename) 964 return -EFAULT; 965 966 err = kmod_path__parse(&m, filename); 967 if (err) 968 return -1; 969 970 if (m.comp) { 971 int error = 0, fd; 972 973 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error); 974 if (fd < 0) { 975 pr_debug("Failed to decompress (error %d) %s\n", 976 error, filename); 977 return -1; 978 } 979 close(fd); 980 filename = path; 981 } 982 983 err = read_build_id(filename, bid); 984 985 if (m.comp) 986 unlink(filename); 987 return err; 988 } 989 990 int sysfs__read_build_id(const char *filename, struct build_id *bid) 991 { 992 size_t size = sizeof(bid->data); 993 int fd, err = -1; 994 995 fd = open(filename, O_RDONLY); 996 if (fd < 0) 997 goto out; 998 999 while (1) { 1000 char bf[BUFSIZ]; 1001 GElf_Nhdr nhdr; 1002 size_t namesz, descsz; 1003 1004 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 1005 break; 1006 1007 namesz = NOTE_ALIGN(nhdr.n_namesz); 1008 descsz = NOTE_ALIGN(nhdr.n_descsz); 1009 if (nhdr.n_type == NT_GNU_BUILD_ID && 1010 nhdr.n_namesz == sizeof("GNU")) { 1011 if (read(fd, bf, namesz) != (ssize_t)namesz) 1012 break; 1013 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 1014 size_t sz = min(descsz, size); 1015 if (read(fd, bid->data, sz) == (ssize_t)sz) { 1016 memset(bid->data + sz, 0, size - sz); 1017 bid->size = sz; 1018 err = 0; 1019 break; 1020 } 1021 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 1022 break; 1023 } else { 1024 int n = namesz + descsz; 1025 1026 if (n > (int)sizeof(bf)) { 1027 n = sizeof(bf); 1028 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 1029 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 1030 } 1031 if (read(fd, bf, n) != n) 1032 break; 1033 } 1034 } 1035 close(fd); 1036 out: 1037 return err; 1038 } 1039 1040 #ifdef HAVE_LIBBFD_SUPPORT 1041 1042 int filename__read_debuglink(const char *filename, char *debuglink, 1043 size_t size) 1044 { 1045 int err = -1; 1046 asection *section; 1047 bfd *abfd; 1048 1049 abfd = bfd_openr(filename, NULL); 1050 if (!abfd) 1051 return -1; 1052 1053 if (!bfd_check_format(abfd, bfd_object)) { 1054 pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename); 1055 goto out_close; 1056 } 1057 1058 section = bfd_get_section_by_name(abfd, ".gnu_debuglink"); 1059 if (!section) 1060 goto out_close; 1061 1062 if (section->size > size) 1063 goto out_close; 1064 1065 if (!bfd_get_section_contents(abfd, section, debuglink, 0, 1066 section->size)) 1067 goto out_close; 1068 1069 err = 0; 1070 1071 out_close: 1072 bfd_close(abfd); 1073 return err; 1074 } 1075 1076 #else 1077 1078 int filename__read_debuglink(const char *filename, char *debuglink, 1079 size_t size) 1080 { 1081 int fd, err = -1; 1082 Elf *elf; 1083 GElf_Ehdr ehdr; 1084 GElf_Shdr shdr; 1085 Elf_Data *data; 1086 Elf_Scn *sec; 1087 Elf_Kind ek; 1088 1089 fd = open(filename, O_RDONLY); 1090 if (fd < 0) 1091 goto out; 1092 1093 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1094 if (elf == NULL) { 1095 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 1096 goto out_close; 1097 } 1098 1099 ek = elf_kind(elf); 1100 if (ek != ELF_K_ELF) 1101 goto out_elf_end; 1102 1103 if (gelf_getehdr(elf, &ehdr) == NULL) { 1104 pr_err("%s: cannot get elf header.\n", __func__); 1105 goto out_elf_end; 1106 } 1107 1108 sec = elf_section_by_name(elf, &ehdr, &shdr, 1109 ".gnu_debuglink", NULL); 1110 if (sec == NULL) 1111 goto out_elf_end; 1112 1113 data = elf_getdata(sec, NULL); 1114 if (data == NULL) 1115 goto out_elf_end; 1116 1117 /* the start of this section is a zero-terminated string */ 1118 strncpy(debuglink, data->d_buf, size); 1119 1120 err = 0; 1121 1122 out_elf_end: 1123 elf_end(elf); 1124 out_close: 1125 close(fd); 1126 out: 1127 return err; 1128 } 1129 1130 #endif 1131 1132 static int dso__swap_init(struct dso *dso, unsigned char eidata) 1133 { 1134 static unsigned int const endian = 1; 1135 1136 dso->needs_swap = DSO_SWAP__NO; 1137 1138 switch (eidata) { 1139 case ELFDATA2LSB: 1140 /* We are big endian, DSO is little endian. */ 1141 if (*(unsigned char const *)&endian != 1) 1142 dso->needs_swap = DSO_SWAP__YES; 1143 break; 1144 1145 case ELFDATA2MSB: 1146 /* We are little endian, DSO is big endian. */ 1147 if (*(unsigned char const *)&endian != 0) 1148 dso->needs_swap = DSO_SWAP__YES; 1149 break; 1150 1151 default: 1152 pr_err("unrecognized DSO data encoding %d\n", eidata); 1153 return -EINVAL; 1154 } 1155 1156 return 0; 1157 } 1158 1159 bool symsrc__possibly_runtime(struct symsrc *ss) 1160 { 1161 return ss->dynsym || ss->opdsec; 1162 } 1163 1164 bool symsrc__has_symtab(struct symsrc *ss) 1165 { 1166 return ss->symtab != NULL; 1167 } 1168 1169 void symsrc__destroy(struct symsrc *ss) 1170 { 1171 zfree(&ss->name); 1172 elf_end(ss->elf); 1173 close(ss->fd); 1174 } 1175 1176 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 1177 { 1178 /* 1179 * Usually vmlinux is an ELF file with type ET_EXEC for most 1180 * architectures; except Arm64 kernel is linked with option 1181 * '-share', so need to check type ET_DYN. 1182 */ 1183 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 1184 ehdr.e_type == ET_DYN; 1185 } 1186 1187 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 1188 enum dso_binary_type type) 1189 { 1190 GElf_Ehdr ehdr; 1191 Elf *elf; 1192 int fd; 1193 1194 if (dso__needs_decompress(dso)) { 1195 fd = dso__decompress_kmodule_fd(dso, name); 1196 if (fd < 0) 1197 return -1; 1198 1199 type = dso->symtab_type; 1200 } else { 1201 fd = open(name, O_RDONLY); 1202 if (fd < 0) { 1203 dso->load_errno = errno; 1204 return -1; 1205 } 1206 } 1207 1208 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1209 if (elf == NULL) { 1210 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 1211 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1212 goto out_close; 1213 } 1214 1215 if (gelf_getehdr(elf, &ehdr) == NULL) { 1216 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 1217 pr_debug("%s: cannot get elf header.\n", __func__); 1218 goto out_elf_end; 1219 } 1220 1221 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 1222 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 1223 goto out_elf_end; 1224 } 1225 1226 /* Always reject images with a mismatched build-id: */ 1227 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 1228 u8 build_id[BUILD_ID_SIZE]; 1229 struct build_id bid; 1230 int size; 1231 1232 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE); 1233 if (size <= 0) { 1234 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 1235 goto out_elf_end; 1236 } 1237 1238 build_id__init(&bid, build_id, size); 1239 if (!dso__build_id_equal(dso, &bid)) { 1240 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 1241 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 1242 goto out_elf_end; 1243 } 1244 } 1245 1246 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1247 1248 ss->symtab_idx = 0; 1249 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 1250 &ss->symtab_idx); 1251 if (ss->symshdr.sh_type != SHT_SYMTAB) 1252 ss->symtab = NULL; 1253 1254 ss->dynsym_idx = 0; 1255 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 1256 &ss->dynsym_idx); 1257 if (ss->dynshdr.sh_type != SHT_DYNSYM) 1258 ss->dynsym = NULL; 1259 1260 ss->opdidx = 0; 1261 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 1262 &ss->opdidx); 1263 if (ss->opdshdr.sh_type != SHT_PROGBITS) 1264 ss->opdsec = NULL; 1265 1266 if (dso->kernel == DSO_SPACE__USER) 1267 ss->adjust_symbols = true; 1268 else 1269 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 1270 1271 ss->name = strdup(name); 1272 if (!ss->name) { 1273 dso->load_errno = errno; 1274 goto out_elf_end; 1275 } 1276 1277 ss->elf = elf; 1278 ss->fd = fd; 1279 ss->ehdr = ehdr; 1280 ss->type = type; 1281 1282 return 0; 1283 1284 out_elf_end: 1285 elf_end(elf); 1286 out_close: 1287 close(fd); 1288 return -1; 1289 } 1290 1291 /** 1292 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 1293 * @kmap: kernel maps and relocation reference symbol 1294 * 1295 * This function returns %true if we are dealing with the kernel maps and the 1296 * relocation reference symbol has not yet been found. Otherwise %false is 1297 * returned. 1298 */ 1299 static bool ref_reloc_sym_not_found(struct kmap *kmap) 1300 { 1301 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 1302 !kmap->ref_reloc_sym->unrelocated_addr; 1303 } 1304 1305 /** 1306 * ref_reloc - kernel relocation offset. 1307 * @kmap: kernel maps and relocation reference symbol 1308 * 1309 * This function returns the offset of kernel addresses as determined by using 1310 * the relocation reference symbol i.e. if the kernel has not been relocated 1311 * then the return value is zero. 1312 */ 1313 static u64 ref_reloc(struct kmap *kmap) 1314 { 1315 if (kmap && kmap->ref_reloc_sym && 1316 kmap->ref_reloc_sym->unrelocated_addr) 1317 return kmap->ref_reloc_sym->addr - 1318 kmap->ref_reloc_sym->unrelocated_addr; 1319 return 0; 1320 } 1321 1322 void __weak arch__sym_update(struct symbol *s __maybe_unused, 1323 GElf_Sym *sym __maybe_unused) { } 1324 1325 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 1326 GElf_Sym *sym, GElf_Shdr *shdr, 1327 struct maps *kmaps, struct kmap *kmap, 1328 struct dso **curr_dsop, struct map **curr_mapp, 1329 const char *section_name, 1330 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 1331 { 1332 struct dso *curr_dso = *curr_dsop; 1333 struct map *curr_map; 1334 char dso_name[PATH_MAX]; 1335 1336 /* Adjust symbol to map to file offset */ 1337 if (adjust_kernel_syms) 1338 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 1339 1340 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 1341 return 0; 1342 1343 if (strcmp(section_name, ".text") == 0) { 1344 /* 1345 * The initial kernel mapping is based on 1346 * kallsyms and identity maps. Overwrite it to 1347 * map to the kernel dso. 1348 */ 1349 if (*remap_kernel && dso->kernel && !kmodule) { 1350 *remap_kernel = false; 1351 map->start = shdr->sh_addr + ref_reloc(kmap); 1352 map->end = map->start + shdr->sh_size; 1353 map->pgoff = shdr->sh_offset; 1354 map->map_ip = map__map_ip; 1355 map->unmap_ip = map__unmap_ip; 1356 /* Ensure maps are correctly ordered */ 1357 if (kmaps) { 1358 map__get(map); 1359 maps__remove(kmaps, map); 1360 maps__insert(kmaps, map); 1361 map__put(map); 1362 } 1363 } 1364 1365 /* 1366 * The initial module mapping is based on 1367 * /proc/modules mapped to offset zero. 1368 * Overwrite it to map to the module dso. 1369 */ 1370 if (*remap_kernel && kmodule) { 1371 *remap_kernel = false; 1372 map->pgoff = shdr->sh_offset; 1373 } 1374 1375 *curr_mapp = map; 1376 *curr_dsop = dso; 1377 return 0; 1378 } 1379 1380 if (!kmap) 1381 return 0; 1382 1383 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 1384 1385 curr_map = maps__find_by_name(kmaps, dso_name); 1386 if (curr_map == NULL) { 1387 u64 start = sym->st_value; 1388 1389 if (kmodule) 1390 start += map->start + shdr->sh_offset; 1391 1392 curr_dso = dso__new(dso_name); 1393 if (curr_dso == NULL) 1394 return -1; 1395 curr_dso->kernel = dso->kernel; 1396 curr_dso->long_name = dso->long_name; 1397 curr_dso->long_name_len = dso->long_name_len; 1398 curr_map = map__new2(start, curr_dso); 1399 dso__put(curr_dso); 1400 if (curr_map == NULL) 1401 return -1; 1402 1403 if (curr_dso->kernel) 1404 map__kmap(curr_map)->kmaps = kmaps; 1405 1406 if (adjust_kernel_syms) { 1407 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 1408 curr_map->end = curr_map->start + shdr->sh_size; 1409 curr_map->pgoff = shdr->sh_offset; 1410 } else { 1411 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 1412 } 1413 curr_dso->symtab_type = dso->symtab_type; 1414 maps__insert(kmaps, curr_map); 1415 /* 1416 * Add it before we drop the reference to curr_map, i.e. while 1417 * we still are sure to have a reference to this DSO via 1418 * *curr_map->dso. 1419 */ 1420 dsos__add(&kmaps->machine->dsos, curr_dso); 1421 /* kmaps already got it */ 1422 map__put(curr_map); 1423 dso__set_loaded(curr_dso); 1424 *curr_mapp = curr_map; 1425 *curr_dsop = curr_dso; 1426 } else 1427 *curr_dsop = curr_map->dso; 1428 1429 return 0; 1430 } 1431 1432 static int 1433 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1434 struct symsrc *runtime_ss, int kmodule, int dynsym) 1435 { 1436 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 1437 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 1438 struct map *curr_map = map; 1439 struct dso *curr_dso = dso; 1440 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym; 1441 uint32_t nr_syms; 1442 int err = -1; 1443 uint32_t idx; 1444 GElf_Ehdr ehdr; 1445 GElf_Shdr shdr; 1446 GElf_Shdr tshdr; 1447 Elf_Data *syms, *opddata = NULL; 1448 GElf_Sym sym; 1449 Elf_Scn *sec, *sec_strndx; 1450 Elf *elf; 1451 int nr = 0; 1452 bool remap_kernel = false, adjust_kernel_syms = false; 1453 1454 if (kmap && !kmaps) 1455 return -1; 1456 1457 elf = syms_ss->elf; 1458 ehdr = syms_ss->ehdr; 1459 if (dynsym) { 1460 sec = syms_ss->dynsym; 1461 shdr = syms_ss->dynshdr; 1462 } else { 1463 sec = syms_ss->symtab; 1464 shdr = syms_ss->symshdr; 1465 } 1466 1467 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1468 ".text", NULL)) 1469 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1470 1471 if (runtime_ss->opdsec) 1472 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1473 1474 syms = elf_getdata(sec, NULL); 1475 if (syms == NULL) 1476 goto out_elf_end; 1477 1478 sec = elf_getscn(elf, shdr.sh_link); 1479 if (sec == NULL) 1480 goto out_elf_end; 1481 1482 symstrs = elf_getdata(sec, NULL); 1483 if (symstrs == NULL) 1484 goto out_elf_end; 1485 1486 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1487 if (sec_strndx == NULL) 1488 goto out_elf_end; 1489 1490 secstrs_run = elf_getdata(sec_strndx, NULL); 1491 if (secstrs_run == NULL) 1492 goto out_elf_end; 1493 1494 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx); 1495 if (sec_strndx == NULL) 1496 goto out_elf_end; 1497 1498 secstrs_sym = elf_getdata(sec_strndx, NULL); 1499 if (secstrs_sym == NULL) 1500 goto out_elf_end; 1501 1502 nr_syms = shdr.sh_size / shdr.sh_entsize; 1503 1504 memset(&sym, 0, sizeof(sym)); 1505 1506 /* 1507 * The kernel relocation symbol is needed in advance in order to adjust 1508 * kernel maps correctly. 1509 */ 1510 if (ref_reloc_sym_not_found(kmap)) { 1511 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1512 const char *elf_name = elf_sym__name(&sym, symstrs); 1513 1514 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1515 continue; 1516 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1517 map->reloc = kmap->ref_reloc_sym->addr - 1518 kmap->ref_reloc_sym->unrelocated_addr; 1519 break; 1520 } 1521 } 1522 1523 /* 1524 * Handle any relocation of vdso necessary because older kernels 1525 * attempted to prelink vdso to its virtual address. 1526 */ 1527 if (dso__is_vdso(dso)) 1528 map->reloc = map->start - dso->text_offset; 1529 1530 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1531 /* 1532 * Initial kernel and module mappings do not map to the dso. 1533 * Flag the fixups. 1534 */ 1535 if (dso->kernel) { 1536 remap_kernel = true; 1537 adjust_kernel_syms = dso->adjust_symbols; 1538 } 1539 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1540 struct symbol *f; 1541 const char *elf_name = elf_sym__name(&sym, symstrs); 1542 char *demangled = NULL; 1543 int is_label = elf_sym__is_label(&sym); 1544 const char *section_name; 1545 bool used_opd = false; 1546 1547 if (!is_label && !elf_sym__filter(&sym)) 1548 continue; 1549 1550 /* Reject ARM ELF "mapping symbols": these aren't unique and 1551 * don't identify functions, so will confuse the profile 1552 * output: */ 1553 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1554 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1555 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1556 continue; 1557 } 1558 1559 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1560 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1561 u64 *opd = opddata->d_buf + offset; 1562 sym.st_value = DSO__SWAP(dso, u64, *opd); 1563 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1564 sym.st_value); 1565 used_opd = true; 1566 } 1567 1568 /* 1569 * When loading symbols in a data mapping, ABS symbols (which 1570 * has a value of SHN_ABS in its st_shndx) failed at 1571 * elf_getscn(). And it marks the loading as a failure so 1572 * already loaded symbols cannot be fixed up. 1573 * 1574 * I'm not sure what should be done. Just ignore them for now. 1575 * - Namhyung Kim 1576 */ 1577 if (sym.st_shndx == SHN_ABS) 1578 continue; 1579 1580 sec = elf_getscn(syms_ss->elf, sym.st_shndx); 1581 if (!sec) 1582 goto out_elf_end; 1583 1584 gelf_getshdr(sec, &shdr); 1585 1586 /* 1587 * If the attribute bit SHF_ALLOC is not set, the section 1588 * doesn't occupy memory during process execution. 1589 * E.g. ".gnu.warning.*" section is used by linker to generate 1590 * warnings when calling deprecated functions, the symbols in 1591 * the section aren't loaded to memory during process execution, 1592 * so skip them. 1593 */ 1594 if (!(shdr.sh_flags & SHF_ALLOC)) 1595 continue; 1596 1597 secstrs = secstrs_sym; 1598 1599 /* 1600 * We have to fallback to runtime when syms' section header has 1601 * NOBITS set. NOBITS results in file offset (sh_offset) not 1602 * being incremented. So sh_offset used below has different 1603 * values for syms (invalid) and runtime (valid). 1604 */ 1605 if (shdr.sh_type == SHT_NOBITS) { 1606 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1607 if (!sec) 1608 goto out_elf_end; 1609 1610 gelf_getshdr(sec, &shdr); 1611 secstrs = secstrs_run; 1612 } 1613 1614 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1615 continue; 1616 1617 section_name = elf_sec__name(&shdr, secstrs); 1618 1619 /* On ARM, symbols for thumb functions have 1 added to 1620 * the symbol address as a flag - remove it */ 1621 if ((ehdr.e_machine == EM_ARM) && 1622 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1623 (sym.st_value & 1)) 1624 --sym.st_value; 1625 1626 if (dso->kernel) { 1627 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1628 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1629 goto out_elf_end; 1630 } else if ((used_opd && runtime_ss->adjust_symbols) || 1631 (!used_opd && syms_ss->adjust_symbols)) { 1632 GElf_Phdr phdr; 1633 1634 if (elf_read_program_header(runtime_ss->elf, 1635 (u64)sym.st_value, &phdr)) { 1636 pr_debug4("%s: failed to find program header for " 1637 "symbol: %s st_value: %#" PRIx64 "\n", 1638 __func__, elf_name, (u64)sym.st_value); 1639 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1640 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", 1641 __func__, (u64)sym.st_value, (u64)shdr.sh_addr, 1642 (u64)shdr.sh_offset); 1643 /* 1644 * Fail to find program header, let's rollback 1645 * to use shdr.sh_addr and shdr.sh_offset to 1646 * calibrate symbol's file address, though this 1647 * is not necessary for normal C ELF file, we 1648 * still need to handle java JIT symbols in this 1649 * case. 1650 */ 1651 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1652 } else { 1653 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1654 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n", 1655 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr, 1656 (u64)phdr.p_offset); 1657 sym.st_value -= phdr.p_vaddr - phdr.p_offset; 1658 } 1659 } 1660 1661 demangled = demangle_sym(dso, kmodule, elf_name); 1662 if (demangled != NULL) 1663 elf_name = demangled; 1664 1665 f = symbol__new(sym.st_value, sym.st_size, 1666 GELF_ST_BIND(sym.st_info), 1667 GELF_ST_TYPE(sym.st_info), elf_name); 1668 free(demangled); 1669 if (!f) 1670 goto out_elf_end; 1671 1672 arch__sym_update(f, &sym); 1673 1674 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1675 nr++; 1676 } 1677 1678 /* 1679 * For misannotated, zeroed, ASM function sizes. 1680 */ 1681 if (nr > 0) { 1682 symbols__fixup_end(&dso->symbols, false); 1683 symbols__fixup_duplicate(&dso->symbols); 1684 if (kmap) { 1685 /* 1686 * We need to fixup this here too because we create new 1687 * maps here, for things like vsyscall sections. 1688 */ 1689 maps__fixup_end(kmaps); 1690 } 1691 } 1692 err = nr; 1693 out_elf_end: 1694 return err; 1695 } 1696 1697 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 1698 struct symsrc *runtime_ss, int kmodule) 1699 { 1700 int nr = 0; 1701 int err = -1; 1702 1703 dso->symtab_type = syms_ss->type; 1704 dso->is_64_bit = syms_ss->is_64_bit; 1705 dso->rel = syms_ss->ehdr.e_type == ET_REL; 1706 1707 /* 1708 * Modules may already have symbols from kallsyms, but those symbols 1709 * have the wrong values for the dso maps, so remove them. 1710 */ 1711 if (kmodule && syms_ss->symtab) 1712 symbols__delete(&dso->symbols); 1713 1714 if (!syms_ss->symtab) { 1715 /* 1716 * If the vmlinux is stripped, fail so we will fall back 1717 * to using kallsyms. The vmlinux runtime symbols aren't 1718 * of much use. 1719 */ 1720 if (dso->kernel) 1721 return err; 1722 } else { 1723 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1724 kmodule, 0); 1725 if (err < 0) 1726 return err; 1727 nr = err; 1728 } 1729 1730 if (syms_ss->dynsym) { 1731 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss, 1732 kmodule, 1); 1733 if (err < 0) 1734 return err; 1735 err += nr; 1736 } 1737 1738 return err; 1739 } 1740 1741 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1742 { 1743 GElf_Phdr phdr; 1744 size_t i, phdrnum; 1745 int err; 1746 u64 sz; 1747 1748 if (elf_getphdrnum(elf, &phdrnum)) 1749 return -1; 1750 1751 for (i = 0; i < phdrnum; i++) { 1752 if (gelf_getphdr(elf, i, &phdr) == NULL) 1753 return -1; 1754 if (phdr.p_type != PT_LOAD) 1755 continue; 1756 if (exe) { 1757 if (!(phdr.p_flags & PF_X)) 1758 continue; 1759 } else { 1760 if (!(phdr.p_flags & PF_R)) 1761 continue; 1762 } 1763 sz = min(phdr.p_memsz, phdr.p_filesz); 1764 if (!sz) 1765 continue; 1766 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1767 if (err) 1768 return err; 1769 } 1770 return 0; 1771 } 1772 1773 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1774 bool *is_64_bit) 1775 { 1776 int err; 1777 Elf *elf; 1778 1779 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1780 if (elf == NULL) 1781 return -1; 1782 1783 if (is_64_bit) 1784 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1785 1786 err = elf_read_maps(elf, exe, mapfn, data); 1787 1788 elf_end(elf); 1789 return err; 1790 } 1791 1792 enum dso_type dso__type_fd(int fd) 1793 { 1794 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1795 GElf_Ehdr ehdr; 1796 Elf_Kind ek; 1797 Elf *elf; 1798 1799 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1800 if (elf == NULL) 1801 goto out; 1802 1803 ek = elf_kind(elf); 1804 if (ek != ELF_K_ELF) 1805 goto out_end; 1806 1807 if (gelf_getclass(elf) == ELFCLASS64) { 1808 dso_type = DSO__TYPE_64BIT; 1809 goto out_end; 1810 } 1811 1812 if (gelf_getehdr(elf, &ehdr) == NULL) 1813 goto out_end; 1814 1815 if (ehdr.e_machine == EM_X86_64) 1816 dso_type = DSO__TYPE_X32BIT; 1817 else 1818 dso_type = DSO__TYPE_32BIT; 1819 out_end: 1820 elf_end(elf); 1821 out: 1822 return dso_type; 1823 } 1824 1825 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1826 { 1827 ssize_t r; 1828 size_t n; 1829 int err = -1; 1830 char *buf = malloc(page_size); 1831 1832 if (buf == NULL) 1833 return -1; 1834 1835 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1836 goto out; 1837 1838 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1839 goto out; 1840 1841 while (len) { 1842 n = page_size; 1843 if (len < n) 1844 n = len; 1845 /* Use read because mmap won't work on proc files */ 1846 r = read(from, buf, n); 1847 if (r < 0) 1848 goto out; 1849 if (!r) 1850 break; 1851 n = r; 1852 r = write(to, buf, n); 1853 if (r < 0) 1854 goto out; 1855 if ((size_t)r != n) 1856 goto out; 1857 len -= n; 1858 } 1859 1860 err = 0; 1861 out: 1862 free(buf); 1863 return err; 1864 } 1865 1866 struct kcore { 1867 int fd; 1868 int elfclass; 1869 Elf *elf; 1870 GElf_Ehdr ehdr; 1871 }; 1872 1873 static int kcore__open(struct kcore *kcore, const char *filename) 1874 { 1875 GElf_Ehdr *ehdr; 1876 1877 kcore->fd = open(filename, O_RDONLY); 1878 if (kcore->fd == -1) 1879 return -1; 1880 1881 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1882 if (!kcore->elf) 1883 goto out_close; 1884 1885 kcore->elfclass = gelf_getclass(kcore->elf); 1886 if (kcore->elfclass == ELFCLASSNONE) 1887 goto out_end; 1888 1889 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1890 if (!ehdr) 1891 goto out_end; 1892 1893 return 0; 1894 1895 out_end: 1896 elf_end(kcore->elf); 1897 out_close: 1898 close(kcore->fd); 1899 return -1; 1900 } 1901 1902 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1903 bool temp) 1904 { 1905 kcore->elfclass = elfclass; 1906 1907 if (temp) 1908 kcore->fd = mkstemp(filename); 1909 else 1910 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1911 if (kcore->fd == -1) 1912 return -1; 1913 1914 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1915 if (!kcore->elf) 1916 goto out_close; 1917 1918 if (!gelf_newehdr(kcore->elf, elfclass)) 1919 goto out_end; 1920 1921 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1922 1923 return 0; 1924 1925 out_end: 1926 elf_end(kcore->elf); 1927 out_close: 1928 close(kcore->fd); 1929 unlink(filename); 1930 return -1; 1931 } 1932 1933 static void kcore__close(struct kcore *kcore) 1934 { 1935 elf_end(kcore->elf); 1936 close(kcore->fd); 1937 } 1938 1939 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1940 { 1941 GElf_Ehdr *ehdr = &to->ehdr; 1942 GElf_Ehdr *kehdr = &from->ehdr; 1943 1944 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1945 ehdr->e_type = kehdr->e_type; 1946 ehdr->e_machine = kehdr->e_machine; 1947 ehdr->e_version = kehdr->e_version; 1948 ehdr->e_entry = 0; 1949 ehdr->e_shoff = 0; 1950 ehdr->e_flags = kehdr->e_flags; 1951 ehdr->e_phnum = count; 1952 ehdr->e_shentsize = 0; 1953 ehdr->e_shnum = 0; 1954 ehdr->e_shstrndx = 0; 1955 1956 if (from->elfclass == ELFCLASS32) { 1957 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1958 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1959 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1960 } else { 1961 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1962 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1963 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1964 } 1965 1966 if (!gelf_update_ehdr(to->elf, ehdr)) 1967 return -1; 1968 1969 if (!gelf_newphdr(to->elf, count)) 1970 return -1; 1971 1972 return 0; 1973 } 1974 1975 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1976 u64 addr, u64 len) 1977 { 1978 GElf_Phdr phdr = { 1979 .p_type = PT_LOAD, 1980 .p_flags = PF_R | PF_W | PF_X, 1981 .p_offset = offset, 1982 .p_vaddr = addr, 1983 .p_paddr = 0, 1984 .p_filesz = len, 1985 .p_memsz = len, 1986 .p_align = page_size, 1987 }; 1988 1989 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1990 return -1; 1991 1992 return 0; 1993 } 1994 1995 static off_t kcore__write(struct kcore *kcore) 1996 { 1997 return elf_update(kcore->elf, ELF_C_WRITE); 1998 } 1999 2000 struct phdr_data { 2001 off_t offset; 2002 off_t rel; 2003 u64 addr; 2004 u64 len; 2005 struct list_head node; 2006 struct phdr_data *remaps; 2007 }; 2008 2009 struct sym_data { 2010 u64 addr; 2011 struct list_head node; 2012 }; 2013 2014 struct kcore_copy_info { 2015 u64 stext; 2016 u64 etext; 2017 u64 first_symbol; 2018 u64 last_symbol; 2019 u64 first_module; 2020 u64 first_module_symbol; 2021 u64 last_module_symbol; 2022 size_t phnum; 2023 struct list_head phdrs; 2024 struct list_head syms; 2025 }; 2026 2027 #define kcore_copy__for_each_phdr(k, p) \ 2028 list_for_each_entry((p), &(k)->phdrs, node) 2029 2030 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 2031 { 2032 struct phdr_data *p = zalloc(sizeof(*p)); 2033 2034 if (p) { 2035 p->addr = addr; 2036 p->len = len; 2037 p->offset = offset; 2038 } 2039 2040 return p; 2041 } 2042 2043 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 2044 u64 addr, u64 len, 2045 off_t offset) 2046 { 2047 struct phdr_data *p = phdr_data__new(addr, len, offset); 2048 2049 if (p) 2050 list_add_tail(&p->node, &kci->phdrs); 2051 2052 return p; 2053 } 2054 2055 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 2056 { 2057 struct phdr_data *p, *tmp; 2058 2059 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 2060 list_del_init(&p->node); 2061 free(p); 2062 } 2063 } 2064 2065 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 2066 u64 addr) 2067 { 2068 struct sym_data *s = zalloc(sizeof(*s)); 2069 2070 if (s) { 2071 s->addr = addr; 2072 list_add_tail(&s->node, &kci->syms); 2073 } 2074 2075 return s; 2076 } 2077 2078 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 2079 { 2080 struct sym_data *s, *tmp; 2081 2082 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 2083 list_del_init(&s->node); 2084 free(s); 2085 } 2086 } 2087 2088 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 2089 u64 start) 2090 { 2091 struct kcore_copy_info *kci = arg; 2092 2093 if (!kallsyms__is_function(type)) 2094 return 0; 2095 2096 if (strchr(name, '[')) { 2097 if (!kci->first_module_symbol || start < kci->first_module_symbol) 2098 kci->first_module_symbol = start; 2099 if (start > kci->last_module_symbol) 2100 kci->last_module_symbol = start; 2101 return 0; 2102 } 2103 2104 if (!kci->first_symbol || start < kci->first_symbol) 2105 kci->first_symbol = start; 2106 2107 if (!kci->last_symbol || start > kci->last_symbol) 2108 kci->last_symbol = start; 2109 2110 if (!strcmp(name, "_stext")) { 2111 kci->stext = start; 2112 return 0; 2113 } 2114 2115 if (!strcmp(name, "_etext")) { 2116 kci->etext = start; 2117 return 0; 2118 } 2119 2120 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 2121 return -1; 2122 2123 return 0; 2124 } 2125 2126 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 2127 const char *dir) 2128 { 2129 char kallsyms_filename[PATH_MAX]; 2130 2131 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 2132 2133 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 2134 return -1; 2135 2136 if (kallsyms__parse(kallsyms_filename, kci, 2137 kcore_copy__process_kallsyms) < 0) 2138 return -1; 2139 2140 return 0; 2141 } 2142 2143 static int kcore_copy__process_modules(void *arg, 2144 const char *name __maybe_unused, 2145 u64 start, u64 size __maybe_unused) 2146 { 2147 struct kcore_copy_info *kci = arg; 2148 2149 if (!kci->first_module || start < kci->first_module) 2150 kci->first_module = start; 2151 2152 return 0; 2153 } 2154 2155 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 2156 const char *dir) 2157 { 2158 char modules_filename[PATH_MAX]; 2159 2160 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 2161 2162 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 2163 return -1; 2164 2165 if (modules__parse(modules_filename, kci, 2166 kcore_copy__process_modules) < 0) 2167 return -1; 2168 2169 return 0; 2170 } 2171 2172 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 2173 u64 pgoff, u64 s, u64 e) 2174 { 2175 u64 len, offset; 2176 2177 if (s < start || s >= end) 2178 return 0; 2179 2180 offset = (s - start) + pgoff; 2181 len = e < end ? e - s : end - s; 2182 2183 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 2184 } 2185 2186 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 2187 { 2188 struct kcore_copy_info *kci = data; 2189 u64 end = start + len; 2190 struct sym_data *sdat; 2191 2192 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 2193 return -1; 2194 2195 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 2196 kci->last_module_symbol)) 2197 return -1; 2198 2199 list_for_each_entry(sdat, &kci->syms, node) { 2200 u64 s = round_down(sdat->addr, page_size); 2201 2202 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 2203 return -1; 2204 } 2205 2206 return 0; 2207 } 2208 2209 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 2210 { 2211 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 2212 return -1; 2213 2214 return 0; 2215 } 2216 2217 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 2218 { 2219 struct phdr_data *p, *k = NULL; 2220 u64 kend; 2221 2222 if (!kci->stext) 2223 return; 2224 2225 /* Find phdr that corresponds to the kernel map (contains stext) */ 2226 kcore_copy__for_each_phdr(kci, p) { 2227 u64 pend = p->addr + p->len - 1; 2228 2229 if (p->addr <= kci->stext && pend >= kci->stext) { 2230 k = p; 2231 break; 2232 } 2233 } 2234 2235 if (!k) 2236 return; 2237 2238 kend = k->offset + k->len; 2239 2240 /* Find phdrs that remap the kernel */ 2241 kcore_copy__for_each_phdr(kci, p) { 2242 u64 pend = p->offset + p->len; 2243 2244 if (p == k) 2245 continue; 2246 2247 if (p->offset >= k->offset && pend <= kend) 2248 p->remaps = k; 2249 } 2250 } 2251 2252 static void kcore_copy__layout(struct kcore_copy_info *kci) 2253 { 2254 struct phdr_data *p; 2255 off_t rel = 0; 2256 2257 kcore_copy__find_remaps(kci); 2258 2259 kcore_copy__for_each_phdr(kci, p) { 2260 if (!p->remaps) { 2261 p->rel = rel; 2262 rel += p->len; 2263 } 2264 kci->phnum += 1; 2265 } 2266 2267 kcore_copy__for_each_phdr(kci, p) { 2268 struct phdr_data *k = p->remaps; 2269 2270 if (k) 2271 p->rel = p->offset - k->offset + k->rel; 2272 } 2273 } 2274 2275 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 2276 Elf *elf) 2277 { 2278 if (kcore_copy__parse_kallsyms(kci, dir)) 2279 return -1; 2280 2281 if (kcore_copy__parse_modules(kci, dir)) 2282 return -1; 2283 2284 if (kci->stext) 2285 kci->stext = round_down(kci->stext, page_size); 2286 else 2287 kci->stext = round_down(kci->first_symbol, page_size); 2288 2289 if (kci->etext) { 2290 kci->etext = round_up(kci->etext, page_size); 2291 } else if (kci->last_symbol) { 2292 kci->etext = round_up(kci->last_symbol, page_size); 2293 kci->etext += page_size; 2294 } 2295 2296 if (kci->first_module_symbol && 2297 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 2298 kci->first_module = kci->first_module_symbol; 2299 2300 kci->first_module = round_down(kci->first_module, page_size); 2301 2302 if (kci->last_module_symbol) { 2303 kci->last_module_symbol = round_up(kci->last_module_symbol, 2304 page_size); 2305 kci->last_module_symbol += page_size; 2306 } 2307 2308 if (!kci->stext || !kci->etext) 2309 return -1; 2310 2311 if (kci->first_module && !kci->last_module_symbol) 2312 return -1; 2313 2314 if (kcore_copy__read_maps(kci, elf)) 2315 return -1; 2316 2317 kcore_copy__layout(kci); 2318 2319 return 0; 2320 } 2321 2322 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 2323 const char *name) 2324 { 2325 char from_filename[PATH_MAX]; 2326 char to_filename[PATH_MAX]; 2327 2328 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2329 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2330 2331 return copyfile_mode(from_filename, to_filename, 0400); 2332 } 2333 2334 static int kcore_copy__unlink(const char *dir, const char *name) 2335 { 2336 char filename[PATH_MAX]; 2337 2338 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 2339 2340 return unlink(filename); 2341 } 2342 2343 static int kcore_copy__compare_fds(int from, int to) 2344 { 2345 char *buf_from; 2346 char *buf_to; 2347 ssize_t ret; 2348 size_t len; 2349 int err = -1; 2350 2351 buf_from = malloc(page_size); 2352 buf_to = malloc(page_size); 2353 if (!buf_from || !buf_to) 2354 goto out; 2355 2356 while (1) { 2357 /* Use read because mmap won't work on proc files */ 2358 ret = read(from, buf_from, page_size); 2359 if (ret < 0) 2360 goto out; 2361 2362 if (!ret) 2363 break; 2364 2365 len = ret; 2366 2367 if (readn(to, buf_to, len) != (int)len) 2368 goto out; 2369 2370 if (memcmp(buf_from, buf_to, len)) 2371 goto out; 2372 } 2373 2374 err = 0; 2375 out: 2376 free(buf_to); 2377 free(buf_from); 2378 return err; 2379 } 2380 2381 static int kcore_copy__compare_files(const char *from_filename, 2382 const char *to_filename) 2383 { 2384 int from, to, err = -1; 2385 2386 from = open(from_filename, O_RDONLY); 2387 if (from < 0) 2388 return -1; 2389 2390 to = open(to_filename, O_RDONLY); 2391 if (to < 0) 2392 goto out_close_from; 2393 2394 err = kcore_copy__compare_fds(from, to); 2395 2396 close(to); 2397 out_close_from: 2398 close(from); 2399 return err; 2400 } 2401 2402 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 2403 const char *name) 2404 { 2405 char from_filename[PATH_MAX]; 2406 char to_filename[PATH_MAX]; 2407 2408 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 2409 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 2410 2411 return kcore_copy__compare_files(from_filename, to_filename); 2412 } 2413 2414 /** 2415 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 2416 * @from_dir: from directory 2417 * @to_dir: to directory 2418 * 2419 * This function copies kallsyms, modules and kcore files from one directory to 2420 * another. kallsyms and modules are copied entirely. Only code segments are 2421 * copied from kcore. It is assumed that two segments suffice: one for the 2422 * kernel proper and one for all the modules. The code segments are determined 2423 * from kallsyms and modules files. The kernel map starts at _stext or the 2424 * lowest function symbol, and ends at _etext or the highest function symbol. 2425 * The module map starts at the lowest module address and ends at the highest 2426 * module symbol. Start addresses are rounded down to the nearest page. End 2427 * addresses are rounded up to the nearest page. An extra page is added to the 2428 * highest kernel symbol and highest module symbol to, hopefully, encompass that 2429 * symbol too. Because it contains only code sections, the resulting kcore is 2430 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 2431 * is not the same for the kernel map and the modules map. That happens because 2432 * the data is copied adjacently whereas the original kcore has gaps. Finally, 2433 * kallsyms file is compared with its copy to check that modules have not been 2434 * loaded or unloaded while the copies were taking place. 2435 * 2436 * Return: %0 on success, %-1 on failure. 2437 */ 2438 int kcore_copy(const char *from_dir, const char *to_dir) 2439 { 2440 struct kcore kcore; 2441 struct kcore extract; 2442 int idx = 0, err = -1; 2443 off_t offset, sz; 2444 struct kcore_copy_info kci = { .stext = 0, }; 2445 char kcore_filename[PATH_MAX]; 2446 char extract_filename[PATH_MAX]; 2447 struct phdr_data *p; 2448 2449 INIT_LIST_HEAD(&kci.phdrs); 2450 INIT_LIST_HEAD(&kci.syms); 2451 2452 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 2453 return -1; 2454 2455 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 2456 goto out_unlink_kallsyms; 2457 2458 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 2459 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 2460 2461 if (kcore__open(&kcore, kcore_filename)) 2462 goto out_unlink_modules; 2463 2464 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 2465 goto out_kcore_close; 2466 2467 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 2468 goto out_kcore_close; 2469 2470 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 2471 goto out_extract_close; 2472 2473 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 2474 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 2475 offset = round_up(offset, page_size); 2476 2477 kcore_copy__for_each_phdr(&kci, p) { 2478 off_t offs = p->rel + offset; 2479 2480 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 2481 goto out_extract_close; 2482 } 2483 2484 sz = kcore__write(&extract); 2485 if (sz < 0 || sz > offset) 2486 goto out_extract_close; 2487 2488 kcore_copy__for_each_phdr(&kci, p) { 2489 off_t offs = p->rel + offset; 2490 2491 if (p->remaps) 2492 continue; 2493 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 2494 goto out_extract_close; 2495 } 2496 2497 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 2498 goto out_extract_close; 2499 2500 err = 0; 2501 2502 out_extract_close: 2503 kcore__close(&extract); 2504 if (err) 2505 unlink(extract_filename); 2506 out_kcore_close: 2507 kcore__close(&kcore); 2508 out_unlink_modules: 2509 if (err) 2510 kcore_copy__unlink(to_dir, "modules"); 2511 out_unlink_kallsyms: 2512 if (err) 2513 kcore_copy__unlink(to_dir, "kallsyms"); 2514 2515 kcore_copy__free_phdrs(&kci); 2516 kcore_copy__free_syms(&kci); 2517 2518 return err; 2519 } 2520 2521 int kcore_extract__create(struct kcore_extract *kce) 2522 { 2523 struct kcore kcore; 2524 struct kcore extract; 2525 size_t count = 1; 2526 int idx = 0, err = -1; 2527 off_t offset = page_size, sz; 2528 2529 if (kcore__open(&kcore, kce->kcore_filename)) 2530 return -1; 2531 2532 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 2533 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 2534 goto out_kcore_close; 2535 2536 if (kcore__copy_hdr(&kcore, &extract, count)) 2537 goto out_extract_close; 2538 2539 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 2540 goto out_extract_close; 2541 2542 sz = kcore__write(&extract); 2543 if (sz < 0 || sz > offset) 2544 goto out_extract_close; 2545 2546 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 2547 goto out_extract_close; 2548 2549 err = 0; 2550 2551 out_extract_close: 2552 kcore__close(&extract); 2553 if (err) 2554 unlink(kce->extract_filename); 2555 out_kcore_close: 2556 kcore__close(&kcore); 2557 2558 return err; 2559 } 2560 2561 void kcore_extract__delete(struct kcore_extract *kce) 2562 { 2563 unlink(kce->extract_filename); 2564 } 2565 2566 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2567 2568 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2569 { 2570 if (!base_off) 2571 return; 2572 2573 if (tmp->bit32) 2574 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2575 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2576 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2577 else 2578 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2579 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2580 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2581 } 2582 2583 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2584 GElf_Addr base_off) 2585 { 2586 if (!base_off) 2587 return; 2588 2589 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2590 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2591 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2592 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2593 } 2594 2595 /** 2596 * populate_sdt_note : Parse raw data and identify SDT note 2597 * @elf: elf of the opened file 2598 * @data: raw data of a section with description offset applied 2599 * @len: note description size 2600 * @type: type of the note 2601 * @sdt_notes: List to add the SDT note 2602 * 2603 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2604 * if its an SDT note, it appends to @sdt_notes list. 2605 */ 2606 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2607 struct list_head *sdt_notes) 2608 { 2609 const char *provider, *name, *args; 2610 struct sdt_note *tmp = NULL; 2611 GElf_Ehdr ehdr; 2612 GElf_Shdr shdr; 2613 int ret = -EINVAL; 2614 2615 union { 2616 Elf64_Addr a64[NR_ADDR]; 2617 Elf32_Addr a32[NR_ADDR]; 2618 } buf; 2619 2620 Elf_Data dst = { 2621 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2622 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2623 .d_off = 0, .d_align = 0 2624 }; 2625 Elf_Data src = { 2626 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2627 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2628 .d_align = 0 2629 }; 2630 2631 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2632 if (!tmp) { 2633 ret = -ENOMEM; 2634 goto out_err; 2635 } 2636 2637 INIT_LIST_HEAD(&tmp->note_list); 2638 2639 if (len < dst.d_size + 3) 2640 goto out_free_note; 2641 2642 /* Translation from file representation to memory representation */ 2643 if (gelf_xlatetom(*elf, &dst, &src, 2644 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2645 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2646 goto out_free_note; 2647 } 2648 2649 /* Populate the fields of sdt_note */ 2650 provider = data + dst.d_size; 2651 2652 name = (const char *)memchr(provider, '\0', data + len - provider); 2653 if (name++ == NULL) 2654 goto out_free_note; 2655 2656 tmp->provider = strdup(provider); 2657 if (!tmp->provider) { 2658 ret = -ENOMEM; 2659 goto out_free_note; 2660 } 2661 tmp->name = strdup(name); 2662 if (!tmp->name) { 2663 ret = -ENOMEM; 2664 goto out_free_prov; 2665 } 2666 2667 args = memchr(name, '\0', data + len - name); 2668 2669 /* 2670 * There is no argument if: 2671 * - We reached the end of the note; 2672 * - There is not enough room to hold a potential string; 2673 * - The argument string is empty or just contains ':'. 2674 */ 2675 if (args == NULL || data + len - args < 2 || 2676 args[1] == ':' || args[1] == '\0') 2677 tmp->args = NULL; 2678 else { 2679 tmp->args = strdup(++args); 2680 if (!tmp->args) { 2681 ret = -ENOMEM; 2682 goto out_free_name; 2683 } 2684 } 2685 2686 if (gelf_getclass(*elf) == ELFCLASS32) { 2687 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2688 tmp->bit32 = true; 2689 } else { 2690 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2691 tmp->bit32 = false; 2692 } 2693 2694 if (!gelf_getehdr(*elf, &ehdr)) { 2695 pr_debug("%s : cannot get elf header.\n", __func__); 2696 ret = -EBADF; 2697 goto out_free_args; 2698 } 2699 2700 /* Adjust the prelink effect : 2701 * Find out the .stapsdt.base section. 2702 * This scn will help us to handle prelinking (if present). 2703 * Compare the retrieved file offset of the base section with the 2704 * base address in the description of the SDT note. If its different, 2705 * then accordingly, adjust the note location. 2706 */ 2707 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2708 sdt_adjust_loc(tmp, shdr.sh_offset); 2709 2710 /* Adjust reference counter offset */ 2711 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2712 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2713 2714 list_add_tail(&tmp->note_list, sdt_notes); 2715 return 0; 2716 2717 out_free_args: 2718 zfree(&tmp->args); 2719 out_free_name: 2720 zfree(&tmp->name); 2721 out_free_prov: 2722 zfree(&tmp->provider); 2723 out_free_note: 2724 free(tmp); 2725 out_err: 2726 return ret; 2727 } 2728 2729 /** 2730 * construct_sdt_notes_list : constructs a list of SDT notes 2731 * @elf : elf to look into 2732 * @sdt_notes : empty list_head 2733 * 2734 * Scans the sections in 'elf' for the section 2735 * .note.stapsdt. It, then calls populate_sdt_note to find 2736 * out the SDT events and populates the 'sdt_notes'. 2737 */ 2738 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2739 { 2740 GElf_Ehdr ehdr; 2741 Elf_Scn *scn = NULL; 2742 Elf_Data *data; 2743 GElf_Shdr shdr; 2744 size_t shstrndx, next; 2745 GElf_Nhdr nhdr; 2746 size_t name_off, desc_off, offset; 2747 int ret = 0; 2748 2749 if (gelf_getehdr(elf, &ehdr) == NULL) { 2750 ret = -EBADF; 2751 goto out_ret; 2752 } 2753 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2754 ret = -EBADF; 2755 goto out_ret; 2756 } 2757 2758 /* Look for the required section */ 2759 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2760 if (!scn) { 2761 ret = -ENOENT; 2762 goto out_ret; 2763 } 2764 2765 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2766 ret = -ENOENT; 2767 goto out_ret; 2768 } 2769 2770 data = elf_getdata(scn, NULL); 2771 2772 /* Get the SDT notes */ 2773 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2774 &desc_off)) > 0; offset = next) { 2775 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2776 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2777 sizeof(SDT_NOTE_NAME))) { 2778 /* Check the type of the note */ 2779 if (nhdr.n_type != SDT_NOTE_TYPE) 2780 goto out_ret; 2781 2782 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2783 nhdr.n_descsz, sdt_notes); 2784 if (ret < 0) 2785 goto out_ret; 2786 } 2787 } 2788 if (list_empty(sdt_notes)) 2789 ret = -ENOENT; 2790 2791 out_ret: 2792 return ret; 2793 } 2794 2795 /** 2796 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2797 * @head : empty list_head 2798 * @target : file to find SDT notes from 2799 * 2800 * This opens the file, initializes 2801 * the ELF and then calls construct_sdt_notes_list. 2802 */ 2803 int get_sdt_note_list(struct list_head *head, const char *target) 2804 { 2805 Elf *elf; 2806 int fd, ret; 2807 2808 fd = open(target, O_RDONLY); 2809 if (fd < 0) 2810 return -EBADF; 2811 2812 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2813 if (!elf) { 2814 ret = -EBADF; 2815 goto out_close; 2816 } 2817 ret = construct_sdt_notes_list(elf, head); 2818 elf_end(elf); 2819 out_close: 2820 close(fd); 2821 return ret; 2822 } 2823 2824 /** 2825 * cleanup_sdt_note_list : free the sdt notes' list 2826 * @sdt_notes: sdt notes' list 2827 * 2828 * Free up the SDT notes in @sdt_notes. 2829 * Returns the number of SDT notes free'd. 2830 */ 2831 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2832 { 2833 struct sdt_note *tmp, *pos; 2834 int nr_free = 0; 2835 2836 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2837 list_del_init(&pos->note_list); 2838 zfree(&pos->args); 2839 zfree(&pos->name); 2840 zfree(&pos->provider); 2841 free(pos); 2842 nr_free++; 2843 } 2844 return nr_free; 2845 } 2846 2847 /** 2848 * sdt_notes__get_count: Counts the number of sdt events 2849 * @start: list_head to sdt_notes list 2850 * 2851 * Returns the number of SDT notes in a list 2852 */ 2853 int sdt_notes__get_count(struct list_head *start) 2854 { 2855 struct sdt_note *sdt_ptr; 2856 int count = 0; 2857 2858 list_for_each_entry(sdt_ptr, start, note_list) 2859 count++; 2860 return count; 2861 } 2862 #endif 2863 2864 void symbol__elf_init(void) 2865 { 2866 elf_version(EV_CURRENT); 2867 } 2868