1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "dso.h" 11 #include "map.h" 12 #include "maps.h" 13 #include "symbol.h" 14 #include "symsrc.h" 15 #include "demangle-java.h" 16 #include "demangle-rust.h" 17 #include "machine.h" 18 #include "vdso.h" 19 #include "debug.h" 20 #include "util/copyfile.h" 21 #include <linux/ctype.h> 22 #include <linux/kernel.h> 23 #include <linux/zalloc.h> 24 #include <symbol/kallsyms.h> 25 #include <internal/lib.h> 26 27 #ifndef EM_AARCH64 28 #define EM_AARCH64 183 /* ARM 64 bit */ 29 #endif 30 31 #ifndef ELF32_ST_VISIBILITY 32 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 33 #endif 34 35 /* For ELF64 the definitions are the same. */ 36 #ifndef ELF64_ST_VISIBILITY 37 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 38 #endif 39 40 /* How to extract information held in the st_other field. */ 41 #ifndef GELF_ST_VISIBILITY 42 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 43 #endif 44 45 typedef Elf64_Nhdr GElf_Nhdr; 46 47 #ifndef DMGL_PARAMS 48 #define DMGL_NO_OPTS 0 /* For readability... */ 49 #define DMGL_PARAMS (1 << 0) /* Include function args */ 50 #define DMGL_ANSI (1 << 1) /* Include const, volatile, etc */ 51 #endif 52 53 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 54 extern char *cplus_demangle(const char *, int); 55 56 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 57 { 58 return cplus_demangle(c, i); 59 } 60 #else 61 #ifdef NO_DEMANGLE 62 static inline char *bfd_demangle(void __maybe_unused *v, 63 const char __maybe_unused *c, 64 int __maybe_unused i) 65 { 66 return NULL; 67 } 68 #else 69 #define PACKAGE 'perf' 70 #include <bfd.h> 71 #endif 72 #endif 73 74 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 75 static int elf_getphdrnum(Elf *elf, size_t *dst) 76 { 77 GElf_Ehdr gehdr; 78 GElf_Ehdr *ehdr; 79 80 ehdr = gelf_getehdr(elf, &gehdr); 81 if (!ehdr) 82 return -1; 83 84 *dst = ehdr->e_phnum; 85 86 return 0; 87 } 88 #endif 89 90 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 91 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 92 { 93 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 94 return -1; 95 } 96 #endif 97 98 #ifndef NT_GNU_BUILD_ID 99 #define NT_GNU_BUILD_ID 3 100 #endif 101 102 /** 103 * elf_symtab__for_each_symbol - iterate thru all the symbols 104 * 105 * @syms: struct elf_symtab instance to iterate 106 * @idx: uint32_t idx 107 * @sym: GElf_Sym iterator 108 */ 109 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 110 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 111 idx < nr_syms; \ 112 idx++, gelf_getsym(syms, idx, &sym)) 113 114 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 115 { 116 return GELF_ST_TYPE(sym->st_info); 117 } 118 119 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 120 { 121 return GELF_ST_VISIBILITY(sym->st_other); 122 } 123 124 #ifndef STT_GNU_IFUNC 125 #define STT_GNU_IFUNC 10 126 #endif 127 128 static inline int elf_sym__is_function(const GElf_Sym *sym) 129 { 130 return (elf_sym__type(sym) == STT_FUNC || 131 elf_sym__type(sym) == STT_GNU_IFUNC) && 132 sym->st_name != 0 && 133 sym->st_shndx != SHN_UNDEF; 134 } 135 136 static inline bool elf_sym__is_object(const GElf_Sym *sym) 137 { 138 return elf_sym__type(sym) == STT_OBJECT && 139 sym->st_name != 0 && 140 sym->st_shndx != SHN_UNDEF; 141 } 142 143 static inline int elf_sym__is_label(const GElf_Sym *sym) 144 { 145 return elf_sym__type(sym) == STT_NOTYPE && 146 sym->st_name != 0 && 147 sym->st_shndx != SHN_UNDEF && 148 sym->st_shndx != SHN_ABS && 149 elf_sym__visibility(sym) != STV_HIDDEN && 150 elf_sym__visibility(sym) != STV_INTERNAL; 151 } 152 153 static bool elf_sym__filter(GElf_Sym *sym) 154 { 155 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 156 } 157 158 static inline const char *elf_sym__name(const GElf_Sym *sym, 159 const Elf_Data *symstrs) 160 { 161 return symstrs->d_buf + sym->st_name; 162 } 163 164 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 165 const Elf_Data *secstrs) 166 { 167 return secstrs->d_buf + shdr->sh_name; 168 } 169 170 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 171 const Elf_Data *secstrs) 172 { 173 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 174 } 175 176 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 177 const Elf_Data *secstrs) 178 { 179 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 180 } 181 182 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 183 { 184 return elf_sec__is_text(shdr, secstrs) || 185 elf_sec__is_data(shdr, secstrs); 186 } 187 188 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 189 { 190 Elf_Scn *sec = NULL; 191 GElf_Shdr shdr; 192 size_t cnt = 1; 193 194 while ((sec = elf_nextscn(elf, sec)) != NULL) { 195 gelf_getshdr(sec, &shdr); 196 197 if ((addr >= shdr.sh_addr) && 198 (addr < (shdr.sh_addr + shdr.sh_size))) 199 return cnt; 200 201 ++cnt; 202 } 203 204 return -1; 205 } 206 207 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 208 GElf_Shdr *shp, const char *name, size_t *idx) 209 { 210 Elf_Scn *sec = NULL; 211 size_t cnt = 1; 212 213 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 214 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 215 return NULL; 216 217 while ((sec = elf_nextscn(elf, sec)) != NULL) { 218 char *str; 219 220 gelf_getshdr(sec, shp); 221 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 222 if (str && !strcmp(name, str)) { 223 if (idx) 224 *idx = cnt; 225 return sec; 226 } 227 ++cnt; 228 } 229 230 return NULL; 231 } 232 233 static bool want_demangle(bool is_kernel_sym) 234 { 235 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 236 } 237 238 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 239 { 240 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 241 char *demangled = NULL; 242 243 /* 244 * We need to figure out if the object was created from C++ sources 245 * DWARF DW_compile_unit has this, but we don't always have access 246 * to it... 247 */ 248 if (!want_demangle(dso->kernel || kmodule)) 249 return demangled; 250 251 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 252 if (demangled == NULL) 253 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 254 else if (rust_is_mangled(demangled)) 255 /* 256 * Input to Rust demangling is the BFD-demangled 257 * name which it Rust-demangles in place. 258 */ 259 rust_demangle_sym(demangled); 260 261 return demangled; 262 } 263 264 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 265 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 266 idx < nr_entries; \ 267 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 268 269 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 270 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 271 idx < nr_entries; \ 272 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 273 274 /* 275 * We need to check if we have a .dynsym, so that we can handle the 276 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 277 * .dynsym or .symtab). 278 * And always look at the original dso, not at debuginfo packages, that 279 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 280 */ 281 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 282 { 283 uint32_t nr_rel_entries, idx; 284 GElf_Sym sym; 285 u64 plt_offset, plt_header_size, plt_entry_size; 286 GElf_Shdr shdr_plt; 287 struct symbol *f; 288 GElf_Shdr shdr_rel_plt, shdr_dynsym; 289 Elf_Data *reldata, *syms, *symstrs; 290 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 291 size_t dynsym_idx; 292 GElf_Ehdr ehdr; 293 char sympltname[1024]; 294 Elf *elf; 295 int nr = 0, symidx, err = 0; 296 297 if (!ss->dynsym) 298 return 0; 299 300 elf = ss->elf; 301 ehdr = ss->ehdr; 302 303 scn_dynsym = ss->dynsym; 304 shdr_dynsym = ss->dynshdr; 305 dynsym_idx = ss->dynsym_idx; 306 307 if (scn_dynsym == NULL) 308 goto out_elf_end; 309 310 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 311 ".rela.plt", NULL); 312 if (scn_plt_rel == NULL) { 313 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 314 ".rel.plt", NULL); 315 if (scn_plt_rel == NULL) 316 goto out_elf_end; 317 } 318 319 err = -1; 320 321 if (shdr_rel_plt.sh_link != dynsym_idx) 322 goto out_elf_end; 323 324 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 325 goto out_elf_end; 326 327 /* 328 * Fetch the relocation section to find the idxes to the GOT 329 * and the symbols in the .dynsym they refer to. 330 */ 331 reldata = elf_getdata(scn_plt_rel, NULL); 332 if (reldata == NULL) 333 goto out_elf_end; 334 335 syms = elf_getdata(scn_dynsym, NULL); 336 if (syms == NULL) 337 goto out_elf_end; 338 339 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 340 if (scn_symstrs == NULL) 341 goto out_elf_end; 342 343 symstrs = elf_getdata(scn_symstrs, NULL); 344 if (symstrs == NULL) 345 goto out_elf_end; 346 347 if (symstrs->d_size == 0) 348 goto out_elf_end; 349 350 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 351 plt_offset = shdr_plt.sh_offset; 352 switch (ehdr.e_machine) { 353 case EM_ARM: 354 plt_header_size = 20; 355 plt_entry_size = 12; 356 break; 357 358 case EM_AARCH64: 359 plt_header_size = 32; 360 plt_entry_size = 16; 361 break; 362 363 case EM_SPARC: 364 plt_header_size = 48; 365 plt_entry_size = 12; 366 break; 367 368 case EM_SPARCV9: 369 plt_header_size = 128; 370 plt_entry_size = 32; 371 break; 372 373 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 374 plt_header_size = shdr_plt.sh_entsize; 375 plt_entry_size = shdr_plt.sh_entsize; 376 break; 377 } 378 plt_offset += plt_header_size; 379 380 if (shdr_rel_plt.sh_type == SHT_RELA) { 381 GElf_Rela pos_mem, *pos; 382 383 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 384 nr_rel_entries) { 385 const char *elf_name = NULL; 386 char *demangled = NULL; 387 symidx = GELF_R_SYM(pos->r_info); 388 gelf_getsym(syms, symidx, &sym); 389 390 elf_name = elf_sym__name(&sym, symstrs); 391 demangled = demangle_sym(dso, 0, elf_name); 392 if (demangled != NULL) 393 elf_name = demangled; 394 snprintf(sympltname, sizeof(sympltname), 395 "%s@plt", elf_name); 396 free(demangled); 397 398 f = symbol__new(plt_offset, plt_entry_size, 399 STB_GLOBAL, STT_FUNC, sympltname); 400 if (!f) 401 goto out_elf_end; 402 403 plt_offset += plt_entry_size; 404 symbols__insert(&dso->symbols, f); 405 ++nr; 406 } 407 } else if (shdr_rel_plt.sh_type == SHT_REL) { 408 GElf_Rel pos_mem, *pos; 409 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 410 nr_rel_entries) { 411 const char *elf_name = NULL; 412 char *demangled = NULL; 413 symidx = GELF_R_SYM(pos->r_info); 414 gelf_getsym(syms, symidx, &sym); 415 416 elf_name = elf_sym__name(&sym, symstrs); 417 demangled = demangle_sym(dso, 0, elf_name); 418 if (demangled != NULL) 419 elf_name = demangled; 420 snprintf(sympltname, sizeof(sympltname), 421 "%s@plt", elf_name); 422 free(demangled); 423 424 f = symbol__new(plt_offset, plt_entry_size, 425 STB_GLOBAL, STT_FUNC, sympltname); 426 if (!f) 427 goto out_elf_end; 428 429 plt_offset += plt_entry_size; 430 symbols__insert(&dso->symbols, f); 431 ++nr; 432 } 433 } 434 435 err = 0; 436 out_elf_end: 437 if (err == 0) 438 return nr; 439 pr_debug("%s: problems reading %s PLT info.\n", 440 __func__, dso->long_name); 441 return 0; 442 } 443 444 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 445 { 446 return demangle_sym(dso, kmodule, elf_name); 447 } 448 449 /* 450 * Align offset to 4 bytes as needed for note name and descriptor data. 451 */ 452 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 453 454 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 455 { 456 int err = -1; 457 GElf_Ehdr ehdr; 458 GElf_Shdr shdr; 459 Elf_Data *data; 460 Elf_Scn *sec; 461 Elf_Kind ek; 462 void *ptr; 463 464 if (size < BUILD_ID_SIZE) 465 goto out; 466 467 ek = elf_kind(elf); 468 if (ek != ELF_K_ELF) 469 goto out; 470 471 if (gelf_getehdr(elf, &ehdr) == NULL) { 472 pr_err("%s: cannot get elf header.\n", __func__); 473 goto out; 474 } 475 476 /* 477 * Check following sections for notes: 478 * '.note.gnu.build-id' 479 * '.notes' 480 * '.note' (VDSO specific) 481 */ 482 do { 483 sec = elf_section_by_name(elf, &ehdr, &shdr, 484 ".note.gnu.build-id", NULL); 485 if (sec) 486 break; 487 488 sec = elf_section_by_name(elf, &ehdr, &shdr, 489 ".notes", NULL); 490 if (sec) 491 break; 492 493 sec = elf_section_by_name(elf, &ehdr, &shdr, 494 ".note", NULL); 495 if (sec) 496 break; 497 498 return err; 499 500 } while (0); 501 502 data = elf_getdata(sec, NULL); 503 if (data == NULL) 504 goto out; 505 506 ptr = data->d_buf; 507 while (ptr < (data->d_buf + data->d_size)) { 508 GElf_Nhdr *nhdr = ptr; 509 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 510 descsz = NOTE_ALIGN(nhdr->n_descsz); 511 const char *name; 512 513 ptr += sizeof(*nhdr); 514 name = ptr; 515 ptr += namesz; 516 if (nhdr->n_type == NT_GNU_BUILD_ID && 517 nhdr->n_namesz == sizeof("GNU")) { 518 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 519 size_t sz = min(size, descsz); 520 memcpy(bf, ptr, sz); 521 memset(bf + sz, 0, size - sz); 522 err = descsz; 523 break; 524 } 525 } 526 ptr += descsz; 527 } 528 529 out: 530 return err; 531 } 532 533 int filename__read_build_id(const char *filename, void *bf, size_t size) 534 { 535 int fd, err = -1; 536 Elf *elf; 537 538 if (size < BUILD_ID_SIZE) 539 goto out; 540 541 fd = open(filename, O_RDONLY); 542 if (fd < 0) 543 goto out; 544 545 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 546 if (elf == NULL) { 547 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 548 goto out_close; 549 } 550 551 err = elf_read_build_id(elf, bf, size); 552 553 elf_end(elf); 554 out_close: 555 close(fd); 556 out: 557 return err; 558 } 559 560 int sysfs__read_build_id(const char *filename, void *build_id, size_t size) 561 { 562 int fd, err = -1; 563 564 if (size < BUILD_ID_SIZE) 565 goto out; 566 567 fd = open(filename, O_RDONLY); 568 if (fd < 0) 569 goto out; 570 571 while (1) { 572 char bf[BUFSIZ]; 573 GElf_Nhdr nhdr; 574 size_t namesz, descsz; 575 576 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 577 break; 578 579 namesz = NOTE_ALIGN(nhdr.n_namesz); 580 descsz = NOTE_ALIGN(nhdr.n_descsz); 581 if (nhdr.n_type == NT_GNU_BUILD_ID && 582 nhdr.n_namesz == sizeof("GNU")) { 583 if (read(fd, bf, namesz) != (ssize_t)namesz) 584 break; 585 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 586 size_t sz = min(descsz, size); 587 if (read(fd, build_id, sz) == (ssize_t)sz) { 588 memset(build_id + sz, 0, size - sz); 589 err = 0; 590 break; 591 } 592 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 593 break; 594 } else { 595 int n = namesz + descsz; 596 597 if (n > (int)sizeof(bf)) { 598 n = sizeof(bf); 599 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 600 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 601 } 602 if (read(fd, bf, n) != n) 603 break; 604 } 605 } 606 close(fd); 607 out: 608 return err; 609 } 610 611 int filename__read_debuglink(const char *filename, char *debuglink, 612 size_t size) 613 { 614 int fd, err = -1; 615 Elf *elf; 616 GElf_Ehdr ehdr; 617 GElf_Shdr shdr; 618 Elf_Data *data; 619 Elf_Scn *sec; 620 Elf_Kind ek; 621 622 fd = open(filename, O_RDONLY); 623 if (fd < 0) 624 goto out; 625 626 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 627 if (elf == NULL) { 628 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 629 goto out_close; 630 } 631 632 ek = elf_kind(elf); 633 if (ek != ELF_K_ELF) 634 goto out_elf_end; 635 636 if (gelf_getehdr(elf, &ehdr) == NULL) { 637 pr_err("%s: cannot get elf header.\n", __func__); 638 goto out_elf_end; 639 } 640 641 sec = elf_section_by_name(elf, &ehdr, &shdr, 642 ".gnu_debuglink", NULL); 643 if (sec == NULL) 644 goto out_elf_end; 645 646 data = elf_getdata(sec, NULL); 647 if (data == NULL) 648 goto out_elf_end; 649 650 /* the start of this section is a zero-terminated string */ 651 strncpy(debuglink, data->d_buf, size); 652 653 err = 0; 654 655 out_elf_end: 656 elf_end(elf); 657 out_close: 658 close(fd); 659 out: 660 return err; 661 } 662 663 static int dso__swap_init(struct dso *dso, unsigned char eidata) 664 { 665 static unsigned int const endian = 1; 666 667 dso->needs_swap = DSO_SWAP__NO; 668 669 switch (eidata) { 670 case ELFDATA2LSB: 671 /* We are big endian, DSO is little endian. */ 672 if (*(unsigned char const *)&endian != 1) 673 dso->needs_swap = DSO_SWAP__YES; 674 break; 675 676 case ELFDATA2MSB: 677 /* We are little endian, DSO is big endian. */ 678 if (*(unsigned char const *)&endian != 0) 679 dso->needs_swap = DSO_SWAP__YES; 680 break; 681 682 default: 683 pr_err("unrecognized DSO data encoding %d\n", eidata); 684 return -EINVAL; 685 } 686 687 return 0; 688 } 689 690 bool symsrc__possibly_runtime(struct symsrc *ss) 691 { 692 return ss->dynsym || ss->opdsec; 693 } 694 695 bool symsrc__has_symtab(struct symsrc *ss) 696 { 697 return ss->symtab != NULL; 698 } 699 700 void symsrc__destroy(struct symsrc *ss) 701 { 702 zfree(&ss->name); 703 elf_end(ss->elf); 704 close(ss->fd); 705 } 706 707 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr) 708 { 709 /* 710 * Usually vmlinux is an ELF file with type ET_EXEC for most 711 * architectures; except Arm64 kernel is linked with option 712 * '-share', so need to check type ET_DYN. 713 */ 714 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL || 715 ehdr.e_type == ET_DYN; 716 } 717 718 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 719 enum dso_binary_type type) 720 { 721 GElf_Ehdr ehdr; 722 Elf *elf; 723 int fd; 724 725 if (dso__needs_decompress(dso)) { 726 fd = dso__decompress_kmodule_fd(dso, name); 727 if (fd < 0) 728 return -1; 729 730 type = dso->symtab_type; 731 } else { 732 fd = open(name, O_RDONLY); 733 if (fd < 0) { 734 dso->load_errno = errno; 735 return -1; 736 } 737 } 738 739 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 740 if (elf == NULL) { 741 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 742 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 743 goto out_close; 744 } 745 746 if (gelf_getehdr(elf, &ehdr) == NULL) { 747 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 748 pr_debug("%s: cannot get elf header.\n", __func__); 749 goto out_elf_end; 750 } 751 752 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 753 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 754 goto out_elf_end; 755 } 756 757 /* Always reject images with a mismatched build-id: */ 758 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 759 u8 build_id[BUILD_ID_SIZE]; 760 761 if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) { 762 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 763 goto out_elf_end; 764 } 765 766 if (!dso__build_id_equal(dso, build_id)) { 767 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 768 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 769 goto out_elf_end; 770 } 771 } 772 773 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 774 775 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 776 NULL); 777 if (ss->symshdr.sh_type != SHT_SYMTAB) 778 ss->symtab = NULL; 779 780 ss->dynsym_idx = 0; 781 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 782 &ss->dynsym_idx); 783 if (ss->dynshdr.sh_type != SHT_DYNSYM) 784 ss->dynsym = NULL; 785 786 ss->opdidx = 0; 787 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 788 &ss->opdidx); 789 if (ss->opdshdr.sh_type != SHT_PROGBITS) 790 ss->opdsec = NULL; 791 792 if (dso->kernel == DSO_SPACE__USER) 793 ss->adjust_symbols = true; 794 else 795 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 796 797 ss->name = strdup(name); 798 if (!ss->name) { 799 dso->load_errno = errno; 800 goto out_elf_end; 801 } 802 803 ss->elf = elf; 804 ss->fd = fd; 805 ss->ehdr = ehdr; 806 ss->type = type; 807 808 return 0; 809 810 out_elf_end: 811 elf_end(elf); 812 out_close: 813 close(fd); 814 return -1; 815 } 816 817 /** 818 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 819 * @kmap: kernel maps and relocation reference symbol 820 * 821 * This function returns %true if we are dealing with the kernel maps and the 822 * relocation reference symbol has not yet been found. Otherwise %false is 823 * returned. 824 */ 825 static bool ref_reloc_sym_not_found(struct kmap *kmap) 826 { 827 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 828 !kmap->ref_reloc_sym->unrelocated_addr; 829 } 830 831 /** 832 * ref_reloc - kernel relocation offset. 833 * @kmap: kernel maps and relocation reference symbol 834 * 835 * This function returns the offset of kernel addresses as determined by using 836 * the relocation reference symbol i.e. if the kernel has not been relocated 837 * then the return value is zero. 838 */ 839 static u64 ref_reloc(struct kmap *kmap) 840 { 841 if (kmap && kmap->ref_reloc_sym && 842 kmap->ref_reloc_sym->unrelocated_addr) 843 return kmap->ref_reloc_sym->addr - 844 kmap->ref_reloc_sym->unrelocated_addr; 845 return 0; 846 } 847 848 void __weak arch__sym_update(struct symbol *s __maybe_unused, 849 GElf_Sym *sym __maybe_unused) { } 850 851 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 852 GElf_Sym *sym, GElf_Shdr *shdr, 853 struct maps *kmaps, struct kmap *kmap, 854 struct dso **curr_dsop, struct map **curr_mapp, 855 const char *section_name, 856 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 857 { 858 struct dso *curr_dso = *curr_dsop; 859 struct map *curr_map; 860 char dso_name[PATH_MAX]; 861 862 /* Adjust symbol to map to file offset */ 863 if (adjust_kernel_syms) 864 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 865 866 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 867 return 0; 868 869 if (strcmp(section_name, ".text") == 0) { 870 /* 871 * The initial kernel mapping is based on 872 * kallsyms and identity maps. Overwrite it to 873 * map to the kernel dso. 874 */ 875 if (*remap_kernel && dso->kernel && !kmodule) { 876 *remap_kernel = false; 877 map->start = shdr->sh_addr + ref_reloc(kmap); 878 map->end = map->start + shdr->sh_size; 879 map->pgoff = shdr->sh_offset; 880 map->map_ip = map__map_ip; 881 map->unmap_ip = map__unmap_ip; 882 /* Ensure maps are correctly ordered */ 883 if (kmaps) { 884 map__get(map); 885 maps__remove(kmaps, map); 886 maps__insert(kmaps, map); 887 map__put(map); 888 } 889 } 890 891 /* 892 * The initial module mapping is based on 893 * /proc/modules mapped to offset zero. 894 * Overwrite it to map to the module dso. 895 */ 896 if (*remap_kernel && kmodule) { 897 *remap_kernel = false; 898 map->pgoff = shdr->sh_offset; 899 } 900 901 *curr_mapp = map; 902 *curr_dsop = dso; 903 return 0; 904 } 905 906 if (!kmap) 907 return 0; 908 909 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 910 911 curr_map = maps__find_by_name(kmaps, dso_name); 912 if (curr_map == NULL) { 913 u64 start = sym->st_value; 914 915 if (kmodule) 916 start += map->start + shdr->sh_offset; 917 918 curr_dso = dso__new(dso_name); 919 if (curr_dso == NULL) 920 return -1; 921 curr_dso->kernel = dso->kernel; 922 curr_dso->long_name = dso->long_name; 923 curr_dso->long_name_len = dso->long_name_len; 924 curr_map = map__new2(start, curr_dso); 925 dso__put(curr_dso); 926 if (curr_map == NULL) 927 return -1; 928 929 if (curr_dso->kernel) 930 map__kmap(curr_map)->kmaps = kmaps; 931 932 if (adjust_kernel_syms) { 933 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 934 curr_map->end = curr_map->start + shdr->sh_size; 935 curr_map->pgoff = shdr->sh_offset; 936 } else { 937 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 938 } 939 curr_dso->symtab_type = dso->symtab_type; 940 maps__insert(kmaps, curr_map); 941 /* 942 * Add it before we drop the referece to curr_map, i.e. while 943 * we still are sure to have a reference to this DSO via 944 * *curr_map->dso. 945 */ 946 dsos__add(&kmaps->machine->dsos, curr_dso); 947 /* kmaps already got it */ 948 map__put(curr_map); 949 dso__set_loaded(curr_dso); 950 *curr_mapp = curr_map; 951 *curr_dsop = curr_dso; 952 } else 953 *curr_dsop = curr_map->dso; 954 955 return 0; 956 } 957 958 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 959 struct symsrc *runtime_ss, int kmodule) 960 { 961 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 962 struct maps *kmaps = kmap ? map__kmaps(map) : NULL; 963 struct map *curr_map = map; 964 struct dso *curr_dso = dso; 965 Elf_Data *symstrs, *secstrs; 966 uint32_t nr_syms; 967 int err = -1; 968 uint32_t idx; 969 GElf_Ehdr ehdr; 970 GElf_Shdr shdr; 971 GElf_Shdr tshdr; 972 Elf_Data *syms, *opddata = NULL; 973 GElf_Sym sym; 974 Elf_Scn *sec, *sec_strndx; 975 Elf *elf; 976 int nr = 0; 977 bool remap_kernel = false, adjust_kernel_syms = false; 978 979 if (kmap && !kmaps) 980 return -1; 981 982 dso->symtab_type = syms_ss->type; 983 dso->is_64_bit = syms_ss->is_64_bit; 984 dso->rel = syms_ss->ehdr.e_type == ET_REL; 985 986 /* 987 * Modules may already have symbols from kallsyms, but those symbols 988 * have the wrong values for the dso maps, so remove them. 989 */ 990 if (kmodule && syms_ss->symtab) 991 symbols__delete(&dso->symbols); 992 993 if (!syms_ss->symtab) { 994 /* 995 * If the vmlinux is stripped, fail so we will fall back 996 * to using kallsyms. The vmlinux runtime symbols aren't 997 * of much use. 998 */ 999 if (dso->kernel) 1000 goto out_elf_end; 1001 1002 syms_ss->symtab = syms_ss->dynsym; 1003 syms_ss->symshdr = syms_ss->dynshdr; 1004 } 1005 1006 elf = syms_ss->elf; 1007 ehdr = syms_ss->ehdr; 1008 sec = syms_ss->symtab; 1009 shdr = syms_ss->symshdr; 1010 1011 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 1012 ".text", NULL)) 1013 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 1014 1015 if (runtime_ss->opdsec) 1016 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 1017 1018 syms = elf_getdata(sec, NULL); 1019 if (syms == NULL) 1020 goto out_elf_end; 1021 1022 sec = elf_getscn(elf, shdr.sh_link); 1023 if (sec == NULL) 1024 goto out_elf_end; 1025 1026 symstrs = elf_getdata(sec, NULL); 1027 if (symstrs == NULL) 1028 goto out_elf_end; 1029 1030 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1031 if (sec_strndx == NULL) 1032 goto out_elf_end; 1033 1034 secstrs = elf_getdata(sec_strndx, NULL); 1035 if (secstrs == NULL) 1036 goto out_elf_end; 1037 1038 nr_syms = shdr.sh_size / shdr.sh_entsize; 1039 1040 memset(&sym, 0, sizeof(sym)); 1041 1042 /* 1043 * The kernel relocation symbol is needed in advance in order to adjust 1044 * kernel maps correctly. 1045 */ 1046 if (ref_reloc_sym_not_found(kmap)) { 1047 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1048 const char *elf_name = elf_sym__name(&sym, symstrs); 1049 1050 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1051 continue; 1052 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1053 map->reloc = kmap->ref_reloc_sym->addr - 1054 kmap->ref_reloc_sym->unrelocated_addr; 1055 break; 1056 } 1057 } 1058 1059 /* 1060 * Handle any relocation of vdso necessary because older kernels 1061 * attempted to prelink vdso to its virtual address. 1062 */ 1063 if (dso__is_vdso(dso)) 1064 map->reloc = map->start - dso->text_offset; 1065 1066 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1067 /* 1068 * Initial kernel and module mappings do not map to the dso. 1069 * Flag the fixups. 1070 */ 1071 if (dso->kernel) { 1072 remap_kernel = true; 1073 adjust_kernel_syms = dso->adjust_symbols; 1074 } 1075 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1076 struct symbol *f; 1077 const char *elf_name = elf_sym__name(&sym, symstrs); 1078 char *demangled = NULL; 1079 int is_label = elf_sym__is_label(&sym); 1080 const char *section_name; 1081 bool used_opd = false; 1082 1083 if (!is_label && !elf_sym__filter(&sym)) 1084 continue; 1085 1086 /* Reject ARM ELF "mapping symbols": these aren't unique and 1087 * don't identify functions, so will confuse the profile 1088 * output: */ 1089 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1090 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1091 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1092 continue; 1093 } 1094 1095 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1096 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1097 u64 *opd = opddata->d_buf + offset; 1098 sym.st_value = DSO__SWAP(dso, u64, *opd); 1099 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1100 sym.st_value); 1101 used_opd = true; 1102 } 1103 /* 1104 * When loading symbols in a data mapping, ABS symbols (which 1105 * has a value of SHN_ABS in its st_shndx) failed at 1106 * elf_getscn(). And it marks the loading as a failure so 1107 * already loaded symbols cannot be fixed up. 1108 * 1109 * I'm not sure what should be done. Just ignore them for now. 1110 * - Namhyung Kim 1111 */ 1112 if (sym.st_shndx == SHN_ABS) 1113 continue; 1114 1115 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1116 if (!sec) 1117 goto out_elf_end; 1118 1119 gelf_getshdr(sec, &shdr); 1120 1121 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1122 continue; 1123 1124 section_name = elf_sec__name(&shdr, secstrs); 1125 1126 /* On ARM, symbols for thumb functions have 1 added to 1127 * the symbol address as a flag - remove it */ 1128 if ((ehdr.e_machine == EM_ARM) && 1129 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1130 (sym.st_value & 1)) 1131 --sym.st_value; 1132 1133 if (dso->kernel) { 1134 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1135 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1136 goto out_elf_end; 1137 } else if ((used_opd && runtime_ss->adjust_symbols) || 1138 (!used_opd && syms_ss->adjust_symbols)) { 1139 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1140 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__, 1141 (u64)sym.st_value, (u64)shdr.sh_addr, 1142 (u64)shdr.sh_offset); 1143 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1144 } 1145 1146 demangled = demangle_sym(dso, kmodule, elf_name); 1147 if (demangled != NULL) 1148 elf_name = demangled; 1149 1150 f = symbol__new(sym.st_value, sym.st_size, 1151 GELF_ST_BIND(sym.st_info), 1152 GELF_ST_TYPE(sym.st_info), elf_name); 1153 free(demangled); 1154 if (!f) 1155 goto out_elf_end; 1156 1157 arch__sym_update(f, &sym); 1158 1159 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1160 nr++; 1161 } 1162 1163 /* 1164 * For misannotated, zeroed, ASM function sizes. 1165 */ 1166 if (nr > 0) { 1167 symbols__fixup_end(&dso->symbols); 1168 symbols__fixup_duplicate(&dso->symbols); 1169 if (kmap) { 1170 /* 1171 * We need to fixup this here too because we create new 1172 * maps here, for things like vsyscall sections. 1173 */ 1174 maps__fixup_end(kmaps); 1175 } 1176 } 1177 err = nr; 1178 out_elf_end: 1179 return err; 1180 } 1181 1182 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1183 { 1184 GElf_Phdr phdr; 1185 size_t i, phdrnum; 1186 int err; 1187 u64 sz; 1188 1189 if (elf_getphdrnum(elf, &phdrnum)) 1190 return -1; 1191 1192 for (i = 0; i < phdrnum; i++) { 1193 if (gelf_getphdr(elf, i, &phdr) == NULL) 1194 return -1; 1195 if (phdr.p_type != PT_LOAD) 1196 continue; 1197 if (exe) { 1198 if (!(phdr.p_flags & PF_X)) 1199 continue; 1200 } else { 1201 if (!(phdr.p_flags & PF_R)) 1202 continue; 1203 } 1204 sz = min(phdr.p_memsz, phdr.p_filesz); 1205 if (!sz) 1206 continue; 1207 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1208 if (err) 1209 return err; 1210 } 1211 return 0; 1212 } 1213 1214 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1215 bool *is_64_bit) 1216 { 1217 int err; 1218 Elf *elf; 1219 1220 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1221 if (elf == NULL) 1222 return -1; 1223 1224 if (is_64_bit) 1225 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1226 1227 err = elf_read_maps(elf, exe, mapfn, data); 1228 1229 elf_end(elf); 1230 return err; 1231 } 1232 1233 enum dso_type dso__type_fd(int fd) 1234 { 1235 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1236 GElf_Ehdr ehdr; 1237 Elf_Kind ek; 1238 Elf *elf; 1239 1240 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1241 if (elf == NULL) 1242 goto out; 1243 1244 ek = elf_kind(elf); 1245 if (ek != ELF_K_ELF) 1246 goto out_end; 1247 1248 if (gelf_getclass(elf) == ELFCLASS64) { 1249 dso_type = DSO__TYPE_64BIT; 1250 goto out_end; 1251 } 1252 1253 if (gelf_getehdr(elf, &ehdr) == NULL) 1254 goto out_end; 1255 1256 if (ehdr.e_machine == EM_X86_64) 1257 dso_type = DSO__TYPE_X32BIT; 1258 else 1259 dso_type = DSO__TYPE_32BIT; 1260 out_end: 1261 elf_end(elf); 1262 out: 1263 return dso_type; 1264 } 1265 1266 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1267 { 1268 ssize_t r; 1269 size_t n; 1270 int err = -1; 1271 char *buf = malloc(page_size); 1272 1273 if (buf == NULL) 1274 return -1; 1275 1276 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1277 goto out; 1278 1279 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1280 goto out; 1281 1282 while (len) { 1283 n = page_size; 1284 if (len < n) 1285 n = len; 1286 /* Use read because mmap won't work on proc files */ 1287 r = read(from, buf, n); 1288 if (r < 0) 1289 goto out; 1290 if (!r) 1291 break; 1292 n = r; 1293 r = write(to, buf, n); 1294 if (r < 0) 1295 goto out; 1296 if ((size_t)r != n) 1297 goto out; 1298 len -= n; 1299 } 1300 1301 err = 0; 1302 out: 1303 free(buf); 1304 return err; 1305 } 1306 1307 struct kcore { 1308 int fd; 1309 int elfclass; 1310 Elf *elf; 1311 GElf_Ehdr ehdr; 1312 }; 1313 1314 static int kcore__open(struct kcore *kcore, const char *filename) 1315 { 1316 GElf_Ehdr *ehdr; 1317 1318 kcore->fd = open(filename, O_RDONLY); 1319 if (kcore->fd == -1) 1320 return -1; 1321 1322 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1323 if (!kcore->elf) 1324 goto out_close; 1325 1326 kcore->elfclass = gelf_getclass(kcore->elf); 1327 if (kcore->elfclass == ELFCLASSNONE) 1328 goto out_end; 1329 1330 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1331 if (!ehdr) 1332 goto out_end; 1333 1334 return 0; 1335 1336 out_end: 1337 elf_end(kcore->elf); 1338 out_close: 1339 close(kcore->fd); 1340 return -1; 1341 } 1342 1343 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1344 bool temp) 1345 { 1346 kcore->elfclass = elfclass; 1347 1348 if (temp) 1349 kcore->fd = mkstemp(filename); 1350 else 1351 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1352 if (kcore->fd == -1) 1353 return -1; 1354 1355 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1356 if (!kcore->elf) 1357 goto out_close; 1358 1359 if (!gelf_newehdr(kcore->elf, elfclass)) 1360 goto out_end; 1361 1362 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1363 1364 return 0; 1365 1366 out_end: 1367 elf_end(kcore->elf); 1368 out_close: 1369 close(kcore->fd); 1370 unlink(filename); 1371 return -1; 1372 } 1373 1374 static void kcore__close(struct kcore *kcore) 1375 { 1376 elf_end(kcore->elf); 1377 close(kcore->fd); 1378 } 1379 1380 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1381 { 1382 GElf_Ehdr *ehdr = &to->ehdr; 1383 GElf_Ehdr *kehdr = &from->ehdr; 1384 1385 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1386 ehdr->e_type = kehdr->e_type; 1387 ehdr->e_machine = kehdr->e_machine; 1388 ehdr->e_version = kehdr->e_version; 1389 ehdr->e_entry = 0; 1390 ehdr->e_shoff = 0; 1391 ehdr->e_flags = kehdr->e_flags; 1392 ehdr->e_phnum = count; 1393 ehdr->e_shentsize = 0; 1394 ehdr->e_shnum = 0; 1395 ehdr->e_shstrndx = 0; 1396 1397 if (from->elfclass == ELFCLASS32) { 1398 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1399 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1400 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1401 } else { 1402 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1403 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1404 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1405 } 1406 1407 if (!gelf_update_ehdr(to->elf, ehdr)) 1408 return -1; 1409 1410 if (!gelf_newphdr(to->elf, count)) 1411 return -1; 1412 1413 return 0; 1414 } 1415 1416 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1417 u64 addr, u64 len) 1418 { 1419 GElf_Phdr phdr = { 1420 .p_type = PT_LOAD, 1421 .p_flags = PF_R | PF_W | PF_X, 1422 .p_offset = offset, 1423 .p_vaddr = addr, 1424 .p_paddr = 0, 1425 .p_filesz = len, 1426 .p_memsz = len, 1427 .p_align = page_size, 1428 }; 1429 1430 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1431 return -1; 1432 1433 return 0; 1434 } 1435 1436 static off_t kcore__write(struct kcore *kcore) 1437 { 1438 return elf_update(kcore->elf, ELF_C_WRITE); 1439 } 1440 1441 struct phdr_data { 1442 off_t offset; 1443 off_t rel; 1444 u64 addr; 1445 u64 len; 1446 struct list_head node; 1447 struct phdr_data *remaps; 1448 }; 1449 1450 struct sym_data { 1451 u64 addr; 1452 struct list_head node; 1453 }; 1454 1455 struct kcore_copy_info { 1456 u64 stext; 1457 u64 etext; 1458 u64 first_symbol; 1459 u64 last_symbol; 1460 u64 first_module; 1461 u64 first_module_symbol; 1462 u64 last_module_symbol; 1463 size_t phnum; 1464 struct list_head phdrs; 1465 struct list_head syms; 1466 }; 1467 1468 #define kcore_copy__for_each_phdr(k, p) \ 1469 list_for_each_entry((p), &(k)->phdrs, node) 1470 1471 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1472 { 1473 struct phdr_data *p = zalloc(sizeof(*p)); 1474 1475 if (p) { 1476 p->addr = addr; 1477 p->len = len; 1478 p->offset = offset; 1479 } 1480 1481 return p; 1482 } 1483 1484 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1485 u64 addr, u64 len, 1486 off_t offset) 1487 { 1488 struct phdr_data *p = phdr_data__new(addr, len, offset); 1489 1490 if (p) 1491 list_add_tail(&p->node, &kci->phdrs); 1492 1493 return p; 1494 } 1495 1496 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1497 { 1498 struct phdr_data *p, *tmp; 1499 1500 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1501 list_del_init(&p->node); 1502 free(p); 1503 } 1504 } 1505 1506 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1507 u64 addr) 1508 { 1509 struct sym_data *s = zalloc(sizeof(*s)); 1510 1511 if (s) { 1512 s->addr = addr; 1513 list_add_tail(&s->node, &kci->syms); 1514 } 1515 1516 return s; 1517 } 1518 1519 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1520 { 1521 struct sym_data *s, *tmp; 1522 1523 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1524 list_del_init(&s->node); 1525 free(s); 1526 } 1527 } 1528 1529 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1530 u64 start) 1531 { 1532 struct kcore_copy_info *kci = arg; 1533 1534 if (!kallsyms__is_function(type)) 1535 return 0; 1536 1537 if (strchr(name, '[')) { 1538 if (!kci->first_module_symbol || start < kci->first_module_symbol) 1539 kci->first_module_symbol = start; 1540 if (start > kci->last_module_symbol) 1541 kci->last_module_symbol = start; 1542 return 0; 1543 } 1544 1545 if (!kci->first_symbol || start < kci->first_symbol) 1546 kci->first_symbol = start; 1547 1548 if (!kci->last_symbol || start > kci->last_symbol) 1549 kci->last_symbol = start; 1550 1551 if (!strcmp(name, "_stext")) { 1552 kci->stext = start; 1553 return 0; 1554 } 1555 1556 if (!strcmp(name, "_etext")) { 1557 kci->etext = start; 1558 return 0; 1559 } 1560 1561 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1562 return -1; 1563 1564 return 0; 1565 } 1566 1567 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1568 const char *dir) 1569 { 1570 char kallsyms_filename[PATH_MAX]; 1571 1572 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1573 1574 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1575 return -1; 1576 1577 if (kallsyms__parse(kallsyms_filename, kci, 1578 kcore_copy__process_kallsyms) < 0) 1579 return -1; 1580 1581 return 0; 1582 } 1583 1584 static int kcore_copy__process_modules(void *arg, 1585 const char *name __maybe_unused, 1586 u64 start, u64 size __maybe_unused) 1587 { 1588 struct kcore_copy_info *kci = arg; 1589 1590 if (!kci->first_module || start < kci->first_module) 1591 kci->first_module = start; 1592 1593 return 0; 1594 } 1595 1596 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1597 const char *dir) 1598 { 1599 char modules_filename[PATH_MAX]; 1600 1601 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1602 1603 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1604 return -1; 1605 1606 if (modules__parse(modules_filename, kci, 1607 kcore_copy__process_modules) < 0) 1608 return -1; 1609 1610 return 0; 1611 } 1612 1613 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1614 u64 pgoff, u64 s, u64 e) 1615 { 1616 u64 len, offset; 1617 1618 if (s < start || s >= end) 1619 return 0; 1620 1621 offset = (s - start) + pgoff; 1622 len = e < end ? e - s : end - s; 1623 1624 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1625 } 1626 1627 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1628 { 1629 struct kcore_copy_info *kci = data; 1630 u64 end = start + len; 1631 struct sym_data *sdat; 1632 1633 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1634 return -1; 1635 1636 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1637 kci->last_module_symbol)) 1638 return -1; 1639 1640 list_for_each_entry(sdat, &kci->syms, node) { 1641 u64 s = round_down(sdat->addr, page_size); 1642 1643 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1644 return -1; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1651 { 1652 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1653 return -1; 1654 1655 return 0; 1656 } 1657 1658 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1659 { 1660 struct phdr_data *p, *k = NULL; 1661 u64 kend; 1662 1663 if (!kci->stext) 1664 return; 1665 1666 /* Find phdr that corresponds to the kernel map (contains stext) */ 1667 kcore_copy__for_each_phdr(kci, p) { 1668 u64 pend = p->addr + p->len - 1; 1669 1670 if (p->addr <= kci->stext && pend >= kci->stext) { 1671 k = p; 1672 break; 1673 } 1674 } 1675 1676 if (!k) 1677 return; 1678 1679 kend = k->offset + k->len; 1680 1681 /* Find phdrs that remap the kernel */ 1682 kcore_copy__for_each_phdr(kci, p) { 1683 u64 pend = p->offset + p->len; 1684 1685 if (p == k) 1686 continue; 1687 1688 if (p->offset >= k->offset && pend <= kend) 1689 p->remaps = k; 1690 } 1691 } 1692 1693 static void kcore_copy__layout(struct kcore_copy_info *kci) 1694 { 1695 struct phdr_data *p; 1696 off_t rel = 0; 1697 1698 kcore_copy__find_remaps(kci); 1699 1700 kcore_copy__for_each_phdr(kci, p) { 1701 if (!p->remaps) { 1702 p->rel = rel; 1703 rel += p->len; 1704 } 1705 kci->phnum += 1; 1706 } 1707 1708 kcore_copy__for_each_phdr(kci, p) { 1709 struct phdr_data *k = p->remaps; 1710 1711 if (k) 1712 p->rel = p->offset - k->offset + k->rel; 1713 } 1714 } 1715 1716 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1717 Elf *elf) 1718 { 1719 if (kcore_copy__parse_kallsyms(kci, dir)) 1720 return -1; 1721 1722 if (kcore_copy__parse_modules(kci, dir)) 1723 return -1; 1724 1725 if (kci->stext) 1726 kci->stext = round_down(kci->stext, page_size); 1727 else 1728 kci->stext = round_down(kci->first_symbol, page_size); 1729 1730 if (kci->etext) { 1731 kci->etext = round_up(kci->etext, page_size); 1732 } else if (kci->last_symbol) { 1733 kci->etext = round_up(kci->last_symbol, page_size); 1734 kci->etext += page_size; 1735 } 1736 1737 if (kci->first_module_symbol && 1738 (!kci->first_module || kci->first_module_symbol < kci->first_module)) 1739 kci->first_module = kci->first_module_symbol; 1740 1741 kci->first_module = round_down(kci->first_module, page_size); 1742 1743 if (kci->last_module_symbol) { 1744 kci->last_module_symbol = round_up(kci->last_module_symbol, 1745 page_size); 1746 kci->last_module_symbol += page_size; 1747 } 1748 1749 if (!kci->stext || !kci->etext) 1750 return -1; 1751 1752 if (kci->first_module && !kci->last_module_symbol) 1753 return -1; 1754 1755 if (kcore_copy__read_maps(kci, elf)) 1756 return -1; 1757 1758 kcore_copy__layout(kci); 1759 1760 return 0; 1761 } 1762 1763 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 1764 const char *name) 1765 { 1766 char from_filename[PATH_MAX]; 1767 char to_filename[PATH_MAX]; 1768 1769 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1770 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1771 1772 return copyfile_mode(from_filename, to_filename, 0400); 1773 } 1774 1775 static int kcore_copy__unlink(const char *dir, const char *name) 1776 { 1777 char filename[PATH_MAX]; 1778 1779 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 1780 1781 return unlink(filename); 1782 } 1783 1784 static int kcore_copy__compare_fds(int from, int to) 1785 { 1786 char *buf_from; 1787 char *buf_to; 1788 ssize_t ret; 1789 size_t len; 1790 int err = -1; 1791 1792 buf_from = malloc(page_size); 1793 buf_to = malloc(page_size); 1794 if (!buf_from || !buf_to) 1795 goto out; 1796 1797 while (1) { 1798 /* Use read because mmap won't work on proc files */ 1799 ret = read(from, buf_from, page_size); 1800 if (ret < 0) 1801 goto out; 1802 1803 if (!ret) 1804 break; 1805 1806 len = ret; 1807 1808 if (readn(to, buf_to, len) != (int)len) 1809 goto out; 1810 1811 if (memcmp(buf_from, buf_to, len)) 1812 goto out; 1813 } 1814 1815 err = 0; 1816 out: 1817 free(buf_to); 1818 free(buf_from); 1819 return err; 1820 } 1821 1822 static int kcore_copy__compare_files(const char *from_filename, 1823 const char *to_filename) 1824 { 1825 int from, to, err = -1; 1826 1827 from = open(from_filename, O_RDONLY); 1828 if (from < 0) 1829 return -1; 1830 1831 to = open(to_filename, O_RDONLY); 1832 if (to < 0) 1833 goto out_close_from; 1834 1835 err = kcore_copy__compare_fds(from, to); 1836 1837 close(to); 1838 out_close_from: 1839 close(from); 1840 return err; 1841 } 1842 1843 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 1844 const char *name) 1845 { 1846 char from_filename[PATH_MAX]; 1847 char to_filename[PATH_MAX]; 1848 1849 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1850 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1851 1852 return kcore_copy__compare_files(from_filename, to_filename); 1853 } 1854 1855 /** 1856 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 1857 * @from_dir: from directory 1858 * @to_dir: to directory 1859 * 1860 * This function copies kallsyms, modules and kcore files from one directory to 1861 * another. kallsyms and modules are copied entirely. Only code segments are 1862 * copied from kcore. It is assumed that two segments suffice: one for the 1863 * kernel proper and one for all the modules. The code segments are determined 1864 * from kallsyms and modules files. The kernel map starts at _stext or the 1865 * lowest function symbol, and ends at _etext or the highest function symbol. 1866 * The module map starts at the lowest module address and ends at the highest 1867 * module symbol. Start addresses are rounded down to the nearest page. End 1868 * addresses are rounded up to the nearest page. An extra page is added to the 1869 * highest kernel symbol and highest module symbol to, hopefully, encompass that 1870 * symbol too. Because it contains only code sections, the resulting kcore is 1871 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 1872 * is not the same for the kernel map and the modules map. That happens because 1873 * the data is copied adjacently whereas the original kcore has gaps. Finally, 1874 * kallsyms and modules files are compared with their copies to check that 1875 * modules have not been loaded or unloaded while the copies were taking place. 1876 * 1877 * Return: %0 on success, %-1 on failure. 1878 */ 1879 int kcore_copy(const char *from_dir, const char *to_dir) 1880 { 1881 struct kcore kcore; 1882 struct kcore extract; 1883 int idx = 0, err = -1; 1884 off_t offset, sz; 1885 struct kcore_copy_info kci = { .stext = 0, }; 1886 char kcore_filename[PATH_MAX]; 1887 char extract_filename[PATH_MAX]; 1888 struct phdr_data *p; 1889 1890 INIT_LIST_HEAD(&kci.phdrs); 1891 INIT_LIST_HEAD(&kci.syms); 1892 1893 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 1894 return -1; 1895 1896 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 1897 goto out_unlink_kallsyms; 1898 1899 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 1900 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 1901 1902 if (kcore__open(&kcore, kcore_filename)) 1903 goto out_unlink_modules; 1904 1905 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 1906 goto out_kcore_close; 1907 1908 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 1909 goto out_kcore_close; 1910 1911 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 1912 goto out_extract_close; 1913 1914 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 1915 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 1916 offset = round_up(offset, page_size); 1917 1918 kcore_copy__for_each_phdr(&kci, p) { 1919 off_t offs = p->rel + offset; 1920 1921 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 1922 goto out_extract_close; 1923 } 1924 1925 sz = kcore__write(&extract); 1926 if (sz < 0 || sz > offset) 1927 goto out_extract_close; 1928 1929 kcore_copy__for_each_phdr(&kci, p) { 1930 off_t offs = p->rel + offset; 1931 1932 if (p->remaps) 1933 continue; 1934 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 1935 goto out_extract_close; 1936 } 1937 1938 if (kcore_copy__compare_file(from_dir, to_dir, "modules")) 1939 goto out_extract_close; 1940 1941 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 1942 goto out_extract_close; 1943 1944 err = 0; 1945 1946 out_extract_close: 1947 kcore__close(&extract); 1948 if (err) 1949 unlink(extract_filename); 1950 out_kcore_close: 1951 kcore__close(&kcore); 1952 out_unlink_modules: 1953 if (err) 1954 kcore_copy__unlink(to_dir, "modules"); 1955 out_unlink_kallsyms: 1956 if (err) 1957 kcore_copy__unlink(to_dir, "kallsyms"); 1958 1959 kcore_copy__free_phdrs(&kci); 1960 kcore_copy__free_syms(&kci); 1961 1962 return err; 1963 } 1964 1965 int kcore_extract__create(struct kcore_extract *kce) 1966 { 1967 struct kcore kcore; 1968 struct kcore extract; 1969 size_t count = 1; 1970 int idx = 0, err = -1; 1971 off_t offset = page_size, sz; 1972 1973 if (kcore__open(&kcore, kce->kcore_filename)) 1974 return -1; 1975 1976 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 1977 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 1978 goto out_kcore_close; 1979 1980 if (kcore__copy_hdr(&kcore, &extract, count)) 1981 goto out_extract_close; 1982 1983 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 1984 goto out_extract_close; 1985 1986 sz = kcore__write(&extract); 1987 if (sz < 0 || sz > offset) 1988 goto out_extract_close; 1989 1990 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 1991 goto out_extract_close; 1992 1993 err = 0; 1994 1995 out_extract_close: 1996 kcore__close(&extract); 1997 if (err) 1998 unlink(kce->extract_filename); 1999 out_kcore_close: 2000 kcore__close(&kcore); 2001 2002 return err; 2003 } 2004 2005 void kcore_extract__delete(struct kcore_extract *kce) 2006 { 2007 unlink(kce->extract_filename); 2008 } 2009 2010 #ifdef HAVE_GELF_GETNOTE_SUPPORT 2011 2012 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 2013 { 2014 if (!base_off) 2015 return; 2016 2017 if (tmp->bit32) 2018 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 2019 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 2020 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 2021 else 2022 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 2023 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 2024 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 2025 } 2026 2027 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2028 GElf_Addr base_off) 2029 { 2030 if (!base_off) 2031 return; 2032 2033 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2034 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2035 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2036 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2037 } 2038 2039 /** 2040 * populate_sdt_note : Parse raw data and identify SDT note 2041 * @elf: elf of the opened file 2042 * @data: raw data of a section with description offset applied 2043 * @len: note description size 2044 * @type: type of the note 2045 * @sdt_notes: List to add the SDT note 2046 * 2047 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2048 * if its an SDT note, it appends to @sdt_notes list. 2049 */ 2050 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2051 struct list_head *sdt_notes) 2052 { 2053 const char *provider, *name, *args; 2054 struct sdt_note *tmp = NULL; 2055 GElf_Ehdr ehdr; 2056 GElf_Shdr shdr; 2057 int ret = -EINVAL; 2058 2059 union { 2060 Elf64_Addr a64[NR_ADDR]; 2061 Elf32_Addr a32[NR_ADDR]; 2062 } buf; 2063 2064 Elf_Data dst = { 2065 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2066 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2067 .d_off = 0, .d_align = 0 2068 }; 2069 Elf_Data src = { 2070 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2071 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2072 .d_align = 0 2073 }; 2074 2075 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2076 if (!tmp) { 2077 ret = -ENOMEM; 2078 goto out_err; 2079 } 2080 2081 INIT_LIST_HEAD(&tmp->note_list); 2082 2083 if (len < dst.d_size + 3) 2084 goto out_free_note; 2085 2086 /* Translation from file representation to memory representation */ 2087 if (gelf_xlatetom(*elf, &dst, &src, 2088 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2089 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2090 goto out_free_note; 2091 } 2092 2093 /* Populate the fields of sdt_note */ 2094 provider = data + dst.d_size; 2095 2096 name = (const char *)memchr(provider, '\0', data + len - provider); 2097 if (name++ == NULL) 2098 goto out_free_note; 2099 2100 tmp->provider = strdup(provider); 2101 if (!tmp->provider) { 2102 ret = -ENOMEM; 2103 goto out_free_note; 2104 } 2105 tmp->name = strdup(name); 2106 if (!tmp->name) { 2107 ret = -ENOMEM; 2108 goto out_free_prov; 2109 } 2110 2111 args = memchr(name, '\0', data + len - name); 2112 2113 /* 2114 * There is no argument if: 2115 * - We reached the end of the note; 2116 * - There is not enough room to hold a potential string; 2117 * - The argument string is empty or just contains ':'. 2118 */ 2119 if (args == NULL || data + len - args < 2 || 2120 args[1] == ':' || args[1] == '\0') 2121 tmp->args = NULL; 2122 else { 2123 tmp->args = strdup(++args); 2124 if (!tmp->args) { 2125 ret = -ENOMEM; 2126 goto out_free_name; 2127 } 2128 } 2129 2130 if (gelf_getclass(*elf) == ELFCLASS32) { 2131 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2132 tmp->bit32 = true; 2133 } else { 2134 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2135 tmp->bit32 = false; 2136 } 2137 2138 if (!gelf_getehdr(*elf, &ehdr)) { 2139 pr_debug("%s : cannot get elf header.\n", __func__); 2140 ret = -EBADF; 2141 goto out_free_args; 2142 } 2143 2144 /* Adjust the prelink effect : 2145 * Find out the .stapsdt.base section. 2146 * This scn will help us to handle prelinking (if present). 2147 * Compare the retrieved file offset of the base section with the 2148 * base address in the description of the SDT note. If its different, 2149 * then accordingly, adjust the note location. 2150 */ 2151 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2152 sdt_adjust_loc(tmp, shdr.sh_offset); 2153 2154 /* Adjust reference counter offset */ 2155 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2156 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2157 2158 list_add_tail(&tmp->note_list, sdt_notes); 2159 return 0; 2160 2161 out_free_args: 2162 zfree(&tmp->args); 2163 out_free_name: 2164 zfree(&tmp->name); 2165 out_free_prov: 2166 zfree(&tmp->provider); 2167 out_free_note: 2168 free(tmp); 2169 out_err: 2170 return ret; 2171 } 2172 2173 /** 2174 * construct_sdt_notes_list : constructs a list of SDT notes 2175 * @elf : elf to look into 2176 * @sdt_notes : empty list_head 2177 * 2178 * Scans the sections in 'elf' for the section 2179 * .note.stapsdt. It, then calls populate_sdt_note to find 2180 * out the SDT events and populates the 'sdt_notes'. 2181 */ 2182 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2183 { 2184 GElf_Ehdr ehdr; 2185 Elf_Scn *scn = NULL; 2186 Elf_Data *data; 2187 GElf_Shdr shdr; 2188 size_t shstrndx, next; 2189 GElf_Nhdr nhdr; 2190 size_t name_off, desc_off, offset; 2191 int ret = 0; 2192 2193 if (gelf_getehdr(elf, &ehdr) == NULL) { 2194 ret = -EBADF; 2195 goto out_ret; 2196 } 2197 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2198 ret = -EBADF; 2199 goto out_ret; 2200 } 2201 2202 /* Look for the required section */ 2203 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2204 if (!scn) { 2205 ret = -ENOENT; 2206 goto out_ret; 2207 } 2208 2209 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2210 ret = -ENOENT; 2211 goto out_ret; 2212 } 2213 2214 data = elf_getdata(scn, NULL); 2215 2216 /* Get the SDT notes */ 2217 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2218 &desc_off)) > 0; offset = next) { 2219 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2220 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2221 sizeof(SDT_NOTE_NAME))) { 2222 /* Check the type of the note */ 2223 if (nhdr.n_type != SDT_NOTE_TYPE) 2224 goto out_ret; 2225 2226 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2227 nhdr.n_descsz, sdt_notes); 2228 if (ret < 0) 2229 goto out_ret; 2230 } 2231 } 2232 if (list_empty(sdt_notes)) 2233 ret = -ENOENT; 2234 2235 out_ret: 2236 return ret; 2237 } 2238 2239 /** 2240 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2241 * @head : empty list_head 2242 * @target : file to find SDT notes from 2243 * 2244 * This opens the file, initializes 2245 * the ELF and then calls construct_sdt_notes_list. 2246 */ 2247 int get_sdt_note_list(struct list_head *head, const char *target) 2248 { 2249 Elf *elf; 2250 int fd, ret; 2251 2252 fd = open(target, O_RDONLY); 2253 if (fd < 0) 2254 return -EBADF; 2255 2256 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2257 if (!elf) { 2258 ret = -EBADF; 2259 goto out_close; 2260 } 2261 ret = construct_sdt_notes_list(elf, head); 2262 elf_end(elf); 2263 out_close: 2264 close(fd); 2265 return ret; 2266 } 2267 2268 /** 2269 * cleanup_sdt_note_list : free the sdt notes' list 2270 * @sdt_notes: sdt notes' list 2271 * 2272 * Free up the SDT notes in @sdt_notes. 2273 * Returns the number of SDT notes free'd. 2274 */ 2275 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2276 { 2277 struct sdt_note *tmp, *pos; 2278 int nr_free = 0; 2279 2280 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2281 list_del_init(&pos->note_list); 2282 zfree(&pos->name); 2283 zfree(&pos->provider); 2284 free(pos); 2285 nr_free++; 2286 } 2287 return nr_free; 2288 } 2289 2290 /** 2291 * sdt_notes__get_count: Counts the number of sdt events 2292 * @start: list_head to sdt_notes list 2293 * 2294 * Returns the number of SDT notes in a list 2295 */ 2296 int sdt_notes__get_count(struct list_head *start) 2297 { 2298 struct sdt_note *sdt_ptr; 2299 int count = 0; 2300 2301 list_for_each_entry(sdt_ptr, start, note_list) 2302 count++; 2303 return count; 2304 } 2305 #endif 2306 2307 void symbol__elf_init(void) 2308 { 2309 elf_version(EV_CURRENT); 2310 } 2311