xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 78beef62)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "map.h"
11 #include "map_groups.h"
12 #include "symbol.h"
13 #include "symsrc.h"
14 #include "demangle-java.h"
15 #include "demangle-rust.h"
16 #include "machine.h"
17 #include "vdso.h"
18 #include "debug.h"
19 #include "util.h"
20 #include <linux/ctype.h>
21 #include <linux/zalloc.h>
22 #include <symbol/kallsyms.h>
23 
24 #ifndef EM_AARCH64
25 #define EM_AARCH64	183  /* ARM 64 bit */
26 #endif
27 
28 #ifndef ELF32_ST_VISIBILITY
29 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
30 #endif
31 
32 /* For ELF64 the definitions are the same.  */
33 #ifndef ELF64_ST_VISIBILITY
34 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
35 #endif
36 
37 /* How to extract information held in the st_other field.  */
38 #ifndef GELF_ST_VISIBILITY
39 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
40 #endif
41 
42 typedef Elf64_Nhdr GElf_Nhdr;
43 
44 #ifndef DMGL_PARAMS
45 #define DMGL_NO_OPTS     0              /* For readability... */
46 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
47 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
48 #endif
49 
50 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
51 extern char *cplus_demangle(const char *, int);
52 
53 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
54 {
55 	return cplus_demangle(c, i);
56 }
57 #else
58 #ifdef NO_DEMANGLE
59 static inline char *bfd_demangle(void __maybe_unused *v,
60 				 const char __maybe_unused *c,
61 				 int __maybe_unused i)
62 {
63 	return NULL;
64 }
65 #else
66 #define PACKAGE 'perf'
67 #include <bfd.h>
68 #endif
69 #endif
70 
71 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
72 static int elf_getphdrnum(Elf *elf, size_t *dst)
73 {
74 	GElf_Ehdr gehdr;
75 	GElf_Ehdr *ehdr;
76 
77 	ehdr = gelf_getehdr(elf, &gehdr);
78 	if (!ehdr)
79 		return -1;
80 
81 	*dst = ehdr->e_phnum;
82 
83 	return 0;
84 }
85 #endif
86 
87 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
88 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
89 {
90 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
91 	return -1;
92 }
93 #endif
94 
95 #ifndef NT_GNU_BUILD_ID
96 #define NT_GNU_BUILD_ID 3
97 #endif
98 
99 /**
100  * elf_symtab__for_each_symbol - iterate thru all the symbols
101  *
102  * @syms: struct elf_symtab instance to iterate
103  * @idx: uint32_t idx
104  * @sym: GElf_Sym iterator
105  */
106 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
107 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
108 	     idx < nr_syms; \
109 	     idx++, gelf_getsym(syms, idx, &sym))
110 
111 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
112 {
113 	return GELF_ST_TYPE(sym->st_info);
114 }
115 
116 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
117 {
118 	return GELF_ST_VISIBILITY(sym->st_other);
119 }
120 
121 #ifndef STT_GNU_IFUNC
122 #define STT_GNU_IFUNC 10
123 #endif
124 
125 static inline int elf_sym__is_function(const GElf_Sym *sym)
126 {
127 	return (elf_sym__type(sym) == STT_FUNC ||
128 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
129 	       sym->st_name != 0 &&
130 	       sym->st_shndx != SHN_UNDEF;
131 }
132 
133 static inline bool elf_sym__is_object(const GElf_Sym *sym)
134 {
135 	return elf_sym__type(sym) == STT_OBJECT &&
136 		sym->st_name != 0 &&
137 		sym->st_shndx != SHN_UNDEF;
138 }
139 
140 static inline int elf_sym__is_label(const GElf_Sym *sym)
141 {
142 	return elf_sym__type(sym) == STT_NOTYPE &&
143 		sym->st_name != 0 &&
144 		sym->st_shndx != SHN_UNDEF &&
145 		sym->st_shndx != SHN_ABS &&
146 		elf_sym__visibility(sym) != STV_HIDDEN &&
147 		elf_sym__visibility(sym) != STV_INTERNAL;
148 }
149 
150 static bool elf_sym__filter(GElf_Sym *sym)
151 {
152 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
153 }
154 
155 static inline const char *elf_sym__name(const GElf_Sym *sym,
156 					const Elf_Data *symstrs)
157 {
158 	return symstrs->d_buf + sym->st_name;
159 }
160 
161 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
162 					const Elf_Data *secstrs)
163 {
164 	return secstrs->d_buf + shdr->sh_name;
165 }
166 
167 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
168 					const Elf_Data *secstrs)
169 {
170 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
171 }
172 
173 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
174 				    const Elf_Data *secstrs)
175 {
176 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
177 }
178 
179 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
180 {
181 	return elf_sec__is_text(shdr, secstrs) ||
182 	       elf_sec__is_data(shdr, secstrs);
183 }
184 
185 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
186 {
187 	Elf_Scn *sec = NULL;
188 	GElf_Shdr shdr;
189 	size_t cnt = 1;
190 
191 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
192 		gelf_getshdr(sec, &shdr);
193 
194 		if ((addr >= shdr.sh_addr) &&
195 		    (addr < (shdr.sh_addr + shdr.sh_size)))
196 			return cnt;
197 
198 		++cnt;
199 	}
200 
201 	return -1;
202 }
203 
204 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
205 			     GElf_Shdr *shp, const char *name, size_t *idx)
206 {
207 	Elf_Scn *sec = NULL;
208 	size_t cnt = 1;
209 
210 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
211 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
212 		return NULL;
213 
214 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
215 		char *str;
216 
217 		gelf_getshdr(sec, shp);
218 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
219 		if (str && !strcmp(name, str)) {
220 			if (idx)
221 				*idx = cnt;
222 			return sec;
223 		}
224 		++cnt;
225 	}
226 
227 	return NULL;
228 }
229 
230 static bool want_demangle(bool is_kernel_sym)
231 {
232 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
233 }
234 
235 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
236 {
237 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
238 	char *demangled = NULL;
239 
240 	/*
241 	 * We need to figure out if the object was created from C++ sources
242 	 * DWARF DW_compile_unit has this, but we don't always have access
243 	 * to it...
244 	 */
245 	if (!want_demangle(dso->kernel || kmodule))
246 	    return demangled;
247 
248 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
249 	if (demangled == NULL)
250 		demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
251 	else if (rust_is_mangled(demangled))
252 		/*
253 		    * Input to Rust demangling is the BFD-demangled
254 		    * name which it Rust-demangles in place.
255 		    */
256 		rust_demangle_sym(demangled);
257 
258 	return demangled;
259 }
260 
261 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
262 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
263 	     idx < nr_entries; \
264 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
265 
266 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
267 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
268 	     idx < nr_entries; \
269 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
270 
271 /*
272  * We need to check if we have a .dynsym, so that we can handle the
273  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
274  * .dynsym or .symtab).
275  * And always look at the original dso, not at debuginfo packages, that
276  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
277  */
278 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
279 {
280 	uint32_t nr_rel_entries, idx;
281 	GElf_Sym sym;
282 	u64 plt_offset, plt_header_size, plt_entry_size;
283 	GElf_Shdr shdr_plt;
284 	struct symbol *f;
285 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
286 	Elf_Data *reldata, *syms, *symstrs;
287 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
288 	size_t dynsym_idx;
289 	GElf_Ehdr ehdr;
290 	char sympltname[1024];
291 	Elf *elf;
292 	int nr = 0, symidx, err = 0;
293 
294 	if (!ss->dynsym)
295 		return 0;
296 
297 	elf = ss->elf;
298 	ehdr = ss->ehdr;
299 
300 	scn_dynsym = ss->dynsym;
301 	shdr_dynsym = ss->dynshdr;
302 	dynsym_idx = ss->dynsym_idx;
303 
304 	if (scn_dynsym == NULL)
305 		goto out_elf_end;
306 
307 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
308 					  ".rela.plt", NULL);
309 	if (scn_plt_rel == NULL) {
310 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
311 						  ".rel.plt", NULL);
312 		if (scn_plt_rel == NULL)
313 			goto out_elf_end;
314 	}
315 
316 	err = -1;
317 
318 	if (shdr_rel_plt.sh_link != dynsym_idx)
319 		goto out_elf_end;
320 
321 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
322 		goto out_elf_end;
323 
324 	/*
325 	 * Fetch the relocation section to find the idxes to the GOT
326 	 * and the symbols in the .dynsym they refer to.
327 	 */
328 	reldata = elf_getdata(scn_plt_rel, NULL);
329 	if (reldata == NULL)
330 		goto out_elf_end;
331 
332 	syms = elf_getdata(scn_dynsym, NULL);
333 	if (syms == NULL)
334 		goto out_elf_end;
335 
336 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
337 	if (scn_symstrs == NULL)
338 		goto out_elf_end;
339 
340 	symstrs = elf_getdata(scn_symstrs, NULL);
341 	if (symstrs == NULL)
342 		goto out_elf_end;
343 
344 	if (symstrs->d_size == 0)
345 		goto out_elf_end;
346 
347 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
348 	plt_offset = shdr_plt.sh_offset;
349 	switch (ehdr.e_machine) {
350 		case EM_ARM:
351 			plt_header_size = 20;
352 			plt_entry_size = 12;
353 			break;
354 
355 		case EM_AARCH64:
356 			plt_header_size = 32;
357 			plt_entry_size = 16;
358 			break;
359 
360 		case EM_SPARC:
361 			plt_header_size = 48;
362 			plt_entry_size = 12;
363 			break;
364 
365 		case EM_SPARCV9:
366 			plt_header_size = 128;
367 			plt_entry_size = 32;
368 			break;
369 
370 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
371 			plt_header_size = shdr_plt.sh_entsize;
372 			plt_entry_size = shdr_plt.sh_entsize;
373 			break;
374 	}
375 	plt_offset += plt_header_size;
376 
377 	if (shdr_rel_plt.sh_type == SHT_RELA) {
378 		GElf_Rela pos_mem, *pos;
379 
380 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
381 					   nr_rel_entries) {
382 			const char *elf_name = NULL;
383 			char *demangled = NULL;
384 			symidx = GELF_R_SYM(pos->r_info);
385 			gelf_getsym(syms, symidx, &sym);
386 
387 			elf_name = elf_sym__name(&sym, symstrs);
388 			demangled = demangle_sym(dso, 0, elf_name);
389 			if (demangled != NULL)
390 				elf_name = demangled;
391 			snprintf(sympltname, sizeof(sympltname),
392 				 "%s@plt", elf_name);
393 			free(demangled);
394 
395 			f = symbol__new(plt_offset, plt_entry_size,
396 					STB_GLOBAL, STT_FUNC, sympltname);
397 			if (!f)
398 				goto out_elf_end;
399 
400 			plt_offset += plt_entry_size;
401 			symbols__insert(&dso->symbols, f);
402 			++nr;
403 		}
404 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
405 		GElf_Rel pos_mem, *pos;
406 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
407 					  nr_rel_entries) {
408 			const char *elf_name = NULL;
409 			char *demangled = NULL;
410 			symidx = GELF_R_SYM(pos->r_info);
411 			gelf_getsym(syms, symidx, &sym);
412 
413 			elf_name = elf_sym__name(&sym, symstrs);
414 			demangled = demangle_sym(dso, 0, elf_name);
415 			if (demangled != NULL)
416 				elf_name = demangled;
417 			snprintf(sympltname, sizeof(sympltname),
418 				 "%s@plt", elf_name);
419 			free(demangled);
420 
421 			f = symbol__new(plt_offset, plt_entry_size,
422 					STB_GLOBAL, STT_FUNC, sympltname);
423 			if (!f)
424 				goto out_elf_end;
425 
426 			plt_offset += plt_entry_size;
427 			symbols__insert(&dso->symbols, f);
428 			++nr;
429 		}
430 	}
431 
432 	err = 0;
433 out_elf_end:
434 	if (err == 0)
435 		return nr;
436 	pr_debug("%s: problems reading %s PLT info.\n",
437 		 __func__, dso->long_name);
438 	return 0;
439 }
440 
441 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
442 {
443 	return demangle_sym(dso, kmodule, elf_name);
444 }
445 
446 /*
447  * Align offset to 4 bytes as needed for note name and descriptor data.
448  */
449 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
450 
451 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
452 {
453 	int err = -1;
454 	GElf_Ehdr ehdr;
455 	GElf_Shdr shdr;
456 	Elf_Data *data;
457 	Elf_Scn *sec;
458 	Elf_Kind ek;
459 	void *ptr;
460 
461 	if (size < BUILD_ID_SIZE)
462 		goto out;
463 
464 	ek = elf_kind(elf);
465 	if (ek != ELF_K_ELF)
466 		goto out;
467 
468 	if (gelf_getehdr(elf, &ehdr) == NULL) {
469 		pr_err("%s: cannot get elf header.\n", __func__);
470 		goto out;
471 	}
472 
473 	/*
474 	 * Check following sections for notes:
475 	 *   '.note.gnu.build-id'
476 	 *   '.notes'
477 	 *   '.note' (VDSO specific)
478 	 */
479 	do {
480 		sec = elf_section_by_name(elf, &ehdr, &shdr,
481 					  ".note.gnu.build-id", NULL);
482 		if (sec)
483 			break;
484 
485 		sec = elf_section_by_name(elf, &ehdr, &shdr,
486 					  ".notes", NULL);
487 		if (sec)
488 			break;
489 
490 		sec = elf_section_by_name(elf, &ehdr, &shdr,
491 					  ".note", NULL);
492 		if (sec)
493 			break;
494 
495 		return err;
496 
497 	} while (0);
498 
499 	data = elf_getdata(sec, NULL);
500 	if (data == NULL)
501 		goto out;
502 
503 	ptr = data->d_buf;
504 	while (ptr < (data->d_buf + data->d_size)) {
505 		GElf_Nhdr *nhdr = ptr;
506 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
507 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
508 		const char *name;
509 
510 		ptr += sizeof(*nhdr);
511 		name = ptr;
512 		ptr += namesz;
513 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
514 		    nhdr->n_namesz == sizeof("GNU")) {
515 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
516 				size_t sz = min(size, descsz);
517 				memcpy(bf, ptr, sz);
518 				memset(bf + sz, 0, size - sz);
519 				err = descsz;
520 				break;
521 			}
522 		}
523 		ptr += descsz;
524 	}
525 
526 out:
527 	return err;
528 }
529 
530 int filename__read_build_id(const char *filename, void *bf, size_t size)
531 {
532 	int fd, err = -1;
533 	Elf *elf;
534 
535 	if (size < BUILD_ID_SIZE)
536 		goto out;
537 
538 	fd = open(filename, O_RDONLY);
539 	if (fd < 0)
540 		goto out;
541 
542 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
543 	if (elf == NULL) {
544 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
545 		goto out_close;
546 	}
547 
548 	err = elf_read_build_id(elf, bf, size);
549 
550 	elf_end(elf);
551 out_close:
552 	close(fd);
553 out:
554 	return err;
555 }
556 
557 int sysfs__read_build_id(const char *filename, void *build_id, size_t size)
558 {
559 	int fd, err = -1;
560 
561 	if (size < BUILD_ID_SIZE)
562 		goto out;
563 
564 	fd = open(filename, O_RDONLY);
565 	if (fd < 0)
566 		goto out;
567 
568 	while (1) {
569 		char bf[BUFSIZ];
570 		GElf_Nhdr nhdr;
571 		size_t namesz, descsz;
572 
573 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
574 			break;
575 
576 		namesz = NOTE_ALIGN(nhdr.n_namesz);
577 		descsz = NOTE_ALIGN(nhdr.n_descsz);
578 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
579 		    nhdr.n_namesz == sizeof("GNU")) {
580 			if (read(fd, bf, namesz) != (ssize_t)namesz)
581 				break;
582 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
583 				size_t sz = min(descsz, size);
584 				if (read(fd, build_id, sz) == (ssize_t)sz) {
585 					memset(build_id + sz, 0, size - sz);
586 					err = 0;
587 					break;
588 				}
589 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
590 				break;
591 		} else {
592 			int n = namesz + descsz;
593 
594 			if (n > (int)sizeof(bf)) {
595 				n = sizeof(bf);
596 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
597 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
598 			}
599 			if (read(fd, bf, n) != n)
600 				break;
601 		}
602 	}
603 	close(fd);
604 out:
605 	return err;
606 }
607 
608 int filename__read_debuglink(const char *filename, char *debuglink,
609 			     size_t size)
610 {
611 	int fd, err = -1;
612 	Elf *elf;
613 	GElf_Ehdr ehdr;
614 	GElf_Shdr shdr;
615 	Elf_Data *data;
616 	Elf_Scn *sec;
617 	Elf_Kind ek;
618 
619 	fd = open(filename, O_RDONLY);
620 	if (fd < 0)
621 		goto out;
622 
623 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
624 	if (elf == NULL) {
625 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
626 		goto out_close;
627 	}
628 
629 	ek = elf_kind(elf);
630 	if (ek != ELF_K_ELF)
631 		goto out_elf_end;
632 
633 	if (gelf_getehdr(elf, &ehdr) == NULL) {
634 		pr_err("%s: cannot get elf header.\n", __func__);
635 		goto out_elf_end;
636 	}
637 
638 	sec = elf_section_by_name(elf, &ehdr, &shdr,
639 				  ".gnu_debuglink", NULL);
640 	if (sec == NULL)
641 		goto out_elf_end;
642 
643 	data = elf_getdata(sec, NULL);
644 	if (data == NULL)
645 		goto out_elf_end;
646 
647 	/* the start of this section is a zero-terminated string */
648 	strncpy(debuglink, data->d_buf, size);
649 
650 	err = 0;
651 
652 out_elf_end:
653 	elf_end(elf);
654 out_close:
655 	close(fd);
656 out:
657 	return err;
658 }
659 
660 static int dso__swap_init(struct dso *dso, unsigned char eidata)
661 {
662 	static unsigned int const endian = 1;
663 
664 	dso->needs_swap = DSO_SWAP__NO;
665 
666 	switch (eidata) {
667 	case ELFDATA2LSB:
668 		/* We are big endian, DSO is little endian. */
669 		if (*(unsigned char const *)&endian != 1)
670 			dso->needs_swap = DSO_SWAP__YES;
671 		break;
672 
673 	case ELFDATA2MSB:
674 		/* We are little endian, DSO is big endian. */
675 		if (*(unsigned char const *)&endian != 0)
676 			dso->needs_swap = DSO_SWAP__YES;
677 		break;
678 
679 	default:
680 		pr_err("unrecognized DSO data encoding %d\n", eidata);
681 		return -EINVAL;
682 	}
683 
684 	return 0;
685 }
686 
687 bool symsrc__possibly_runtime(struct symsrc *ss)
688 {
689 	return ss->dynsym || ss->opdsec;
690 }
691 
692 bool symsrc__has_symtab(struct symsrc *ss)
693 {
694 	return ss->symtab != NULL;
695 }
696 
697 void symsrc__destroy(struct symsrc *ss)
698 {
699 	zfree(&ss->name);
700 	elf_end(ss->elf);
701 	close(ss->fd);
702 }
703 
704 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr)
705 {
706 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL;
707 }
708 
709 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
710 		 enum dso_binary_type type)
711 {
712 	GElf_Ehdr ehdr;
713 	Elf *elf;
714 	int fd;
715 
716 	if (dso__needs_decompress(dso)) {
717 		fd = dso__decompress_kmodule_fd(dso, name);
718 		if (fd < 0)
719 			return -1;
720 
721 		type = dso->symtab_type;
722 	} else {
723 		fd = open(name, O_RDONLY);
724 		if (fd < 0) {
725 			dso->load_errno = errno;
726 			return -1;
727 		}
728 	}
729 
730 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
731 	if (elf == NULL) {
732 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
733 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
734 		goto out_close;
735 	}
736 
737 	if (gelf_getehdr(elf, &ehdr) == NULL) {
738 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
739 		pr_debug("%s: cannot get elf header.\n", __func__);
740 		goto out_elf_end;
741 	}
742 
743 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
744 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
745 		goto out_elf_end;
746 	}
747 
748 	/* Always reject images with a mismatched build-id: */
749 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
750 		u8 build_id[BUILD_ID_SIZE];
751 
752 		if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) {
753 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
754 			goto out_elf_end;
755 		}
756 
757 		if (!dso__build_id_equal(dso, build_id)) {
758 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
759 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
760 			goto out_elf_end;
761 		}
762 	}
763 
764 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
765 
766 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
767 			NULL);
768 	if (ss->symshdr.sh_type != SHT_SYMTAB)
769 		ss->symtab = NULL;
770 
771 	ss->dynsym_idx = 0;
772 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
773 			&ss->dynsym_idx);
774 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
775 		ss->dynsym = NULL;
776 
777 	ss->opdidx = 0;
778 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
779 			&ss->opdidx);
780 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
781 		ss->opdsec = NULL;
782 
783 	if (dso->kernel == DSO_TYPE_USER)
784 		ss->adjust_symbols = true;
785 	else
786 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
787 
788 	ss->name   = strdup(name);
789 	if (!ss->name) {
790 		dso->load_errno = errno;
791 		goto out_elf_end;
792 	}
793 
794 	ss->elf    = elf;
795 	ss->fd     = fd;
796 	ss->ehdr   = ehdr;
797 	ss->type   = type;
798 
799 	return 0;
800 
801 out_elf_end:
802 	elf_end(elf);
803 out_close:
804 	close(fd);
805 	return -1;
806 }
807 
808 /**
809  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
810  * @kmap: kernel maps and relocation reference symbol
811  *
812  * This function returns %true if we are dealing with the kernel maps and the
813  * relocation reference symbol has not yet been found.  Otherwise %false is
814  * returned.
815  */
816 static bool ref_reloc_sym_not_found(struct kmap *kmap)
817 {
818 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
819 	       !kmap->ref_reloc_sym->unrelocated_addr;
820 }
821 
822 /**
823  * ref_reloc - kernel relocation offset.
824  * @kmap: kernel maps and relocation reference symbol
825  *
826  * This function returns the offset of kernel addresses as determined by using
827  * the relocation reference symbol i.e. if the kernel has not been relocated
828  * then the return value is zero.
829  */
830 static u64 ref_reloc(struct kmap *kmap)
831 {
832 	if (kmap && kmap->ref_reloc_sym &&
833 	    kmap->ref_reloc_sym->unrelocated_addr)
834 		return kmap->ref_reloc_sym->addr -
835 		       kmap->ref_reloc_sym->unrelocated_addr;
836 	return 0;
837 }
838 
839 void __weak arch__sym_update(struct symbol *s __maybe_unused,
840 		GElf_Sym *sym __maybe_unused) { }
841 
842 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
843 				      GElf_Sym *sym, GElf_Shdr *shdr,
844 				      struct map_groups *kmaps, struct kmap *kmap,
845 				      struct dso **curr_dsop, struct map **curr_mapp,
846 				      const char *section_name,
847 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
848 {
849 	struct dso *curr_dso = *curr_dsop;
850 	struct map *curr_map;
851 	char dso_name[PATH_MAX];
852 
853 	/* Adjust symbol to map to file offset */
854 	if (adjust_kernel_syms)
855 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
856 
857 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
858 		return 0;
859 
860 	if (strcmp(section_name, ".text") == 0) {
861 		/*
862 		 * The initial kernel mapping is based on
863 		 * kallsyms and identity maps.  Overwrite it to
864 		 * map to the kernel dso.
865 		 */
866 		if (*remap_kernel && dso->kernel) {
867 			*remap_kernel = false;
868 			map->start = shdr->sh_addr + ref_reloc(kmap);
869 			map->end = map->start + shdr->sh_size;
870 			map->pgoff = shdr->sh_offset;
871 			map->map_ip = map__map_ip;
872 			map->unmap_ip = map__unmap_ip;
873 			/* Ensure maps are correctly ordered */
874 			if (kmaps) {
875 				map__get(map);
876 				map_groups__remove(kmaps, map);
877 				map_groups__insert(kmaps, map);
878 				map__put(map);
879 			}
880 		}
881 
882 		/*
883 		 * The initial module mapping is based on
884 		 * /proc/modules mapped to offset zero.
885 		 * Overwrite it to map to the module dso.
886 		 */
887 		if (*remap_kernel && kmodule) {
888 			*remap_kernel = false;
889 			map->pgoff = shdr->sh_offset;
890 		}
891 
892 		*curr_mapp = map;
893 		*curr_dsop = dso;
894 		return 0;
895 	}
896 
897 	if (!kmap)
898 		return 0;
899 
900 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
901 
902 	curr_map = map_groups__find_by_name(kmaps, dso_name);
903 	if (curr_map == NULL) {
904 		u64 start = sym->st_value;
905 
906 		if (kmodule)
907 			start += map->start + shdr->sh_offset;
908 
909 		curr_dso = dso__new(dso_name);
910 		if (curr_dso == NULL)
911 			return -1;
912 		curr_dso->kernel = dso->kernel;
913 		curr_dso->long_name = dso->long_name;
914 		curr_dso->long_name_len = dso->long_name_len;
915 		curr_map = map__new2(start, curr_dso);
916 		dso__put(curr_dso);
917 		if (curr_map == NULL)
918 			return -1;
919 
920 		if (adjust_kernel_syms) {
921 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
922 			curr_map->end	 = curr_map->start + shdr->sh_size;
923 			curr_map->pgoff	 = shdr->sh_offset;
924 		} else {
925 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
926 		}
927 		curr_dso->symtab_type = dso->symtab_type;
928 		map_groups__insert(kmaps, curr_map);
929 		/*
930 		 * Add it before we drop the referece to curr_map, i.e. while
931 		 * we still are sure to have a reference to this DSO via
932 		 * *curr_map->dso.
933 		 */
934 		dsos__add(&map->groups->machine->dsos, curr_dso);
935 		/* kmaps already got it */
936 		map__put(curr_map);
937 		dso__set_loaded(curr_dso);
938 		*curr_mapp = curr_map;
939 		*curr_dsop = curr_dso;
940 	} else
941 		*curr_dsop = curr_map->dso;
942 
943 	return 0;
944 }
945 
946 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
947 		  struct symsrc *runtime_ss, int kmodule)
948 {
949 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
950 	struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL;
951 	struct map *curr_map = map;
952 	struct dso *curr_dso = dso;
953 	Elf_Data *symstrs, *secstrs;
954 	uint32_t nr_syms;
955 	int err = -1;
956 	uint32_t idx;
957 	GElf_Ehdr ehdr;
958 	GElf_Shdr shdr;
959 	GElf_Shdr tshdr;
960 	Elf_Data *syms, *opddata = NULL;
961 	GElf_Sym sym;
962 	Elf_Scn *sec, *sec_strndx;
963 	Elf *elf;
964 	int nr = 0;
965 	bool remap_kernel = false, adjust_kernel_syms = false;
966 
967 	if (kmap && !kmaps)
968 		return -1;
969 
970 	dso->symtab_type = syms_ss->type;
971 	dso->is_64_bit = syms_ss->is_64_bit;
972 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
973 
974 	/*
975 	 * Modules may already have symbols from kallsyms, but those symbols
976 	 * have the wrong values for the dso maps, so remove them.
977 	 */
978 	if (kmodule && syms_ss->symtab)
979 		symbols__delete(&dso->symbols);
980 
981 	if (!syms_ss->symtab) {
982 		/*
983 		 * If the vmlinux is stripped, fail so we will fall back
984 		 * to using kallsyms. The vmlinux runtime symbols aren't
985 		 * of much use.
986 		 */
987 		if (dso->kernel)
988 			goto out_elf_end;
989 
990 		syms_ss->symtab  = syms_ss->dynsym;
991 		syms_ss->symshdr = syms_ss->dynshdr;
992 	}
993 
994 	elf = syms_ss->elf;
995 	ehdr = syms_ss->ehdr;
996 	sec = syms_ss->symtab;
997 	shdr = syms_ss->symshdr;
998 
999 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1000 				".text", NULL))
1001 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1002 
1003 	if (runtime_ss->opdsec)
1004 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1005 
1006 	syms = elf_getdata(sec, NULL);
1007 	if (syms == NULL)
1008 		goto out_elf_end;
1009 
1010 	sec = elf_getscn(elf, shdr.sh_link);
1011 	if (sec == NULL)
1012 		goto out_elf_end;
1013 
1014 	symstrs = elf_getdata(sec, NULL);
1015 	if (symstrs == NULL)
1016 		goto out_elf_end;
1017 
1018 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1019 	if (sec_strndx == NULL)
1020 		goto out_elf_end;
1021 
1022 	secstrs = elf_getdata(sec_strndx, NULL);
1023 	if (secstrs == NULL)
1024 		goto out_elf_end;
1025 
1026 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1027 
1028 	memset(&sym, 0, sizeof(sym));
1029 
1030 	/*
1031 	 * The kernel relocation symbol is needed in advance in order to adjust
1032 	 * kernel maps correctly.
1033 	 */
1034 	if (ref_reloc_sym_not_found(kmap)) {
1035 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1036 			const char *elf_name = elf_sym__name(&sym, symstrs);
1037 
1038 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1039 				continue;
1040 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1041 			map->reloc = kmap->ref_reloc_sym->addr -
1042 				     kmap->ref_reloc_sym->unrelocated_addr;
1043 			break;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * Handle any relocation of vdso necessary because older kernels
1049 	 * attempted to prelink vdso to its virtual address.
1050 	 */
1051 	if (dso__is_vdso(dso))
1052 		map->reloc = map->start - dso->text_offset;
1053 
1054 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1055 	/*
1056 	 * Initial kernel and module mappings do not map to the dso.
1057 	 * Flag the fixups.
1058 	 */
1059 	if (dso->kernel || kmodule) {
1060 		remap_kernel = true;
1061 		adjust_kernel_syms = dso->adjust_symbols;
1062 	}
1063 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1064 		struct symbol *f;
1065 		const char *elf_name = elf_sym__name(&sym, symstrs);
1066 		char *demangled = NULL;
1067 		int is_label = elf_sym__is_label(&sym);
1068 		const char *section_name;
1069 		bool used_opd = false;
1070 
1071 		if (!is_label && !elf_sym__filter(&sym))
1072 			continue;
1073 
1074 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1075 		 * don't identify functions, so will confuse the profile
1076 		 * output: */
1077 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1078 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1079 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1080 				continue;
1081 		}
1082 
1083 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1084 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1085 			u64 *opd = opddata->d_buf + offset;
1086 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1087 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1088 					sym.st_value);
1089 			used_opd = true;
1090 		}
1091 		/*
1092 		 * When loading symbols in a data mapping, ABS symbols (which
1093 		 * has a value of SHN_ABS in its st_shndx) failed at
1094 		 * elf_getscn().  And it marks the loading as a failure so
1095 		 * already loaded symbols cannot be fixed up.
1096 		 *
1097 		 * I'm not sure what should be done. Just ignore them for now.
1098 		 * - Namhyung Kim
1099 		 */
1100 		if (sym.st_shndx == SHN_ABS)
1101 			continue;
1102 
1103 		sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1104 		if (!sec)
1105 			goto out_elf_end;
1106 
1107 		gelf_getshdr(sec, &shdr);
1108 
1109 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1110 			continue;
1111 
1112 		section_name = elf_sec__name(&shdr, secstrs);
1113 
1114 		/* On ARM, symbols for thumb functions have 1 added to
1115 		 * the symbol address as a flag - remove it */
1116 		if ((ehdr.e_machine == EM_ARM) &&
1117 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1118 		    (sym.st_value & 1))
1119 			--sym.st_value;
1120 
1121 		if (dso->kernel || kmodule) {
1122 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1123 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1124 				goto out_elf_end;
1125 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1126 			   (!used_opd && syms_ss->adjust_symbols)) {
1127 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1128 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1129 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1130 				  (u64)shdr.sh_offset);
1131 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1132 		}
1133 
1134 		demangled = demangle_sym(dso, kmodule, elf_name);
1135 		if (demangled != NULL)
1136 			elf_name = demangled;
1137 
1138 		f = symbol__new(sym.st_value, sym.st_size,
1139 				GELF_ST_BIND(sym.st_info),
1140 				GELF_ST_TYPE(sym.st_info), elf_name);
1141 		free(demangled);
1142 		if (!f)
1143 			goto out_elf_end;
1144 
1145 		arch__sym_update(f, &sym);
1146 
1147 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1148 		nr++;
1149 	}
1150 
1151 	/*
1152 	 * For misannotated, zeroed, ASM function sizes.
1153 	 */
1154 	if (nr > 0) {
1155 		symbols__fixup_end(&dso->symbols);
1156 		symbols__fixup_duplicate(&dso->symbols);
1157 		if (kmap) {
1158 			/*
1159 			 * We need to fixup this here too because we create new
1160 			 * maps here, for things like vsyscall sections.
1161 			 */
1162 			map_groups__fixup_end(kmaps);
1163 		}
1164 	}
1165 	err = nr;
1166 out_elf_end:
1167 	return err;
1168 }
1169 
1170 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1171 {
1172 	GElf_Phdr phdr;
1173 	size_t i, phdrnum;
1174 	int err;
1175 	u64 sz;
1176 
1177 	if (elf_getphdrnum(elf, &phdrnum))
1178 		return -1;
1179 
1180 	for (i = 0; i < phdrnum; i++) {
1181 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1182 			return -1;
1183 		if (phdr.p_type != PT_LOAD)
1184 			continue;
1185 		if (exe) {
1186 			if (!(phdr.p_flags & PF_X))
1187 				continue;
1188 		} else {
1189 			if (!(phdr.p_flags & PF_R))
1190 				continue;
1191 		}
1192 		sz = min(phdr.p_memsz, phdr.p_filesz);
1193 		if (!sz)
1194 			continue;
1195 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1196 		if (err)
1197 			return err;
1198 	}
1199 	return 0;
1200 }
1201 
1202 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1203 		    bool *is_64_bit)
1204 {
1205 	int err;
1206 	Elf *elf;
1207 
1208 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1209 	if (elf == NULL)
1210 		return -1;
1211 
1212 	if (is_64_bit)
1213 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1214 
1215 	err = elf_read_maps(elf, exe, mapfn, data);
1216 
1217 	elf_end(elf);
1218 	return err;
1219 }
1220 
1221 enum dso_type dso__type_fd(int fd)
1222 {
1223 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1224 	GElf_Ehdr ehdr;
1225 	Elf_Kind ek;
1226 	Elf *elf;
1227 
1228 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1229 	if (elf == NULL)
1230 		goto out;
1231 
1232 	ek = elf_kind(elf);
1233 	if (ek != ELF_K_ELF)
1234 		goto out_end;
1235 
1236 	if (gelf_getclass(elf) == ELFCLASS64) {
1237 		dso_type = DSO__TYPE_64BIT;
1238 		goto out_end;
1239 	}
1240 
1241 	if (gelf_getehdr(elf, &ehdr) == NULL)
1242 		goto out_end;
1243 
1244 	if (ehdr.e_machine == EM_X86_64)
1245 		dso_type = DSO__TYPE_X32BIT;
1246 	else
1247 		dso_type = DSO__TYPE_32BIT;
1248 out_end:
1249 	elf_end(elf);
1250 out:
1251 	return dso_type;
1252 }
1253 
1254 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1255 {
1256 	ssize_t r;
1257 	size_t n;
1258 	int err = -1;
1259 	char *buf = malloc(page_size);
1260 
1261 	if (buf == NULL)
1262 		return -1;
1263 
1264 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1265 		goto out;
1266 
1267 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1268 		goto out;
1269 
1270 	while (len) {
1271 		n = page_size;
1272 		if (len < n)
1273 			n = len;
1274 		/* Use read because mmap won't work on proc files */
1275 		r = read(from, buf, n);
1276 		if (r < 0)
1277 			goto out;
1278 		if (!r)
1279 			break;
1280 		n = r;
1281 		r = write(to, buf, n);
1282 		if (r < 0)
1283 			goto out;
1284 		if ((size_t)r != n)
1285 			goto out;
1286 		len -= n;
1287 	}
1288 
1289 	err = 0;
1290 out:
1291 	free(buf);
1292 	return err;
1293 }
1294 
1295 struct kcore {
1296 	int fd;
1297 	int elfclass;
1298 	Elf *elf;
1299 	GElf_Ehdr ehdr;
1300 };
1301 
1302 static int kcore__open(struct kcore *kcore, const char *filename)
1303 {
1304 	GElf_Ehdr *ehdr;
1305 
1306 	kcore->fd = open(filename, O_RDONLY);
1307 	if (kcore->fd == -1)
1308 		return -1;
1309 
1310 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1311 	if (!kcore->elf)
1312 		goto out_close;
1313 
1314 	kcore->elfclass = gelf_getclass(kcore->elf);
1315 	if (kcore->elfclass == ELFCLASSNONE)
1316 		goto out_end;
1317 
1318 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1319 	if (!ehdr)
1320 		goto out_end;
1321 
1322 	return 0;
1323 
1324 out_end:
1325 	elf_end(kcore->elf);
1326 out_close:
1327 	close(kcore->fd);
1328 	return -1;
1329 }
1330 
1331 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1332 		       bool temp)
1333 {
1334 	kcore->elfclass = elfclass;
1335 
1336 	if (temp)
1337 		kcore->fd = mkstemp(filename);
1338 	else
1339 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1340 	if (kcore->fd == -1)
1341 		return -1;
1342 
1343 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1344 	if (!kcore->elf)
1345 		goto out_close;
1346 
1347 	if (!gelf_newehdr(kcore->elf, elfclass))
1348 		goto out_end;
1349 
1350 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1351 
1352 	return 0;
1353 
1354 out_end:
1355 	elf_end(kcore->elf);
1356 out_close:
1357 	close(kcore->fd);
1358 	unlink(filename);
1359 	return -1;
1360 }
1361 
1362 static void kcore__close(struct kcore *kcore)
1363 {
1364 	elf_end(kcore->elf);
1365 	close(kcore->fd);
1366 }
1367 
1368 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1369 {
1370 	GElf_Ehdr *ehdr = &to->ehdr;
1371 	GElf_Ehdr *kehdr = &from->ehdr;
1372 
1373 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1374 	ehdr->e_type      = kehdr->e_type;
1375 	ehdr->e_machine   = kehdr->e_machine;
1376 	ehdr->e_version   = kehdr->e_version;
1377 	ehdr->e_entry     = 0;
1378 	ehdr->e_shoff     = 0;
1379 	ehdr->e_flags     = kehdr->e_flags;
1380 	ehdr->e_phnum     = count;
1381 	ehdr->e_shentsize = 0;
1382 	ehdr->e_shnum     = 0;
1383 	ehdr->e_shstrndx  = 0;
1384 
1385 	if (from->elfclass == ELFCLASS32) {
1386 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1387 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1388 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1389 	} else {
1390 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1391 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1392 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1393 	}
1394 
1395 	if (!gelf_update_ehdr(to->elf, ehdr))
1396 		return -1;
1397 
1398 	if (!gelf_newphdr(to->elf, count))
1399 		return -1;
1400 
1401 	return 0;
1402 }
1403 
1404 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1405 			   u64 addr, u64 len)
1406 {
1407 	GElf_Phdr phdr = {
1408 		.p_type		= PT_LOAD,
1409 		.p_flags	= PF_R | PF_W | PF_X,
1410 		.p_offset	= offset,
1411 		.p_vaddr	= addr,
1412 		.p_paddr	= 0,
1413 		.p_filesz	= len,
1414 		.p_memsz	= len,
1415 		.p_align	= page_size,
1416 	};
1417 
1418 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1419 		return -1;
1420 
1421 	return 0;
1422 }
1423 
1424 static off_t kcore__write(struct kcore *kcore)
1425 {
1426 	return elf_update(kcore->elf, ELF_C_WRITE);
1427 }
1428 
1429 struct phdr_data {
1430 	off_t offset;
1431 	off_t rel;
1432 	u64 addr;
1433 	u64 len;
1434 	struct list_head node;
1435 	struct phdr_data *remaps;
1436 };
1437 
1438 struct sym_data {
1439 	u64 addr;
1440 	struct list_head node;
1441 };
1442 
1443 struct kcore_copy_info {
1444 	u64 stext;
1445 	u64 etext;
1446 	u64 first_symbol;
1447 	u64 last_symbol;
1448 	u64 first_module;
1449 	u64 last_module_symbol;
1450 	size_t phnum;
1451 	struct list_head phdrs;
1452 	struct list_head syms;
1453 };
1454 
1455 #define kcore_copy__for_each_phdr(k, p) \
1456 	list_for_each_entry((p), &(k)->phdrs, node)
1457 
1458 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1459 {
1460 	struct phdr_data *p = zalloc(sizeof(*p));
1461 
1462 	if (p) {
1463 		p->addr   = addr;
1464 		p->len    = len;
1465 		p->offset = offset;
1466 	}
1467 
1468 	return p;
1469 }
1470 
1471 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1472 						 u64 addr, u64 len,
1473 						 off_t offset)
1474 {
1475 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1476 
1477 	if (p)
1478 		list_add_tail(&p->node, &kci->phdrs);
1479 
1480 	return p;
1481 }
1482 
1483 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1484 {
1485 	struct phdr_data *p, *tmp;
1486 
1487 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1488 		list_del_init(&p->node);
1489 		free(p);
1490 	}
1491 }
1492 
1493 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1494 					    u64 addr)
1495 {
1496 	struct sym_data *s = zalloc(sizeof(*s));
1497 
1498 	if (s) {
1499 		s->addr = addr;
1500 		list_add_tail(&s->node, &kci->syms);
1501 	}
1502 
1503 	return s;
1504 }
1505 
1506 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1507 {
1508 	struct sym_data *s, *tmp;
1509 
1510 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1511 		list_del_init(&s->node);
1512 		free(s);
1513 	}
1514 }
1515 
1516 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1517 					u64 start)
1518 {
1519 	struct kcore_copy_info *kci = arg;
1520 
1521 	if (!kallsyms__is_function(type))
1522 		return 0;
1523 
1524 	if (strchr(name, '[')) {
1525 		if (start > kci->last_module_symbol)
1526 			kci->last_module_symbol = start;
1527 		return 0;
1528 	}
1529 
1530 	if (!kci->first_symbol || start < kci->first_symbol)
1531 		kci->first_symbol = start;
1532 
1533 	if (!kci->last_symbol || start > kci->last_symbol)
1534 		kci->last_symbol = start;
1535 
1536 	if (!strcmp(name, "_stext")) {
1537 		kci->stext = start;
1538 		return 0;
1539 	}
1540 
1541 	if (!strcmp(name, "_etext")) {
1542 		kci->etext = start;
1543 		return 0;
1544 	}
1545 
1546 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1547 		return -1;
1548 
1549 	return 0;
1550 }
1551 
1552 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1553 				      const char *dir)
1554 {
1555 	char kallsyms_filename[PATH_MAX];
1556 
1557 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1558 
1559 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1560 		return -1;
1561 
1562 	if (kallsyms__parse(kallsyms_filename, kci,
1563 			    kcore_copy__process_kallsyms) < 0)
1564 		return -1;
1565 
1566 	return 0;
1567 }
1568 
1569 static int kcore_copy__process_modules(void *arg,
1570 				       const char *name __maybe_unused,
1571 				       u64 start, u64 size __maybe_unused)
1572 {
1573 	struct kcore_copy_info *kci = arg;
1574 
1575 	if (!kci->first_module || start < kci->first_module)
1576 		kci->first_module = start;
1577 
1578 	return 0;
1579 }
1580 
1581 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1582 				     const char *dir)
1583 {
1584 	char modules_filename[PATH_MAX];
1585 
1586 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1587 
1588 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1589 		return -1;
1590 
1591 	if (modules__parse(modules_filename, kci,
1592 			   kcore_copy__process_modules) < 0)
1593 		return -1;
1594 
1595 	return 0;
1596 }
1597 
1598 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1599 			   u64 pgoff, u64 s, u64 e)
1600 {
1601 	u64 len, offset;
1602 
1603 	if (s < start || s >= end)
1604 		return 0;
1605 
1606 	offset = (s - start) + pgoff;
1607 	len = e < end ? e - s : end - s;
1608 
1609 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1610 }
1611 
1612 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1613 {
1614 	struct kcore_copy_info *kci = data;
1615 	u64 end = start + len;
1616 	struct sym_data *sdat;
1617 
1618 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1619 		return -1;
1620 
1621 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1622 			    kci->last_module_symbol))
1623 		return -1;
1624 
1625 	list_for_each_entry(sdat, &kci->syms, node) {
1626 		u64 s = round_down(sdat->addr, page_size);
1627 
1628 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1629 			return -1;
1630 	}
1631 
1632 	return 0;
1633 }
1634 
1635 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1636 {
1637 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1638 		return -1;
1639 
1640 	return 0;
1641 }
1642 
1643 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1644 {
1645 	struct phdr_data *p, *k = NULL;
1646 	u64 kend;
1647 
1648 	if (!kci->stext)
1649 		return;
1650 
1651 	/* Find phdr that corresponds to the kernel map (contains stext) */
1652 	kcore_copy__for_each_phdr(kci, p) {
1653 		u64 pend = p->addr + p->len - 1;
1654 
1655 		if (p->addr <= kci->stext && pend >= kci->stext) {
1656 			k = p;
1657 			break;
1658 		}
1659 	}
1660 
1661 	if (!k)
1662 		return;
1663 
1664 	kend = k->offset + k->len;
1665 
1666 	/* Find phdrs that remap the kernel */
1667 	kcore_copy__for_each_phdr(kci, p) {
1668 		u64 pend = p->offset + p->len;
1669 
1670 		if (p == k)
1671 			continue;
1672 
1673 		if (p->offset >= k->offset && pend <= kend)
1674 			p->remaps = k;
1675 	}
1676 }
1677 
1678 static void kcore_copy__layout(struct kcore_copy_info *kci)
1679 {
1680 	struct phdr_data *p;
1681 	off_t rel = 0;
1682 
1683 	kcore_copy__find_remaps(kci);
1684 
1685 	kcore_copy__for_each_phdr(kci, p) {
1686 		if (!p->remaps) {
1687 			p->rel = rel;
1688 			rel += p->len;
1689 		}
1690 		kci->phnum += 1;
1691 	}
1692 
1693 	kcore_copy__for_each_phdr(kci, p) {
1694 		struct phdr_data *k = p->remaps;
1695 
1696 		if (k)
1697 			p->rel = p->offset - k->offset + k->rel;
1698 	}
1699 }
1700 
1701 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1702 				 Elf *elf)
1703 {
1704 	if (kcore_copy__parse_kallsyms(kci, dir))
1705 		return -1;
1706 
1707 	if (kcore_copy__parse_modules(kci, dir))
1708 		return -1;
1709 
1710 	if (kci->stext)
1711 		kci->stext = round_down(kci->stext, page_size);
1712 	else
1713 		kci->stext = round_down(kci->first_symbol, page_size);
1714 
1715 	if (kci->etext) {
1716 		kci->etext = round_up(kci->etext, page_size);
1717 	} else if (kci->last_symbol) {
1718 		kci->etext = round_up(kci->last_symbol, page_size);
1719 		kci->etext += page_size;
1720 	}
1721 
1722 	kci->first_module = round_down(kci->first_module, page_size);
1723 
1724 	if (kci->last_module_symbol) {
1725 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1726 						   page_size);
1727 		kci->last_module_symbol += page_size;
1728 	}
1729 
1730 	if (!kci->stext || !kci->etext)
1731 		return -1;
1732 
1733 	if (kci->first_module && !kci->last_module_symbol)
1734 		return -1;
1735 
1736 	if (kcore_copy__read_maps(kci, elf))
1737 		return -1;
1738 
1739 	kcore_copy__layout(kci);
1740 
1741 	return 0;
1742 }
1743 
1744 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1745 				 const char *name)
1746 {
1747 	char from_filename[PATH_MAX];
1748 	char to_filename[PATH_MAX];
1749 
1750 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1751 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1752 
1753 	return copyfile_mode(from_filename, to_filename, 0400);
1754 }
1755 
1756 static int kcore_copy__unlink(const char *dir, const char *name)
1757 {
1758 	char filename[PATH_MAX];
1759 
1760 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1761 
1762 	return unlink(filename);
1763 }
1764 
1765 static int kcore_copy__compare_fds(int from, int to)
1766 {
1767 	char *buf_from;
1768 	char *buf_to;
1769 	ssize_t ret;
1770 	size_t len;
1771 	int err = -1;
1772 
1773 	buf_from = malloc(page_size);
1774 	buf_to = malloc(page_size);
1775 	if (!buf_from || !buf_to)
1776 		goto out;
1777 
1778 	while (1) {
1779 		/* Use read because mmap won't work on proc files */
1780 		ret = read(from, buf_from, page_size);
1781 		if (ret < 0)
1782 			goto out;
1783 
1784 		if (!ret)
1785 			break;
1786 
1787 		len = ret;
1788 
1789 		if (readn(to, buf_to, len) != (int)len)
1790 			goto out;
1791 
1792 		if (memcmp(buf_from, buf_to, len))
1793 			goto out;
1794 	}
1795 
1796 	err = 0;
1797 out:
1798 	free(buf_to);
1799 	free(buf_from);
1800 	return err;
1801 }
1802 
1803 static int kcore_copy__compare_files(const char *from_filename,
1804 				     const char *to_filename)
1805 {
1806 	int from, to, err = -1;
1807 
1808 	from = open(from_filename, O_RDONLY);
1809 	if (from < 0)
1810 		return -1;
1811 
1812 	to = open(to_filename, O_RDONLY);
1813 	if (to < 0)
1814 		goto out_close_from;
1815 
1816 	err = kcore_copy__compare_fds(from, to);
1817 
1818 	close(to);
1819 out_close_from:
1820 	close(from);
1821 	return err;
1822 }
1823 
1824 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1825 				    const char *name)
1826 {
1827 	char from_filename[PATH_MAX];
1828 	char to_filename[PATH_MAX];
1829 
1830 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1831 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1832 
1833 	return kcore_copy__compare_files(from_filename, to_filename);
1834 }
1835 
1836 /**
1837  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1838  * @from_dir: from directory
1839  * @to_dir: to directory
1840  *
1841  * This function copies kallsyms, modules and kcore files from one directory to
1842  * another.  kallsyms and modules are copied entirely.  Only code segments are
1843  * copied from kcore.  It is assumed that two segments suffice: one for the
1844  * kernel proper and one for all the modules.  The code segments are determined
1845  * from kallsyms and modules files.  The kernel map starts at _stext or the
1846  * lowest function symbol, and ends at _etext or the highest function symbol.
1847  * The module map starts at the lowest module address and ends at the highest
1848  * module symbol.  Start addresses are rounded down to the nearest page.  End
1849  * addresses are rounded up to the nearest page.  An extra page is added to the
1850  * highest kernel symbol and highest module symbol to, hopefully, encompass that
1851  * symbol too.  Because it contains only code sections, the resulting kcore is
1852  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
1853  * is not the same for the kernel map and the modules map.  That happens because
1854  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
1855  * kallsyms and modules files are compared with their copies to check that
1856  * modules have not been loaded or unloaded while the copies were taking place.
1857  *
1858  * Return: %0 on success, %-1 on failure.
1859  */
1860 int kcore_copy(const char *from_dir, const char *to_dir)
1861 {
1862 	struct kcore kcore;
1863 	struct kcore extract;
1864 	int idx = 0, err = -1;
1865 	off_t offset, sz;
1866 	struct kcore_copy_info kci = { .stext = 0, };
1867 	char kcore_filename[PATH_MAX];
1868 	char extract_filename[PATH_MAX];
1869 	struct phdr_data *p;
1870 
1871 	INIT_LIST_HEAD(&kci.phdrs);
1872 	INIT_LIST_HEAD(&kci.syms);
1873 
1874 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
1875 		return -1;
1876 
1877 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
1878 		goto out_unlink_kallsyms;
1879 
1880 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
1881 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
1882 
1883 	if (kcore__open(&kcore, kcore_filename))
1884 		goto out_unlink_modules;
1885 
1886 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
1887 		goto out_kcore_close;
1888 
1889 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
1890 		goto out_kcore_close;
1891 
1892 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
1893 		goto out_extract_close;
1894 
1895 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
1896 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
1897 	offset = round_up(offset, page_size);
1898 
1899 	kcore_copy__for_each_phdr(&kci, p) {
1900 		off_t offs = p->rel + offset;
1901 
1902 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
1903 			goto out_extract_close;
1904 	}
1905 
1906 	sz = kcore__write(&extract);
1907 	if (sz < 0 || sz > offset)
1908 		goto out_extract_close;
1909 
1910 	kcore_copy__for_each_phdr(&kci, p) {
1911 		off_t offs = p->rel + offset;
1912 
1913 		if (p->remaps)
1914 			continue;
1915 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
1916 			goto out_extract_close;
1917 	}
1918 
1919 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
1920 		goto out_extract_close;
1921 
1922 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
1923 		goto out_extract_close;
1924 
1925 	err = 0;
1926 
1927 out_extract_close:
1928 	kcore__close(&extract);
1929 	if (err)
1930 		unlink(extract_filename);
1931 out_kcore_close:
1932 	kcore__close(&kcore);
1933 out_unlink_modules:
1934 	if (err)
1935 		kcore_copy__unlink(to_dir, "modules");
1936 out_unlink_kallsyms:
1937 	if (err)
1938 		kcore_copy__unlink(to_dir, "kallsyms");
1939 
1940 	kcore_copy__free_phdrs(&kci);
1941 	kcore_copy__free_syms(&kci);
1942 
1943 	return err;
1944 }
1945 
1946 int kcore_extract__create(struct kcore_extract *kce)
1947 {
1948 	struct kcore kcore;
1949 	struct kcore extract;
1950 	size_t count = 1;
1951 	int idx = 0, err = -1;
1952 	off_t offset = page_size, sz;
1953 
1954 	if (kcore__open(&kcore, kce->kcore_filename))
1955 		return -1;
1956 
1957 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
1958 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
1959 		goto out_kcore_close;
1960 
1961 	if (kcore__copy_hdr(&kcore, &extract, count))
1962 		goto out_extract_close;
1963 
1964 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
1965 		goto out_extract_close;
1966 
1967 	sz = kcore__write(&extract);
1968 	if (sz < 0 || sz > offset)
1969 		goto out_extract_close;
1970 
1971 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
1972 		goto out_extract_close;
1973 
1974 	err = 0;
1975 
1976 out_extract_close:
1977 	kcore__close(&extract);
1978 	if (err)
1979 		unlink(kce->extract_filename);
1980 out_kcore_close:
1981 	kcore__close(&kcore);
1982 
1983 	return err;
1984 }
1985 
1986 void kcore_extract__delete(struct kcore_extract *kce)
1987 {
1988 	unlink(kce->extract_filename);
1989 }
1990 
1991 #ifdef HAVE_GELF_GETNOTE_SUPPORT
1992 
1993 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
1994 {
1995 	if (!base_off)
1996 		return;
1997 
1998 	if (tmp->bit32)
1999 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2000 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2001 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2002 	else
2003 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2004 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2005 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2006 }
2007 
2008 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2009 			      GElf_Addr base_off)
2010 {
2011 	if (!base_off)
2012 		return;
2013 
2014 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2015 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2016 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2017 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2018 }
2019 
2020 /**
2021  * populate_sdt_note : Parse raw data and identify SDT note
2022  * @elf: elf of the opened file
2023  * @data: raw data of a section with description offset applied
2024  * @len: note description size
2025  * @type: type of the note
2026  * @sdt_notes: List to add the SDT note
2027  *
2028  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2029  * if its an SDT note, it appends to @sdt_notes list.
2030  */
2031 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2032 			     struct list_head *sdt_notes)
2033 {
2034 	const char *provider, *name, *args;
2035 	struct sdt_note *tmp = NULL;
2036 	GElf_Ehdr ehdr;
2037 	GElf_Shdr shdr;
2038 	int ret = -EINVAL;
2039 
2040 	union {
2041 		Elf64_Addr a64[NR_ADDR];
2042 		Elf32_Addr a32[NR_ADDR];
2043 	} buf;
2044 
2045 	Elf_Data dst = {
2046 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2047 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2048 		.d_off = 0, .d_align = 0
2049 	};
2050 	Elf_Data src = {
2051 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2052 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2053 		.d_align = 0
2054 	};
2055 
2056 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2057 	if (!tmp) {
2058 		ret = -ENOMEM;
2059 		goto out_err;
2060 	}
2061 
2062 	INIT_LIST_HEAD(&tmp->note_list);
2063 
2064 	if (len < dst.d_size + 3)
2065 		goto out_free_note;
2066 
2067 	/* Translation from file representation to memory representation */
2068 	if (gelf_xlatetom(*elf, &dst, &src,
2069 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2070 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2071 		goto out_free_note;
2072 	}
2073 
2074 	/* Populate the fields of sdt_note */
2075 	provider = data + dst.d_size;
2076 
2077 	name = (const char *)memchr(provider, '\0', data + len - provider);
2078 	if (name++ == NULL)
2079 		goto out_free_note;
2080 
2081 	tmp->provider = strdup(provider);
2082 	if (!tmp->provider) {
2083 		ret = -ENOMEM;
2084 		goto out_free_note;
2085 	}
2086 	tmp->name = strdup(name);
2087 	if (!tmp->name) {
2088 		ret = -ENOMEM;
2089 		goto out_free_prov;
2090 	}
2091 
2092 	args = memchr(name, '\0', data + len - name);
2093 
2094 	/*
2095 	 * There is no argument if:
2096 	 * - We reached the end of the note;
2097 	 * - There is not enough room to hold a potential string;
2098 	 * - The argument string is empty or just contains ':'.
2099 	 */
2100 	if (args == NULL || data + len - args < 2 ||
2101 		args[1] == ':' || args[1] == '\0')
2102 		tmp->args = NULL;
2103 	else {
2104 		tmp->args = strdup(++args);
2105 		if (!tmp->args) {
2106 			ret = -ENOMEM;
2107 			goto out_free_name;
2108 		}
2109 	}
2110 
2111 	if (gelf_getclass(*elf) == ELFCLASS32) {
2112 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2113 		tmp->bit32 = true;
2114 	} else {
2115 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2116 		tmp->bit32 = false;
2117 	}
2118 
2119 	if (!gelf_getehdr(*elf, &ehdr)) {
2120 		pr_debug("%s : cannot get elf header.\n", __func__);
2121 		ret = -EBADF;
2122 		goto out_free_args;
2123 	}
2124 
2125 	/* Adjust the prelink effect :
2126 	 * Find out the .stapsdt.base section.
2127 	 * This scn will help us to handle prelinking (if present).
2128 	 * Compare the retrieved file offset of the base section with the
2129 	 * base address in the description of the SDT note. If its different,
2130 	 * then accordingly, adjust the note location.
2131 	 */
2132 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2133 		sdt_adjust_loc(tmp, shdr.sh_offset);
2134 
2135 	/* Adjust reference counter offset */
2136 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2137 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2138 
2139 	list_add_tail(&tmp->note_list, sdt_notes);
2140 	return 0;
2141 
2142 out_free_args:
2143 	zfree(&tmp->args);
2144 out_free_name:
2145 	zfree(&tmp->name);
2146 out_free_prov:
2147 	zfree(&tmp->provider);
2148 out_free_note:
2149 	free(tmp);
2150 out_err:
2151 	return ret;
2152 }
2153 
2154 /**
2155  * construct_sdt_notes_list : constructs a list of SDT notes
2156  * @elf : elf to look into
2157  * @sdt_notes : empty list_head
2158  *
2159  * Scans the sections in 'elf' for the section
2160  * .note.stapsdt. It, then calls populate_sdt_note to find
2161  * out the SDT events and populates the 'sdt_notes'.
2162  */
2163 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2164 {
2165 	GElf_Ehdr ehdr;
2166 	Elf_Scn *scn = NULL;
2167 	Elf_Data *data;
2168 	GElf_Shdr shdr;
2169 	size_t shstrndx, next;
2170 	GElf_Nhdr nhdr;
2171 	size_t name_off, desc_off, offset;
2172 	int ret = 0;
2173 
2174 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2175 		ret = -EBADF;
2176 		goto out_ret;
2177 	}
2178 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2179 		ret = -EBADF;
2180 		goto out_ret;
2181 	}
2182 
2183 	/* Look for the required section */
2184 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2185 	if (!scn) {
2186 		ret = -ENOENT;
2187 		goto out_ret;
2188 	}
2189 
2190 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2191 		ret = -ENOENT;
2192 		goto out_ret;
2193 	}
2194 
2195 	data = elf_getdata(scn, NULL);
2196 
2197 	/* Get the SDT notes */
2198 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2199 					      &desc_off)) > 0; offset = next) {
2200 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2201 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2202 			    sizeof(SDT_NOTE_NAME))) {
2203 			/* Check the type of the note */
2204 			if (nhdr.n_type != SDT_NOTE_TYPE)
2205 				goto out_ret;
2206 
2207 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2208 						nhdr.n_descsz, sdt_notes);
2209 			if (ret < 0)
2210 				goto out_ret;
2211 		}
2212 	}
2213 	if (list_empty(sdt_notes))
2214 		ret = -ENOENT;
2215 
2216 out_ret:
2217 	return ret;
2218 }
2219 
2220 /**
2221  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2222  * @head : empty list_head
2223  * @target : file to find SDT notes from
2224  *
2225  * This opens the file, initializes
2226  * the ELF and then calls construct_sdt_notes_list.
2227  */
2228 int get_sdt_note_list(struct list_head *head, const char *target)
2229 {
2230 	Elf *elf;
2231 	int fd, ret;
2232 
2233 	fd = open(target, O_RDONLY);
2234 	if (fd < 0)
2235 		return -EBADF;
2236 
2237 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2238 	if (!elf) {
2239 		ret = -EBADF;
2240 		goto out_close;
2241 	}
2242 	ret = construct_sdt_notes_list(elf, head);
2243 	elf_end(elf);
2244 out_close:
2245 	close(fd);
2246 	return ret;
2247 }
2248 
2249 /**
2250  * cleanup_sdt_note_list : free the sdt notes' list
2251  * @sdt_notes: sdt notes' list
2252  *
2253  * Free up the SDT notes in @sdt_notes.
2254  * Returns the number of SDT notes free'd.
2255  */
2256 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2257 {
2258 	struct sdt_note *tmp, *pos;
2259 	int nr_free = 0;
2260 
2261 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2262 		list_del_init(&pos->note_list);
2263 		zfree(&pos->name);
2264 		zfree(&pos->provider);
2265 		free(pos);
2266 		nr_free++;
2267 	}
2268 	return nr_free;
2269 }
2270 
2271 /**
2272  * sdt_notes__get_count: Counts the number of sdt events
2273  * @start: list_head to sdt_notes list
2274  *
2275  * Returns the number of SDT notes in a list
2276  */
2277 int sdt_notes__get_count(struct list_head *start)
2278 {
2279 	struct sdt_note *sdt_ptr;
2280 	int count = 0;
2281 
2282 	list_for_each_entry(sdt_ptr, start, note_list)
2283 		count++;
2284 	return count;
2285 }
2286 #endif
2287 
2288 void symbol__elf_init(void)
2289 {
2290 	elf_version(EV_CURRENT);
2291 }
2292