1 // SPDX-License-Identifier: GPL-2.0 2 #include <fcntl.h> 3 #include <stdio.h> 4 #include <errno.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <unistd.h> 8 #include <inttypes.h> 9 10 #include "map.h" 11 #include "map_groups.h" 12 #include "symbol.h" 13 #include "demangle-java.h" 14 #include "demangle-rust.h" 15 #include "machine.h" 16 #include "vdso.h" 17 #include "debug.h" 18 #include "util.h" 19 #include <linux/ctype.h> 20 #include <linux/zalloc.h> 21 #include <symbol/kallsyms.h> 22 23 #ifndef EM_AARCH64 24 #define EM_AARCH64 183 /* ARM 64 bit */ 25 #endif 26 27 #ifndef ELF32_ST_VISIBILITY 28 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03) 29 #endif 30 31 /* For ELF64 the definitions are the same. */ 32 #ifndef ELF64_ST_VISIBILITY 33 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o) 34 #endif 35 36 /* How to extract information held in the st_other field. */ 37 #ifndef GELF_ST_VISIBILITY 38 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val) 39 #endif 40 41 typedef Elf64_Nhdr GElf_Nhdr; 42 43 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT 44 extern char *cplus_demangle(const char *, int); 45 46 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i) 47 { 48 return cplus_demangle(c, i); 49 } 50 #else 51 #ifdef NO_DEMANGLE 52 static inline char *bfd_demangle(void __maybe_unused *v, 53 const char __maybe_unused *c, 54 int __maybe_unused i) 55 { 56 return NULL; 57 } 58 #else 59 #define PACKAGE 'perf' 60 #include <bfd.h> 61 #endif 62 #endif 63 64 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT 65 static int elf_getphdrnum(Elf *elf, size_t *dst) 66 { 67 GElf_Ehdr gehdr; 68 GElf_Ehdr *ehdr; 69 70 ehdr = gelf_getehdr(elf, &gehdr); 71 if (!ehdr) 72 return -1; 73 74 *dst = ehdr->e_phnum; 75 76 return 0; 77 } 78 #endif 79 80 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT 81 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused) 82 { 83 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__); 84 return -1; 85 } 86 #endif 87 88 #ifndef NT_GNU_BUILD_ID 89 #define NT_GNU_BUILD_ID 3 90 #endif 91 92 /** 93 * elf_symtab__for_each_symbol - iterate thru all the symbols 94 * 95 * @syms: struct elf_symtab instance to iterate 96 * @idx: uint32_t idx 97 * @sym: GElf_Sym iterator 98 */ 99 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \ 100 for (idx = 0, gelf_getsym(syms, idx, &sym);\ 101 idx < nr_syms; \ 102 idx++, gelf_getsym(syms, idx, &sym)) 103 104 static inline uint8_t elf_sym__type(const GElf_Sym *sym) 105 { 106 return GELF_ST_TYPE(sym->st_info); 107 } 108 109 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym) 110 { 111 return GELF_ST_VISIBILITY(sym->st_other); 112 } 113 114 #ifndef STT_GNU_IFUNC 115 #define STT_GNU_IFUNC 10 116 #endif 117 118 static inline int elf_sym__is_function(const GElf_Sym *sym) 119 { 120 return (elf_sym__type(sym) == STT_FUNC || 121 elf_sym__type(sym) == STT_GNU_IFUNC) && 122 sym->st_name != 0 && 123 sym->st_shndx != SHN_UNDEF; 124 } 125 126 static inline bool elf_sym__is_object(const GElf_Sym *sym) 127 { 128 return elf_sym__type(sym) == STT_OBJECT && 129 sym->st_name != 0 && 130 sym->st_shndx != SHN_UNDEF; 131 } 132 133 static inline int elf_sym__is_label(const GElf_Sym *sym) 134 { 135 return elf_sym__type(sym) == STT_NOTYPE && 136 sym->st_name != 0 && 137 sym->st_shndx != SHN_UNDEF && 138 sym->st_shndx != SHN_ABS && 139 elf_sym__visibility(sym) != STV_HIDDEN && 140 elf_sym__visibility(sym) != STV_INTERNAL; 141 } 142 143 static bool elf_sym__filter(GElf_Sym *sym) 144 { 145 return elf_sym__is_function(sym) || elf_sym__is_object(sym); 146 } 147 148 static inline const char *elf_sym__name(const GElf_Sym *sym, 149 const Elf_Data *symstrs) 150 { 151 return symstrs->d_buf + sym->st_name; 152 } 153 154 static inline const char *elf_sec__name(const GElf_Shdr *shdr, 155 const Elf_Data *secstrs) 156 { 157 return secstrs->d_buf + shdr->sh_name; 158 } 159 160 static inline int elf_sec__is_text(const GElf_Shdr *shdr, 161 const Elf_Data *secstrs) 162 { 163 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL; 164 } 165 166 static inline bool elf_sec__is_data(const GElf_Shdr *shdr, 167 const Elf_Data *secstrs) 168 { 169 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL; 170 } 171 172 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs) 173 { 174 return elf_sec__is_text(shdr, secstrs) || 175 elf_sec__is_data(shdr, secstrs); 176 } 177 178 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr) 179 { 180 Elf_Scn *sec = NULL; 181 GElf_Shdr shdr; 182 size_t cnt = 1; 183 184 while ((sec = elf_nextscn(elf, sec)) != NULL) { 185 gelf_getshdr(sec, &shdr); 186 187 if ((addr >= shdr.sh_addr) && 188 (addr < (shdr.sh_addr + shdr.sh_size))) 189 return cnt; 190 191 ++cnt; 192 } 193 194 return -1; 195 } 196 197 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep, 198 GElf_Shdr *shp, const char *name, size_t *idx) 199 { 200 Elf_Scn *sec = NULL; 201 size_t cnt = 1; 202 203 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 204 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) 205 return NULL; 206 207 while ((sec = elf_nextscn(elf, sec)) != NULL) { 208 char *str; 209 210 gelf_getshdr(sec, shp); 211 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name); 212 if (str && !strcmp(name, str)) { 213 if (idx) 214 *idx = cnt; 215 return sec; 216 } 217 ++cnt; 218 } 219 220 return NULL; 221 } 222 223 static bool want_demangle(bool is_kernel_sym) 224 { 225 return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle; 226 } 227 228 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 229 { 230 int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS; 231 char *demangled = NULL; 232 233 /* 234 * We need to figure out if the object was created from C++ sources 235 * DWARF DW_compile_unit has this, but we don't always have access 236 * to it... 237 */ 238 if (!want_demangle(dso->kernel || kmodule)) 239 return demangled; 240 241 demangled = bfd_demangle(NULL, elf_name, demangle_flags); 242 if (demangled == NULL) 243 demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET); 244 else if (rust_is_mangled(demangled)) 245 /* 246 * Input to Rust demangling is the BFD-demangled 247 * name which it Rust-demangles in place. 248 */ 249 rust_demangle_sym(demangled); 250 251 return demangled; 252 } 253 254 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \ 255 for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \ 256 idx < nr_entries; \ 257 ++idx, pos = gelf_getrel(reldata, idx, &pos_mem)) 258 259 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \ 260 for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \ 261 idx < nr_entries; \ 262 ++idx, pos = gelf_getrela(reldata, idx, &pos_mem)) 263 264 /* 265 * We need to check if we have a .dynsym, so that we can handle the 266 * .plt, synthesizing its symbols, that aren't on the symtabs (be it 267 * .dynsym or .symtab). 268 * And always look at the original dso, not at debuginfo packages, that 269 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS). 270 */ 271 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss) 272 { 273 uint32_t nr_rel_entries, idx; 274 GElf_Sym sym; 275 u64 plt_offset, plt_header_size, plt_entry_size; 276 GElf_Shdr shdr_plt; 277 struct symbol *f; 278 GElf_Shdr shdr_rel_plt, shdr_dynsym; 279 Elf_Data *reldata, *syms, *symstrs; 280 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym; 281 size_t dynsym_idx; 282 GElf_Ehdr ehdr; 283 char sympltname[1024]; 284 Elf *elf; 285 int nr = 0, symidx, err = 0; 286 287 if (!ss->dynsym) 288 return 0; 289 290 elf = ss->elf; 291 ehdr = ss->ehdr; 292 293 scn_dynsym = ss->dynsym; 294 shdr_dynsym = ss->dynshdr; 295 dynsym_idx = ss->dynsym_idx; 296 297 if (scn_dynsym == NULL) 298 goto out_elf_end; 299 300 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 301 ".rela.plt", NULL); 302 if (scn_plt_rel == NULL) { 303 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt, 304 ".rel.plt", NULL); 305 if (scn_plt_rel == NULL) 306 goto out_elf_end; 307 } 308 309 err = -1; 310 311 if (shdr_rel_plt.sh_link != dynsym_idx) 312 goto out_elf_end; 313 314 if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL) 315 goto out_elf_end; 316 317 /* 318 * Fetch the relocation section to find the idxes to the GOT 319 * and the symbols in the .dynsym they refer to. 320 */ 321 reldata = elf_getdata(scn_plt_rel, NULL); 322 if (reldata == NULL) 323 goto out_elf_end; 324 325 syms = elf_getdata(scn_dynsym, NULL); 326 if (syms == NULL) 327 goto out_elf_end; 328 329 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link); 330 if (scn_symstrs == NULL) 331 goto out_elf_end; 332 333 symstrs = elf_getdata(scn_symstrs, NULL); 334 if (symstrs == NULL) 335 goto out_elf_end; 336 337 if (symstrs->d_size == 0) 338 goto out_elf_end; 339 340 nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize; 341 plt_offset = shdr_plt.sh_offset; 342 switch (ehdr.e_machine) { 343 case EM_ARM: 344 plt_header_size = 20; 345 plt_entry_size = 12; 346 break; 347 348 case EM_AARCH64: 349 plt_header_size = 32; 350 plt_entry_size = 16; 351 break; 352 353 case EM_SPARC: 354 plt_header_size = 48; 355 plt_entry_size = 12; 356 break; 357 358 case EM_SPARCV9: 359 plt_header_size = 128; 360 plt_entry_size = 32; 361 break; 362 363 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */ 364 plt_header_size = shdr_plt.sh_entsize; 365 plt_entry_size = shdr_plt.sh_entsize; 366 break; 367 } 368 plt_offset += plt_header_size; 369 370 if (shdr_rel_plt.sh_type == SHT_RELA) { 371 GElf_Rela pos_mem, *pos; 372 373 elf_section__for_each_rela(reldata, pos, pos_mem, idx, 374 nr_rel_entries) { 375 const char *elf_name = NULL; 376 char *demangled = NULL; 377 symidx = GELF_R_SYM(pos->r_info); 378 gelf_getsym(syms, symidx, &sym); 379 380 elf_name = elf_sym__name(&sym, symstrs); 381 demangled = demangle_sym(dso, 0, elf_name); 382 if (demangled != NULL) 383 elf_name = demangled; 384 snprintf(sympltname, sizeof(sympltname), 385 "%s@plt", elf_name); 386 free(demangled); 387 388 f = symbol__new(plt_offset, plt_entry_size, 389 STB_GLOBAL, STT_FUNC, sympltname); 390 if (!f) 391 goto out_elf_end; 392 393 plt_offset += plt_entry_size; 394 symbols__insert(&dso->symbols, f); 395 ++nr; 396 } 397 } else if (shdr_rel_plt.sh_type == SHT_REL) { 398 GElf_Rel pos_mem, *pos; 399 elf_section__for_each_rel(reldata, pos, pos_mem, idx, 400 nr_rel_entries) { 401 const char *elf_name = NULL; 402 char *demangled = NULL; 403 symidx = GELF_R_SYM(pos->r_info); 404 gelf_getsym(syms, symidx, &sym); 405 406 elf_name = elf_sym__name(&sym, symstrs); 407 demangled = demangle_sym(dso, 0, elf_name); 408 if (demangled != NULL) 409 elf_name = demangled; 410 snprintf(sympltname, sizeof(sympltname), 411 "%s@plt", elf_name); 412 free(demangled); 413 414 f = symbol__new(plt_offset, plt_entry_size, 415 STB_GLOBAL, STT_FUNC, sympltname); 416 if (!f) 417 goto out_elf_end; 418 419 plt_offset += plt_entry_size; 420 symbols__insert(&dso->symbols, f); 421 ++nr; 422 } 423 } 424 425 err = 0; 426 out_elf_end: 427 if (err == 0) 428 return nr; 429 pr_debug("%s: problems reading %s PLT info.\n", 430 __func__, dso->long_name); 431 return 0; 432 } 433 434 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name) 435 { 436 return demangle_sym(dso, kmodule, elf_name); 437 } 438 439 /* 440 * Align offset to 4 bytes as needed for note name and descriptor data. 441 */ 442 #define NOTE_ALIGN(n) (((n) + 3) & -4U) 443 444 static int elf_read_build_id(Elf *elf, void *bf, size_t size) 445 { 446 int err = -1; 447 GElf_Ehdr ehdr; 448 GElf_Shdr shdr; 449 Elf_Data *data; 450 Elf_Scn *sec; 451 Elf_Kind ek; 452 void *ptr; 453 454 if (size < BUILD_ID_SIZE) 455 goto out; 456 457 ek = elf_kind(elf); 458 if (ek != ELF_K_ELF) 459 goto out; 460 461 if (gelf_getehdr(elf, &ehdr) == NULL) { 462 pr_err("%s: cannot get elf header.\n", __func__); 463 goto out; 464 } 465 466 /* 467 * Check following sections for notes: 468 * '.note.gnu.build-id' 469 * '.notes' 470 * '.note' (VDSO specific) 471 */ 472 do { 473 sec = elf_section_by_name(elf, &ehdr, &shdr, 474 ".note.gnu.build-id", NULL); 475 if (sec) 476 break; 477 478 sec = elf_section_by_name(elf, &ehdr, &shdr, 479 ".notes", NULL); 480 if (sec) 481 break; 482 483 sec = elf_section_by_name(elf, &ehdr, &shdr, 484 ".note", NULL); 485 if (sec) 486 break; 487 488 return err; 489 490 } while (0); 491 492 data = elf_getdata(sec, NULL); 493 if (data == NULL) 494 goto out; 495 496 ptr = data->d_buf; 497 while (ptr < (data->d_buf + data->d_size)) { 498 GElf_Nhdr *nhdr = ptr; 499 size_t namesz = NOTE_ALIGN(nhdr->n_namesz), 500 descsz = NOTE_ALIGN(nhdr->n_descsz); 501 const char *name; 502 503 ptr += sizeof(*nhdr); 504 name = ptr; 505 ptr += namesz; 506 if (nhdr->n_type == NT_GNU_BUILD_ID && 507 nhdr->n_namesz == sizeof("GNU")) { 508 if (memcmp(name, "GNU", sizeof("GNU")) == 0) { 509 size_t sz = min(size, descsz); 510 memcpy(bf, ptr, sz); 511 memset(bf + sz, 0, size - sz); 512 err = descsz; 513 break; 514 } 515 } 516 ptr += descsz; 517 } 518 519 out: 520 return err; 521 } 522 523 int filename__read_build_id(const char *filename, void *bf, size_t size) 524 { 525 int fd, err = -1; 526 Elf *elf; 527 528 if (size < BUILD_ID_SIZE) 529 goto out; 530 531 fd = open(filename, O_RDONLY); 532 if (fd < 0) 533 goto out; 534 535 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 536 if (elf == NULL) { 537 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 538 goto out_close; 539 } 540 541 err = elf_read_build_id(elf, bf, size); 542 543 elf_end(elf); 544 out_close: 545 close(fd); 546 out: 547 return err; 548 } 549 550 int sysfs__read_build_id(const char *filename, void *build_id, size_t size) 551 { 552 int fd, err = -1; 553 554 if (size < BUILD_ID_SIZE) 555 goto out; 556 557 fd = open(filename, O_RDONLY); 558 if (fd < 0) 559 goto out; 560 561 while (1) { 562 char bf[BUFSIZ]; 563 GElf_Nhdr nhdr; 564 size_t namesz, descsz; 565 566 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr)) 567 break; 568 569 namesz = NOTE_ALIGN(nhdr.n_namesz); 570 descsz = NOTE_ALIGN(nhdr.n_descsz); 571 if (nhdr.n_type == NT_GNU_BUILD_ID && 572 nhdr.n_namesz == sizeof("GNU")) { 573 if (read(fd, bf, namesz) != (ssize_t)namesz) 574 break; 575 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) { 576 size_t sz = min(descsz, size); 577 if (read(fd, build_id, sz) == (ssize_t)sz) { 578 memset(build_id + sz, 0, size - sz); 579 err = 0; 580 break; 581 } 582 } else if (read(fd, bf, descsz) != (ssize_t)descsz) 583 break; 584 } else { 585 int n = namesz + descsz; 586 587 if (n > (int)sizeof(bf)) { 588 n = sizeof(bf); 589 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n", 590 __func__, filename, nhdr.n_namesz, nhdr.n_descsz); 591 } 592 if (read(fd, bf, n) != n) 593 break; 594 } 595 } 596 close(fd); 597 out: 598 return err; 599 } 600 601 int filename__read_debuglink(const char *filename, char *debuglink, 602 size_t size) 603 { 604 int fd, err = -1; 605 Elf *elf; 606 GElf_Ehdr ehdr; 607 GElf_Shdr shdr; 608 Elf_Data *data; 609 Elf_Scn *sec; 610 Elf_Kind ek; 611 612 fd = open(filename, O_RDONLY); 613 if (fd < 0) 614 goto out; 615 616 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 617 if (elf == NULL) { 618 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename); 619 goto out_close; 620 } 621 622 ek = elf_kind(elf); 623 if (ek != ELF_K_ELF) 624 goto out_elf_end; 625 626 if (gelf_getehdr(elf, &ehdr) == NULL) { 627 pr_err("%s: cannot get elf header.\n", __func__); 628 goto out_elf_end; 629 } 630 631 sec = elf_section_by_name(elf, &ehdr, &shdr, 632 ".gnu_debuglink", NULL); 633 if (sec == NULL) 634 goto out_elf_end; 635 636 data = elf_getdata(sec, NULL); 637 if (data == NULL) 638 goto out_elf_end; 639 640 /* the start of this section is a zero-terminated string */ 641 strncpy(debuglink, data->d_buf, size); 642 643 err = 0; 644 645 out_elf_end: 646 elf_end(elf); 647 out_close: 648 close(fd); 649 out: 650 return err; 651 } 652 653 static int dso__swap_init(struct dso *dso, unsigned char eidata) 654 { 655 static unsigned int const endian = 1; 656 657 dso->needs_swap = DSO_SWAP__NO; 658 659 switch (eidata) { 660 case ELFDATA2LSB: 661 /* We are big endian, DSO is little endian. */ 662 if (*(unsigned char const *)&endian != 1) 663 dso->needs_swap = DSO_SWAP__YES; 664 break; 665 666 case ELFDATA2MSB: 667 /* We are little endian, DSO is big endian. */ 668 if (*(unsigned char const *)&endian != 0) 669 dso->needs_swap = DSO_SWAP__YES; 670 break; 671 672 default: 673 pr_err("unrecognized DSO data encoding %d\n", eidata); 674 return -EINVAL; 675 } 676 677 return 0; 678 } 679 680 bool symsrc__possibly_runtime(struct symsrc *ss) 681 { 682 return ss->dynsym || ss->opdsec; 683 } 684 685 bool symsrc__has_symtab(struct symsrc *ss) 686 { 687 return ss->symtab != NULL; 688 } 689 690 void symsrc__destroy(struct symsrc *ss) 691 { 692 zfree(&ss->name); 693 elf_end(ss->elf); 694 close(ss->fd); 695 } 696 697 bool __weak elf__needs_adjust_symbols(GElf_Ehdr ehdr) 698 { 699 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL; 700 } 701 702 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name, 703 enum dso_binary_type type) 704 { 705 GElf_Ehdr ehdr; 706 Elf *elf; 707 int fd; 708 709 if (dso__needs_decompress(dso)) { 710 fd = dso__decompress_kmodule_fd(dso, name); 711 if (fd < 0) 712 return -1; 713 714 type = dso->symtab_type; 715 } else { 716 fd = open(name, O_RDONLY); 717 if (fd < 0) { 718 dso->load_errno = errno; 719 return -1; 720 } 721 } 722 723 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 724 if (elf == NULL) { 725 pr_debug("%s: cannot read %s ELF file.\n", __func__, name); 726 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 727 goto out_close; 728 } 729 730 if (gelf_getehdr(elf, &ehdr) == NULL) { 731 dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF; 732 pr_debug("%s: cannot get elf header.\n", __func__); 733 goto out_elf_end; 734 } 735 736 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) { 737 dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR; 738 goto out_elf_end; 739 } 740 741 /* Always reject images with a mismatched build-id: */ 742 if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) { 743 u8 build_id[BUILD_ID_SIZE]; 744 745 if (elf_read_build_id(elf, build_id, BUILD_ID_SIZE) < 0) { 746 dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID; 747 goto out_elf_end; 748 } 749 750 if (!dso__build_id_equal(dso, build_id)) { 751 pr_debug("%s: build id mismatch for %s.\n", __func__, name); 752 dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID; 753 goto out_elf_end; 754 } 755 } 756 757 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 758 759 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab", 760 NULL); 761 if (ss->symshdr.sh_type != SHT_SYMTAB) 762 ss->symtab = NULL; 763 764 ss->dynsym_idx = 0; 765 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym", 766 &ss->dynsym_idx); 767 if (ss->dynshdr.sh_type != SHT_DYNSYM) 768 ss->dynsym = NULL; 769 770 ss->opdidx = 0; 771 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd", 772 &ss->opdidx); 773 if (ss->opdshdr.sh_type != SHT_PROGBITS) 774 ss->opdsec = NULL; 775 776 if (dso->kernel == DSO_TYPE_USER) 777 ss->adjust_symbols = true; 778 else 779 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr); 780 781 ss->name = strdup(name); 782 if (!ss->name) { 783 dso->load_errno = errno; 784 goto out_elf_end; 785 } 786 787 ss->elf = elf; 788 ss->fd = fd; 789 ss->ehdr = ehdr; 790 ss->type = type; 791 792 return 0; 793 794 out_elf_end: 795 elf_end(elf); 796 out_close: 797 close(fd); 798 return -1; 799 } 800 801 /** 802 * ref_reloc_sym_not_found - has kernel relocation symbol been found. 803 * @kmap: kernel maps and relocation reference symbol 804 * 805 * This function returns %true if we are dealing with the kernel maps and the 806 * relocation reference symbol has not yet been found. Otherwise %false is 807 * returned. 808 */ 809 static bool ref_reloc_sym_not_found(struct kmap *kmap) 810 { 811 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name && 812 !kmap->ref_reloc_sym->unrelocated_addr; 813 } 814 815 /** 816 * ref_reloc - kernel relocation offset. 817 * @kmap: kernel maps and relocation reference symbol 818 * 819 * This function returns the offset of kernel addresses as determined by using 820 * the relocation reference symbol i.e. if the kernel has not been relocated 821 * then the return value is zero. 822 */ 823 static u64 ref_reloc(struct kmap *kmap) 824 { 825 if (kmap && kmap->ref_reloc_sym && 826 kmap->ref_reloc_sym->unrelocated_addr) 827 return kmap->ref_reloc_sym->addr - 828 kmap->ref_reloc_sym->unrelocated_addr; 829 return 0; 830 } 831 832 void __weak arch__sym_update(struct symbol *s __maybe_unused, 833 GElf_Sym *sym __maybe_unused) { } 834 835 static int dso__process_kernel_symbol(struct dso *dso, struct map *map, 836 GElf_Sym *sym, GElf_Shdr *shdr, 837 struct map_groups *kmaps, struct kmap *kmap, 838 struct dso **curr_dsop, struct map **curr_mapp, 839 const char *section_name, 840 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel) 841 { 842 struct dso *curr_dso = *curr_dsop; 843 struct map *curr_map; 844 char dso_name[PATH_MAX]; 845 846 /* Adjust symbol to map to file offset */ 847 if (adjust_kernel_syms) 848 sym->st_value -= shdr->sh_addr - shdr->sh_offset; 849 850 if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0) 851 return 0; 852 853 if (strcmp(section_name, ".text") == 0) { 854 /* 855 * The initial kernel mapping is based on 856 * kallsyms and identity maps. Overwrite it to 857 * map to the kernel dso. 858 */ 859 if (*remap_kernel && dso->kernel) { 860 *remap_kernel = false; 861 map->start = shdr->sh_addr + ref_reloc(kmap); 862 map->end = map->start + shdr->sh_size; 863 map->pgoff = shdr->sh_offset; 864 map->map_ip = map__map_ip; 865 map->unmap_ip = map__unmap_ip; 866 /* Ensure maps are correctly ordered */ 867 if (kmaps) { 868 map__get(map); 869 map_groups__remove(kmaps, map); 870 map_groups__insert(kmaps, map); 871 map__put(map); 872 } 873 } 874 875 /* 876 * The initial module mapping is based on 877 * /proc/modules mapped to offset zero. 878 * Overwrite it to map to the module dso. 879 */ 880 if (*remap_kernel && kmodule) { 881 *remap_kernel = false; 882 map->pgoff = shdr->sh_offset; 883 } 884 885 *curr_mapp = map; 886 *curr_dsop = dso; 887 return 0; 888 } 889 890 if (!kmap) 891 return 0; 892 893 snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name); 894 895 curr_map = map_groups__find_by_name(kmaps, dso_name); 896 if (curr_map == NULL) { 897 u64 start = sym->st_value; 898 899 if (kmodule) 900 start += map->start + shdr->sh_offset; 901 902 curr_dso = dso__new(dso_name); 903 if (curr_dso == NULL) 904 return -1; 905 curr_dso->kernel = dso->kernel; 906 curr_dso->long_name = dso->long_name; 907 curr_dso->long_name_len = dso->long_name_len; 908 curr_map = map__new2(start, curr_dso); 909 dso__put(curr_dso); 910 if (curr_map == NULL) 911 return -1; 912 913 if (adjust_kernel_syms) { 914 curr_map->start = shdr->sh_addr + ref_reloc(kmap); 915 curr_map->end = curr_map->start + shdr->sh_size; 916 curr_map->pgoff = shdr->sh_offset; 917 } else { 918 curr_map->map_ip = curr_map->unmap_ip = identity__map_ip; 919 } 920 curr_dso->symtab_type = dso->symtab_type; 921 map_groups__insert(kmaps, curr_map); 922 /* 923 * Add it before we drop the referece to curr_map, i.e. while 924 * we still are sure to have a reference to this DSO via 925 * *curr_map->dso. 926 */ 927 dsos__add(&map->groups->machine->dsos, curr_dso); 928 /* kmaps already got it */ 929 map__put(curr_map); 930 dso__set_loaded(curr_dso); 931 *curr_mapp = curr_map; 932 *curr_dsop = curr_dso; 933 } else 934 *curr_dsop = curr_map->dso; 935 936 return 0; 937 } 938 939 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss, 940 struct symsrc *runtime_ss, int kmodule) 941 { 942 struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL; 943 struct map_groups *kmaps = kmap ? map__kmaps(map) : NULL; 944 struct map *curr_map = map; 945 struct dso *curr_dso = dso; 946 Elf_Data *symstrs, *secstrs; 947 uint32_t nr_syms; 948 int err = -1; 949 uint32_t idx; 950 GElf_Ehdr ehdr; 951 GElf_Shdr shdr; 952 GElf_Shdr tshdr; 953 Elf_Data *syms, *opddata = NULL; 954 GElf_Sym sym; 955 Elf_Scn *sec, *sec_strndx; 956 Elf *elf; 957 int nr = 0; 958 bool remap_kernel = false, adjust_kernel_syms = false; 959 960 if (kmap && !kmaps) 961 return -1; 962 963 dso->symtab_type = syms_ss->type; 964 dso->is_64_bit = syms_ss->is_64_bit; 965 dso->rel = syms_ss->ehdr.e_type == ET_REL; 966 967 /* 968 * Modules may already have symbols from kallsyms, but those symbols 969 * have the wrong values for the dso maps, so remove them. 970 */ 971 if (kmodule && syms_ss->symtab) 972 symbols__delete(&dso->symbols); 973 974 if (!syms_ss->symtab) { 975 /* 976 * If the vmlinux is stripped, fail so we will fall back 977 * to using kallsyms. The vmlinux runtime symbols aren't 978 * of much use. 979 */ 980 if (dso->kernel) 981 goto out_elf_end; 982 983 syms_ss->symtab = syms_ss->dynsym; 984 syms_ss->symshdr = syms_ss->dynshdr; 985 } 986 987 elf = syms_ss->elf; 988 ehdr = syms_ss->ehdr; 989 sec = syms_ss->symtab; 990 shdr = syms_ss->symshdr; 991 992 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr, 993 ".text", NULL)) 994 dso->text_offset = tshdr.sh_addr - tshdr.sh_offset; 995 996 if (runtime_ss->opdsec) 997 opddata = elf_rawdata(runtime_ss->opdsec, NULL); 998 999 syms = elf_getdata(sec, NULL); 1000 if (syms == NULL) 1001 goto out_elf_end; 1002 1003 sec = elf_getscn(elf, shdr.sh_link); 1004 if (sec == NULL) 1005 goto out_elf_end; 1006 1007 symstrs = elf_getdata(sec, NULL); 1008 if (symstrs == NULL) 1009 goto out_elf_end; 1010 1011 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx); 1012 if (sec_strndx == NULL) 1013 goto out_elf_end; 1014 1015 secstrs = elf_getdata(sec_strndx, NULL); 1016 if (secstrs == NULL) 1017 goto out_elf_end; 1018 1019 nr_syms = shdr.sh_size / shdr.sh_entsize; 1020 1021 memset(&sym, 0, sizeof(sym)); 1022 1023 /* 1024 * The kernel relocation symbol is needed in advance in order to adjust 1025 * kernel maps correctly. 1026 */ 1027 if (ref_reloc_sym_not_found(kmap)) { 1028 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1029 const char *elf_name = elf_sym__name(&sym, symstrs); 1030 1031 if (strcmp(elf_name, kmap->ref_reloc_sym->name)) 1032 continue; 1033 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value; 1034 map->reloc = kmap->ref_reloc_sym->addr - 1035 kmap->ref_reloc_sym->unrelocated_addr; 1036 break; 1037 } 1038 } 1039 1040 /* 1041 * Handle any relocation of vdso necessary because older kernels 1042 * attempted to prelink vdso to its virtual address. 1043 */ 1044 if (dso__is_vdso(dso)) 1045 map->reloc = map->start - dso->text_offset; 1046 1047 dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap); 1048 /* 1049 * Initial kernel and module mappings do not map to the dso. 1050 * Flag the fixups. 1051 */ 1052 if (dso->kernel || kmodule) { 1053 remap_kernel = true; 1054 adjust_kernel_syms = dso->adjust_symbols; 1055 } 1056 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) { 1057 struct symbol *f; 1058 const char *elf_name = elf_sym__name(&sym, symstrs); 1059 char *demangled = NULL; 1060 int is_label = elf_sym__is_label(&sym); 1061 const char *section_name; 1062 bool used_opd = false; 1063 1064 if (!is_label && !elf_sym__filter(&sym)) 1065 continue; 1066 1067 /* Reject ARM ELF "mapping symbols": these aren't unique and 1068 * don't identify functions, so will confuse the profile 1069 * output: */ 1070 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) { 1071 if (elf_name[0] == '$' && strchr("adtx", elf_name[1]) 1072 && (elf_name[2] == '\0' || elf_name[2] == '.')) 1073 continue; 1074 } 1075 1076 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) { 1077 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr; 1078 u64 *opd = opddata->d_buf + offset; 1079 sym.st_value = DSO__SWAP(dso, u64, *opd); 1080 sym.st_shndx = elf_addr_to_index(runtime_ss->elf, 1081 sym.st_value); 1082 used_opd = true; 1083 } 1084 /* 1085 * When loading symbols in a data mapping, ABS symbols (which 1086 * has a value of SHN_ABS in its st_shndx) failed at 1087 * elf_getscn(). And it marks the loading as a failure so 1088 * already loaded symbols cannot be fixed up. 1089 * 1090 * I'm not sure what should be done. Just ignore them for now. 1091 * - Namhyung Kim 1092 */ 1093 if (sym.st_shndx == SHN_ABS) 1094 continue; 1095 1096 sec = elf_getscn(runtime_ss->elf, sym.st_shndx); 1097 if (!sec) 1098 goto out_elf_end; 1099 1100 gelf_getshdr(sec, &shdr); 1101 1102 if (is_label && !elf_sec__filter(&shdr, secstrs)) 1103 continue; 1104 1105 section_name = elf_sec__name(&shdr, secstrs); 1106 1107 /* On ARM, symbols for thumb functions have 1 added to 1108 * the symbol address as a flag - remove it */ 1109 if ((ehdr.e_machine == EM_ARM) && 1110 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) && 1111 (sym.st_value & 1)) 1112 --sym.st_value; 1113 1114 if (dso->kernel || kmodule) { 1115 if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map, 1116 section_name, adjust_kernel_syms, kmodule, &remap_kernel)) 1117 goto out_elf_end; 1118 } else if ((used_opd && runtime_ss->adjust_symbols) || 1119 (!used_opd && syms_ss->adjust_symbols)) { 1120 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " " 1121 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__, 1122 (u64)sym.st_value, (u64)shdr.sh_addr, 1123 (u64)shdr.sh_offset); 1124 sym.st_value -= shdr.sh_addr - shdr.sh_offset; 1125 } 1126 1127 demangled = demangle_sym(dso, kmodule, elf_name); 1128 if (demangled != NULL) 1129 elf_name = demangled; 1130 1131 f = symbol__new(sym.st_value, sym.st_size, 1132 GELF_ST_BIND(sym.st_info), 1133 GELF_ST_TYPE(sym.st_info), elf_name); 1134 free(demangled); 1135 if (!f) 1136 goto out_elf_end; 1137 1138 arch__sym_update(f, &sym); 1139 1140 __symbols__insert(&curr_dso->symbols, f, dso->kernel); 1141 nr++; 1142 } 1143 1144 /* 1145 * For misannotated, zeroed, ASM function sizes. 1146 */ 1147 if (nr > 0) { 1148 symbols__fixup_end(&dso->symbols); 1149 symbols__fixup_duplicate(&dso->symbols); 1150 if (kmap) { 1151 /* 1152 * We need to fixup this here too because we create new 1153 * maps here, for things like vsyscall sections. 1154 */ 1155 map_groups__fixup_end(kmaps); 1156 } 1157 } 1158 err = nr; 1159 out_elf_end: 1160 return err; 1161 } 1162 1163 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data) 1164 { 1165 GElf_Phdr phdr; 1166 size_t i, phdrnum; 1167 int err; 1168 u64 sz; 1169 1170 if (elf_getphdrnum(elf, &phdrnum)) 1171 return -1; 1172 1173 for (i = 0; i < phdrnum; i++) { 1174 if (gelf_getphdr(elf, i, &phdr) == NULL) 1175 return -1; 1176 if (phdr.p_type != PT_LOAD) 1177 continue; 1178 if (exe) { 1179 if (!(phdr.p_flags & PF_X)) 1180 continue; 1181 } else { 1182 if (!(phdr.p_flags & PF_R)) 1183 continue; 1184 } 1185 sz = min(phdr.p_memsz, phdr.p_filesz); 1186 if (!sz) 1187 continue; 1188 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data); 1189 if (err) 1190 return err; 1191 } 1192 return 0; 1193 } 1194 1195 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data, 1196 bool *is_64_bit) 1197 { 1198 int err; 1199 Elf *elf; 1200 1201 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1202 if (elf == NULL) 1203 return -1; 1204 1205 if (is_64_bit) 1206 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64); 1207 1208 err = elf_read_maps(elf, exe, mapfn, data); 1209 1210 elf_end(elf); 1211 return err; 1212 } 1213 1214 enum dso_type dso__type_fd(int fd) 1215 { 1216 enum dso_type dso_type = DSO__TYPE_UNKNOWN; 1217 GElf_Ehdr ehdr; 1218 Elf_Kind ek; 1219 Elf *elf; 1220 1221 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 1222 if (elf == NULL) 1223 goto out; 1224 1225 ek = elf_kind(elf); 1226 if (ek != ELF_K_ELF) 1227 goto out_end; 1228 1229 if (gelf_getclass(elf) == ELFCLASS64) { 1230 dso_type = DSO__TYPE_64BIT; 1231 goto out_end; 1232 } 1233 1234 if (gelf_getehdr(elf, &ehdr) == NULL) 1235 goto out_end; 1236 1237 if (ehdr.e_machine == EM_X86_64) 1238 dso_type = DSO__TYPE_X32BIT; 1239 else 1240 dso_type = DSO__TYPE_32BIT; 1241 out_end: 1242 elf_end(elf); 1243 out: 1244 return dso_type; 1245 } 1246 1247 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len) 1248 { 1249 ssize_t r; 1250 size_t n; 1251 int err = -1; 1252 char *buf = malloc(page_size); 1253 1254 if (buf == NULL) 1255 return -1; 1256 1257 if (lseek(to, to_offs, SEEK_SET) != to_offs) 1258 goto out; 1259 1260 if (lseek(from, from_offs, SEEK_SET) != from_offs) 1261 goto out; 1262 1263 while (len) { 1264 n = page_size; 1265 if (len < n) 1266 n = len; 1267 /* Use read because mmap won't work on proc files */ 1268 r = read(from, buf, n); 1269 if (r < 0) 1270 goto out; 1271 if (!r) 1272 break; 1273 n = r; 1274 r = write(to, buf, n); 1275 if (r < 0) 1276 goto out; 1277 if ((size_t)r != n) 1278 goto out; 1279 len -= n; 1280 } 1281 1282 err = 0; 1283 out: 1284 free(buf); 1285 return err; 1286 } 1287 1288 struct kcore { 1289 int fd; 1290 int elfclass; 1291 Elf *elf; 1292 GElf_Ehdr ehdr; 1293 }; 1294 1295 static int kcore__open(struct kcore *kcore, const char *filename) 1296 { 1297 GElf_Ehdr *ehdr; 1298 1299 kcore->fd = open(filename, O_RDONLY); 1300 if (kcore->fd == -1) 1301 return -1; 1302 1303 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL); 1304 if (!kcore->elf) 1305 goto out_close; 1306 1307 kcore->elfclass = gelf_getclass(kcore->elf); 1308 if (kcore->elfclass == ELFCLASSNONE) 1309 goto out_end; 1310 1311 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr); 1312 if (!ehdr) 1313 goto out_end; 1314 1315 return 0; 1316 1317 out_end: 1318 elf_end(kcore->elf); 1319 out_close: 1320 close(kcore->fd); 1321 return -1; 1322 } 1323 1324 static int kcore__init(struct kcore *kcore, char *filename, int elfclass, 1325 bool temp) 1326 { 1327 kcore->elfclass = elfclass; 1328 1329 if (temp) 1330 kcore->fd = mkstemp(filename); 1331 else 1332 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400); 1333 if (kcore->fd == -1) 1334 return -1; 1335 1336 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL); 1337 if (!kcore->elf) 1338 goto out_close; 1339 1340 if (!gelf_newehdr(kcore->elf, elfclass)) 1341 goto out_end; 1342 1343 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr)); 1344 1345 return 0; 1346 1347 out_end: 1348 elf_end(kcore->elf); 1349 out_close: 1350 close(kcore->fd); 1351 unlink(filename); 1352 return -1; 1353 } 1354 1355 static void kcore__close(struct kcore *kcore) 1356 { 1357 elf_end(kcore->elf); 1358 close(kcore->fd); 1359 } 1360 1361 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count) 1362 { 1363 GElf_Ehdr *ehdr = &to->ehdr; 1364 GElf_Ehdr *kehdr = &from->ehdr; 1365 1366 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT); 1367 ehdr->e_type = kehdr->e_type; 1368 ehdr->e_machine = kehdr->e_machine; 1369 ehdr->e_version = kehdr->e_version; 1370 ehdr->e_entry = 0; 1371 ehdr->e_shoff = 0; 1372 ehdr->e_flags = kehdr->e_flags; 1373 ehdr->e_phnum = count; 1374 ehdr->e_shentsize = 0; 1375 ehdr->e_shnum = 0; 1376 ehdr->e_shstrndx = 0; 1377 1378 if (from->elfclass == ELFCLASS32) { 1379 ehdr->e_phoff = sizeof(Elf32_Ehdr); 1380 ehdr->e_ehsize = sizeof(Elf32_Ehdr); 1381 ehdr->e_phentsize = sizeof(Elf32_Phdr); 1382 } else { 1383 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1384 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1385 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1386 } 1387 1388 if (!gelf_update_ehdr(to->elf, ehdr)) 1389 return -1; 1390 1391 if (!gelf_newphdr(to->elf, count)) 1392 return -1; 1393 1394 return 0; 1395 } 1396 1397 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset, 1398 u64 addr, u64 len) 1399 { 1400 GElf_Phdr phdr = { 1401 .p_type = PT_LOAD, 1402 .p_flags = PF_R | PF_W | PF_X, 1403 .p_offset = offset, 1404 .p_vaddr = addr, 1405 .p_paddr = 0, 1406 .p_filesz = len, 1407 .p_memsz = len, 1408 .p_align = page_size, 1409 }; 1410 1411 if (!gelf_update_phdr(kcore->elf, idx, &phdr)) 1412 return -1; 1413 1414 return 0; 1415 } 1416 1417 static off_t kcore__write(struct kcore *kcore) 1418 { 1419 return elf_update(kcore->elf, ELF_C_WRITE); 1420 } 1421 1422 struct phdr_data { 1423 off_t offset; 1424 off_t rel; 1425 u64 addr; 1426 u64 len; 1427 struct list_head node; 1428 struct phdr_data *remaps; 1429 }; 1430 1431 struct sym_data { 1432 u64 addr; 1433 struct list_head node; 1434 }; 1435 1436 struct kcore_copy_info { 1437 u64 stext; 1438 u64 etext; 1439 u64 first_symbol; 1440 u64 last_symbol; 1441 u64 first_module; 1442 u64 last_module_symbol; 1443 size_t phnum; 1444 struct list_head phdrs; 1445 struct list_head syms; 1446 }; 1447 1448 #define kcore_copy__for_each_phdr(k, p) \ 1449 list_for_each_entry((p), &(k)->phdrs, node) 1450 1451 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset) 1452 { 1453 struct phdr_data *p = zalloc(sizeof(*p)); 1454 1455 if (p) { 1456 p->addr = addr; 1457 p->len = len; 1458 p->offset = offset; 1459 } 1460 1461 return p; 1462 } 1463 1464 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci, 1465 u64 addr, u64 len, 1466 off_t offset) 1467 { 1468 struct phdr_data *p = phdr_data__new(addr, len, offset); 1469 1470 if (p) 1471 list_add_tail(&p->node, &kci->phdrs); 1472 1473 return p; 1474 } 1475 1476 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci) 1477 { 1478 struct phdr_data *p, *tmp; 1479 1480 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) { 1481 list_del_init(&p->node); 1482 free(p); 1483 } 1484 } 1485 1486 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci, 1487 u64 addr) 1488 { 1489 struct sym_data *s = zalloc(sizeof(*s)); 1490 1491 if (s) { 1492 s->addr = addr; 1493 list_add_tail(&s->node, &kci->syms); 1494 } 1495 1496 return s; 1497 } 1498 1499 static void kcore_copy__free_syms(struct kcore_copy_info *kci) 1500 { 1501 struct sym_data *s, *tmp; 1502 1503 list_for_each_entry_safe(s, tmp, &kci->syms, node) { 1504 list_del_init(&s->node); 1505 free(s); 1506 } 1507 } 1508 1509 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type, 1510 u64 start) 1511 { 1512 struct kcore_copy_info *kci = arg; 1513 1514 if (!kallsyms__is_function(type)) 1515 return 0; 1516 1517 if (strchr(name, '[')) { 1518 if (start > kci->last_module_symbol) 1519 kci->last_module_symbol = start; 1520 return 0; 1521 } 1522 1523 if (!kci->first_symbol || start < kci->first_symbol) 1524 kci->first_symbol = start; 1525 1526 if (!kci->last_symbol || start > kci->last_symbol) 1527 kci->last_symbol = start; 1528 1529 if (!strcmp(name, "_stext")) { 1530 kci->stext = start; 1531 return 0; 1532 } 1533 1534 if (!strcmp(name, "_etext")) { 1535 kci->etext = start; 1536 return 0; 1537 } 1538 1539 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start)) 1540 return -1; 1541 1542 return 0; 1543 } 1544 1545 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci, 1546 const char *dir) 1547 { 1548 char kallsyms_filename[PATH_MAX]; 1549 1550 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir); 1551 1552 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms")) 1553 return -1; 1554 1555 if (kallsyms__parse(kallsyms_filename, kci, 1556 kcore_copy__process_kallsyms) < 0) 1557 return -1; 1558 1559 return 0; 1560 } 1561 1562 static int kcore_copy__process_modules(void *arg, 1563 const char *name __maybe_unused, 1564 u64 start, u64 size __maybe_unused) 1565 { 1566 struct kcore_copy_info *kci = arg; 1567 1568 if (!kci->first_module || start < kci->first_module) 1569 kci->first_module = start; 1570 1571 return 0; 1572 } 1573 1574 static int kcore_copy__parse_modules(struct kcore_copy_info *kci, 1575 const char *dir) 1576 { 1577 char modules_filename[PATH_MAX]; 1578 1579 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir); 1580 1581 if (symbol__restricted_filename(modules_filename, "/proc/modules")) 1582 return -1; 1583 1584 if (modules__parse(modules_filename, kci, 1585 kcore_copy__process_modules) < 0) 1586 return -1; 1587 1588 return 0; 1589 } 1590 1591 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end, 1592 u64 pgoff, u64 s, u64 e) 1593 { 1594 u64 len, offset; 1595 1596 if (s < start || s >= end) 1597 return 0; 1598 1599 offset = (s - start) + pgoff; 1600 len = e < end ? e - s : end - s; 1601 1602 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1; 1603 } 1604 1605 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data) 1606 { 1607 struct kcore_copy_info *kci = data; 1608 u64 end = start + len; 1609 struct sym_data *sdat; 1610 1611 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext)) 1612 return -1; 1613 1614 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module, 1615 kci->last_module_symbol)) 1616 return -1; 1617 1618 list_for_each_entry(sdat, &kci->syms, node) { 1619 u64 s = round_down(sdat->addr, page_size); 1620 1621 if (kcore_copy__map(kci, start, end, pgoff, s, s + len)) 1622 return -1; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf) 1629 { 1630 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0) 1631 return -1; 1632 1633 return 0; 1634 } 1635 1636 static void kcore_copy__find_remaps(struct kcore_copy_info *kci) 1637 { 1638 struct phdr_data *p, *k = NULL; 1639 u64 kend; 1640 1641 if (!kci->stext) 1642 return; 1643 1644 /* Find phdr that corresponds to the kernel map (contains stext) */ 1645 kcore_copy__for_each_phdr(kci, p) { 1646 u64 pend = p->addr + p->len - 1; 1647 1648 if (p->addr <= kci->stext && pend >= kci->stext) { 1649 k = p; 1650 break; 1651 } 1652 } 1653 1654 if (!k) 1655 return; 1656 1657 kend = k->offset + k->len; 1658 1659 /* Find phdrs that remap the kernel */ 1660 kcore_copy__for_each_phdr(kci, p) { 1661 u64 pend = p->offset + p->len; 1662 1663 if (p == k) 1664 continue; 1665 1666 if (p->offset >= k->offset && pend <= kend) 1667 p->remaps = k; 1668 } 1669 } 1670 1671 static void kcore_copy__layout(struct kcore_copy_info *kci) 1672 { 1673 struct phdr_data *p; 1674 off_t rel = 0; 1675 1676 kcore_copy__find_remaps(kci); 1677 1678 kcore_copy__for_each_phdr(kci, p) { 1679 if (!p->remaps) { 1680 p->rel = rel; 1681 rel += p->len; 1682 } 1683 kci->phnum += 1; 1684 } 1685 1686 kcore_copy__for_each_phdr(kci, p) { 1687 struct phdr_data *k = p->remaps; 1688 1689 if (k) 1690 p->rel = p->offset - k->offset + k->rel; 1691 } 1692 } 1693 1694 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir, 1695 Elf *elf) 1696 { 1697 if (kcore_copy__parse_kallsyms(kci, dir)) 1698 return -1; 1699 1700 if (kcore_copy__parse_modules(kci, dir)) 1701 return -1; 1702 1703 if (kci->stext) 1704 kci->stext = round_down(kci->stext, page_size); 1705 else 1706 kci->stext = round_down(kci->first_symbol, page_size); 1707 1708 if (kci->etext) { 1709 kci->etext = round_up(kci->etext, page_size); 1710 } else if (kci->last_symbol) { 1711 kci->etext = round_up(kci->last_symbol, page_size); 1712 kci->etext += page_size; 1713 } 1714 1715 kci->first_module = round_down(kci->first_module, page_size); 1716 1717 if (kci->last_module_symbol) { 1718 kci->last_module_symbol = round_up(kci->last_module_symbol, 1719 page_size); 1720 kci->last_module_symbol += page_size; 1721 } 1722 1723 if (!kci->stext || !kci->etext) 1724 return -1; 1725 1726 if (kci->first_module && !kci->last_module_symbol) 1727 return -1; 1728 1729 if (kcore_copy__read_maps(kci, elf)) 1730 return -1; 1731 1732 kcore_copy__layout(kci); 1733 1734 return 0; 1735 } 1736 1737 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir, 1738 const char *name) 1739 { 1740 char from_filename[PATH_MAX]; 1741 char to_filename[PATH_MAX]; 1742 1743 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1744 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1745 1746 return copyfile_mode(from_filename, to_filename, 0400); 1747 } 1748 1749 static int kcore_copy__unlink(const char *dir, const char *name) 1750 { 1751 char filename[PATH_MAX]; 1752 1753 scnprintf(filename, PATH_MAX, "%s/%s", dir, name); 1754 1755 return unlink(filename); 1756 } 1757 1758 static int kcore_copy__compare_fds(int from, int to) 1759 { 1760 char *buf_from; 1761 char *buf_to; 1762 ssize_t ret; 1763 size_t len; 1764 int err = -1; 1765 1766 buf_from = malloc(page_size); 1767 buf_to = malloc(page_size); 1768 if (!buf_from || !buf_to) 1769 goto out; 1770 1771 while (1) { 1772 /* Use read because mmap won't work on proc files */ 1773 ret = read(from, buf_from, page_size); 1774 if (ret < 0) 1775 goto out; 1776 1777 if (!ret) 1778 break; 1779 1780 len = ret; 1781 1782 if (readn(to, buf_to, len) != (int)len) 1783 goto out; 1784 1785 if (memcmp(buf_from, buf_to, len)) 1786 goto out; 1787 } 1788 1789 err = 0; 1790 out: 1791 free(buf_to); 1792 free(buf_from); 1793 return err; 1794 } 1795 1796 static int kcore_copy__compare_files(const char *from_filename, 1797 const char *to_filename) 1798 { 1799 int from, to, err = -1; 1800 1801 from = open(from_filename, O_RDONLY); 1802 if (from < 0) 1803 return -1; 1804 1805 to = open(to_filename, O_RDONLY); 1806 if (to < 0) 1807 goto out_close_from; 1808 1809 err = kcore_copy__compare_fds(from, to); 1810 1811 close(to); 1812 out_close_from: 1813 close(from); 1814 return err; 1815 } 1816 1817 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir, 1818 const char *name) 1819 { 1820 char from_filename[PATH_MAX]; 1821 char to_filename[PATH_MAX]; 1822 1823 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name); 1824 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name); 1825 1826 return kcore_copy__compare_files(from_filename, to_filename); 1827 } 1828 1829 /** 1830 * kcore_copy - copy kallsyms, modules and kcore from one directory to another. 1831 * @from_dir: from directory 1832 * @to_dir: to directory 1833 * 1834 * This function copies kallsyms, modules and kcore files from one directory to 1835 * another. kallsyms and modules are copied entirely. Only code segments are 1836 * copied from kcore. It is assumed that two segments suffice: one for the 1837 * kernel proper and one for all the modules. The code segments are determined 1838 * from kallsyms and modules files. The kernel map starts at _stext or the 1839 * lowest function symbol, and ends at _etext or the highest function symbol. 1840 * The module map starts at the lowest module address and ends at the highest 1841 * module symbol. Start addresses are rounded down to the nearest page. End 1842 * addresses are rounded up to the nearest page. An extra page is added to the 1843 * highest kernel symbol and highest module symbol to, hopefully, encompass that 1844 * symbol too. Because it contains only code sections, the resulting kcore is 1845 * unusual. One significant peculiarity is that the mapping (start -> pgoff) 1846 * is not the same for the kernel map and the modules map. That happens because 1847 * the data is copied adjacently whereas the original kcore has gaps. Finally, 1848 * kallsyms and modules files are compared with their copies to check that 1849 * modules have not been loaded or unloaded while the copies were taking place. 1850 * 1851 * Return: %0 on success, %-1 on failure. 1852 */ 1853 int kcore_copy(const char *from_dir, const char *to_dir) 1854 { 1855 struct kcore kcore; 1856 struct kcore extract; 1857 int idx = 0, err = -1; 1858 off_t offset, sz; 1859 struct kcore_copy_info kci = { .stext = 0, }; 1860 char kcore_filename[PATH_MAX]; 1861 char extract_filename[PATH_MAX]; 1862 struct phdr_data *p; 1863 1864 INIT_LIST_HEAD(&kci.phdrs); 1865 INIT_LIST_HEAD(&kci.syms); 1866 1867 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms")) 1868 return -1; 1869 1870 if (kcore_copy__copy_file(from_dir, to_dir, "modules")) 1871 goto out_unlink_kallsyms; 1872 1873 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir); 1874 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir); 1875 1876 if (kcore__open(&kcore, kcore_filename)) 1877 goto out_unlink_modules; 1878 1879 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf)) 1880 goto out_kcore_close; 1881 1882 if (kcore__init(&extract, extract_filename, kcore.elfclass, false)) 1883 goto out_kcore_close; 1884 1885 if (kcore__copy_hdr(&kcore, &extract, kci.phnum)) 1886 goto out_extract_close; 1887 1888 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) + 1889 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT); 1890 offset = round_up(offset, page_size); 1891 1892 kcore_copy__for_each_phdr(&kci, p) { 1893 off_t offs = p->rel + offset; 1894 1895 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len)) 1896 goto out_extract_close; 1897 } 1898 1899 sz = kcore__write(&extract); 1900 if (sz < 0 || sz > offset) 1901 goto out_extract_close; 1902 1903 kcore_copy__for_each_phdr(&kci, p) { 1904 off_t offs = p->rel + offset; 1905 1906 if (p->remaps) 1907 continue; 1908 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len)) 1909 goto out_extract_close; 1910 } 1911 1912 if (kcore_copy__compare_file(from_dir, to_dir, "modules")) 1913 goto out_extract_close; 1914 1915 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms")) 1916 goto out_extract_close; 1917 1918 err = 0; 1919 1920 out_extract_close: 1921 kcore__close(&extract); 1922 if (err) 1923 unlink(extract_filename); 1924 out_kcore_close: 1925 kcore__close(&kcore); 1926 out_unlink_modules: 1927 if (err) 1928 kcore_copy__unlink(to_dir, "modules"); 1929 out_unlink_kallsyms: 1930 if (err) 1931 kcore_copy__unlink(to_dir, "kallsyms"); 1932 1933 kcore_copy__free_phdrs(&kci); 1934 kcore_copy__free_syms(&kci); 1935 1936 return err; 1937 } 1938 1939 int kcore_extract__create(struct kcore_extract *kce) 1940 { 1941 struct kcore kcore; 1942 struct kcore extract; 1943 size_t count = 1; 1944 int idx = 0, err = -1; 1945 off_t offset = page_size, sz; 1946 1947 if (kcore__open(&kcore, kce->kcore_filename)) 1948 return -1; 1949 1950 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT); 1951 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true)) 1952 goto out_kcore_close; 1953 1954 if (kcore__copy_hdr(&kcore, &extract, count)) 1955 goto out_extract_close; 1956 1957 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len)) 1958 goto out_extract_close; 1959 1960 sz = kcore__write(&extract); 1961 if (sz < 0 || sz > offset) 1962 goto out_extract_close; 1963 1964 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len)) 1965 goto out_extract_close; 1966 1967 err = 0; 1968 1969 out_extract_close: 1970 kcore__close(&extract); 1971 if (err) 1972 unlink(kce->extract_filename); 1973 out_kcore_close: 1974 kcore__close(&kcore); 1975 1976 return err; 1977 } 1978 1979 void kcore_extract__delete(struct kcore_extract *kce) 1980 { 1981 unlink(kce->extract_filename); 1982 } 1983 1984 #ifdef HAVE_GELF_GETNOTE_SUPPORT 1985 1986 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off) 1987 { 1988 if (!base_off) 1989 return; 1990 1991 if (tmp->bit32) 1992 tmp->addr.a32[SDT_NOTE_IDX_LOC] = 1993 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off - 1994 tmp->addr.a32[SDT_NOTE_IDX_BASE]; 1995 else 1996 tmp->addr.a64[SDT_NOTE_IDX_LOC] = 1997 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off - 1998 tmp->addr.a64[SDT_NOTE_IDX_BASE]; 1999 } 2000 2001 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr, 2002 GElf_Addr base_off) 2003 { 2004 if (!base_off) 2005 return; 2006 2007 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR]) 2008 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2009 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR]) 2010 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off); 2011 } 2012 2013 /** 2014 * populate_sdt_note : Parse raw data and identify SDT note 2015 * @elf: elf of the opened file 2016 * @data: raw data of a section with description offset applied 2017 * @len: note description size 2018 * @type: type of the note 2019 * @sdt_notes: List to add the SDT note 2020 * 2021 * Responsible for parsing the @data in section .note.stapsdt in @elf and 2022 * if its an SDT note, it appends to @sdt_notes list. 2023 */ 2024 static int populate_sdt_note(Elf **elf, const char *data, size_t len, 2025 struct list_head *sdt_notes) 2026 { 2027 const char *provider, *name, *args; 2028 struct sdt_note *tmp = NULL; 2029 GElf_Ehdr ehdr; 2030 GElf_Shdr shdr; 2031 int ret = -EINVAL; 2032 2033 union { 2034 Elf64_Addr a64[NR_ADDR]; 2035 Elf32_Addr a32[NR_ADDR]; 2036 } buf; 2037 2038 Elf_Data dst = { 2039 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT, 2040 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT), 2041 .d_off = 0, .d_align = 0 2042 }; 2043 Elf_Data src = { 2044 .d_buf = (void *) data, .d_type = ELF_T_ADDR, 2045 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0, 2046 .d_align = 0 2047 }; 2048 2049 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note)); 2050 if (!tmp) { 2051 ret = -ENOMEM; 2052 goto out_err; 2053 } 2054 2055 INIT_LIST_HEAD(&tmp->note_list); 2056 2057 if (len < dst.d_size + 3) 2058 goto out_free_note; 2059 2060 /* Translation from file representation to memory representation */ 2061 if (gelf_xlatetom(*elf, &dst, &src, 2062 elf_getident(*elf, NULL)[EI_DATA]) == NULL) { 2063 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1)); 2064 goto out_free_note; 2065 } 2066 2067 /* Populate the fields of sdt_note */ 2068 provider = data + dst.d_size; 2069 2070 name = (const char *)memchr(provider, '\0', data + len - provider); 2071 if (name++ == NULL) 2072 goto out_free_note; 2073 2074 tmp->provider = strdup(provider); 2075 if (!tmp->provider) { 2076 ret = -ENOMEM; 2077 goto out_free_note; 2078 } 2079 tmp->name = strdup(name); 2080 if (!tmp->name) { 2081 ret = -ENOMEM; 2082 goto out_free_prov; 2083 } 2084 2085 args = memchr(name, '\0', data + len - name); 2086 2087 /* 2088 * There is no argument if: 2089 * - We reached the end of the note; 2090 * - There is not enough room to hold a potential string; 2091 * - The argument string is empty or just contains ':'. 2092 */ 2093 if (args == NULL || data + len - args < 2 || 2094 args[1] == ':' || args[1] == '\0') 2095 tmp->args = NULL; 2096 else { 2097 tmp->args = strdup(++args); 2098 if (!tmp->args) { 2099 ret = -ENOMEM; 2100 goto out_free_name; 2101 } 2102 } 2103 2104 if (gelf_getclass(*elf) == ELFCLASS32) { 2105 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr)); 2106 tmp->bit32 = true; 2107 } else { 2108 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr)); 2109 tmp->bit32 = false; 2110 } 2111 2112 if (!gelf_getehdr(*elf, &ehdr)) { 2113 pr_debug("%s : cannot get elf header.\n", __func__); 2114 ret = -EBADF; 2115 goto out_free_args; 2116 } 2117 2118 /* Adjust the prelink effect : 2119 * Find out the .stapsdt.base section. 2120 * This scn will help us to handle prelinking (if present). 2121 * Compare the retrieved file offset of the base section with the 2122 * base address in the description of the SDT note. If its different, 2123 * then accordingly, adjust the note location. 2124 */ 2125 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL)) 2126 sdt_adjust_loc(tmp, shdr.sh_offset); 2127 2128 /* Adjust reference counter offset */ 2129 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL)) 2130 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset); 2131 2132 list_add_tail(&tmp->note_list, sdt_notes); 2133 return 0; 2134 2135 out_free_args: 2136 zfree(&tmp->args); 2137 out_free_name: 2138 zfree(&tmp->name); 2139 out_free_prov: 2140 zfree(&tmp->provider); 2141 out_free_note: 2142 free(tmp); 2143 out_err: 2144 return ret; 2145 } 2146 2147 /** 2148 * construct_sdt_notes_list : constructs a list of SDT notes 2149 * @elf : elf to look into 2150 * @sdt_notes : empty list_head 2151 * 2152 * Scans the sections in 'elf' for the section 2153 * .note.stapsdt. It, then calls populate_sdt_note to find 2154 * out the SDT events and populates the 'sdt_notes'. 2155 */ 2156 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes) 2157 { 2158 GElf_Ehdr ehdr; 2159 Elf_Scn *scn = NULL; 2160 Elf_Data *data; 2161 GElf_Shdr shdr; 2162 size_t shstrndx, next; 2163 GElf_Nhdr nhdr; 2164 size_t name_off, desc_off, offset; 2165 int ret = 0; 2166 2167 if (gelf_getehdr(elf, &ehdr) == NULL) { 2168 ret = -EBADF; 2169 goto out_ret; 2170 } 2171 if (elf_getshdrstrndx(elf, &shstrndx) != 0) { 2172 ret = -EBADF; 2173 goto out_ret; 2174 } 2175 2176 /* Look for the required section */ 2177 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL); 2178 if (!scn) { 2179 ret = -ENOENT; 2180 goto out_ret; 2181 } 2182 2183 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) { 2184 ret = -ENOENT; 2185 goto out_ret; 2186 } 2187 2188 data = elf_getdata(scn, NULL); 2189 2190 /* Get the SDT notes */ 2191 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off, 2192 &desc_off)) > 0; offset = next) { 2193 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) && 2194 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME, 2195 sizeof(SDT_NOTE_NAME))) { 2196 /* Check the type of the note */ 2197 if (nhdr.n_type != SDT_NOTE_TYPE) 2198 goto out_ret; 2199 2200 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off), 2201 nhdr.n_descsz, sdt_notes); 2202 if (ret < 0) 2203 goto out_ret; 2204 } 2205 } 2206 if (list_empty(sdt_notes)) 2207 ret = -ENOENT; 2208 2209 out_ret: 2210 return ret; 2211 } 2212 2213 /** 2214 * get_sdt_note_list : Wrapper to construct a list of sdt notes 2215 * @head : empty list_head 2216 * @target : file to find SDT notes from 2217 * 2218 * This opens the file, initializes 2219 * the ELF and then calls construct_sdt_notes_list. 2220 */ 2221 int get_sdt_note_list(struct list_head *head, const char *target) 2222 { 2223 Elf *elf; 2224 int fd, ret; 2225 2226 fd = open(target, O_RDONLY); 2227 if (fd < 0) 2228 return -EBADF; 2229 2230 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL); 2231 if (!elf) { 2232 ret = -EBADF; 2233 goto out_close; 2234 } 2235 ret = construct_sdt_notes_list(elf, head); 2236 elf_end(elf); 2237 out_close: 2238 close(fd); 2239 return ret; 2240 } 2241 2242 /** 2243 * cleanup_sdt_note_list : free the sdt notes' list 2244 * @sdt_notes: sdt notes' list 2245 * 2246 * Free up the SDT notes in @sdt_notes. 2247 * Returns the number of SDT notes free'd. 2248 */ 2249 int cleanup_sdt_note_list(struct list_head *sdt_notes) 2250 { 2251 struct sdt_note *tmp, *pos; 2252 int nr_free = 0; 2253 2254 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) { 2255 list_del_init(&pos->note_list); 2256 zfree(&pos->name); 2257 zfree(&pos->provider); 2258 free(pos); 2259 nr_free++; 2260 } 2261 return nr_free; 2262 } 2263 2264 /** 2265 * sdt_notes__get_count: Counts the number of sdt events 2266 * @start: list_head to sdt_notes list 2267 * 2268 * Returns the number of SDT notes in a list 2269 */ 2270 int sdt_notes__get_count(struct list_head *start) 2271 { 2272 struct sdt_note *sdt_ptr; 2273 int count = 0; 2274 2275 list_for_each_entry(sdt_ptr, start, note_list) 2276 count++; 2277 return count; 2278 } 2279 #endif 2280 2281 void symbol__elf_init(void) 2282 { 2283 elf_version(EV_CURRENT); 2284 } 2285