xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-ocaml.h"
16 #include "demangle-java.h"
17 #include "demangle-rust.h"
18 #include "machine.h"
19 #include "vdso.h"
20 #include "debug.h"
21 #include "util/copyfile.h"
22 #include <linux/ctype.h>
23 #include <linux/kernel.h>
24 #include <linux/zalloc.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27 
28 #ifndef EM_AARCH64
29 #define EM_AARCH64	183  /* ARM 64 bit */
30 #endif
31 
32 #ifndef ELF32_ST_VISIBILITY
33 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
34 #endif
35 
36 /* For ELF64 the definitions are the same.  */
37 #ifndef ELF64_ST_VISIBILITY
38 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
39 #endif
40 
41 /* How to extract information held in the st_other field.  */
42 #ifndef GELF_ST_VISIBILITY
43 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
44 #endif
45 
46 typedef Elf64_Nhdr GElf_Nhdr;
47 
48 #ifndef DMGL_PARAMS
49 #define DMGL_NO_OPTS     0              /* For readability... */
50 #define DMGL_PARAMS      (1 << 0)       /* Include function args */
51 #define DMGL_ANSI        (1 << 1)       /* Include const, volatile, etc */
52 #endif
53 
54 #ifdef HAVE_LIBBFD_SUPPORT
55 #define PACKAGE 'perf'
56 #include <bfd.h>
57 #else
58 #ifdef HAVE_CPLUS_DEMANGLE_SUPPORT
59 extern char *cplus_demangle(const char *, int);
60 
61 static inline char *bfd_demangle(void __maybe_unused *v, const char *c, int i)
62 {
63 	return cplus_demangle(c, i);
64 }
65 #else
66 #ifdef NO_DEMANGLE
67 static inline char *bfd_demangle(void __maybe_unused *v,
68 				 const char __maybe_unused *c,
69 				 int __maybe_unused i)
70 {
71 	return NULL;
72 }
73 #endif
74 #endif
75 #endif
76 
77 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
78 static int elf_getphdrnum(Elf *elf, size_t *dst)
79 {
80 	GElf_Ehdr gehdr;
81 	GElf_Ehdr *ehdr;
82 
83 	ehdr = gelf_getehdr(elf, &gehdr);
84 	if (!ehdr)
85 		return -1;
86 
87 	*dst = ehdr->e_phnum;
88 
89 	return 0;
90 }
91 #endif
92 
93 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
94 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
95 {
96 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
97 	return -1;
98 }
99 #endif
100 
101 #ifndef NT_GNU_BUILD_ID
102 #define NT_GNU_BUILD_ID 3
103 #endif
104 
105 /**
106  * elf_symtab__for_each_symbol - iterate thru all the symbols
107  *
108  * @syms: struct elf_symtab instance to iterate
109  * @idx: uint32_t idx
110  * @sym: GElf_Sym iterator
111  */
112 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
113 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
114 	     idx < nr_syms; \
115 	     idx++, gelf_getsym(syms, idx, &sym))
116 
117 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
118 {
119 	return GELF_ST_TYPE(sym->st_info);
120 }
121 
122 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
123 {
124 	return GELF_ST_VISIBILITY(sym->st_other);
125 }
126 
127 #ifndef STT_GNU_IFUNC
128 #define STT_GNU_IFUNC 10
129 #endif
130 
131 static inline int elf_sym__is_function(const GElf_Sym *sym)
132 {
133 	return (elf_sym__type(sym) == STT_FUNC ||
134 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
135 	       sym->st_name != 0 &&
136 	       sym->st_shndx != SHN_UNDEF;
137 }
138 
139 static inline bool elf_sym__is_object(const GElf_Sym *sym)
140 {
141 	return elf_sym__type(sym) == STT_OBJECT &&
142 		sym->st_name != 0 &&
143 		sym->st_shndx != SHN_UNDEF;
144 }
145 
146 static inline int elf_sym__is_label(const GElf_Sym *sym)
147 {
148 	return elf_sym__type(sym) == STT_NOTYPE &&
149 		sym->st_name != 0 &&
150 		sym->st_shndx != SHN_UNDEF &&
151 		sym->st_shndx != SHN_ABS &&
152 		elf_sym__visibility(sym) != STV_HIDDEN &&
153 		elf_sym__visibility(sym) != STV_INTERNAL;
154 }
155 
156 static bool elf_sym__filter(GElf_Sym *sym)
157 {
158 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
159 }
160 
161 static inline const char *elf_sym__name(const GElf_Sym *sym,
162 					const Elf_Data *symstrs)
163 {
164 	return symstrs->d_buf + sym->st_name;
165 }
166 
167 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
168 					const Elf_Data *secstrs)
169 {
170 	return secstrs->d_buf + shdr->sh_name;
171 }
172 
173 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
174 					const Elf_Data *secstrs)
175 {
176 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
177 }
178 
179 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
180 				    const Elf_Data *secstrs)
181 {
182 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
183 }
184 
185 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
186 {
187 	return elf_sec__is_text(shdr, secstrs) ||
188 	       elf_sec__is_data(shdr, secstrs);
189 }
190 
191 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
192 {
193 	Elf_Scn *sec = NULL;
194 	GElf_Shdr shdr;
195 	size_t cnt = 1;
196 
197 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
198 		gelf_getshdr(sec, &shdr);
199 
200 		if ((addr >= shdr.sh_addr) &&
201 		    (addr < (shdr.sh_addr + shdr.sh_size)))
202 			return cnt;
203 
204 		++cnt;
205 	}
206 
207 	return -1;
208 }
209 
210 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
211 			     GElf_Shdr *shp, const char *name, size_t *idx)
212 {
213 	Elf_Scn *sec = NULL;
214 	size_t cnt = 1;
215 
216 	/* Elf is corrupted/truncated, avoid calling elf_strptr. */
217 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
218 		return NULL;
219 
220 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
221 		char *str;
222 
223 		gelf_getshdr(sec, shp);
224 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
225 		if (str && !strcmp(name, str)) {
226 			if (idx)
227 				*idx = cnt;
228 			return sec;
229 		}
230 		++cnt;
231 	}
232 
233 	return NULL;
234 }
235 
236 static bool want_demangle(bool is_kernel_sym)
237 {
238 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
239 }
240 
241 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
242 {
243 	int demangle_flags = verbose > 0 ? (DMGL_PARAMS | DMGL_ANSI) : DMGL_NO_OPTS;
244 	char *demangled = NULL;
245 
246 	/*
247 	 * We need to figure out if the object was created from C++ sources
248 	 * DWARF DW_compile_unit has this, but we don't always have access
249 	 * to it...
250 	 */
251 	if (!want_demangle(dso->kernel || kmodule))
252 	    return demangled;
253 
254 	demangled = bfd_demangle(NULL, elf_name, demangle_flags);
255 	if (demangled == NULL) {
256 		demangled = ocaml_demangle_sym(elf_name);
257 		if (demangled == NULL) {
258 			demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
259 		}
260 	}
261 	else if (rust_is_mangled(demangled))
262 		/*
263 		    * Input to Rust demangling is the BFD-demangled
264 		    * name which it Rust-demangles in place.
265 		    */
266 		rust_demangle_sym(demangled);
267 
268 	return demangled;
269 }
270 
271 #define elf_section__for_each_rel(reldata, pos, pos_mem, idx, nr_entries) \
272 	for (idx = 0, pos = gelf_getrel(reldata, 0, &pos_mem); \
273 	     idx < nr_entries; \
274 	     ++idx, pos = gelf_getrel(reldata, idx, &pos_mem))
275 
276 #define elf_section__for_each_rela(reldata, pos, pos_mem, idx, nr_entries) \
277 	for (idx = 0, pos = gelf_getrela(reldata, 0, &pos_mem); \
278 	     idx < nr_entries; \
279 	     ++idx, pos = gelf_getrela(reldata, idx, &pos_mem))
280 
281 /*
282  * We need to check if we have a .dynsym, so that we can handle the
283  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
284  * .dynsym or .symtab).
285  * And always look at the original dso, not at debuginfo packages, that
286  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
287  */
288 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
289 {
290 	uint32_t nr_rel_entries, idx;
291 	GElf_Sym sym;
292 	u64 plt_offset, plt_header_size, plt_entry_size;
293 	GElf_Shdr shdr_plt;
294 	struct symbol *f;
295 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
296 	Elf_Data *reldata, *syms, *symstrs;
297 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
298 	size_t dynsym_idx;
299 	GElf_Ehdr ehdr;
300 	char sympltname[1024];
301 	Elf *elf;
302 	int nr = 0, symidx, err = 0;
303 
304 	if (!ss->dynsym)
305 		return 0;
306 
307 	elf = ss->elf;
308 	ehdr = ss->ehdr;
309 
310 	scn_dynsym = ss->dynsym;
311 	shdr_dynsym = ss->dynshdr;
312 	dynsym_idx = ss->dynsym_idx;
313 
314 	if (scn_dynsym == NULL)
315 		goto out_elf_end;
316 
317 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
318 					  ".rela.plt", NULL);
319 	if (scn_plt_rel == NULL) {
320 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
321 						  ".rel.plt", NULL);
322 		if (scn_plt_rel == NULL)
323 			goto out_elf_end;
324 	}
325 
326 	err = -1;
327 
328 	if (shdr_rel_plt.sh_link != dynsym_idx)
329 		goto out_elf_end;
330 
331 	if (elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL) == NULL)
332 		goto out_elf_end;
333 
334 	/*
335 	 * Fetch the relocation section to find the idxes to the GOT
336 	 * and the symbols in the .dynsym they refer to.
337 	 */
338 	reldata = elf_getdata(scn_plt_rel, NULL);
339 	if (reldata == NULL)
340 		goto out_elf_end;
341 
342 	syms = elf_getdata(scn_dynsym, NULL);
343 	if (syms == NULL)
344 		goto out_elf_end;
345 
346 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
347 	if (scn_symstrs == NULL)
348 		goto out_elf_end;
349 
350 	symstrs = elf_getdata(scn_symstrs, NULL);
351 	if (symstrs == NULL)
352 		goto out_elf_end;
353 
354 	if (symstrs->d_size == 0)
355 		goto out_elf_end;
356 
357 	nr_rel_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
358 	plt_offset = shdr_plt.sh_offset;
359 	switch (ehdr.e_machine) {
360 		case EM_ARM:
361 			plt_header_size = 20;
362 			plt_entry_size = 12;
363 			break;
364 
365 		case EM_AARCH64:
366 			plt_header_size = 32;
367 			plt_entry_size = 16;
368 			break;
369 
370 		case EM_SPARC:
371 			plt_header_size = 48;
372 			plt_entry_size = 12;
373 			break;
374 
375 		case EM_SPARCV9:
376 			plt_header_size = 128;
377 			plt_entry_size = 32;
378 			break;
379 
380 		default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
381 			plt_header_size = shdr_plt.sh_entsize;
382 			plt_entry_size = shdr_plt.sh_entsize;
383 			break;
384 	}
385 	plt_offset += plt_header_size;
386 
387 	if (shdr_rel_plt.sh_type == SHT_RELA) {
388 		GElf_Rela pos_mem, *pos;
389 
390 		elf_section__for_each_rela(reldata, pos, pos_mem, idx,
391 					   nr_rel_entries) {
392 			const char *elf_name = NULL;
393 			char *demangled = NULL;
394 			symidx = GELF_R_SYM(pos->r_info);
395 			gelf_getsym(syms, symidx, &sym);
396 
397 			elf_name = elf_sym__name(&sym, symstrs);
398 			demangled = demangle_sym(dso, 0, elf_name);
399 			if (demangled != NULL)
400 				elf_name = demangled;
401 			snprintf(sympltname, sizeof(sympltname),
402 				 "%s@plt", elf_name);
403 			free(demangled);
404 
405 			f = symbol__new(plt_offset, plt_entry_size,
406 					STB_GLOBAL, STT_FUNC, sympltname);
407 			if (!f)
408 				goto out_elf_end;
409 
410 			plt_offset += plt_entry_size;
411 			symbols__insert(&dso->symbols, f);
412 			++nr;
413 		}
414 	} else if (shdr_rel_plt.sh_type == SHT_REL) {
415 		GElf_Rel pos_mem, *pos;
416 		elf_section__for_each_rel(reldata, pos, pos_mem, idx,
417 					  nr_rel_entries) {
418 			const char *elf_name = NULL;
419 			char *demangled = NULL;
420 			symidx = GELF_R_SYM(pos->r_info);
421 			gelf_getsym(syms, symidx, &sym);
422 
423 			elf_name = elf_sym__name(&sym, symstrs);
424 			demangled = demangle_sym(dso, 0, elf_name);
425 			if (demangled != NULL)
426 				elf_name = demangled;
427 			snprintf(sympltname, sizeof(sympltname),
428 				 "%s@plt", elf_name);
429 			free(demangled);
430 
431 			f = symbol__new(plt_offset, plt_entry_size,
432 					STB_GLOBAL, STT_FUNC, sympltname);
433 			if (!f)
434 				goto out_elf_end;
435 
436 			plt_offset += plt_entry_size;
437 			symbols__insert(&dso->symbols, f);
438 			++nr;
439 		}
440 	}
441 
442 	err = 0;
443 out_elf_end:
444 	if (err == 0)
445 		return nr;
446 	pr_debug("%s: problems reading %s PLT info.\n",
447 		 __func__, dso->long_name);
448 	return 0;
449 }
450 
451 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
452 {
453 	return demangle_sym(dso, kmodule, elf_name);
454 }
455 
456 /*
457  * Align offset to 4 bytes as needed for note name and descriptor data.
458  */
459 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
460 
461 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
462 {
463 	int err = -1;
464 	GElf_Ehdr ehdr;
465 	GElf_Shdr shdr;
466 	Elf_Data *data;
467 	Elf_Scn *sec;
468 	Elf_Kind ek;
469 	void *ptr;
470 
471 	if (size < BUILD_ID_SIZE)
472 		goto out;
473 
474 	ek = elf_kind(elf);
475 	if (ek != ELF_K_ELF)
476 		goto out;
477 
478 	if (gelf_getehdr(elf, &ehdr) == NULL) {
479 		pr_err("%s: cannot get elf header.\n", __func__);
480 		goto out;
481 	}
482 
483 	/*
484 	 * Check following sections for notes:
485 	 *   '.note.gnu.build-id'
486 	 *   '.notes'
487 	 *   '.note' (VDSO specific)
488 	 */
489 	do {
490 		sec = elf_section_by_name(elf, &ehdr, &shdr,
491 					  ".note.gnu.build-id", NULL);
492 		if (sec)
493 			break;
494 
495 		sec = elf_section_by_name(elf, &ehdr, &shdr,
496 					  ".notes", NULL);
497 		if (sec)
498 			break;
499 
500 		sec = elf_section_by_name(elf, &ehdr, &shdr,
501 					  ".note", NULL);
502 		if (sec)
503 			break;
504 
505 		return err;
506 
507 	} while (0);
508 
509 	data = elf_getdata(sec, NULL);
510 	if (data == NULL)
511 		goto out;
512 
513 	ptr = data->d_buf;
514 	while (ptr < (data->d_buf + data->d_size)) {
515 		GElf_Nhdr *nhdr = ptr;
516 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
517 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
518 		const char *name;
519 
520 		ptr += sizeof(*nhdr);
521 		name = ptr;
522 		ptr += namesz;
523 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
524 		    nhdr->n_namesz == sizeof("GNU")) {
525 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
526 				size_t sz = min(size, descsz);
527 				memcpy(bf, ptr, sz);
528 				memset(bf + sz, 0, size - sz);
529 				err = descsz;
530 				break;
531 			}
532 		}
533 		ptr += descsz;
534 	}
535 
536 out:
537 	return err;
538 }
539 
540 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
541 
542 static int read_build_id(const char *filename, struct build_id *bid)
543 {
544 	size_t size = sizeof(bid->data);
545 	int err = -1;
546 	bfd *abfd;
547 
548 	abfd = bfd_openr(filename, NULL);
549 	if (!abfd)
550 		return -1;
551 
552 	if (!bfd_check_format(abfd, bfd_object)) {
553 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
554 		goto out_close;
555 	}
556 
557 	if (!abfd->build_id || abfd->build_id->size > size)
558 		goto out_close;
559 
560 	memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
561 	memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
562 	err = bid->size = abfd->build_id->size;
563 
564 out_close:
565 	bfd_close(abfd);
566 	return err;
567 }
568 
569 #else // HAVE_LIBBFD_BUILDID_SUPPORT
570 
571 static int read_build_id(const char *filename, struct build_id *bid)
572 {
573 	size_t size = sizeof(bid->data);
574 	int fd, err = -1;
575 	Elf *elf;
576 
577 	if (size < BUILD_ID_SIZE)
578 		goto out;
579 
580 	fd = open(filename, O_RDONLY);
581 	if (fd < 0)
582 		goto out;
583 
584 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
585 	if (elf == NULL) {
586 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
587 		goto out_close;
588 	}
589 
590 	err = elf_read_build_id(elf, bid->data, size);
591 	if (err > 0)
592 		bid->size = err;
593 
594 	elf_end(elf);
595 out_close:
596 	close(fd);
597 out:
598 	return err;
599 }
600 
601 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
602 
603 int filename__read_build_id(const char *filename, struct build_id *bid)
604 {
605 	struct kmod_path m = { .name = NULL, };
606 	char path[PATH_MAX];
607 	int err;
608 
609 	if (!filename)
610 		return -EFAULT;
611 
612 	err = kmod_path__parse(&m, filename);
613 	if (err)
614 		return -1;
615 
616 	if (m.comp) {
617 		int error = 0, fd;
618 
619 		fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
620 		if (fd < 0) {
621 			pr_debug("Failed to decompress (error %d) %s\n",
622 				 error, filename);
623 			return -1;
624 		}
625 		close(fd);
626 		filename = path;
627 	}
628 
629 	err = read_build_id(filename, bid);
630 
631 	if (m.comp)
632 		unlink(filename);
633 	return err;
634 }
635 
636 int sysfs__read_build_id(const char *filename, struct build_id *bid)
637 {
638 	size_t size = sizeof(bid->data);
639 	int fd, err = -1;
640 
641 	fd = open(filename, O_RDONLY);
642 	if (fd < 0)
643 		goto out;
644 
645 	while (1) {
646 		char bf[BUFSIZ];
647 		GElf_Nhdr nhdr;
648 		size_t namesz, descsz;
649 
650 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
651 			break;
652 
653 		namesz = NOTE_ALIGN(nhdr.n_namesz);
654 		descsz = NOTE_ALIGN(nhdr.n_descsz);
655 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
656 		    nhdr.n_namesz == sizeof("GNU")) {
657 			if (read(fd, bf, namesz) != (ssize_t)namesz)
658 				break;
659 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
660 				size_t sz = min(descsz, size);
661 				if (read(fd, bid->data, sz) == (ssize_t)sz) {
662 					memset(bid->data + sz, 0, size - sz);
663 					bid->size = sz;
664 					err = 0;
665 					break;
666 				}
667 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
668 				break;
669 		} else {
670 			int n = namesz + descsz;
671 
672 			if (n > (int)sizeof(bf)) {
673 				n = sizeof(bf);
674 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
675 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
676 			}
677 			if (read(fd, bf, n) != n)
678 				break;
679 		}
680 	}
681 	close(fd);
682 out:
683 	return err;
684 }
685 
686 #ifdef HAVE_LIBBFD_SUPPORT
687 
688 int filename__read_debuglink(const char *filename, char *debuglink,
689 			     size_t size)
690 {
691 	int err = -1;
692 	asection *section;
693 	bfd *abfd;
694 
695 	abfd = bfd_openr(filename, NULL);
696 	if (!abfd)
697 		return -1;
698 
699 	if (!bfd_check_format(abfd, bfd_object)) {
700 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
701 		goto out_close;
702 	}
703 
704 	section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
705 	if (!section)
706 		goto out_close;
707 
708 	if (section->size > size)
709 		goto out_close;
710 
711 	if (!bfd_get_section_contents(abfd, section, debuglink, 0,
712 				      section->size))
713 		goto out_close;
714 
715 	err = 0;
716 
717 out_close:
718 	bfd_close(abfd);
719 	return err;
720 }
721 
722 #else
723 
724 int filename__read_debuglink(const char *filename, char *debuglink,
725 			     size_t size)
726 {
727 	int fd, err = -1;
728 	Elf *elf;
729 	GElf_Ehdr ehdr;
730 	GElf_Shdr shdr;
731 	Elf_Data *data;
732 	Elf_Scn *sec;
733 	Elf_Kind ek;
734 
735 	fd = open(filename, O_RDONLY);
736 	if (fd < 0)
737 		goto out;
738 
739 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
740 	if (elf == NULL) {
741 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
742 		goto out_close;
743 	}
744 
745 	ek = elf_kind(elf);
746 	if (ek != ELF_K_ELF)
747 		goto out_elf_end;
748 
749 	if (gelf_getehdr(elf, &ehdr) == NULL) {
750 		pr_err("%s: cannot get elf header.\n", __func__);
751 		goto out_elf_end;
752 	}
753 
754 	sec = elf_section_by_name(elf, &ehdr, &shdr,
755 				  ".gnu_debuglink", NULL);
756 	if (sec == NULL)
757 		goto out_elf_end;
758 
759 	data = elf_getdata(sec, NULL);
760 	if (data == NULL)
761 		goto out_elf_end;
762 
763 	/* the start of this section is a zero-terminated string */
764 	strncpy(debuglink, data->d_buf, size);
765 
766 	err = 0;
767 
768 out_elf_end:
769 	elf_end(elf);
770 out_close:
771 	close(fd);
772 out:
773 	return err;
774 }
775 
776 #endif
777 
778 static int dso__swap_init(struct dso *dso, unsigned char eidata)
779 {
780 	static unsigned int const endian = 1;
781 
782 	dso->needs_swap = DSO_SWAP__NO;
783 
784 	switch (eidata) {
785 	case ELFDATA2LSB:
786 		/* We are big endian, DSO is little endian. */
787 		if (*(unsigned char const *)&endian != 1)
788 			dso->needs_swap = DSO_SWAP__YES;
789 		break;
790 
791 	case ELFDATA2MSB:
792 		/* We are little endian, DSO is big endian. */
793 		if (*(unsigned char const *)&endian != 0)
794 			dso->needs_swap = DSO_SWAP__YES;
795 		break;
796 
797 	default:
798 		pr_err("unrecognized DSO data encoding %d\n", eidata);
799 		return -EINVAL;
800 	}
801 
802 	return 0;
803 }
804 
805 bool symsrc__possibly_runtime(struct symsrc *ss)
806 {
807 	return ss->dynsym || ss->opdsec;
808 }
809 
810 bool symsrc__has_symtab(struct symsrc *ss)
811 {
812 	return ss->symtab != NULL;
813 }
814 
815 void symsrc__destroy(struct symsrc *ss)
816 {
817 	zfree(&ss->name);
818 	elf_end(ss->elf);
819 	close(ss->fd);
820 }
821 
822 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
823 {
824 	/*
825 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
826 	 * architectures; except Arm64 kernel is linked with option
827 	 * '-share', so need to check type ET_DYN.
828 	 */
829 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
830 	       ehdr.e_type == ET_DYN;
831 }
832 
833 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
834 		 enum dso_binary_type type)
835 {
836 	GElf_Ehdr ehdr;
837 	Elf *elf;
838 	int fd;
839 
840 	if (dso__needs_decompress(dso)) {
841 		fd = dso__decompress_kmodule_fd(dso, name);
842 		if (fd < 0)
843 			return -1;
844 
845 		type = dso->symtab_type;
846 	} else {
847 		fd = open(name, O_RDONLY);
848 		if (fd < 0) {
849 			dso->load_errno = errno;
850 			return -1;
851 		}
852 	}
853 
854 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
855 	if (elf == NULL) {
856 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
857 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
858 		goto out_close;
859 	}
860 
861 	if (gelf_getehdr(elf, &ehdr) == NULL) {
862 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
863 		pr_debug("%s: cannot get elf header.\n", __func__);
864 		goto out_elf_end;
865 	}
866 
867 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
868 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
869 		goto out_elf_end;
870 	}
871 
872 	/* Always reject images with a mismatched build-id: */
873 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
874 		u8 build_id[BUILD_ID_SIZE];
875 		struct build_id bid;
876 		int size;
877 
878 		size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
879 		if (size <= 0) {
880 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
881 			goto out_elf_end;
882 		}
883 
884 		build_id__init(&bid, build_id, size);
885 		if (!dso__build_id_equal(dso, &bid)) {
886 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
887 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
888 			goto out_elf_end;
889 		}
890 	}
891 
892 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
893 
894 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
895 			NULL);
896 	if (ss->symshdr.sh_type != SHT_SYMTAB)
897 		ss->symtab = NULL;
898 
899 	ss->dynsym_idx = 0;
900 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
901 			&ss->dynsym_idx);
902 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
903 		ss->dynsym = NULL;
904 
905 	ss->opdidx = 0;
906 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
907 			&ss->opdidx);
908 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
909 		ss->opdsec = NULL;
910 
911 	if (dso->kernel == DSO_SPACE__USER)
912 		ss->adjust_symbols = true;
913 	else
914 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
915 
916 	ss->name   = strdup(name);
917 	if (!ss->name) {
918 		dso->load_errno = errno;
919 		goto out_elf_end;
920 	}
921 
922 	ss->elf    = elf;
923 	ss->fd     = fd;
924 	ss->ehdr   = ehdr;
925 	ss->type   = type;
926 
927 	return 0;
928 
929 out_elf_end:
930 	elf_end(elf);
931 out_close:
932 	close(fd);
933 	return -1;
934 }
935 
936 /**
937  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
938  * @kmap: kernel maps and relocation reference symbol
939  *
940  * This function returns %true if we are dealing with the kernel maps and the
941  * relocation reference symbol has not yet been found.  Otherwise %false is
942  * returned.
943  */
944 static bool ref_reloc_sym_not_found(struct kmap *kmap)
945 {
946 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
947 	       !kmap->ref_reloc_sym->unrelocated_addr;
948 }
949 
950 /**
951  * ref_reloc - kernel relocation offset.
952  * @kmap: kernel maps and relocation reference symbol
953  *
954  * This function returns the offset of kernel addresses as determined by using
955  * the relocation reference symbol i.e. if the kernel has not been relocated
956  * then the return value is zero.
957  */
958 static u64 ref_reloc(struct kmap *kmap)
959 {
960 	if (kmap && kmap->ref_reloc_sym &&
961 	    kmap->ref_reloc_sym->unrelocated_addr)
962 		return kmap->ref_reloc_sym->addr -
963 		       kmap->ref_reloc_sym->unrelocated_addr;
964 	return 0;
965 }
966 
967 void __weak arch__sym_update(struct symbol *s __maybe_unused,
968 		GElf_Sym *sym __maybe_unused) { }
969 
970 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
971 				      GElf_Sym *sym, GElf_Shdr *shdr,
972 				      struct maps *kmaps, struct kmap *kmap,
973 				      struct dso **curr_dsop, struct map **curr_mapp,
974 				      const char *section_name,
975 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
976 {
977 	struct dso *curr_dso = *curr_dsop;
978 	struct map *curr_map;
979 	char dso_name[PATH_MAX];
980 
981 	/* Adjust symbol to map to file offset */
982 	if (adjust_kernel_syms)
983 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
984 
985 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
986 		return 0;
987 
988 	if (strcmp(section_name, ".text") == 0) {
989 		/*
990 		 * The initial kernel mapping is based on
991 		 * kallsyms and identity maps.  Overwrite it to
992 		 * map to the kernel dso.
993 		 */
994 		if (*remap_kernel && dso->kernel && !kmodule) {
995 			*remap_kernel = false;
996 			map->start = shdr->sh_addr + ref_reloc(kmap);
997 			map->end = map->start + shdr->sh_size;
998 			map->pgoff = shdr->sh_offset;
999 			map->map_ip = map__map_ip;
1000 			map->unmap_ip = map__unmap_ip;
1001 			/* Ensure maps are correctly ordered */
1002 			if (kmaps) {
1003 				map__get(map);
1004 				maps__remove(kmaps, map);
1005 				maps__insert(kmaps, map);
1006 				map__put(map);
1007 			}
1008 		}
1009 
1010 		/*
1011 		 * The initial module mapping is based on
1012 		 * /proc/modules mapped to offset zero.
1013 		 * Overwrite it to map to the module dso.
1014 		 */
1015 		if (*remap_kernel && kmodule) {
1016 			*remap_kernel = false;
1017 			map->pgoff = shdr->sh_offset;
1018 		}
1019 
1020 		*curr_mapp = map;
1021 		*curr_dsop = dso;
1022 		return 0;
1023 	}
1024 
1025 	if (!kmap)
1026 		return 0;
1027 
1028 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1029 
1030 	curr_map = maps__find_by_name(kmaps, dso_name);
1031 	if (curr_map == NULL) {
1032 		u64 start = sym->st_value;
1033 
1034 		if (kmodule)
1035 			start += map->start + shdr->sh_offset;
1036 
1037 		curr_dso = dso__new(dso_name);
1038 		if (curr_dso == NULL)
1039 			return -1;
1040 		curr_dso->kernel = dso->kernel;
1041 		curr_dso->long_name = dso->long_name;
1042 		curr_dso->long_name_len = dso->long_name_len;
1043 		curr_map = map__new2(start, curr_dso);
1044 		dso__put(curr_dso);
1045 		if (curr_map == NULL)
1046 			return -1;
1047 
1048 		if (curr_dso->kernel)
1049 			map__kmap(curr_map)->kmaps = kmaps;
1050 
1051 		if (adjust_kernel_syms) {
1052 			curr_map->start  = shdr->sh_addr + ref_reloc(kmap);
1053 			curr_map->end	 = curr_map->start + shdr->sh_size;
1054 			curr_map->pgoff	 = shdr->sh_offset;
1055 		} else {
1056 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
1057 		}
1058 		curr_dso->symtab_type = dso->symtab_type;
1059 		maps__insert(kmaps, curr_map);
1060 		/*
1061 		 * Add it before we drop the reference to curr_map, i.e. while
1062 		 * we still are sure to have a reference to this DSO via
1063 		 * *curr_map->dso.
1064 		 */
1065 		dsos__add(&kmaps->machine->dsos, curr_dso);
1066 		/* kmaps already got it */
1067 		map__put(curr_map);
1068 		dso__set_loaded(curr_dso);
1069 		*curr_mapp = curr_map;
1070 		*curr_dsop = curr_dso;
1071 	} else
1072 		*curr_dsop = curr_map->dso;
1073 
1074 	return 0;
1075 }
1076 
1077 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1078 		  struct symsrc *runtime_ss, int kmodule)
1079 {
1080 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1081 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1082 	struct map *curr_map = map;
1083 	struct dso *curr_dso = dso;
1084 	Elf_Data *symstrs, *secstrs;
1085 	uint32_t nr_syms;
1086 	int err = -1;
1087 	uint32_t idx;
1088 	GElf_Ehdr ehdr;
1089 	GElf_Shdr shdr;
1090 	GElf_Shdr tshdr;
1091 	Elf_Data *syms, *opddata = NULL;
1092 	GElf_Sym sym;
1093 	Elf_Scn *sec, *sec_strndx;
1094 	Elf *elf;
1095 	int nr = 0;
1096 	bool remap_kernel = false, adjust_kernel_syms = false;
1097 
1098 	if (kmap && !kmaps)
1099 		return -1;
1100 
1101 	dso->symtab_type = syms_ss->type;
1102 	dso->is_64_bit = syms_ss->is_64_bit;
1103 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
1104 
1105 	/*
1106 	 * Modules may already have symbols from kallsyms, but those symbols
1107 	 * have the wrong values for the dso maps, so remove them.
1108 	 */
1109 	if (kmodule && syms_ss->symtab)
1110 		symbols__delete(&dso->symbols);
1111 
1112 	if (!syms_ss->symtab) {
1113 		/*
1114 		 * If the vmlinux is stripped, fail so we will fall back
1115 		 * to using kallsyms. The vmlinux runtime symbols aren't
1116 		 * of much use.
1117 		 */
1118 		if (dso->kernel)
1119 			goto out_elf_end;
1120 
1121 		syms_ss->symtab  = syms_ss->dynsym;
1122 		syms_ss->symshdr = syms_ss->dynshdr;
1123 	}
1124 
1125 	elf = syms_ss->elf;
1126 	ehdr = syms_ss->ehdr;
1127 	sec = syms_ss->symtab;
1128 	shdr = syms_ss->symshdr;
1129 
1130 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1131 				".text", NULL))
1132 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1133 
1134 	if (runtime_ss->opdsec)
1135 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1136 
1137 	syms = elf_getdata(sec, NULL);
1138 	if (syms == NULL)
1139 		goto out_elf_end;
1140 
1141 	sec = elf_getscn(elf, shdr.sh_link);
1142 	if (sec == NULL)
1143 		goto out_elf_end;
1144 
1145 	symstrs = elf_getdata(sec, NULL);
1146 	if (symstrs == NULL)
1147 		goto out_elf_end;
1148 
1149 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1150 	if (sec_strndx == NULL)
1151 		goto out_elf_end;
1152 
1153 	secstrs = elf_getdata(sec_strndx, NULL);
1154 	if (secstrs == NULL)
1155 		goto out_elf_end;
1156 
1157 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1158 
1159 	memset(&sym, 0, sizeof(sym));
1160 
1161 	/*
1162 	 * The kernel relocation symbol is needed in advance in order to adjust
1163 	 * kernel maps correctly.
1164 	 */
1165 	if (ref_reloc_sym_not_found(kmap)) {
1166 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1167 			const char *elf_name = elf_sym__name(&sym, symstrs);
1168 
1169 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1170 				continue;
1171 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1172 			map->reloc = kmap->ref_reloc_sym->addr -
1173 				     kmap->ref_reloc_sym->unrelocated_addr;
1174 			break;
1175 		}
1176 	}
1177 
1178 	/*
1179 	 * Handle any relocation of vdso necessary because older kernels
1180 	 * attempted to prelink vdso to its virtual address.
1181 	 */
1182 	if (dso__is_vdso(dso))
1183 		map->reloc = map->start - dso->text_offset;
1184 
1185 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1186 	/*
1187 	 * Initial kernel and module mappings do not map to the dso.
1188 	 * Flag the fixups.
1189 	 */
1190 	if (dso->kernel) {
1191 		remap_kernel = true;
1192 		adjust_kernel_syms = dso->adjust_symbols;
1193 	}
1194 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1195 		struct symbol *f;
1196 		const char *elf_name = elf_sym__name(&sym, symstrs);
1197 		char *demangled = NULL;
1198 		int is_label = elf_sym__is_label(&sym);
1199 		const char *section_name;
1200 		bool used_opd = false;
1201 
1202 		if (!is_label && !elf_sym__filter(&sym))
1203 			continue;
1204 
1205 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1206 		 * don't identify functions, so will confuse the profile
1207 		 * output: */
1208 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1209 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1210 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1211 				continue;
1212 		}
1213 
1214 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1215 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1216 			u64 *opd = opddata->d_buf + offset;
1217 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1218 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1219 					sym.st_value);
1220 			used_opd = true;
1221 		}
1222 		/*
1223 		 * When loading symbols in a data mapping, ABS symbols (which
1224 		 * has a value of SHN_ABS in its st_shndx) failed at
1225 		 * elf_getscn().  And it marks the loading as a failure so
1226 		 * already loaded symbols cannot be fixed up.
1227 		 *
1228 		 * I'm not sure what should be done. Just ignore them for now.
1229 		 * - Namhyung Kim
1230 		 */
1231 		if (sym.st_shndx == SHN_ABS)
1232 			continue;
1233 
1234 		sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1235 		if (!sec)
1236 			goto out_elf_end;
1237 
1238 		gelf_getshdr(sec, &shdr);
1239 
1240 		/*
1241 		 * We have to fallback to runtime when syms' section header has
1242 		 * NOBITS set. NOBITS results in file offset (sh_offset) not
1243 		 * being incremented. So sh_offset used below has different
1244 		 * values for syms (invalid) and runtime (valid).
1245 		 */
1246 		if (shdr.sh_type == SHT_NOBITS) {
1247 			sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1248 			if (!sec)
1249 				goto out_elf_end;
1250 
1251 			gelf_getshdr(sec, &shdr);
1252 		}
1253 
1254 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1255 			continue;
1256 
1257 		section_name = elf_sec__name(&shdr, secstrs);
1258 
1259 		/* On ARM, symbols for thumb functions have 1 added to
1260 		 * the symbol address as a flag - remove it */
1261 		if ((ehdr.e_machine == EM_ARM) &&
1262 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1263 		    (sym.st_value & 1))
1264 			--sym.st_value;
1265 
1266 		if (dso->kernel) {
1267 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1268 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1269 				goto out_elf_end;
1270 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1271 			   (!used_opd && syms_ss->adjust_symbols)) {
1272 			pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1273 				  "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n", __func__,
1274 				  (u64)sym.st_value, (u64)shdr.sh_addr,
1275 				  (u64)shdr.sh_offset);
1276 			sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1277 		}
1278 
1279 		demangled = demangle_sym(dso, kmodule, elf_name);
1280 		if (demangled != NULL)
1281 			elf_name = demangled;
1282 
1283 		f = symbol__new(sym.st_value, sym.st_size,
1284 				GELF_ST_BIND(sym.st_info),
1285 				GELF_ST_TYPE(sym.st_info), elf_name);
1286 		free(demangled);
1287 		if (!f)
1288 			goto out_elf_end;
1289 
1290 		arch__sym_update(f, &sym);
1291 
1292 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1293 		nr++;
1294 	}
1295 
1296 	/*
1297 	 * For misannotated, zeroed, ASM function sizes.
1298 	 */
1299 	if (nr > 0) {
1300 		symbols__fixup_end(&dso->symbols);
1301 		symbols__fixup_duplicate(&dso->symbols);
1302 		if (kmap) {
1303 			/*
1304 			 * We need to fixup this here too because we create new
1305 			 * maps here, for things like vsyscall sections.
1306 			 */
1307 			maps__fixup_end(kmaps);
1308 		}
1309 	}
1310 	err = nr;
1311 out_elf_end:
1312 	return err;
1313 }
1314 
1315 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1316 {
1317 	GElf_Phdr phdr;
1318 	size_t i, phdrnum;
1319 	int err;
1320 	u64 sz;
1321 
1322 	if (elf_getphdrnum(elf, &phdrnum))
1323 		return -1;
1324 
1325 	for (i = 0; i < phdrnum; i++) {
1326 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1327 			return -1;
1328 		if (phdr.p_type != PT_LOAD)
1329 			continue;
1330 		if (exe) {
1331 			if (!(phdr.p_flags & PF_X))
1332 				continue;
1333 		} else {
1334 			if (!(phdr.p_flags & PF_R))
1335 				continue;
1336 		}
1337 		sz = min(phdr.p_memsz, phdr.p_filesz);
1338 		if (!sz)
1339 			continue;
1340 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1341 		if (err)
1342 			return err;
1343 	}
1344 	return 0;
1345 }
1346 
1347 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1348 		    bool *is_64_bit)
1349 {
1350 	int err;
1351 	Elf *elf;
1352 
1353 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1354 	if (elf == NULL)
1355 		return -1;
1356 
1357 	if (is_64_bit)
1358 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1359 
1360 	err = elf_read_maps(elf, exe, mapfn, data);
1361 
1362 	elf_end(elf);
1363 	return err;
1364 }
1365 
1366 enum dso_type dso__type_fd(int fd)
1367 {
1368 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1369 	GElf_Ehdr ehdr;
1370 	Elf_Kind ek;
1371 	Elf *elf;
1372 
1373 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1374 	if (elf == NULL)
1375 		goto out;
1376 
1377 	ek = elf_kind(elf);
1378 	if (ek != ELF_K_ELF)
1379 		goto out_end;
1380 
1381 	if (gelf_getclass(elf) == ELFCLASS64) {
1382 		dso_type = DSO__TYPE_64BIT;
1383 		goto out_end;
1384 	}
1385 
1386 	if (gelf_getehdr(elf, &ehdr) == NULL)
1387 		goto out_end;
1388 
1389 	if (ehdr.e_machine == EM_X86_64)
1390 		dso_type = DSO__TYPE_X32BIT;
1391 	else
1392 		dso_type = DSO__TYPE_32BIT;
1393 out_end:
1394 	elf_end(elf);
1395 out:
1396 	return dso_type;
1397 }
1398 
1399 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1400 {
1401 	ssize_t r;
1402 	size_t n;
1403 	int err = -1;
1404 	char *buf = malloc(page_size);
1405 
1406 	if (buf == NULL)
1407 		return -1;
1408 
1409 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1410 		goto out;
1411 
1412 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1413 		goto out;
1414 
1415 	while (len) {
1416 		n = page_size;
1417 		if (len < n)
1418 			n = len;
1419 		/* Use read because mmap won't work on proc files */
1420 		r = read(from, buf, n);
1421 		if (r < 0)
1422 			goto out;
1423 		if (!r)
1424 			break;
1425 		n = r;
1426 		r = write(to, buf, n);
1427 		if (r < 0)
1428 			goto out;
1429 		if ((size_t)r != n)
1430 			goto out;
1431 		len -= n;
1432 	}
1433 
1434 	err = 0;
1435 out:
1436 	free(buf);
1437 	return err;
1438 }
1439 
1440 struct kcore {
1441 	int fd;
1442 	int elfclass;
1443 	Elf *elf;
1444 	GElf_Ehdr ehdr;
1445 };
1446 
1447 static int kcore__open(struct kcore *kcore, const char *filename)
1448 {
1449 	GElf_Ehdr *ehdr;
1450 
1451 	kcore->fd = open(filename, O_RDONLY);
1452 	if (kcore->fd == -1)
1453 		return -1;
1454 
1455 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1456 	if (!kcore->elf)
1457 		goto out_close;
1458 
1459 	kcore->elfclass = gelf_getclass(kcore->elf);
1460 	if (kcore->elfclass == ELFCLASSNONE)
1461 		goto out_end;
1462 
1463 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1464 	if (!ehdr)
1465 		goto out_end;
1466 
1467 	return 0;
1468 
1469 out_end:
1470 	elf_end(kcore->elf);
1471 out_close:
1472 	close(kcore->fd);
1473 	return -1;
1474 }
1475 
1476 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1477 		       bool temp)
1478 {
1479 	kcore->elfclass = elfclass;
1480 
1481 	if (temp)
1482 		kcore->fd = mkstemp(filename);
1483 	else
1484 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1485 	if (kcore->fd == -1)
1486 		return -1;
1487 
1488 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1489 	if (!kcore->elf)
1490 		goto out_close;
1491 
1492 	if (!gelf_newehdr(kcore->elf, elfclass))
1493 		goto out_end;
1494 
1495 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1496 
1497 	return 0;
1498 
1499 out_end:
1500 	elf_end(kcore->elf);
1501 out_close:
1502 	close(kcore->fd);
1503 	unlink(filename);
1504 	return -1;
1505 }
1506 
1507 static void kcore__close(struct kcore *kcore)
1508 {
1509 	elf_end(kcore->elf);
1510 	close(kcore->fd);
1511 }
1512 
1513 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1514 {
1515 	GElf_Ehdr *ehdr = &to->ehdr;
1516 	GElf_Ehdr *kehdr = &from->ehdr;
1517 
1518 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1519 	ehdr->e_type      = kehdr->e_type;
1520 	ehdr->e_machine   = kehdr->e_machine;
1521 	ehdr->e_version   = kehdr->e_version;
1522 	ehdr->e_entry     = 0;
1523 	ehdr->e_shoff     = 0;
1524 	ehdr->e_flags     = kehdr->e_flags;
1525 	ehdr->e_phnum     = count;
1526 	ehdr->e_shentsize = 0;
1527 	ehdr->e_shnum     = 0;
1528 	ehdr->e_shstrndx  = 0;
1529 
1530 	if (from->elfclass == ELFCLASS32) {
1531 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1532 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1533 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1534 	} else {
1535 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1536 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1537 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1538 	}
1539 
1540 	if (!gelf_update_ehdr(to->elf, ehdr))
1541 		return -1;
1542 
1543 	if (!gelf_newphdr(to->elf, count))
1544 		return -1;
1545 
1546 	return 0;
1547 }
1548 
1549 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1550 			   u64 addr, u64 len)
1551 {
1552 	GElf_Phdr phdr = {
1553 		.p_type		= PT_LOAD,
1554 		.p_flags	= PF_R | PF_W | PF_X,
1555 		.p_offset	= offset,
1556 		.p_vaddr	= addr,
1557 		.p_paddr	= 0,
1558 		.p_filesz	= len,
1559 		.p_memsz	= len,
1560 		.p_align	= page_size,
1561 	};
1562 
1563 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
1564 		return -1;
1565 
1566 	return 0;
1567 }
1568 
1569 static off_t kcore__write(struct kcore *kcore)
1570 {
1571 	return elf_update(kcore->elf, ELF_C_WRITE);
1572 }
1573 
1574 struct phdr_data {
1575 	off_t offset;
1576 	off_t rel;
1577 	u64 addr;
1578 	u64 len;
1579 	struct list_head node;
1580 	struct phdr_data *remaps;
1581 };
1582 
1583 struct sym_data {
1584 	u64 addr;
1585 	struct list_head node;
1586 };
1587 
1588 struct kcore_copy_info {
1589 	u64 stext;
1590 	u64 etext;
1591 	u64 first_symbol;
1592 	u64 last_symbol;
1593 	u64 first_module;
1594 	u64 first_module_symbol;
1595 	u64 last_module_symbol;
1596 	size_t phnum;
1597 	struct list_head phdrs;
1598 	struct list_head syms;
1599 };
1600 
1601 #define kcore_copy__for_each_phdr(k, p) \
1602 	list_for_each_entry((p), &(k)->phdrs, node)
1603 
1604 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
1605 {
1606 	struct phdr_data *p = zalloc(sizeof(*p));
1607 
1608 	if (p) {
1609 		p->addr   = addr;
1610 		p->len    = len;
1611 		p->offset = offset;
1612 	}
1613 
1614 	return p;
1615 }
1616 
1617 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
1618 						 u64 addr, u64 len,
1619 						 off_t offset)
1620 {
1621 	struct phdr_data *p = phdr_data__new(addr, len, offset);
1622 
1623 	if (p)
1624 		list_add_tail(&p->node, &kci->phdrs);
1625 
1626 	return p;
1627 }
1628 
1629 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
1630 {
1631 	struct phdr_data *p, *tmp;
1632 
1633 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
1634 		list_del_init(&p->node);
1635 		free(p);
1636 	}
1637 }
1638 
1639 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
1640 					    u64 addr)
1641 {
1642 	struct sym_data *s = zalloc(sizeof(*s));
1643 
1644 	if (s) {
1645 		s->addr = addr;
1646 		list_add_tail(&s->node, &kci->syms);
1647 	}
1648 
1649 	return s;
1650 }
1651 
1652 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
1653 {
1654 	struct sym_data *s, *tmp;
1655 
1656 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
1657 		list_del_init(&s->node);
1658 		free(s);
1659 	}
1660 }
1661 
1662 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
1663 					u64 start)
1664 {
1665 	struct kcore_copy_info *kci = arg;
1666 
1667 	if (!kallsyms__is_function(type))
1668 		return 0;
1669 
1670 	if (strchr(name, '[')) {
1671 		if (!kci->first_module_symbol || start < kci->first_module_symbol)
1672 			kci->first_module_symbol = start;
1673 		if (start > kci->last_module_symbol)
1674 			kci->last_module_symbol = start;
1675 		return 0;
1676 	}
1677 
1678 	if (!kci->first_symbol || start < kci->first_symbol)
1679 		kci->first_symbol = start;
1680 
1681 	if (!kci->last_symbol || start > kci->last_symbol)
1682 		kci->last_symbol = start;
1683 
1684 	if (!strcmp(name, "_stext")) {
1685 		kci->stext = start;
1686 		return 0;
1687 	}
1688 
1689 	if (!strcmp(name, "_etext")) {
1690 		kci->etext = start;
1691 		return 0;
1692 	}
1693 
1694 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
1695 		return -1;
1696 
1697 	return 0;
1698 }
1699 
1700 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
1701 				      const char *dir)
1702 {
1703 	char kallsyms_filename[PATH_MAX];
1704 
1705 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
1706 
1707 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
1708 		return -1;
1709 
1710 	if (kallsyms__parse(kallsyms_filename, kci,
1711 			    kcore_copy__process_kallsyms) < 0)
1712 		return -1;
1713 
1714 	return 0;
1715 }
1716 
1717 static int kcore_copy__process_modules(void *arg,
1718 				       const char *name __maybe_unused,
1719 				       u64 start, u64 size __maybe_unused)
1720 {
1721 	struct kcore_copy_info *kci = arg;
1722 
1723 	if (!kci->first_module || start < kci->first_module)
1724 		kci->first_module = start;
1725 
1726 	return 0;
1727 }
1728 
1729 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
1730 				     const char *dir)
1731 {
1732 	char modules_filename[PATH_MAX];
1733 
1734 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
1735 
1736 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
1737 		return -1;
1738 
1739 	if (modules__parse(modules_filename, kci,
1740 			   kcore_copy__process_modules) < 0)
1741 		return -1;
1742 
1743 	return 0;
1744 }
1745 
1746 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
1747 			   u64 pgoff, u64 s, u64 e)
1748 {
1749 	u64 len, offset;
1750 
1751 	if (s < start || s >= end)
1752 		return 0;
1753 
1754 	offset = (s - start) + pgoff;
1755 	len = e < end ? e - s : end - s;
1756 
1757 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
1758 }
1759 
1760 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
1761 {
1762 	struct kcore_copy_info *kci = data;
1763 	u64 end = start + len;
1764 	struct sym_data *sdat;
1765 
1766 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
1767 		return -1;
1768 
1769 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
1770 			    kci->last_module_symbol))
1771 		return -1;
1772 
1773 	list_for_each_entry(sdat, &kci->syms, node) {
1774 		u64 s = round_down(sdat->addr, page_size);
1775 
1776 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
1777 			return -1;
1778 	}
1779 
1780 	return 0;
1781 }
1782 
1783 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
1784 {
1785 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
1786 		return -1;
1787 
1788 	return 0;
1789 }
1790 
1791 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
1792 {
1793 	struct phdr_data *p, *k = NULL;
1794 	u64 kend;
1795 
1796 	if (!kci->stext)
1797 		return;
1798 
1799 	/* Find phdr that corresponds to the kernel map (contains stext) */
1800 	kcore_copy__for_each_phdr(kci, p) {
1801 		u64 pend = p->addr + p->len - 1;
1802 
1803 		if (p->addr <= kci->stext && pend >= kci->stext) {
1804 			k = p;
1805 			break;
1806 		}
1807 	}
1808 
1809 	if (!k)
1810 		return;
1811 
1812 	kend = k->offset + k->len;
1813 
1814 	/* Find phdrs that remap the kernel */
1815 	kcore_copy__for_each_phdr(kci, p) {
1816 		u64 pend = p->offset + p->len;
1817 
1818 		if (p == k)
1819 			continue;
1820 
1821 		if (p->offset >= k->offset && pend <= kend)
1822 			p->remaps = k;
1823 	}
1824 }
1825 
1826 static void kcore_copy__layout(struct kcore_copy_info *kci)
1827 {
1828 	struct phdr_data *p;
1829 	off_t rel = 0;
1830 
1831 	kcore_copy__find_remaps(kci);
1832 
1833 	kcore_copy__for_each_phdr(kci, p) {
1834 		if (!p->remaps) {
1835 			p->rel = rel;
1836 			rel += p->len;
1837 		}
1838 		kci->phnum += 1;
1839 	}
1840 
1841 	kcore_copy__for_each_phdr(kci, p) {
1842 		struct phdr_data *k = p->remaps;
1843 
1844 		if (k)
1845 			p->rel = p->offset - k->offset + k->rel;
1846 	}
1847 }
1848 
1849 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
1850 				 Elf *elf)
1851 {
1852 	if (kcore_copy__parse_kallsyms(kci, dir))
1853 		return -1;
1854 
1855 	if (kcore_copy__parse_modules(kci, dir))
1856 		return -1;
1857 
1858 	if (kci->stext)
1859 		kci->stext = round_down(kci->stext, page_size);
1860 	else
1861 		kci->stext = round_down(kci->first_symbol, page_size);
1862 
1863 	if (kci->etext) {
1864 		kci->etext = round_up(kci->etext, page_size);
1865 	} else if (kci->last_symbol) {
1866 		kci->etext = round_up(kci->last_symbol, page_size);
1867 		kci->etext += page_size;
1868 	}
1869 
1870 	if (kci->first_module_symbol &&
1871 	    (!kci->first_module || kci->first_module_symbol < kci->first_module))
1872 		kci->first_module = kci->first_module_symbol;
1873 
1874 	kci->first_module = round_down(kci->first_module, page_size);
1875 
1876 	if (kci->last_module_symbol) {
1877 		kci->last_module_symbol = round_up(kci->last_module_symbol,
1878 						   page_size);
1879 		kci->last_module_symbol += page_size;
1880 	}
1881 
1882 	if (!kci->stext || !kci->etext)
1883 		return -1;
1884 
1885 	if (kci->first_module && !kci->last_module_symbol)
1886 		return -1;
1887 
1888 	if (kcore_copy__read_maps(kci, elf))
1889 		return -1;
1890 
1891 	kcore_copy__layout(kci);
1892 
1893 	return 0;
1894 }
1895 
1896 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
1897 				 const char *name)
1898 {
1899 	char from_filename[PATH_MAX];
1900 	char to_filename[PATH_MAX];
1901 
1902 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1903 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1904 
1905 	return copyfile_mode(from_filename, to_filename, 0400);
1906 }
1907 
1908 static int kcore_copy__unlink(const char *dir, const char *name)
1909 {
1910 	char filename[PATH_MAX];
1911 
1912 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
1913 
1914 	return unlink(filename);
1915 }
1916 
1917 static int kcore_copy__compare_fds(int from, int to)
1918 {
1919 	char *buf_from;
1920 	char *buf_to;
1921 	ssize_t ret;
1922 	size_t len;
1923 	int err = -1;
1924 
1925 	buf_from = malloc(page_size);
1926 	buf_to = malloc(page_size);
1927 	if (!buf_from || !buf_to)
1928 		goto out;
1929 
1930 	while (1) {
1931 		/* Use read because mmap won't work on proc files */
1932 		ret = read(from, buf_from, page_size);
1933 		if (ret < 0)
1934 			goto out;
1935 
1936 		if (!ret)
1937 			break;
1938 
1939 		len = ret;
1940 
1941 		if (readn(to, buf_to, len) != (int)len)
1942 			goto out;
1943 
1944 		if (memcmp(buf_from, buf_to, len))
1945 			goto out;
1946 	}
1947 
1948 	err = 0;
1949 out:
1950 	free(buf_to);
1951 	free(buf_from);
1952 	return err;
1953 }
1954 
1955 static int kcore_copy__compare_files(const char *from_filename,
1956 				     const char *to_filename)
1957 {
1958 	int from, to, err = -1;
1959 
1960 	from = open(from_filename, O_RDONLY);
1961 	if (from < 0)
1962 		return -1;
1963 
1964 	to = open(to_filename, O_RDONLY);
1965 	if (to < 0)
1966 		goto out_close_from;
1967 
1968 	err = kcore_copy__compare_fds(from, to);
1969 
1970 	close(to);
1971 out_close_from:
1972 	close(from);
1973 	return err;
1974 }
1975 
1976 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
1977 				    const char *name)
1978 {
1979 	char from_filename[PATH_MAX];
1980 	char to_filename[PATH_MAX];
1981 
1982 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
1983 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
1984 
1985 	return kcore_copy__compare_files(from_filename, to_filename);
1986 }
1987 
1988 /**
1989  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
1990  * @from_dir: from directory
1991  * @to_dir: to directory
1992  *
1993  * This function copies kallsyms, modules and kcore files from one directory to
1994  * another.  kallsyms and modules are copied entirely.  Only code segments are
1995  * copied from kcore.  It is assumed that two segments suffice: one for the
1996  * kernel proper and one for all the modules.  The code segments are determined
1997  * from kallsyms and modules files.  The kernel map starts at _stext or the
1998  * lowest function symbol, and ends at _etext or the highest function symbol.
1999  * The module map starts at the lowest module address and ends at the highest
2000  * module symbol.  Start addresses are rounded down to the nearest page.  End
2001  * addresses are rounded up to the nearest page.  An extra page is added to the
2002  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2003  * symbol too.  Because it contains only code sections, the resulting kcore is
2004  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2005  * is not the same for the kernel map and the modules map.  That happens because
2006  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2007  * kallsyms and modules files are compared with their copies to check that
2008  * modules have not been loaded or unloaded while the copies were taking place.
2009  *
2010  * Return: %0 on success, %-1 on failure.
2011  */
2012 int kcore_copy(const char *from_dir, const char *to_dir)
2013 {
2014 	struct kcore kcore;
2015 	struct kcore extract;
2016 	int idx = 0, err = -1;
2017 	off_t offset, sz;
2018 	struct kcore_copy_info kci = { .stext = 0, };
2019 	char kcore_filename[PATH_MAX];
2020 	char extract_filename[PATH_MAX];
2021 	struct phdr_data *p;
2022 
2023 	INIT_LIST_HEAD(&kci.phdrs);
2024 	INIT_LIST_HEAD(&kci.syms);
2025 
2026 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2027 		return -1;
2028 
2029 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2030 		goto out_unlink_kallsyms;
2031 
2032 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2033 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2034 
2035 	if (kcore__open(&kcore, kcore_filename))
2036 		goto out_unlink_modules;
2037 
2038 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2039 		goto out_kcore_close;
2040 
2041 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2042 		goto out_kcore_close;
2043 
2044 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2045 		goto out_extract_close;
2046 
2047 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2048 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2049 	offset = round_up(offset, page_size);
2050 
2051 	kcore_copy__for_each_phdr(&kci, p) {
2052 		off_t offs = p->rel + offset;
2053 
2054 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2055 			goto out_extract_close;
2056 	}
2057 
2058 	sz = kcore__write(&extract);
2059 	if (sz < 0 || sz > offset)
2060 		goto out_extract_close;
2061 
2062 	kcore_copy__for_each_phdr(&kci, p) {
2063 		off_t offs = p->rel + offset;
2064 
2065 		if (p->remaps)
2066 			continue;
2067 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2068 			goto out_extract_close;
2069 	}
2070 
2071 	if (kcore_copy__compare_file(from_dir, to_dir, "modules"))
2072 		goto out_extract_close;
2073 
2074 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2075 		goto out_extract_close;
2076 
2077 	err = 0;
2078 
2079 out_extract_close:
2080 	kcore__close(&extract);
2081 	if (err)
2082 		unlink(extract_filename);
2083 out_kcore_close:
2084 	kcore__close(&kcore);
2085 out_unlink_modules:
2086 	if (err)
2087 		kcore_copy__unlink(to_dir, "modules");
2088 out_unlink_kallsyms:
2089 	if (err)
2090 		kcore_copy__unlink(to_dir, "kallsyms");
2091 
2092 	kcore_copy__free_phdrs(&kci);
2093 	kcore_copy__free_syms(&kci);
2094 
2095 	return err;
2096 }
2097 
2098 int kcore_extract__create(struct kcore_extract *kce)
2099 {
2100 	struct kcore kcore;
2101 	struct kcore extract;
2102 	size_t count = 1;
2103 	int idx = 0, err = -1;
2104 	off_t offset = page_size, sz;
2105 
2106 	if (kcore__open(&kcore, kce->kcore_filename))
2107 		return -1;
2108 
2109 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2110 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2111 		goto out_kcore_close;
2112 
2113 	if (kcore__copy_hdr(&kcore, &extract, count))
2114 		goto out_extract_close;
2115 
2116 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2117 		goto out_extract_close;
2118 
2119 	sz = kcore__write(&extract);
2120 	if (sz < 0 || sz > offset)
2121 		goto out_extract_close;
2122 
2123 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2124 		goto out_extract_close;
2125 
2126 	err = 0;
2127 
2128 out_extract_close:
2129 	kcore__close(&extract);
2130 	if (err)
2131 		unlink(kce->extract_filename);
2132 out_kcore_close:
2133 	kcore__close(&kcore);
2134 
2135 	return err;
2136 }
2137 
2138 void kcore_extract__delete(struct kcore_extract *kce)
2139 {
2140 	unlink(kce->extract_filename);
2141 }
2142 
2143 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2144 
2145 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2146 {
2147 	if (!base_off)
2148 		return;
2149 
2150 	if (tmp->bit32)
2151 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2152 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2153 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2154 	else
2155 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2156 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2157 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2158 }
2159 
2160 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2161 			      GElf_Addr base_off)
2162 {
2163 	if (!base_off)
2164 		return;
2165 
2166 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2167 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2168 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2169 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2170 }
2171 
2172 /**
2173  * populate_sdt_note : Parse raw data and identify SDT note
2174  * @elf: elf of the opened file
2175  * @data: raw data of a section with description offset applied
2176  * @len: note description size
2177  * @type: type of the note
2178  * @sdt_notes: List to add the SDT note
2179  *
2180  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2181  * if its an SDT note, it appends to @sdt_notes list.
2182  */
2183 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2184 			     struct list_head *sdt_notes)
2185 {
2186 	const char *provider, *name, *args;
2187 	struct sdt_note *tmp = NULL;
2188 	GElf_Ehdr ehdr;
2189 	GElf_Shdr shdr;
2190 	int ret = -EINVAL;
2191 
2192 	union {
2193 		Elf64_Addr a64[NR_ADDR];
2194 		Elf32_Addr a32[NR_ADDR];
2195 	} buf;
2196 
2197 	Elf_Data dst = {
2198 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2199 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2200 		.d_off = 0, .d_align = 0
2201 	};
2202 	Elf_Data src = {
2203 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2204 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2205 		.d_align = 0
2206 	};
2207 
2208 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2209 	if (!tmp) {
2210 		ret = -ENOMEM;
2211 		goto out_err;
2212 	}
2213 
2214 	INIT_LIST_HEAD(&tmp->note_list);
2215 
2216 	if (len < dst.d_size + 3)
2217 		goto out_free_note;
2218 
2219 	/* Translation from file representation to memory representation */
2220 	if (gelf_xlatetom(*elf, &dst, &src,
2221 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2222 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2223 		goto out_free_note;
2224 	}
2225 
2226 	/* Populate the fields of sdt_note */
2227 	provider = data + dst.d_size;
2228 
2229 	name = (const char *)memchr(provider, '\0', data + len - provider);
2230 	if (name++ == NULL)
2231 		goto out_free_note;
2232 
2233 	tmp->provider = strdup(provider);
2234 	if (!tmp->provider) {
2235 		ret = -ENOMEM;
2236 		goto out_free_note;
2237 	}
2238 	tmp->name = strdup(name);
2239 	if (!tmp->name) {
2240 		ret = -ENOMEM;
2241 		goto out_free_prov;
2242 	}
2243 
2244 	args = memchr(name, '\0', data + len - name);
2245 
2246 	/*
2247 	 * There is no argument if:
2248 	 * - We reached the end of the note;
2249 	 * - There is not enough room to hold a potential string;
2250 	 * - The argument string is empty or just contains ':'.
2251 	 */
2252 	if (args == NULL || data + len - args < 2 ||
2253 		args[1] == ':' || args[1] == '\0')
2254 		tmp->args = NULL;
2255 	else {
2256 		tmp->args = strdup(++args);
2257 		if (!tmp->args) {
2258 			ret = -ENOMEM;
2259 			goto out_free_name;
2260 		}
2261 	}
2262 
2263 	if (gelf_getclass(*elf) == ELFCLASS32) {
2264 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2265 		tmp->bit32 = true;
2266 	} else {
2267 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2268 		tmp->bit32 = false;
2269 	}
2270 
2271 	if (!gelf_getehdr(*elf, &ehdr)) {
2272 		pr_debug("%s : cannot get elf header.\n", __func__);
2273 		ret = -EBADF;
2274 		goto out_free_args;
2275 	}
2276 
2277 	/* Adjust the prelink effect :
2278 	 * Find out the .stapsdt.base section.
2279 	 * This scn will help us to handle prelinking (if present).
2280 	 * Compare the retrieved file offset of the base section with the
2281 	 * base address in the description of the SDT note. If its different,
2282 	 * then accordingly, adjust the note location.
2283 	 */
2284 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2285 		sdt_adjust_loc(tmp, shdr.sh_offset);
2286 
2287 	/* Adjust reference counter offset */
2288 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2289 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2290 
2291 	list_add_tail(&tmp->note_list, sdt_notes);
2292 	return 0;
2293 
2294 out_free_args:
2295 	zfree(&tmp->args);
2296 out_free_name:
2297 	zfree(&tmp->name);
2298 out_free_prov:
2299 	zfree(&tmp->provider);
2300 out_free_note:
2301 	free(tmp);
2302 out_err:
2303 	return ret;
2304 }
2305 
2306 /**
2307  * construct_sdt_notes_list : constructs a list of SDT notes
2308  * @elf : elf to look into
2309  * @sdt_notes : empty list_head
2310  *
2311  * Scans the sections in 'elf' for the section
2312  * .note.stapsdt. It, then calls populate_sdt_note to find
2313  * out the SDT events and populates the 'sdt_notes'.
2314  */
2315 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2316 {
2317 	GElf_Ehdr ehdr;
2318 	Elf_Scn *scn = NULL;
2319 	Elf_Data *data;
2320 	GElf_Shdr shdr;
2321 	size_t shstrndx, next;
2322 	GElf_Nhdr nhdr;
2323 	size_t name_off, desc_off, offset;
2324 	int ret = 0;
2325 
2326 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2327 		ret = -EBADF;
2328 		goto out_ret;
2329 	}
2330 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2331 		ret = -EBADF;
2332 		goto out_ret;
2333 	}
2334 
2335 	/* Look for the required section */
2336 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2337 	if (!scn) {
2338 		ret = -ENOENT;
2339 		goto out_ret;
2340 	}
2341 
2342 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2343 		ret = -ENOENT;
2344 		goto out_ret;
2345 	}
2346 
2347 	data = elf_getdata(scn, NULL);
2348 
2349 	/* Get the SDT notes */
2350 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2351 					      &desc_off)) > 0; offset = next) {
2352 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2353 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2354 			    sizeof(SDT_NOTE_NAME))) {
2355 			/* Check the type of the note */
2356 			if (nhdr.n_type != SDT_NOTE_TYPE)
2357 				goto out_ret;
2358 
2359 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2360 						nhdr.n_descsz, sdt_notes);
2361 			if (ret < 0)
2362 				goto out_ret;
2363 		}
2364 	}
2365 	if (list_empty(sdt_notes))
2366 		ret = -ENOENT;
2367 
2368 out_ret:
2369 	return ret;
2370 }
2371 
2372 /**
2373  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2374  * @head : empty list_head
2375  * @target : file to find SDT notes from
2376  *
2377  * This opens the file, initializes
2378  * the ELF and then calls construct_sdt_notes_list.
2379  */
2380 int get_sdt_note_list(struct list_head *head, const char *target)
2381 {
2382 	Elf *elf;
2383 	int fd, ret;
2384 
2385 	fd = open(target, O_RDONLY);
2386 	if (fd < 0)
2387 		return -EBADF;
2388 
2389 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2390 	if (!elf) {
2391 		ret = -EBADF;
2392 		goto out_close;
2393 	}
2394 	ret = construct_sdt_notes_list(elf, head);
2395 	elf_end(elf);
2396 out_close:
2397 	close(fd);
2398 	return ret;
2399 }
2400 
2401 /**
2402  * cleanup_sdt_note_list : free the sdt notes' list
2403  * @sdt_notes: sdt notes' list
2404  *
2405  * Free up the SDT notes in @sdt_notes.
2406  * Returns the number of SDT notes free'd.
2407  */
2408 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2409 {
2410 	struct sdt_note *tmp, *pos;
2411 	int nr_free = 0;
2412 
2413 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2414 		list_del_init(&pos->note_list);
2415 		zfree(&pos->name);
2416 		zfree(&pos->provider);
2417 		free(pos);
2418 		nr_free++;
2419 	}
2420 	return nr_free;
2421 }
2422 
2423 /**
2424  * sdt_notes__get_count: Counts the number of sdt events
2425  * @start: list_head to sdt_notes list
2426  *
2427  * Returns the number of SDT notes in a list
2428  */
2429 int sdt_notes__get_count(struct list_head *start)
2430 {
2431 	struct sdt_note *sdt_ptr;
2432 	int count = 0;
2433 
2434 	list_for_each_entry(sdt_ptr, start, note_list)
2435 		count++;
2436 	return count;
2437 }
2438 #endif
2439 
2440 void symbol__elf_init(void)
2441 {
2442 	elf_version(EV_CURRENT);
2443 }
2444