xref: /openbmc/linux/tools/perf/util/symbol-elf.c (revision 12109610)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9 
10 #include "dso.h"
11 #include "map.h"
12 #include "maps.h"
13 #include "symbol.h"
14 #include "symsrc.h"
15 #include "demangle-cxx.h"
16 #include "demangle-ocaml.h"
17 #include "demangle-java.h"
18 #include "demangle-rust.h"
19 #include "machine.h"
20 #include "vdso.h"
21 #include "debug.h"
22 #include "util/copyfile.h"
23 #include <linux/ctype.h>
24 #include <linux/kernel.h>
25 #include <linux/zalloc.h>
26 #include <symbol/kallsyms.h>
27 #include <internal/lib.h>
28 
29 #ifdef HAVE_LIBBFD_SUPPORT
30 #define PACKAGE 'perf'
31 #include <bfd.h>
32 #endif
33 
34 #ifndef EM_AARCH64
35 #define EM_AARCH64	183  /* ARM 64 bit */
36 #endif
37 
38 #ifndef ELF32_ST_VISIBILITY
39 #define ELF32_ST_VISIBILITY(o)	((o) & 0x03)
40 #endif
41 
42 /* For ELF64 the definitions are the same.  */
43 #ifndef ELF64_ST_VISIBILITY
44 #define ELF64_ST_VISIBILITY(o)	ELF32_ST_VISIBILITY (o)
45 #endif
46 
47 /* How to extract information held in the st_other field.  */
48 #ifndef GELF_ST_VISIBILITY
49 #define GELF_ST_VISIBILITY(val)	ELF64_ST_VISIBILITY (val)
50 #endif
51 
52 typedef Elf64_Nhdr GElf_Nhdr;
53 
54 
55 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
56 static int elf_getphdrnum(Elf *elf, size_t *dst)
57 {
58 	GElf_Ehdr gehdr;
59 	GElf_Ehdr *ehdr;
60 
61 	ehdr = gelf_getehdr(elf, &gehdr);
62 	if (!ehdr)
63 		return -1;
64 
65 	*dst = ehdr->e_phnum;
66 
67 	return 0;
68 }
69 #endif
70 
71 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
72 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
73 {
74 	pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
75 	return -1;
76 }
77 #endif
78 
79 #ifndef NT_GNU_BUILD_ID
80 #define NT_GNU_BUILD_ID 3
81 #endif
82 
83 /**
84  * elf_symtab__for_each_symbol - iterate thru all the symbols
85  *
86  * @syms: struct elf_symtab instance to iterate
87  * @idx: uint32_t idx
88  * @sym: GElf_Sym iterator
89  */
90 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
91 	for (idx = 0, gelf_getsym(syms, idx, &sym);\
92 	     idx < nr_syms; \
93 	     idx++, gelf_getsym(syms, idx, &sym))
94 
95 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
96 {
97 	return GELF_ST_TYPE(sym->st_info);
98 }
99 
100 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
101 {
102 	return GELF_ST_VISIBILITY(sym->st_other);
103 }
104 
105 #ifndef STT_GNU_IFUNC
106 #define STT_GNU_IFUNC 10
107 #endif
108 
109 static inline int elf_sym__is_function(const GElf_Sym *sym)
110 {
111 	return (elf_sym__type(sym) == STT_FUNC ||
112 		elf_sym__type(sym) == STT_GNU_IFUNC) &&
113 	       sym->st_name != 0 &&
114 	       sym->st_shndx != SHN_UNDEF;
115 }
116 
117 static inline bool elf_sym__is_object(const GElf_Sym *sym)
118 {
119 	return elf_sym__type(sym) == STT_OBJECT &&
120 		sym->st_name != 0 &&
121 		sym->st_shndx != SHN_UNDEF;
122 }
123 
124 static inline int elf_sym__is_label(const GElf_Sym *sym)
125 {
126 	return elf_sym__type(sym) == STT_NOTYPE &&
127 		sym->st_name != 0 &&
128 		sym->st_shndx != SHN_UNDEF &&
129 		sym->st_shndx != SHN_ABS &&
130 		elf_sym__visibility(sym) != STV_HIDDEN &&
131 		elf_sym__visibility(sym) != STV_INTERNAL;
132 }
133 
134 static bool elf_sym__filter(GElf_Sym *sym)
135 {
136 	return elf_sym__is_function(sym) || elf_sym__is_object(sym);
137 }
138 
139 static inline const char *elf_sym__name(const GElf_Sym *sym,
140 					const Elf_Data *symstrs)
141 {
142 	return symstrs->d_buf + sym->st_name;
143 }
144 
145 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
146 					const Elf_Data *secstrs)
147 {
148 	return secstrs->d_buf + shdr->sh_name;
149 }
150 
151 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
152 					const Elf_Data *secstrs)
153 {
154 	return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
155 }
156 
157 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
158 				    const Elf_Data *secstrs)
159 {
160 	return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
161 }
162 
163 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
164 {
165 	return elf_sec__is_text(shdr, secstrs) ||
166 	       elf_sec__is_data(shdr, secstrs);
167 }
168 
169 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
170 {
171 	Elf_Scn *sec = NULL;
172 	GElf_Shdr shdr;
173 	size_t cnt = 1;
174 
175 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
176 		gelf_getshdr(sec, &shdr);
177 
178 		if ((addr >= shdr.sh_addr) &&
179 		    (addr < (shdr.sh_addr + shdr.sh_size)))
180 			return cnt;
181 
182 		++cnt;
183 	}
184 
185 	return -1;
186 }
187 
188 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
189 			     GElf_Shdr *shp, const char *name, size_t *idx)
190 {
191 	Elf_Scn *sec = NULL;
192 	size_t cnt = 1;
193 
194 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
195 	if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
196 		return NULL;
197 
198 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
199 		char *str;
200 
201 		gelf_getshdr(sec, shp);
202 		str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
203 		if (str && !strcmp(name, str)) {
204 			if (idx)
205 				*idx = cnt;
206 			return sec;
207 		}
208 		++cnt;
209 	}
210 
211 	return NULL;
212 }
213 
214 bool filename__has_section(const char *filename, const char *sec)
215 {
216 	int fd;
217 	Elf *elf;
218 	GElf_Ehdr ehdr;
219 	GElf_Shdr shdr;
220 	bool found = false;
221 
222 	fd = open(filename, O_RDONLY);
223 	if (fd < 0)
224 		return false;
225 
226 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
227 	if (elf == NULL)
228 		goto out;
229 
230 	if (gelf_getehdr(elf, &ehdr) == NULL)
231 		goto elf_out;
232 
233 	found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
234 
235 elf_out:
236 	elf_end(elf);
237 out:
238 	close(fd);
239 	return found;
240 }
241 
242 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
243 {
244 	size_t i, phdrnum;
245 	u64 sz;
246 
247 	if (elf_getphdrnum(elf, &phdrnum))
248 		return -1;
249 
250 	for (i = 0; i < phdrnum; i++) {
251 		if (gelf_getphdr(elf, i, phdr) == NULL)
252 			return -1;
253 
254 		if (phdr->p_type != PT_LOAD)
255 			continue;
256 
257 		sz = max(phdr->p_memsz, phdr->p_filesz);
258 		if (!sz)
259 			continue;
260 
261 		if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
262 			return 0;
263 	}
264 
265 	/* Not found any valid program header */
266 	return -1;
267 }
268 
269 static bool want_demangle(bool is_kernel_sym)
270 {
271 	return is_kernel_sym ? symbol_conf.demangle_kernel : symbol_conf.demangle;
272 }
273 
274 static char *demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
275 {
276 	char *demangled = NULL;
277 
278 	/*
279 	 * We need to figure out if the object was created from C++ sources
280 	 * DWARF DW_compile_unit has this, but we don't always have access
281 	 * to it...
282 	 */
283 	if (!want_demangle(dso->kernel || kmodule))
284 	    return demangled;
285 
286 	demangled = cxx_demangle_sym(elf_name, verbose > 0, verbose > 0);
287 	if (demangled == NULL) {
288 		demangled = ocaml_demangle_sym(elf_name);
289 		if (demangled == NULL) {
290 			demangled = java_demangle_sym(elf_name, JAVA_DEMANGLE_NORET);
291 		}
292 	}
293 	else if (rust_is_mangled(demangled))
294 		/*
295 		    * Input to Rust demangling is the BFD-demangled
296 		    * name which it Rust-demangles in place.
297 		    */
298 		rust_demangle_sym(demangled);
299 
300 	return demangled;
301 }
302 
303 struct rel_info {
304 	u32		nr_entries;
305 	u32		*sorted;
306 	bool		is_rela;
307 	Elf_Data	*reldata;
308 	GElf_Rela	rela;
309 	GElf_Rel	rel;
310 };
311 
312 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
313 {
314 	idx = ri->sorted ? ri->sorted[idx] : idx;
315 	if (ri->is_rela) {
316 		gelf_getrela(ri->reldata, idx, &ri->rela);
317 		return GELF_R_SYM(ri->rela.r_info);
318 	}
319 	gelf_getrel(ri->reldata, idx, &ri->rel);
320 	return GELF_R_SYM(ri->rel.r_info);
321 }
322 
323 static u64 get_rel_offset(struct rel_info *ri, u32 x)
324 {
325 	if (ri->is_rela) {
326 		GElf_Rela rela;
327 
328 		gelf_getrela(ri->reldata, x, &rela);
329 		return rela.r_offset;
330 	} else {
331 		GElf_Rel rel;
332 
333 		gelf_getrel(ri->reldata, x, &rel);
334 		return rel.r_offset;
335 	}
336 }
337 
338 static int rel_cmp(const void *a, const void *b, void *r)
339 {
340 	struct rel_info *ri = r;
341 	u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
342 	u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
343 
344 	return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
345 }
346 
347 static int sort_rel(struct rel_info *ri)
348 {
349 	size_t sz = sizeof(ri->sorted[0]);
350 	u32 i;
351 
352 	ri->sorted = calloc(ri->nr_entries, sz);
353 	if (!ri->sorted)
354 		return -1;
355 	for (i = 0; i < ri->nr_entries; i++)
356 		ri->sorted[i] = i;
357 	qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
358 	return 0;
359 }
360 
361 /*
362  * For x86_64, the GNU linker is putting IFUNC information in the relocation
363  * addend.
364  */
365 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
366 {
367 	return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
368 	       GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
369 }
370 
371 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
372 			   struct rel_info *ri, char *buf, size_t buf_sz)
373 {
374 	u64 addr = ri->rela.r_addend;
375 	struct symbol *sym;
376 	GElf_Phdr phdr;
377 
378 	if (!addend_may_be_ifunc(ehdr, ri))
379 		return false;
380 
381 	if (elf_read_program_header(elf, addr, &phdr))
382 		return false;
383 
384 	addr -= phdr.p_vaddr - phdr.p_offset;
385 
386 	sym = dso__find_symbol_nocache(dso, addr);
387 
388 	/* Expecting the address to be an IFUNC or IFUNC alias */
389 	if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
390 		return false;
391 
392 	snprintf(buf, buf_sz, "%s@plt", sym->name);
393 
394 	return true;
395 }
396 
397 static void exit_rel(struct rel_info *ri)
398 {
399 	zfree(&ri->sorted);
400 }
401 
402 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
403 			  u64 *plt_header_size, u64 *plt_entry_size)
404 {
405 	switch (ehdr->e_machine) {
406 	case EM_ARM:
407 		*plt_header_size = 20;
408 		*plt_entry_size = 12;
409 		return true;
410 	case EM_AARCH64:
411 		*plt_header_size = 32;
412 		*plt_entry_size = 16;
413 		return true;
414 	case EM_SPARC:
415 		*plt_header_size = 48;
416 		*plt_entry_size = 12;
417 		return true;
418 	case EM_SPARCV9:
419 		*plt_header_size = 128;
420 		*plt_entry_size = 32;
421 		return true;
422 	case EM_386:
423 	case EM_X86_64:
424 		*plt_entry_size = shdr_plt->sh_entsize;
425 		/* Size is 8 or 16, if not, assume alignment indicates size */
426 		if (*plt_entry_size != 8 && *plt_entry_size != 16)
427 			*plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
428 		*plt_header_size = *plt_entry_size;
429 		break;
430 	default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
431 		*plt_header_size = shdr_plt->sh_entsize;
432 		*plt_entry_size = shdr_plt->sh_entsize;
433 		break;
434 	}
435 	if (*plt_entry_size)
436 		return true;
437 	pr_debug("Missing PLT entry size for %s\n", dso->long_name);
438 	return false;
439 }
440 
441 static bool machine_is_x86(GElf_Half e_machine)
442 {
443 	return e_machine == EM_386 || e_machine == EM_X86_64;
444 }
445 
446 struct rela_dyn {
447 	GElf_Addr	offset;
448 	u32		sym_idx;
449 };
450 
451 struct rela_dyn_info {
452 	struct dso	*dso;
453 	Elf_Data	*plt_got_data;
454 	u32		nr_entries;
455 	struct rela_dyn	*sorted;
456 	Elf_Data	*dynsym_data;
457 	Elf_Data	*dynstr_data;
458 	Elf_Data	*rela_dyn_data;
459 };
460 
461 static void exit_rela_dyn(struct rela_dyn_info *di)
462 {
463 	zfree(&di->sorted);
464 }
465 
466 static int cmp_offset(const void *a, const void *b)
467 {
468 	const struct rela_dyn *va = a;
469 	const struct rela_dyn *vb = b;
470 
471 	return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
472 }
473 
474 static int sort_rela_dyn(struct rela_dyn_info *di)
475 {
476 	u32 i, n;
477 
478 	di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
479 	if (!di->sorted)
480 		return -1;
481 
482 	/* Get data for sorting: the offset and symbol index */
483 	for (i = 0, n = 0; i < di->nr_entries; i++) {
484 		GElf_Rela rela;
485 		u32 sym_idx;
486 
487 		gelf_getrela(di->rela_dyn_data, i, &rela);
488 		sym_idx = GELF_R_SYM(rela.r_info);
489 		if (sym_idx) {
490 			di->sorted[n].sym_idx = sym_idx;
491 			di->sorted[n].offset = rela.r_offset;
492 			n += 1;
493 		}
494 	}
495 
496 	/* Sort by offset */
497 	di->nr_entries = n;
498 	qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
499 
500 	return 0;
501 }
502 
503 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
504 {
505 	GElf_Shdr rela_dyn_shdr;
506 	GElf_Shdr shdr;
507 
508 	di->plt_got_data = elf_getdata(scn, NULL);
509 
510 	scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
511 	if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
512 		return;
513 
514 	di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
515 	di->rela_dyn_data = elf_getdata(scn, NULL);
516 
517 	scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
518 	if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
519 		return;
520 
521 	di->dynsym_data = elf_getdata(scn, NULL);
522 	di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
523 
524 	if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
525 		return;
526 
527 	/* Sort into offset order */
528 	sort_rela_dyn(di);
529 }
530 
531 /* Get instruction displacement from a plt entry for x86_64 */
532 static u32 get_x86_64_plt_disp(const u8 *p)
533 {
534 	u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
535 	int n = 0;
536 
537 	/* Skip endbr64 */
538 	if (!memcmp(p, endbr64, sizeof(endbr64)))
539 		n += sizeof(endbr64);
540 	/* Skip bnd prefix */
541 	if (p[n] == 0xf2)
542 		n += 1;
543 	/* jmp with 4-byte displacement */
544 	if (p[n] == 0xff && p[n + 1] == 0x25) {
545 		u32 disp;
546 
547 		n += 2;
548 		/* Also add offset from start of entry to end of instruction */
549 		memcpy(&disp, p + n, sizeof(disp));
550 		return n + 4 + le32toh(disp);
551 	}
552 	return 0;
553 }
554 
555 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
556 			     struct rela_dyn_info *di,
557 			     char *buf, size_t buf_sz)
558 {
559 	struct rela_dyn vi, *vr;
560 	const char *sym_name;
561 	char *demangled;
562 	GElf_Sym sym;
563 	bool result;
564 	u32 disp;
565 
566 	if (!di->sorted)
567 		return false;
568 
569 	disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
570 	if (!disp)
571 		return false;
572 
573 	/* Compute target offset of the .plt.got entry */
574 	vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
575 
576 	/* Find that offset in .rela.dyn (sorted by offset) */
577 	vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
578 	if (!vr)
579 		return false;
580 
581 	/* Get the associated symbol */
582 	gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
583 	sym_name = elf_sym__name(&sym, di->dynstr_data);
584 	demangled = demangle_sym(di->dso, 0, sym_name);
585 	if (demangled != NULL)
586 		sym_name = demangled;
587 
588 	snprintf(buf, buf_sz, "%s@plt", sym_name);
589 
590 	result = *sym_name;
591 
592 	free(demangled);
593 
594 	return result;
595 }
596 
597 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
598 					   GElf_Ehdr *ehdr,
599 					   char *buf, size_t buf_sz)
600 {
601 	struct rela_dyn_info di = { .dso = dso };
602 	struct symbol *sym;
603 	GElf_Shdr shdr;
604 	Elf_Scn *scn;
605 	int err = -1;
606 	size_t i;
607 
608 	scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
609 	if (!scn || !shdr.sh_entsize)
610 		return 0;
611 
612 	if (ehdr->e_machine == EM_X86_64)
613 		get_rela_dyn_info(elf, ehdr, &di, scn);
614 
615 	for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
616 		if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
617 			snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
618 		sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
619 		if (!sym)
620 			goto out;
621 		symbols__insert(&dso->symbols, sym);
622 	}
623 	err = 0;
624 out:
625 	exit_rela_dyn(&di);
626 	return err;
627 }
628 
629 /*
630  * We need to check if we have a .dynsym, so that we can handle the
631  * .plt, synthesizing its symbols, that aren't on the symtabs (be it
632  * .dynsym or .symtab).
633  * And always look at the original dso, not at debuginfo packages, that
634  * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
635  */
636 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
637 {
638 	uint32_t idx;
639 	GElf_Sym sym;
640 	u64 plt_offset, plt_header_size, plt_entry_size;
641 	GElf_Shdr shdr_plt, plt_sec_shdr;
642 	struct symbol *f, *plt_sym;
643 	GElf_Shdr shdr_rel_plt, shdr_dynsym;
644 	Elf_Data *syms, *symstrs;
645 	Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
646 	GElf_Ehdr ehdr;
647 	char sympltname[1024];
648 	Elf *elf;
649 	int nr = 0, err = -1;
650 	struct rel_info ri = { .is_rela = false };
651 	bool lazy_plt;
652 
653 	elf = ss->elf;
654 	ehdr = ss->ehdr;
655 
656 	if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
657 		return 0;
658 
659 	/*
660 	 * A symbol from a previous section (e.g. .init) can have been expanded
661 	 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
662 	 * a symbol for .plt header.
663 	 */
664 	f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
665 	if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
666 		f->end = shdr_plt.sh_offset;
667 
668 	if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
669 		return 0;
670 
671 	/* Add a symbol for .plt header */
672 	plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
673 	if (!plt_sym)
674 		goto out_elf_end;
675 	symbols__insert(&dso->symbols, plt_sym);
676 
677 	/* Only x86 has .plt.got */
678 	if (machine_is_x86(ehdr.e_machine) &&
679 	    dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
680 		goto out_elf_end;
681 
682 	/* Only x86 has .plt.sec */
683 	if (machine_is_x86(ehdr.e_machine) &&
684 	    elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
685 		if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
686 			return 0;
687 		/* Extend .plt symbol to entire .plt */
688 		plt_sym->end = plt_sym->start + shdr_plt.sh_size;
689 		/* Use .plt.sec offset */
690 		plt_offset = plt_sec_shdr.sh_offset;
691 		lazy_plt = false;
692 	} else {
693 		plt_offset = shdr_plt.sh_offset;
694 		lazy_plt = true;
695 	}
696 
697 	scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
698 					  ".rela.plt", NULL);
699 	if (scn_plt_rel == NULL) {
700 		scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
701 						  ".rel.plt", NULL);
702 		if (scn_plt_rel == NULL)
703 			return 0;
704 	}
705 
706 	if (shdr_rel_plt.sh_type != SHT_RELA &&
707 	    shdr_rel_plt.sh_type != SHT_REL)
708 		return 0;
709 
710 	if (!shdr_rel_plt.sh_link)
711 		return 0;
712 
713 	if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
714 		scn_dynsym = ss->dynsym;
715 		shdr_dynsym = ss->dynshdr;
716 	} else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
717 		/*
718 		 * A static executable can have a .plt due to IFUNCs, in which
719 		 * case .symtab is used not .dynsym.
720 		 */
721 		scn_dynsym = ss->symtab;
722 		shdr_dynsym = ss->symshdr;
723 	} else {
724 		goto out_elf_end;
725 	}
726 
727 	if (!scn_dynsym)
728 		return 0;
729 
730 	/*
731 	 * Fetch the relocation section to find the idxes to the GOT
732 	 * and the symbols in the .dynsym they refer to.
733 	 */
734 	ri.reldata = elf_getdata(scn_plt_rel, NULL);
735 	if (!ri.reldata)
736 		goto out_elf_end;
737 
738 	syms = elf_getdata(scn_dynsym, NULL);
739 	if (syms == NULL)
740 		goto out_elf_end;
741 
742 	scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
743 	if (scn_symstrs == NULL)
744 		goto out_elf_end;
745 
746 	symstrs = elf_getdata(scn_symstrs, NULL);
747 	if (symstrs == NULL)
748 		goto out_elf_end;
749 
750 	if (symstrs->d_size == 0)
751 		goto out_elf_end;
752 
753 	ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
754 
755 	ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
756 
757 	if (lazy_plt) {
758 		/*
759 		 * Assume a .plt with the same number of entries as the number
760 		 * of relocation entries is not lazy and does not have a header.
761 		 */
762 		if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
763 			dso__delete_symbol(dso, plt_sym);
764 		else
765 			plt_offset += plt_header_size;
766 	}
767 
768 	/*
769 	 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
770 	 * back in order.
771 	 */
772 	if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
773 		goto out_elf_end;
774 
775 	for (idx = 0; idx < ri.nr_entries; idx++) {
776 		const char *elf_name = NULL;
777 		char *demangled = NULL;
778 
779 		gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
780 
781 		elf_name = elf_sym__name(&sym, symstrs);
782 		demangled = demangle_sym(dso, 0, elf_name);
783 		if (demangled)
784 			elf_name = demangled;
785 		if (*elf_name)
786 			snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
787 		else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
788 			snprintf(sympltname, sizeof(sympltname),
789 				 "offset_%#" PRIx64 "@plt", plt_offset);
790 		free(demangled);
791 
792 		f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
793 		if (!f)
794 			goto out_elf_end;
795 
796 		plt_offset += plt_entry_size;
797 		symbols__insert(&dso->symbols, f);
798 		++nr;
799 	}
800 
801 	err = 0;
802 out_elf_end:
803 	exit_rel(&ri);
804 	if (err == 0)
805 		return nr;
806 	pr_debug("%s: problems reading %s PLT info.\n",
807 		 __func__, dso->long_name);
808 	return 0;
809 }
810 
811 char *dso__demangle_sym(struct dso *dso, int kmodule, const char *elf_name)
812 {
813 	return demangle_sym(dso, kmodule, elf_name);
814 }
815 
816 /*
817  * Align offset to 4 bytes as needed for note name and descriptor data.
818  */
819 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
820 
821 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
822 {
823 	int err = -1;
824 	GElf_Ehdr ehdr;
825 	GElf_Shdr shdr;
826 	Elf_Data *data;
827 	Elf_Scn *sec;
828 	Elf_Kind ek;
829 	void *ptr;
830 
831 	if (size < BUILD_ID_SIZE)
832 		goto out;
833 
834 	ek = elf_kind(elf);
835 	if (ek != ELF_K_ELF)
836 		goto out;
837 
838 	if (gelf_getehdr(elf, &ehdr) == NULL) {
839 		pr_err("%s: cannot get elf header.\n", __func__);
840 		goto out;
841 	}
842 
843 	/*
844 	 * Check following sections for notes:
845 	 *   '.note.gnu.build-id'
846 	 *   '.notes'
847 	 *   '.note' (VDSO specific)
848 	 */
849 	do {
850 		sec = elf_section_by_name(elf, &ehdr, &shdr,
851 					  ".note.gnu.build-id", NULL);
852 		if (sec)
853 			break;
854 
855 		sec = elf_section_by_name(elf, &ehdr, &shdr,
856 					  ".notes", NULL);
857 		if (sec)
858 			break;
859 
860 		sec = elf_section_by_name(elf, &ehdr, &shdr,
861 					  ".note", NULL);
862 		if (sec)
863 			break;
864 
865 		return err;
866 
867 	} while (0);
868 
869 	data = elf_getdata(sec, NULL);
870 	if (data == NULL)
871 		goto out;
872 
873 	ptr = data->d_buf;
874 	while (ptr < (data->d_buf + data->d_size)) {
875 		GElf_Nhdr *nhdr = ptr;
876 		size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
877 		       descsz = NOTE_ALIGN(nhdr->n_descsz);
878 		const char *name;
879 
880 		ptr += sizeof(*nhdr);
881 		name = ptr;
882 		ptr += namesz;
883 		if (nhdr->n_type == NT_GNU_BUILD_ID &&
884 		    nhdr->n_namesz == sizeof("GNU")) {
885 			if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
886 				size_t sz = min(size, descsz);
887 				memcpy(bf, ptr, sz);
888 				memset(bf + sz, 0, size - sz);
889 				err = sz;
890 				break;
891 			}
892 		}
893 		ptr += descsz;
894 	}
895 
896 out:
897 	return err;
898 }
899 
900 #ifdef HAVE_LIBBFD_BUILDID_SUPPORT
901 
902 static int read_build_id(const char *filename, struct build_id *bid)
903 {
904 	size_t size = sizeof(bid->data);
905 	int err = -1;
906 	bfd *abfd;
907 
908 	abfd = bfd_openr(filename, NULL);
909 	if (!abfd)
910 		return -1;
911 
912 	if (!bfd_check_format(abfd, bfd_object)) {
913 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
914 		goto out_close;
915 	}
916 
917 	if (!abfd->build_id || abfd->build_id->size > size)
918 		goto out_close;
919 
920 	memcpy(bid->data, abfd->build_id->data, abfd->build_id->size);
921 	memset(bid->data + abfd->build_id->size, 0, size - abfd->build_id->size);
922 	err = bid->size = abfd->build_id->size;
923 
924 out_close:
925 	bfd_close(abfd);
926 	return err;
927 }
928 
929 #else // HAVE_LIBBFD_BUILDID_SUPPORT
930 
931 static int read_build_id(const char *filename, struct build_id *bid)
932 {
933 	size_t size = sizeof(bid->data);
934 	int fd, err = -1;
935 	Elf *elf;
936 
937 	if (size < BUILD_ID_SIZE)
938 		goto out;
939 
940 	fd = open(filename, O_RDONLY);
941 	if (fd < 0)
942 		goto out;
943 
944 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
945 	if (elf == NULL) {
946 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
947 		goto out_close;
948 	}
949 
950 	err = elf_read_build_id(elf, bid->data, size);
951 	if (err > 0)
952 		bid->size = err;
953 
954 	elf_end(elf);
955 out_close:
956 	close(fd);
957 out:
958 	return err;
959 }
960 
961 #endif // HAVE_LIBBFD_BUILDID_SUPPORT
962 
963 int filename__read_build_id(const char *filename, struct build_id *bid)
964 {
965 	struct kmod_path m = { .name = NULL, };
966 	char path[PATH_MAX];
967 	int err;
968 
969 	if (!filename)
970 		return -EFAULT;
971 
972 	err = kmod_path__parse(&m, filename);
973 	if (err)
974 		return -1;
975 
976 	if (m.comp) {
977 		int error = 0, fd;
978 
979 		fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
980 		if (fd < 0) {
981 			pr_debug("Failed to decompress (error %d) %s\n",
982 				 error, filename);
983 			return -1;
984 		}
985 		close(fd);
986 		filename = path;
987 	}
988 
989 	err = read_build_id(filename, bid);
990 
991 	if (m.comp)
992 		unlink(filename);
993 	return err;
994 }
995 
996 int sysfs__read_build_id(const char *filename, struct build_id *bid)
997 {
998 	size_t size = sizeof(bid->data);
999 	int fd, err = -1;
1000 
1001 	fd = open(filename, O_RDONLY);
1002 	if (fd < 0)
1003 		goto out;
1004 
1005 	while (1) {
1006 		char bf[BUFSIZ];
1007 		GElf_Nhdr nhdr;
1008 		size_t namesz, descsz;
1009 
1010 		if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
1011 			break;
1012 
1013 		namesz = NOTE_ALIGN(nhdr.n_namesz);
1014 		descsz = NOTE_ALIGN(nhdr.n_descsz);
1015 		if (nhdr.n_type == NT_GNU_BUILD_ID &&
1016 		    nhdr.n_namesz == sizeof("GNU")) {
1017 			if (read(fd, bf, namesz) != (ssize_t)namesz)
1018 				break;
1019 			if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
1020 				size_t sz = min(descsz, size);
1021 				if (read(fd, bid->data, sz) == (ssize_t)sz) {
1022 					memset(bid->data + sz, 0, size - sz);
1023 					bid->size = sz;
1024 					err = 0;
1025 					break;
1026 				}
1027 			} else if (read(fd, bf, descsz) != (ssize_t)descsz)
1028 				break;
1029 		} else {
1030 			int n = namesz + descsz;
1031 
1032 			if (n > (int)sizeof(bf)) {
1033 				n = sizeof(bf);
1034 				pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
1035 					 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
1036 			}
1037 			if (read(fd, bf, n) != n)
1038 				break;
1039 		}
1040 	}
1041 	close(fd);
1042 out:
1043 	return err;
1044 }
1045 
1046 #ifdef HAVE_LIBBFD_SUPPORT
1047 
1048 int filename__read_debuglink(const char *filename, char *debuglink,
1049 			     size_t size)
1050 {
1051 	int err = -1;
1052 	asection *section;
1053 	bfd *abfd;
1054 
1055 	abfd = bfd_openr(filename, NULL);
1056 	if (!abfd)
1057 		return -1;
1058 
1059 	if (!bfd_check_format(abfd, bfd_object)) {
1060 		pr_debug2("%s: cannot read %s bfd file.\n", __func__, filename);
1061 		goto out_close;
1062 	}
1063 
1064 	section = bfd_get_section_by_name(abfd, ".gnu_debuglink");
1065 	if (!section)
1066 		goto out_close;
1067 
1068 	if (section->size > size)
1069 		goto out_close;
1070 
1071 	if (!bfd_get_section_contents(abfd, section, debuglink, 0,
1072 				      section->size))
1073 		goto out_close;
1074 
1075 	err = 0;
1076 
1077 out_close:
1078 	bfd_close(abfd);
1079 	return err;
1080 }
1081 
1082 #else
1083 
1084 int filename__read_debuglink(const char *filename, char *debuglink,
1085 			     size_t size)
1086 {
1087 	int fd, err = -1;
1088 	Elf *elf;
1089 	GElf_Ehdr ehdr;
1090 	GElf_Shdr shdr;
1091 	Elf_Data *data;
1092 	Elf_Scn *sec;
1093 	Elf_Kind ek;
1094 
1095 	fd = open(filename, O_RDONLY);
1096 	if (fd < 0)
1097 		goto out;
1098 
1099 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1100 	if (elf == NULL) {
1101 		pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1102 		goto out_close;
1103 	}
1104 
1105 	ek = elf_kind(elf);
1106 	if (ek != ELF_K_ELF)
1107 		goto out_elf_end;
1108 
1109 	if (gelf_getehdr(elf, &ehdr) == NULL) {
1110 		pr_err("%s: cannot get elf header.\n", __func__);
1111 		goto out_elf_end;
1112 	}
1113 
1114 	sec = elf_section_by_name(elf, &ehdr, &shdr,
1115 				  ".gnu_debuglink", NULL);
1116 	if (sec == NULL)
1117 		goto out_elf_end;
1118 
1119 	data = elf_getdata(sec, NULL);
1120 	if (data == NULL)
1121 		goto out_elf_end;
1122 
1123 	/* the start of this section is a zero-terminated string */
1124 	strncpy(debuglink, data->d_buf, size);
1125 
1126 	err = 0;
1127 
1128 out_elf_end:
1129 	elf_end(elf);
1130 out_close:
1131 	close(fd);
1132 out:
1133 	return err;
1134 }
1135 
1136 #endif
1137 
1138 static int dso__swap_init(struct dso *dso, unsigned char eidata)
1139 {
1140 	static unsigned int const endian = 1;
1141 
1142 	dso->needs_swap = DSO_SWAP__NO;
1143 
1144 	switch (eidata) {
1145 	case ELFDATA2LSB:
1146 		/* We are big endian, DSO is little endian. */
1147 		if (*(unsigned char const *)&endian != 1)
1148 			dso->needs_swap = DSO_SWAP__YES;
1149 		break;
1150 
1151 	case ELFDATA2MSB:
1152 		/* We are little endian, DSO is big endian. */
1153 		if (*(unsigned char const *)&endian != 0)
1154 			dso->needs_swap = DSO_SWAP__YES;
1155 		break;
1156 
1157 	default:
1158 		pr_err("unrecognized DSO data encoding %d\n", eidata);
1159 		return -EINVAL;
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 bool symsrc__possibly_runtime(struct symsrc *ss)
1166 {
1167 	return ss->dynsym || ss->opdsec;
1168 }
1169 
1170 bool symsrc__has_symtab(struct symsrc *ss)
1171 {
1172 	return ss->symtab != NULL;
1173 }
1174 
1175 void symsrc__destroy(struct symsrc *ss)
1176 {
1177 	zfree(&ss->name);
1178 	elf_end(ss->elf);
1179 	close(ss->fd);
1180 }
1181 
1182 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1183 {
1184 	/*
1185 	 * Usually vmlinux is an ELF file with type ET_EXEC for most
1186 	 * architectures; except Arm64 kernel is linked with option
1187 	 * '-share', so need to check type ET_DYN.
1188 	 */
1189 	return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1190 	       ehdr.e_type == ET_DYN;
1191 }
1192 
1193 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1194 		 enum dso_binary_type type)
1195 {
1196 	GElf_Ehdr ehdr;
1197 	Elf *elf;
1198 	int fd;
1199 
1200 	if (dso__needs_decompress(dso)) {
1201 		fd = dso__decompress_kmodule_fd(dso, name);
1202 		if (fd < 0)
1203 			return -1;
1204 
1205 		type = dso->symtab_type;
1206 	} else {
1207 		fd = open(name, O_RDONLY);
1208 		if (fd < 0) {
1209 			dso->load_errno = errno;
1210 			return -1;
1211 		}
1212 	}
1213 
1214 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1215 	if (elf == NULL) {
1216 		pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1217 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1218 		goto out_close;
1219 	}
1220 
1221 	if (gelf_getehdr(elf, &ehdr) == NULL) {
1222 		dso->load_errno = DSO_LOAD_ERRNO__INVALID_ELF;
1223 		pr_debug("%s: cannot get elf header.\n", __func__);
1224 		goto out_elf_end;
1225 	}
1226 
1227 	if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1228 		dso->load_errno = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1229 		goto out_elf_end;
1230 	}
1231 
1232 	/* Always reject images with a mismatched build-id: */
1233 	if (dso->has_build_id && !symbol_conf.ignore_vmlinux_buildid) {
1234 		u8 build_id[BUILD_ID_SIZE];
1235 		struct build_id bid;
1236 		int size;
1237 
1238 		size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1239 		if (size <= 0) {
1240 			dso->load_errno = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1241 			goto out_elf_end;
1242 		}
1243 
1244 		build_id__init(&bid, build_id, size);
1245 		if (!dso__build_id_equal(dso, &bid)) {
1246 			pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1247 			dso->load_errno = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1248 			goto out_elf_end;
1249 		}
1250 	}
1251 
1252 	ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1253 
1254 	ss->symtab_idx = 0;
1255 	ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1256 			&ss->symtab_idx);
1257 	if (ss->symshdr.sh_type != SHT_SYMTAB)
1258 		ss->symtab = NULL;
1259 
1260 	ss->dynsym_idx = 0;
1261 	ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1262 			&ss->dynsym_idx);
1263 	if (ss->dynshdr.sh_type != SHT_DYNSYM)
1264 		ss->dynsym = NULL;
1265 
1266 	ss->opdidx = 0;
1267 	ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1268 			&ss->opdidx);
1269 	if (ss->opdshdr.sh_type != SHT_PROGBITS)
1270 		ss->opdsec = NULL;
1271 
1272 	if (dso->kernel == DSO_SPACE__USER)
1273 		ss->adjust_symbols = true;
1274 	else
1275 		ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1276 
1277 	ss->name   = strdup(name);
1278 	if (!ss->name) {
1279 		dso->load_errno = errno;
1280 		goto out_elf_end;
1281 	}
1282 
1283 	ss->elf    = elf;
1284 	ss->fd     = fd;
1285 	ss->ehdr   = ehdr;
1286 	ss->type   = type;
1287 
1288 	return 0;
1289 
1290 out_elf_end:
1291 	elf_end(elf);
1292 out_close:
1293 	close(fd);
1294 	return -1;
1295 }
1296 
1297 /**
1298  * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1299  * @kmap: kernel maps and relocation reference symbol
1300  *
1301  * This function returns %true if we are dealing with the kernel maps and the
1302  * relocation reference symbol has not yet been found.  Otherwise %false is
1303  * returned.
1304  */
1305 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1306 {
1307 	return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1308 	       !kmap->ref_reloc_sym->unrelocated_addr;
1309 }
1310 
1311 /**
1312  * ref_reloc - kernel relocation offset.
1313  * @kmap: kernel maps and relocation reference symbol
1314  *
1315  * This function returns the offset of kernel addresses as determined by using
1316  * the relocation reference symbol i.e. if the kernel has not been relocated
1317  * then the return value is zero.
1318  */
1319 static u64 ref_reloc(struct kmap *kmap)
1320 {
1321 	if (kmap && kmap->ref_reloc_sym &&
1322 	    kmap->ref_reloc_sym->unrelocated_addr)
1323 		return kmap->ref_reloc_sym->addr -
1324 		       kmap->ref_reloc_sym->unrelocated_addr;
1325 	return 0;
1326 }
1327 
1328 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1329 		GElf_Sym *sym __maybe_unused) { }
1330 
1331 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1332 				      GElf_Sym *sym, GElf_Shdr *shdr,
1333 				      struct maps *kmaps, struct kmap *kmap,
1334 				      struct dso **curr_dsop, struct map **curr_mapp,
1335 				      const char *section_name,
1336 				      bool adjust_kernel_syms, bool kmodule, bool *remap_kernel)
1337 {
1338 	struct dso *curr_dso = *curr_dsop;
1339 	struct map *curr_map;
1340 	char dso_name[PATH_MAX];
1341 
1342 	/* Adjust symbol to map to file offset */
1343 	if (adjust_kernel_syms)
1344 		sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1345 
1346 	if (strcmp(section_name, (curr_dso->short_name + dso->short_name_len)) == 0)
1347 		return 0;
1348 
1349 	if (strcmp(section_name, ".text") == 0) {
1350 		/*
1351 		 * The initial kernel mapping is based on
1352 		 * kallsyms and identity maps.  Overwrite it to
1353 		 * map to the kernel dso.
1354 		 */
1355 		if (*remap_kernel && dso->kernel && !kmodule) {
1356 			*remap_kernel = false;
1357 			map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1358 			map__set_end(map, map__start(map) + shdr->sh_size);
1359 			map__set_pgoff(map, shdr->sh_offset);
1360 			map__set_map_ip(map, map__dso_map_ip);
1361 			map__set_unmap_ip(map, map__dso_unmap_ip);
1362 			/* Ensure maps are correctly ordered */
1363 			if (kmaps) {
1364 				int err;
1365 
1366 				map__get(map);
1367 				maps__remove(kmaps, map);
1368 				err = maps__insert(kmaps, map);
1369 				map__put(map);
1370 				if (err)
1371 					return err;
1372 			}
1373 		}
1374 
1375 		/*
1376 		 * The initial module mapping is based on
1377 		 * /proc/modules mapped to offset zero.
1378 		 * Overwrite it to map to the module dso.
1379 		 */
1380 		if (*remap_kernel && kmodule) {
1381 			*remap_kernel = false;
1382 			map__set_pgoff(map, shdr->sh_offset);
1383 		}
1384 
1385 		*curr_mapp = map;
1386 		*curr_dsop = dso;
1387 		return 0;
1388 	}
1389 
1390 	if (!kmap)
1391 		return 0;
1392 
1393 	snprintf(dso_name, sizeof(dso_name), "%s%s", dso->short_name, section_name);
1394 
1395 	curr_map = maps__find_by_name(kmaps, dso_name);
1396 	if (curr_map == NULL) {
1397 		u64 start = sym->st_value;
1398 
1399 		if (kmodule)
1400 			start += map__start(map) + shdr->sh_offset;
1401 
1402 		curr_dso = dso__new(dso_name);
1403 		if (curr_dso == NULL)
1404 			return -1;
1405 		curr_dso->kernel = dso->kernel;
1406 		curr_dso->long_name = dso->long_name;
1407 		curr_dso->long_name_len = dso->long_name_len;
1408 		curr_map = map__new2(start, curr_dso);
1409 		dso__put(curr_dso);
1410 		if (curr_map == NULL)
1411 			return -1;
1412 
1413 		if (curr_dso->kernel)
1414 			map__kmap(curr_map)->kmaps = kmaps;
1415 
1416 		if (adjust_kernel_syms) {
1417 			map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1418 			map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1419 			map__set_pgoff(curr_map, shdr->sh_offset);
1420 		} else {
1421 			map__set_map_ip(curr_map, identity__map_ip);
1422 			map__set_unmap_ip(curr_map, identity__map_ip);
1423 		}
1424 		curr_dso->symtab_type = dso->symtab_type;
1425 		if (maps__insert(kmaps, curr_map))
1426 			return -1;
1427 		/*
1428 		 * Add it before we drop the reference to curr_map, i.e. while
1429 		 * we still are sure to have a reference to this DSO via
1430 		 * *curr_map->dso.
1431 		 */
1432 		dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1433 		/* kmaps already got it */
1434 		map__put(curr_map);
1435 		dso__set_loaded(curr_dso);
1436 		*curr_mapp = curr_map;
1437 		*curr_dsop = curr_dso;
1438 	} else
1439 		*curr_dsop = map__dso(curr_map);
1440 
1441 	return 0;
1442 }
1443 
1444 static int
1445 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1446 		       struct symsrc *runtime_ss, int kmodule, int dynsym)
1447 {
1448 	struct kmap *kmap = dso->kernel ? map__kmap(map) : NULL;
1449 	struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1450 	struct map *curr_map = map;
1451 	struct dso *curr_dso = dso;
1452 	Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1453 	uint32_t nr_syms;
1454 	int err = -1;
1455 	uint32_t idx;
1456 	GElf_Ehdr ehdr;
1457 	GElf_Shdr shdr;
1458 	GElf_Shdr tshdr;
1459 	Elf_Data *syms, *opddata = NULL;
1460 	GElf_Sym sym;
1461 	Elf_Scn *sec, *sec_strndx;
1462 	Elf *elf;
1463 	int nr = 0;
1464 	bool remap_kernel = false, adjust_kernel_syms = false;
1465 
1466 	if (kmap && !kmaps)
1467 		return -1;
1468 
1469 	elf = syms_ss->elf;
1470 	ehdr = syms_ss->ehdr;
1471 	if (dynsym) {
1472 		sec  = syms_ss->dynsym;
1473 		shdr = syms_ss->dynshdr;
1474 	} else {
1475 		sec =  syms_ss->symtab;
1476 		shdr = syms_ss->symshdr;
1477 	}
1478 
1479 	if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1480 				".text", NULL))
1481 		dso->text_offset = tshdr.sh_addr - tshdr.sh_offset;
1482 
1483 	if (runtime_ss->opdsec)
1484 		opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1485 
1486 	syms = elf_getdata(sec, NULL);
1487 	if (syms == NULL)
1488 		goto out_elf_end;
1489 
1490 	sec = elf_getscn(elf, shdr.sh_link);
1491 	if (sec == NULL)
1492 		goto out_elf_end;
1493 
1494 	symstrs = elf_getdata(sec, NULL);
1495 	if (symstrs == NULL)
1496 		goto out_elf_end;
1497 
1498 	sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1499 	if (sec_strndx == NULL)
1500 		goto out_elf_end;
1501 
1502 	secstrs_run = elf_getdata(sec_strndx, NULL);
1503 	if (secstrs_run == NULL)
1504 		goto out_elf_end;
1505 
1506 	sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1507 	if (sec_strndx == NULL)
1508 		goto out_elf_end;
1509 
1510 	secstrs_sym = elf_getdata(sec_strndx, NULL);
1511 	if (secstrs_sym == NULL)
1512 		goto out_elf_end;
1513 
1514 	nr_syms = shdr.sh_size / shdr.sh_entsize;
1515 
1516 	memset(&sym, 0, sizeof(sym));
1517 
1518 	/*
1519 	 * The kernel relocation symbol is needed in advance in order to adjust
1520 	 * kernel maps correctly.
1521 	 */
1522 	if (ref_reloc_sym_not_found(kmap)) {
1523 		elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1524 			const char *elf_name = elf_sym__name(&sym, symstrs);
1525 
1526 			if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1527 				continue;
1528 			kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1529 			map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1530 			break;
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Handle any relocation of vdso necessary because older kernels
1536 	 * attempted to prelink vdso to its virtual address.
1537 	 */
1538 	if (dso__is_vdso(dso))
1539 		map__set_reloc(map, map__start(map) - dso->text_offset);
1540 
1541 	dso->adjust_symbols = runtime_ss->adjust_symbols || ref_reloc(kmap);
1542 	/*
1543 	 * Initial kernel and module mappings do not map to the dso.
1544 	 * Flag the fixups.
1545 	 */
1546 	if (dso->kernel) {
1547 		remap_kernel = true;
1548 		adjust_kernel_syms = dso->adjust_symbols;
1549 	}
1550 	elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1551 		struct symbol *f;
1552 		const char *elf_name = elf_sym__name(&sym, symstrs);
1553 		char *demangled = NULL;
1554 		int is_label = elf_sym__is_label(&sym);
1555 		const char *section_name;
1556 		bool used_opd = false;
1557 
1558 		if (!is_label && !elf_sym__filter(&sym))
1559 			continue;
1560 
1561 		/* Reject ARM ELF "mapping symbols": these aren't unique and
1562 		 * don't identify functions, so will confuse the profile
1563 		 * output: */
1564 		if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1565 			if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1566 			    && (elf_name[2] == '\0' || elf_name[2] == '.'))
1567 				continue;
1568 		}
1569 
1570 		if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1571 			u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1572 			u64 *opd = opddata->d_buf + offset;
1573 			sym.st_value = DSO__SWAP(dso, u64, *opd);
1574 			sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1575 					sym.st_value);
1576 			used_opd = true;
1577 		}
1578 
1579 		/*
1580 		 * When loading symbols in a data mapping, ABS symbols (which
1581 		 * has a value of SHN_ABS in its st_shndx) failed at
1582 		 * elf_getscn().  And it marks the loading as a failure so
1583 		 * already loaded symbols cannot be fixed up.
1584 		 *
1585 		 * I'm not sure what should be done. Just ignore them for now.
1586 		 * - Namhyung Kim
1587 		 */
1588 		if (sym.st_shndx == SHN_ABS)
1589 			continue;
1590 
1591 		sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1592 		if (!sec)
1593 			goto out_elf_end;
1594 
1595 		gelf_getshdr(sec, &shdr);
1596 
1597 		/*
1598 		 * If the attribute bit SHF_ALLOC is not set, the section
1599 		 * doesn't occupy memory during process execution.
1600 		 * E.g. ".gnu.warning.*" section is used by linker to generate
1601 		 * warnings when calling deprecated functions, the symbols in
1602 		 * the section aren't loaded to memory during process execution,
1603 		 * so skip them.
1604 		 */
1605 		if (!(shdr.sh_flags & SHF_ALLOC))
1606 			continue;
1607 
1608 		secstrs = secstrs_sym;
1609 
1610 		/*
1611 		 * We have to fallback to runtime when syms' section header has
1612 		 * NOBITS set. NOBITS results in file offset (sh_offset) not
1613 		 * being incremented. So sh_offset used below has different
1614 		 * values for syms (invalid) and runtime (valid).
1615 		 */
1616 		if (shdr.sh_type == SHT_NOBITS) {
1617 			sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1618 			if (!sec)
1619 				goto out_elf_end;
1620 
1621 			gelf_getshdr(sec, &shdr);
1622 			secstrs = secstrs_run;
1623 		}
1624 
1625 		if (is_label && !elf_sec__filter(&shdr, secstrs))
1626 			continue;
1627 
1628 		section_name = elf_sec__name(&shdr, secstrs);
1629 
1630 		/* On ARM, symbols for thumb functions have 1 added to
1631 		 * the symbol address as a flag - remove it */
1632 		if ((ehdr.e_machine == EM_ARM) &&
1633 		    (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1634 		    (sym.st_value & 1))
1635 			--sym.st_value;
1636 
1637 		if (dso->kernel) {
1638 			if (dso__process_kernel_symbol(dso, map, &sym, &shdr, kmaps, kmap, &curr_dso, &curr_map,
1639 						       section_name, adjust_kernel_syms, kmodule, &remap_kernel))
1640 				goto out_elf_end;
1641 		} else if ((used_opd && runtime_ss->adjust_symbols) ||
1642 			   (!used_opd && syms_ss->adjust_symbols)) {
1643 			GElf_Phdr phdr;
1644 
1645 			if (elf_read_program_header(runtime_ss->elf,
1646 						    (u64)sym.st_value, &phdr)) {
1647 				pr_debug4("%s: failed to find program header for "
1648 					   "symbol: %s st_value: %#" PRIx64 "\n",
1649 					   __func__, elf_name, (u64)sym.st_value);
1650 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1651 					"sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1652 					__func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1653 					(u64)shdr.sh_offset);
1654 				/*
1655 				 * Fail to find program header, let's rollback
1656 				 * to use shdr.sh_addr and shdr.sh_offset to
1657 				 * calibrate symbol's file address, though this
1658 				 * is not necessary for normal C ELF file, we
1659 				 * still need to handle java JIT symbols in this
1660 				 * case.
1661 				 */
1662 				sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1663 			} else {
1664 				pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1665 					"p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1666 					__func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1667 					(u64)phdr.p_offset);
1668 				sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1669 			}
1670 		}
1671 
1672 		demangled = demangle_sym(dso, kmodule, elf_name);
1673 		if (demangled != NULL)
1674 			elf_name = demangled;
1675 
1676 		f = symbol__new(sym.st_value, sym.st_size,
1677 				GELF_ST_BIND(sym.st_info),
1678 				GELF_ST_TYPE(sym.st_info), elf_name);
1679 		free(demangled);
1680 		if (!f)
1681 			goto out_elf_end;
1682 
1683 		arch__sym_update(f, &sym);
1684 
1685 		__symbols__insert(&curr_dso->symbols, f, dso->kernel);
1686 		nr++;
1687 	}
1688 
1689 	/*
1690 	 * For misannotated, zeroed, ASM function sizes.
1691 	 */
1692 	if (nr > 0) {
1693 		symbols__fixup_end(&dso->symbols, false);
1694 		symbols__fixup_duplicate(&dso->symbols);
1695 		if (kmap) {
1696 			/*
1697 			 * We need to fixup this here too because we create new
1698 			 * maps here, for things like vsyscall sections.
1699 			 */
1700 			maps__fixup_end(kmaps);
1701 		}
1702 	}
1703 	err = nr;
1704 out_elf_end:
1705 	return err;
1706 }
1707 
1708 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1709 		  struct symsrc *runtime_ss, int kmodule)
1710 {
1711 	int nr = 0;
1712 	int err = -1;
1713 
1714 	dso->symtab_type = syms_ss->type;
1715 	dso->is_64_bit = syms_ss->is_64_bit;
1716 	dso->rel = syms_ss->ehdr.e_type == ET_REL;
1717 
1718 	/*
1719 	 * Modules may already have symbols from kallsyms, but those symbols
1720 	 * have the wrong values for the dso maps, so remove them.
1721 	 */
1722 	if (kmodule && syms_ss->symtab)
1723 		symbols__delete(&dso->symbols);
1724 
1725 	if (!syms_ss->symtab) {
1726 		/*
1727 		 * If the vmlinux is stripped, fail so we will fall back
1728 		 * to using kallsyms. The vmlinux runtime symbols aren't
1729 		 * of much use.
1730 		 */
1731 		if (dso->kernel)
1732 			return err;
1733 	} else  {
1734 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1735 					     kmodule, 0);
1736 		if (err < 0)
1737 			return err;
1738 		nr = err;
1739 	}
1740 
1741 	if (syms_ss->dynsym) {
1742 		err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1743 					     kmodule, 1);
1744 		if (err < 0)
1745 			return err;
1746 		err += nr;
1747 	}
1748 
1749 	return err;
1750 }
1751 
1752 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1753 {
1754 	GElf_Phdr phdr;
1755 	size_t i, phdrnum;
1756 	int err;
1757 	u64 sz;
1758 
1759 	if (elf_getphdrnum(elf, &phdrnum))
1760 		return -1;
1761 
1762 	for (i = 0; i < phdrnum; i++) {
1763 		if (gelf_getphdr(elf, i, &phdr) == NULL)
1764 			return -1;
1765 		if (phdr.p_type != PT_LOAD)
1766 			continue;
1767 		if (exe) {
1768 			if (!(phdr.p_flags & PF_X))
1769 				continue;
1770 		} else {
1771 			if (!(phdr.p_flags & PF_R))
1772 				continue;
1773 		}
1774 		sz = min(phdr.p_memsz, phdr.p_filesz);
1775 		if (!sz)
1776 			continue;
1777 		err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1778 		if (err)
1779 			return err;
1780 	}
1781 	return 0;
1782 }
1783 
1784 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1785 		    bool *is_64_bit)
1786 {
1787 	int err;
1788 	Elf *elf;
1789 
1790 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1791 	if (elf == NULL)
1792 		return -1;
1793 
1794 	if (is_64_bit)
1795 		*is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1796 
1797 	err = elf_read_maps(elf, exe, mapfn, data);
1798 
1799 	elf_end(elf);
1800 	return err;
1801 }
1802 
1803 enum dso_type dso__type_fd(int fd)
1804 {
1805 	enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1806 	GElf_Ehdr ehdr;
1807 	Elf_Kind ek;
1808 	Elf *elf;
1809 
1810 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1811 	if (elf == NULL)
1812 		goto out;
1813 
1814 	ek = elf_kind(elf);
1815 	if (ek != ELF_K_ELF)
1816 		goto out_end;
1817 
1818 	if (gelf_getclass(elf) == ELFCLASS64) {
1819 		dso_type = DSO__TYPE_64BIT;
1820 		goto out_end;
1821 	}
1822 
1823 	if (gelf_getehdr(elf, &ehdr) == NULL)
1824 		goto out_end;
1825 
1826 	if (ehdr.e_machine == EM_X86_64)
1827 		dso_type = DSO__TYPE_X32BIT;
1828 	else
1829 		dso_type = DSO__TYPE_32BIT;
1830 out_end:
1831 	elf_end(elf);
1832 out:
1833 	return dso_type;
1834 }
1835 
1836 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1837 {
1838 	ssize_t r;
1839 	size_t n;
1840 	int err = -1;
1841 	char *buf = malloc(page_size);
1842 
1843 	if (buf == NULL)
1844 		return -1;
1845 
1846 	if (lseek(to, to_offs, SEEK_SET) != to_offs)
1847 		goto out;
1848 
1849 	if (lseek(from, from_offs, SEEK_SET) != from_offs)
1850 		goto out;
1851 
1852 	while (len) {
1853 		n = page_size;
1854 		if (len < n)
1855 			n = len;
1856 		/* Use read because mmap won't work on proc files */
1857 		r = read(from, buf, n);
1858 		if (r < 0)
1859 			goto out;
1860 		if (!r)
1861 			break;
1862 		n = r;
1863 		r = write(to, buf, n);
1864 		if (r < 0)
1865 			goto out;
1866 		if ((size_t)r != n)
1867 			goto out;
1868 		len -= n;
1869 	}
1870 
1871 	err = 0;
1872 out:
1873 	free(buf);
1874 	return err;
1875 }
1876 
1877 struct kcore {
1878 	int fd;
1879 	int elfclass;
1880 	Elf *elf;
1881 	GElf_Ehdr ehdr;
1882 };
1883 
1884 static int kcore__open(struct kcore *kcore, const char *filename)
1885 {
1886 	GElf_Ehdr *ehdr;
1887 
1888 	kcore->fd = open(filename, O_RDONLY);
1889 	if (kcore->fd == -1)
1890 		return -1;
1891 
1892 	kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1893 	if (!kcore->elf)
1894 		goto out_close;
1895 
1896 	kcore->elfclass = gelf_getclass(kcore->elf);
1897 	if (kcore->elfclass == ELFCLASSNONE)
1898 		goto out_end;
1899 
1900 	ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1901 	if (!ehdr)
1902 		goto out_end;
1903 
1904 	return 0;
1905 
1906 out_end:
1907 	elf_end(kcore->elf);
1908 out_close:
1909 	close(kcore->fd);
1910 	return -1;
1911 }
1912 
1913 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1914 		       bool temp)
1915 {
1916 	kcore->elfclass = elfclass;
1917 
1918 	if (temp)
1919 		kcore->fd = mkstemp(filename);
1920 	else
1921 		kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1922 	if (kcore->fd == -1)
1923 		return -1;
1924 
1925 	kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1926 	if (!kcore->elf)
1927 		goto out_close;
1928 
1929 	if (!gelf_newehdr(kcore->elf, elfclass))
1930 		goto out_end;
1931 
1932 	memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1933 
1934 	return 0;
1935 
1936 out_end:
1937 	elf_end(kcore->elf);
1938 out_close:
1939 	close(kcore->fd);
1940 	unlink(filename);
1941 	return -1;
1942 }
1943 
1944 static void kcore__close(struct kcore *kcore)
1945 {
1946 	elf_end(kcore->elf);
1947 	close(kcore->fd);
1948 }
1949 
1950 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
1951 {
1952 	GElf_Ehdr *ehdr = &to->ehdr;
1953 	GElf_Ehdr *kehdr = &from->ehdr;
1954 
1955 	memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
1956 	ehdr->e_type      = kehdr->e_type;
1957 	ehdr->e_machine   = kehdr->e_machine;
1958 	ehdr->e_version   = kehdr->e_version;
1959 	ehdr->e_entry     = 0;
1960 	ehdr->e_shoff     = 0;
1961 	ehdr->e_flags     = kehdr->e_flags;
1962 	ehdr->e_phnum     = count;
1963 	ehdr->e_shentsize = 0;
1964 	ehdr->e_shnum     = 0;
1965 	ehdr->e_shstrndx  = 0;
1966 
1967 	if (from->elfclass == ELFCLASS32) {
1968 		ehdr->e_phoff     = sizeof(Elf32_Ehdr);
1969 		ehdr->e_ehsize    = sizeof(Elf32_Ehdr);
1970 		ehdr->e_phentsize = sizeof(Elf32_Phdr);
1971 	} else {
1972 		ehdr->e_phoff     = sizeof(Elf64_Ehdr);
1973 		ehdr->e_ehsize    = sizeof(Elf64_Ehdr);
1974 		ehdr->e_phentsize = sizeof(Elf64_Phdr);
1975 	}
1976 
1977 	if (!gelf_update_ehdr(to->elf, ehdr))
1978 		return -1;
1979 
1980 	if (!gelf_newphdr(to->elf, count))
1981 		return -1;
1982 
1983 	return 0;
1984 }
1985 
1986 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
1987 			   u64 addr, u64 len)
1988 {
1989 	GElf_Phdr phdr = {
1990 		.p_type		= PT_LOAD,
1991 		.p_flags	= PF_R | PF_W | PF_X,
1992 		.p_offset	= offset,
1993 		.p_vaddr	= addr,
1994 		.p_paddr	= 0,
1995 		.p_filesz	= len,
1996 		.p_memsz	= len,
1997 		.p_align	= page_size,
1998 	};
1999 
2000 	if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2001 		return -1;
2002 
2003 	return 0;
2004 }
2005 
2006 static off_t kcore__write(struct kcore *kcore)
2007 {
2008 	return elf_update(kcore->elf, ELF_C_WRITE);
2009 }
2010 
2011 struct phdr_data {
2012 	off_t offset;
2013 	off_t rel;
2014 	u64 addr;
2015 	u64 len;
2016 	struct list_head node;
2017 	struct phdr_data *remaps;
2018 };
2019 
2020 struct sym_data {
2021 	u64 addr;
2022 	struct list_head node;
2023 };
2024 
2025 struct kcore_copy_info {
2026 	u64 stext;
2027 	u64 etext;
2028 	u64 first_symbol;
2029 	u64 last_symbol;
2030 	u64 first_module;
2031 	u64 first_module_symbol;
2032 	u64 last_module_symbol;
2033 	size_t phnum;
2034 	struct list_head phdrs;
2035 	struct list_head syms;
2036 };
2037 
2038 #define kcore_copy__for_each_phdr(k, p) \
2039 	list_for_each_entry((p), &(k)->phdrs, node)
2040 
2041 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2042 {
2043 	struct phdr_data *p = zalloc(sizeof(*p));
2044 
2045 	if (p) {
2046 		p->addr   = addr;
2047 		p->len    = len;
2048 		p->offset = offset;
2049 	}
2050 
2051 	return p;
2052 }
2053 
2054 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2055 						 u64 addr, u64 len,
2056 						 off_t offset)
2057 {
2058 	struct phdr_data *p = phdr_data__new(addr, len, offset);
2059 
2060 	if (p)
2061 		list_add_tail(&p->node, &kci->phdrs);
2062 
2063 	return p;
2064 }
2065 
2066 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2067 {
2068 	struct phdr_data *p, *tmp;
2069 
2070 	list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2071 		list_del_init(&p->node);
2072 		free(p);
2073 	}
2074 }
2075 
2076 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2077 					    u64 addr)
2078 {
2079 	struct sym_data *s = zalloc(sizeof(*s));
2080 
2081 	if (s) {
2082 		s->addr = addr;
2083 		list_add_tail(&s->node, &kci->syms);
2084 	}
2085 
2086 	return s;
2087 }
2088 
2089 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2090 {
2091 	struct sym_data *s, *tmp;
2092 
2093 	list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2094 		list_del_init(&s->node);
2095 		free(s);
2096 	}
2097 }
2098 
2099 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2100 					u64 start)
2101 {
2102 	struct kcore_copy_info *kci = arg;
2103 
2104 	if (!kallsyms__is_function(type))
2105 		return 0;
2106 
2107 	if (strchr(name, '[')) {
2108 		if (!kci->first_module_symbol || start < kci->first_module_symbol)
2109 			kci->first_module_symbol = start;
2110 		if (start > kci->last_module_symbol)
2111 			kci->last_module_symbol = start;
2112 		return 0;
2113 	}
2114 
2115 	if (!kci->first_symbol || start < kci->first_symbol)
2116 		kci->first_symbol = start;
2117 
2118 	if (!kci->last_symbol || start > kci->last_symbol)
2119 		kci->last_symbol = start;
2120 
2121 	if (!strcmp(name, "_stext")) {
2122 		kci->stext = start;
2123 		return 0;
2124 	}
2125 
2126 	if (!strcmp(name, "_etext")) {
2127 		kci->etext = start;
2128 		return 0;
2129 	}
2130 
2131 	if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2132 		return -1;
2133 
2134 	return 0;
2135 }
2136 
2137 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2138 				      const char *dir)
2139 {
2140 	char kallsyms_filename[PATH_MAX];
2141 
2142 	scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2143 
2144 	if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2145 		return -1;
2146 
2147 	if (kallsyms__parse(kallsyms_filename, kci,
2148 			    kcore_copy__process_kallsyms) < 0)
2149 		return -1;
2150 
2151 	return 0;
2152 }
2153 
2154 static int kcore_copy__process_modules(void *arg,
2155 				       const char *name __maybe_unused,
2156 				       u64 start, u64 size __maybe_unused)
2157 {
2158 	struct kcore_copy_info *kci = arg;
2159 
2160 	if (!kci->first_module || start < kci->first_module)
2161 		kci->first_module = start;
2162 
2163 	return 0;
2164 }
2165 
2166 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2167 				     const char *dir)
2168 {
2169 	char modules_filename[PATH_MAX];
2170 
2171 	scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2172 
2173 	if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2174 		return -1;
2175 
2176 	if (modules__parse(modules_filename, kci,
2177 			   kcore_copy__process_modules) < 0)
2178 		return -1;
2179 
2180 	return 0;
2181 }
2182 
2183 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2184 			   u64 pgoff, u64 s, u64 e)
2185 {
2186 	u64 len, offset;
2187 
2188 	if (s < start || s >= end)
2189 		return 0;
2190 
2191 	offset = (s - start) + pgoff;
2192 	len = e < end ? e - s : end - s;
2193 
2194 	return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2195 }
2196 
2197 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2198 {
2199 	struct kcore_copy_info *kci = data;
2200 	u64 end = start + len;
2201 	struct sym_data *sdat;
2202 
2203 	if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2204 		return -1;
2205 
2206 	if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2207 			    kci->last_module_symbol))
2208 		return -1;
2209 
2210 	list_for_each_entry(sdat, &kci->syms, node) {
2211 		u64 s = round_down(sdat->addr, page_size);
2212 
2213 		if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2214 			return -1;
2215 	}
2216 
2217 	return 0;
2218 }
2219 
2220 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2221 {
2222 	if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2223 		return -1;
2224 
2225 	return 0;
2226 }
2227 
2228 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2229 {
2230 	struct phdr_data *p, *k = NULL;
2231 	u64 kend;
2232 
2233 	if (!kci->stext)
2234 		return;
2235 
2236 	/* Find phdr that corresponds to the kernel map (contains stext) */
2237 	kcore_copy__for_each_phdr(kci, p) {
2238 		u64 pend = p->addr + p->len - 1;
2239 
2240 		if (p->addr <= kci->stext && pend >= kci->stext) {
2241 			k = p;
2242 			break;
2243 		}
2244 	}
2245 
2246 	if (!k)
2247 		return;
2248 
2249 	kend = k->offset + k->len;
2250 
2251 	/* Find phdrs that remap the kernel */
2252 	kcore_copy__for_each_phdr(kci, p) {
2253 		u64 pend = p->offset + p->len;
2254 
2255 		if (p == k)
2256 			continue;
2257 
2258 		if (p->offset >= k->offset && pend <= kend)
2259 			p->remaps = k;
2260 	}
2261 }
2262 
2263 static void kcore_copy__layout(struct kcore_copy_info *kci)
2264 {
2265 	struct phdr_data *p;
2266 	off_t rel = 0;
2267 
2268 	kcore_copy__find_remaps(kci);
2269 
2270 	kcore_copy__for_each_phdr(kci, p) {
2271 		if (!p->remaps) {
2272 			p->rel = rel;
2273 			rel += p->len;
2274 		}
2275 		kci->phnum += 1;
2276 	}
2277 
2278 	kcore_copy__for_each_phdr(kci, p) {
2279 		struct phdr_data *k = p->remaps;
2280 
2281 		if (k)
2282 			p->rel = p->offset - k->offset + k->rel;
2283 	}
2284 }
2285 
2286 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2287 				 Elf *elf)
2288 {
2289 	if (kcore_copy__parse_kallsyms(kci, dir))
2290 		return -1;
2291 
2292 	if (kcore_copy__parse_modules(kci, dir))
2293 		return -1;
2294 
2295 	if (kci->stext)
2296 		kci->stext = round_down(kci->stext, page_size);
2297 	else
2298 		kci->stext = round_down(kci->first_symbol, page_size);
2299 
2300 	if (kci->etext) {
2301 		kci->etext = round_up(kci->etext, page_size);
2302 	} else if (kci->last_symbol) {
2303 		kci->etext = round_up(kci->last_symbol, page_size);
2304 		kci->etext += page_size;
2305 	}
2306 
2307 	if (kci->first_module_symbol &&
2308 	    (!kci->first_module || kci->first_module_symbol < kci->first_module))
2309 		kci->first_module = kci->first_module_symbol;
2310 
2311 	kci->first_module = round_down(kci->first_module, page_size);
2312 
2313 	if (kci->last_module_symbol) {
2314 		kci->last_module_symbol = round_up(kci->last_module_symbol,
2315 						   page_size);
2316 		kci->last_module_symbol += page_size;
2317 	}
2318 
2319 	if (!kci->stext || !kci->etext)
2320 		return -1;
2321 
2322 	if (kci->first_module && !kci->last_module_symbol)
2323 		return -1;
2324 
2325 	if (kcore_copy__read_maps(kci, elf))
2326 		return -1;
2327 
2328 	kcore_copy__layout(kci);
2329 
2330 	return 0;
2331 }
2332 
2333 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2334 				 const char *name)
2335 {
2336 	char from_filename[PATH_MAX];
2337 	char to_filename[PATH_MAX];
2338 
2339 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2340 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2341 
2342 	return copyfile_mode(from_filename, to_filename, 0400);
2343 }
2344 
2345 static int kcore_copy__unlink(const char *dir, const char *name)
2346 {
2347 	char filename[PATH_MAX];
2348 
2349 	scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2350 
2351 	return unlink(filename);
2352 }
2353 
2354 static int kcore_copy__compare_fds(int from, int to)
2355 {
2356 	char *buf_from;
2357 	char *buf_to;
2358 	ssize_t ret;
2359 	size_t len;
2360 	int err = -1;
2361 
2362 	buf_from = malloc(page_size);
2363 	buf_to = malloc(page_size);
2364 	if (!buf_from || !buf_to)
2365 		goto out;
2366 
2367 	while (1) {
2368 		/* Use read because mmap won't work on proc files */
2369 		ret = read(from, buf_from, page_size);
2370 		if (ret < 0)
2371 			goto out;
2372 
2373 		if (!ret)
2374 			break;
2375 
2376 		len = ret;
2377 
2378 		if (readn(to, buf_to, len) != (int)len)
2379 			goto out;
2380 
2381 		if (memcmp(buf_from, buf_to, len))
2382 			goto out;
2383 	}
2384 
2385 	err = 0;
2386 out:
2387 	free(buf_to);
2388 	free(buf_from);
2389 	return err;
2390 }
2391 
2392 static int kcore_copy__compare_files(const char *from_filename,
2393 				     const char *to_filename)
2394 {
2395 	int from, to, err = -1;
2396 
2397 	from = open(from_filename, O_RDONLY);
2398 	if (from < 0)
2399 		return -1;
2400 
2401 	to = open(to_filename, O_RDONLY);
2402 	if (to < 0)
2403 		goto out_close_from;
2404 
2405 	err = kcore_copy__compare_fds(from, to);
2406 
2407 	close(to);
2408 out_close_from:
2409 	close(from);
2410 	return err;
2411 }
2412 
2413 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2414 				    const char *name)
2415 {
2416 	char from_filename[PATH_MAX];
2417 	char to_filename[PATH_MAX];
2418 
2419 	scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2420 	scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2421 
2422 	return kcore_copy__compare_files(from_filename, to_filename);
2423 }
2424 
2425 /**
2426  * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2427  * @from_dir: from directory
2428  * @to_dir: to directory
2429  *
2430  * This function copies kallsyms, modules and kcore files from one directory to
2431  * another.  kallsyms and modules are copied entirely.  Only code segments are
2432  * copied from kcore.  It is assumed that two segments suffice: one for the
2433  * kernel proper and one for all the modules.  The code segments are determined
2434  * from kallsyms and modules files.  The kernel map starts at _stext or the
2435  * lowest function symbol, and ends at _etext or the highest function symbol.
2436  * The module map starts at the lowest module address and ends at the highest
2437  * module symbol.  Start addresses are rounded down to the nearest page.  End
2438  * addresses are rounded up to the nearest page.  An extra page is added to the
2439  * highest kernel symbol and highest module symbol to, hopefully, encompass that
2440  * symbol too.  Because it contains only code sections, the resulting kcore is
2441  * unusual.  One significant peculiarity is that the mapping (start -> pgoff)
2442  * is not the same for the kernel map and the modules map.  That happens because
2443  * the data is copied adjacently whereas the original kcore has gaps.  Finally,
2444  * kallsyms file is compared with its copy to check that modules have not been
2445  * loaded or unloaded while the copies were taking place.
2446  *
2447  * Return: %0 on success, %-1 on failure.
2448  */
2449 int kcore_copy(const char *from_dir, const char *to_dir)
2450 {
2451 	struct kcore kcore;
2452 	struct kcore extract;
2453 	int idx = 0, err = -1;
2454 	off_t offset, sz;
2455 	struct kcore_copy_info kci = { .stext = 0, };
2456 	char kcore_filename[PATH_MAX];
2457 	char extract_filename[PATH_MAX];
2458 	struct phdr_data *p;
2459 
2460 	INIT_LIST_HEAD(&kci.phdrs);
2461 	INIT_LIST_HEAD(&kci.syms);
2462 
2463 	if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2464 		return -1;
2465 
2466 	if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2467 		goto out_unlink_kallsyms;
2468 
2469 	scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2470 	scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2471 
2472 	if (kcore__open(&kcore, kcore_filename))
2473 		goto out_unlink_modules;
2474 
2475 	if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2476 		goto out_kcore_close;
2477 
2478 	if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2479 		goto out_kcore_close;
2480 
2481 	if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2482 		goto out_extract_close;
2483 
2484 	offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2485 		 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2486 	offset = round_up(offset, page_size);
2487 
2488 	kcore_copy__for_each_phdr(&kci, p) {
2489 		off_t offs = p->rel + offset;
2490 
2491 		if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2492 			goto out_extract_close;
2493 	}
2494 
2495 	sz = kcore__write(&extract);
2496 	if (sz < 0 || sz > offset)
2497 		goto out_extract_close;
2498 
2499 	kcore_copy__for_each_phdr(&kci, p) {
2500 		off_t offs = p->rel + offset;
2501 
2502 		if (p->remaps)
2503 			continue;
2504 		if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2505 			goto out_extract_close;
2506 	}
2507 
2508 	if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2509 		goto out_extract_close;
2510 
2511 	err = 0;
2512 
2513 out_extract_close:
2514 	kcore__close(&extract);
2515 	if (err)
2516 		unlink(extract_filename);
2517 out_kcore_close:
2518 	kcore__close(&kcore);
2519 out_unlink_modules:
2520 	if (err)
2521 		kcore_copy__unlink(to_dir, "modules");
2522 out_unlink_kallsyms:
2523 	if (err)
2524 		kcore_copy__unlink(to_dir, "kallsyms");
2525 
2526 	kcore_copy__free_phdrs(&kci);
2527 	kcore_copy__free_syms(&kci);
2528 
2529 	return err;
2530 }
2531 
2532 int kcore_extract__create(struct kcore_extract *kce)
2533 {
2534 	struct kcore kcore;
2535 	struct kcore extract;
2536 	size_t count = 1;
2537 	int idx = 0, err = -1;
2538 	off_t offset = page_size, sz;
2539 
2540 	if (kcore__open(&kcore, kce->kcore_filename))
2541 		return -1;
2542 
2543 	strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2544 	if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2545 		goto out_kcore_close;
2546 
2547 	if (kcore__copy_hdr(&kcore, &extract, count))
2548 		goto out_extract_close;
2549 
2550 	if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2551 		goto out_extract_close;
2552 
2553 	sz = kcore__write(&extract);
2554 	if (sz < 0 || sz > offset)
2555 		goto out_extract_close;
2556 
2557 	if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2558 		goto out_extract_close;
2559 
2560 	err = 0;
2561 
2562 out_extract_close:
2563 	kcore__close(&extract);
2564 	if (err)
2565 		unlink(kce->extract_filename);
2566 out_kcore_close:
2567 	kcore__close(&kcore);
2568 
2569 	return err;
2570 }
2571 
2572 void kcore_extract__delete(struct kcore_extract *kce)
2573 {
2574 	unlink(kce->extract_filename);
2575 }
2576 
2577 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2578 
2579 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2580 {
2581 	if (!base_off)
2582 		return;
2583 
2584 	if (tmp->bit32)
2585 		tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2586 			tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2587 			tmp->addr.a32[SDT_NOTE_IDX_BASE];
2588 	else
2589 		tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2590 			tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2591 			tmp->addr.a64[SDT_NOTE_IDX_BASE];
2592 }
2593 
2594 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2595 			      GElf_Addr base_off)
2596 {
2597 	if (!base_off)
2598 		return;
2599 
2600 	if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2601 		tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2602 	else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2603 		tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2604 }
2605 
2606 /**
2607  * populate_sdt_note : Parse raw data and identify SDT note
2608  * @elf: elf of the opened file
2609  * @data: raw data of a section with description offset applied
2610  * @len: note description size
2611  * @type: type of the note
2612  * @sdt_notes: List to add the SDT note
2613  *
2614  * Responsible for parsing the @data in section .note.stapsdt in @elf and
2615  * if its an SDT note, it appends to @sdt_notes list.
2616  */
2617 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2618 			     struct list_head *sdt_notes)
2619 {
2620 	const char *provider, *name, *args;
2621 	struct sdt_note *tmp = NULL;
2622 	GElf_Ehdr ehdr;
2623 	GElf_Shdr shdr;
2624 	int ret = -EINVAL;
2625 
2626 	union {
2627 		Elf64_Addr a64[NR_ADDR];
2628 		Elf32_Addr a32[NR_ADDR];
2629 	} buf;
2630 
2631 	Elf_Data dst = {
2632 		.d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2633 		.d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2634 		.d_off = 0, .d_align = 0
2635 	};
2636 	Elf_Data src = {
2637 		.d_buf = (void *) data, .d_type = ELF_T_ADDR,
2638 		.d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2639 		.d_align = 0
2640 	};
2641 
2642 	tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2643 	if (!tmp) {
2644 		ret = -ENOMEM;
2645 		goto out_err;
2646 	}
2647 
2648 	INIT_LIST_HEAD(&tmp->note_list);
2649 
2650 	if (len < dst.d_size + 3)
2651 		goto out_free_note;
2652 
2653 	/* Translation from file representation to memory representation */
2654 	if (gelf_xlatetom(*elf, &dst, &src,
2655 			  elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2656 		pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2657 		goto out_free_note;
2658 	}
2659 
2660 	/* Populate the fields of sdt_note */
2661 	provider = data + dst.d_size;
2662 
2663 	name = (const char *)memchr(provider, '\0', data + len - provider);
2664 	if (name++ == NULL)
2665 		goto out_free_note;
2666 
2667 	tmp->provider = strdup(provider);
2668 	if (!tmp->provider) {
2669 		ret = -ENOMEM;
2670 		goto out_free_note;
2671 	}
2672 	tmp->name = strdup(name);
2673 	if (!tmp->name) {
2674 		ret = -ENOMEM;
2675 		goto out_free_prov;
2676 	}
2677 
2678 	args = memchr(name, '\0', data + len - name);
2679 
2680 	/*
2681 	 * There is no argument if:
2682 	 * - We reached the end of the note;
2683 	 * - There is not enough room to hold a potential string;
2684 	 * - The argument string is empty or just contains ':'.
2685 	 */
2686 	if (args == NULL || data + len - args < 2 ||
2687 		args[1] == ':' || args[1] == '\0')
2688 		tmp->args = NULL;
2689 	else {
2690 		tmp->args = strdup(++args);
2691 		if (!tmp->args) {
2692 			ret = -ENOMEM;
2693 			goto out_free_name;
2694 		}
2695 	}
2696 
2697 	if (gelf_getclass(*elf) == ELFCLASS32) {
2698 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2699 		tmp->bit32 = true;
2700 	} else {
2701 		memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2702 		tmp->bit32 = false;
2703 	}
2704 
2705 	if (!gelf_getehdr(*elf, &ehdr)) {
2706 		pr_debug("%s : cannot get elf header.\n", __func__);
2707 		ret = -EBADF;
2708 		goto out_free_args;
2709 	}
2710 
2711 	/* Adjust the prelink effect :
2712 	 * Find out the .stapsdt.base section.
2713 	 * This scn will help us to handle prelinking (if present).
2714 	 * Compare the retrieved file offset of the base section with the
2715 	 * base address in the description of the SDT note. If its different,
2716 	 * then accordingly, adjust the note location.
2717 	 */
2718 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2719 		sdt_adjust_loc(tmp, shdr.sh_offset);
2720 
2721 	/* Adjust reference counter offset */
2722 	if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2723 		sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2724 
2725 	list_add_tail(&tmp->note_list, sdt_notes);
2726 	return 0;
2727 
2728 out_free_args:
2729 	zfree(&tmp->args);
2730 out_free_name:
2731 	zfree(&tmp->name);
2732 out_free_prov:
2733 	zfree(&tmp->provider);
2734 out_free_note:
2735 	free(tmp);
2736 out_err:
2737 	return ret;
2738 }
2739 
2740 /**
2741  * construct_sdt_notes_list : constructs a list of SDT notes
2742  * @elf : elf to look into
2743  * @sdt_notes : empty list_head
2744  *
2745  * Scans the sections in 'elf' for the section
2746  * .note.stapsdt. It, then calls populate_sdt_note to find
2747  * out the SDT events and populates the 'sdt_notes'.
2748  */
2749 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2750 {
2751 	GElf_Ehdr ehdr;
2752 	Elf_Scn *scn = NULL;
2753 	Elf_Data *data;
2754 	GElf_Shdr shdr;
2755 	size_t shstrndx, next;
2756 	GElf_Nhdr nhdr;
2757 	size_t name_off, desc_off, offset;
2758 	int ret = 0;
2759 
2760 	if (gelf_getehdr(elf, &ehdr) == NULL) {
2761 		ret = -EBADF;
2762 		goto out_ret;
2763 	}
2764 	if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2765 		ret = -EBADF;
2766 		goto out_ret;
2767 	}
2768 
2769 	/* Look for the required section */
2770 	scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2771 	if (!scn) {
2772 		ret = -ENOENT;
2773 		goto out_ret;
2774 	}
2775 
2776 	if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2777 		ret = -ENOENT;
2778 		goto out_ret;
2779 	}
2780 
2781 	data = elf_getdata(scn, NULL);
2782 
2783 	/* Get the SDT notes */
2784 	for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2785 					      &desc_off)) > 0; offset = next) {
2786 		if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2787 		    !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2788 			    sizeof(SDT_NOTE_NAME))) {
2789 			/* Check the type of the note */
2790 			if (nhdr.n_type != SDT_NOTE_TYPE)
2791 				goto out_ret;
2792 
2793 			ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2794 						nhdr.n_descsz, sdt_notes);
2795 			if (ret < 0)
2796 				goto out_ret;
2797 		}
2798 	}
2799 	if (list_empty(sdt_notes))
2800 		ret = -ENOENT;
2801 
2802 out_ret:
2803 	return ret;
2804 }
2805 
2806 /**
2807  * get_sdt_note_list : Wrapper to construct a list of sdt notes
2808  * @head : empty list_head
2809  * @target : file to find SDT notes from
2810  *
2811  * This opens the file, initializes
2812  * the ELF and then calls construct_sdt_notes_list.
2813  */
2814 int get_sdt_note_list(struct list_head *head, const char *target)
2815 {
2816 	Elf *elf;
2817 	int fd, ret;
2818 
2819 	fd = open(target, O_RDONLY);
2820 	if (fd < 0)
2821 		return -EBADF;
2822 
2823 	elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2824 	if (!elf) {
2825 		ret = -EBADF;
2826 		goto out_close;
2827 	}
2828 	ret = construct_sdt_notes_list(elf, head);
2829 	elf_end(elf);
2830 out_close:
2831 	close(fd);
2832 	return ret;
2833 }
2834 
2835 /**
2836  * cleanup_sdt_note_list : free the sdt notes' list
2837  * @sdt_notes: sdt notes' list
2838  *
2839  * Free up the SDT notes in @sdt_notes.
2840  * Returns the number of SDT notes free'd.
2841  */
2842 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2843 {
2844 	struct sdt_note *tmp, *pos;
2845 	int nr_free = 0;
2846 
2847 	list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2848 		list_del_init(&pos->note_list);
2849 		zfree(&pos->args);
2850 		zfree(&pos->name);
2851 		zfree(&pos->provider);
2852 		free(pos);
2853 		nr_free++;
2854 	}
2855 	return nr_free;
2856 }
2857 
2858 /**
2859  * sdt_notes__get_count: Counts the number of sdt events
2860  * @start: list_head to sdt_notes list
2861  *
2862  * Returns the number of SDT notes in a list
2863  */
2864 int sdt_notes__get_count(struct list_head *start)
2865 {
2866 	struct sdt_note *sdt_ptr;
2867 	int count = 0;
2868 
2869 	list_for_each_entry(sdt_ptr, start, note_list)
2870 		count++;
2871 	return count;
2872 }
2873 #endif
2874 
2875 void symbol__elf_init(void)
2876 {
2877 	elf_version(EV_CURRENT);
2878 }
2879